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Abstract. Greedy algorithms are one of the oldest known methods for code 

construction. They are simple to define and easy to implement, but require 

exponential running time. Codes obtained with greedy construction have very 

good encoding parameters; hence, the idea of finding faster algorithms for code 

generation seems natural. We start with an overview of the greedy algorithms 

and propose some improvements. Then, we study the code parameters of long 

greedy codes in attempt to produce stronger estimates. It is well known that 

greedy-code parameters give raise to the Gilbert-Varshamov bound; improving 

this bound is fundamental problem in coding theory. 
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1 Introduction 

Given an -dimensional vector space  over some finite field , a code  C  is 

any subset of 

n n
qF qF

M elements. Let ( )yxd ,  denotes the Hamming distance between two 

vectors x  and , i.e. the number of coordinates in which they differ; then we can 

define minimum distance  of a code as 

y

d ( )( )yxdd ,min= , Cyx ∈∀ , . We write 

 to denote a code of ( Mn ,, )d M elements and minimum distance over . d m
qF

The main focus in this paper is on the linear codes. The codewords of a 

linear code form a -dimensional subspace in . We write 

kqM =
k n

qF [ ]d

C

kn ,,  to denote a 

linear code of dimension  and minimum distance d . A linear code  has a  

generator matrix  and 

k

n

nk ×
G ( ) nk ×−  parity check matrix H , such that . 

Throughout the paper, we will assume that the generator and parity check matrices are 

in standard form G , and 

0=THG

[ ]AI= [ ]IAT−H = . 

We use ( ) Ν∈xwt  to denote the Hamming weight of the vector x , i.e. the number 

of nonzero positions of x , ( ) ( )0,xdistxwt = . In addition, δ  will denote the relative 

distance of the code nd=δ , and  will be the code rate R ( ) nMR qlog= . A string 



of  ones, ,  will be written as ,  and the concatenation of two strings  and 

 will be represented with ( ) .  n

( M,
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)
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In estimating the complexity of an algorithm, we adopt Random Access Machine 

(RAM) as a computational model. The time complexity is measured as the number of 

basic (sequential) steps needed for instance of the algorithm to end. It is considered 

that RAM has unlimited memory with instant access. Thus the space complexity is 

simply the number of registers used by an instance of the algorithm.  

In Section 2, we study the complexity of the greedy algorithms for code 

generation. In 2.3, we will introduce an algorithm that we call the Jenkins’ 

construction. We will show that this algorithm has better time complexity than the 

similar constructions (2.1 and 2.2). In 2.4, we will explain the Lexicographic 

construction- a greedy approach that originally was introduced in [1]. In this paper we 

will present faster and less memory demanding version of the algorithm, generalized 

over arbitrary alphabet GF . Our contribution to the algorithm is underlined with 

lemma 1 and theorem 1. Using them we avoid using long coset leaders and we work 

with their coset weights instead. 

It is obvious that due to the exponential nature of the greedy algorithm it is 

impossible to generate long codes in an acceptable time. Thus, in section 3, we want 

to estimate the code parameters of the long greedy codes.  In 3.1, we develop 

counting mechanisms (theorems 2, 3, and 4) that give better estimate on code 

parameters than the well-known Gilbert-Varshamov bound. In 3.2, we use theorem 3 

to improve some published results (see (12) and (13)). Some parts in section 3 have 

already been published in [14]; we present them again for the reason of completeness.            

2 Greedy Algorithms for Code Construction 

Fundamental problem in coding theory is how to find optimal codes. The code 

 is optimal if it has maximal number of codewords d, M  for a given  and d . 

In general, finding an optimal code is considered to be a difficult problem. Trivial 

way to do this is by super-exponential search over all possible orderings of the field 

.  For small fields ( , 

n

n
qF 9≤q n ≤ 256 ), there exist tables of best known (some of 

them optimal) codes [7], but for larger spaces optimal-code parameters can be 

estimated with the Gilbert-Varshamov bound and its asymptotical variant. 

It is well-known fact that a simple greedy search produces a code with parameters δ  and  that follow the Gilbert-Varshamov bound. In binary case, unproven 

conjecture is that this is the best known method for code construction. A particularly 

mysterious truth is that almost all random linear codes meet the asymptotic Gilbert-

Varshamov bound. 

R



2.1 The Gilbert’s Construction 

In general, Gilbert’s Construction produces a nonlinear ( )dMn ,,  code. Given the 

length  and the minimum distance d , the algorithm searches over the entire space 

 and greedily adds to  the first vector 

n
n

qF C x , such that ( ) dcx Ccd ∈∀≥ ,, . The time 

complexity of the algorithm is ( )( )nR+nq 1O , because there are  vectors to be 

checked against a set of at most 

nq

M  codewords, .  RnqM =
Important to notice is that the space needed to store all M  codewords is . 

This is one of the reasons why nonlinear codes are not very popular for practical 

purposes.       

Rnnq

2.2 The Varshamov’s Construction 

Given the codimension knm −=  and the distance , the Varshamov’s algorithm 

searches over  and produces the parity check matrix 

d
m

qF H  of a linear code. The 

algorithm greedily adds to H the first vector x  that is not linear combination of 

 or less columns of 2−d H . It can be verified that with this construction every 

combination of  columns of 1−d H is linearly independent; hence the resulting code 

is linear with minimum distance d . 

The time complexity of the algorithm is ( )( )( )δHRnqnO +−12 , because each of the 

 vectors of  must be compared with at most knq − m
qF ( )δnHq  linear combinations, 

where  ( )δH  is the entropy function, and ( )δnHq

n →∞
 represents all  or less 

combinations from an -element set, when . The space complexity of the 

Varshamov’s construction is proportional with the dimensions of the parity check 

matrix 

2−d

n

H . 

2.3 The Jenkins’ Construction 

The idea in this construction is to build the generator matrix of a systematic code 

. For each  we form the vector [ AIG = ] m
qFx∈ ( )xck |0101 …=+

⎢⎣
⎡=

+
+

1

1

k
k c

G
G

, . Then we 

check if all linear combinations of rows of the matrix  have Hamming 

weight at least . There are two important facts about the systematic codes that help 

to reduce the number and size of the row checks: every linear combination of  or 

more rows of  has Hamming weight , and  

n
qFc∈

⎥⎦
⎤

d

1+kG
d

d≥( ) ( )
NN iiiiii aaawtNcccwt ++++=+++ ""
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where each is a row of , and are the parity bits of  that belong to the 
jic 1+kG

jia
jic A -

matrix. 

The worst-case running time of the algorithm is ( )( )( )RRHRnqnO /12 δ+− , because  

vectors must be checked in 

knq −
( )RnRHq /δ  linear combinations, while the space complexity 

is proportional with the size of the A -matrix. We named this algorithm Jenkins’ 

construction because, to our knowledge, it was first implemented by B. Jenkins in [2], 

by using divide-and-conquer strategy in such a manner that first it checks all linear 

combinations of one vector, then all linear combinations of two vectors, and so on. 

2.4 The Lexicographic Construction 

Any linear code , with parity check matrix C H , partitions the entire space  into 

 disjoint sets of  elements called cosets. Two vectors  belong to the 

same coset if and only if 

n
qF

knq − kq n
qFyx ∈,

Cyx ∈− . Each coset has two special vectors: a unique 

syndrome and a coset leader kn
q
−Fs∈ ( ) F∈ n

qse . The coset leader  is the 

minimum weight vector in the coset. The syndrome 

(se )
s  is obtained with s , 

where 

TxH ⋅=
x  is any vector from the coset. Usually, all  pairs kn−q ( )( )sse ,  are stored in a 

table of size  called standard array. The standard array is used to describe 

minimum distance decoding principle called syndrome decoding. In syndrome 

decoding, the error pattern  that scrambled the transmitted message  is 

considered to be the coset leader 

kn−nq

n
qFe∈ n

qFy∈
( )se  associated with the syndrome . The 

weight of the heaviest coset leader in the array is called covering radius 

TyH ⋅s =
ρ  of the 

code.  

In [1], A. Trachtenberg published an algorithm that uses the standard array of a 

binary  code  to build a new [ dkn ,, ] C [ ]dknk ,1,1 ++  code in a greedy fashion. The 

algorithm, named Lexicographic Construction, runs in time ( )knn −Ο 22  and space 

. In [4], D. Spasov improved the space complexity of the Lexicographic 

Construction to , by demonstrating that the algorithm can work with the 

weights of the coset leaders 

( nnΟ 2 )k−

( kn− )Θ 2 ( ) Ν∈sw  instead of the coset leaders ( )se . In addition, in 

[4], the time complexity was reduced to ( )knn −Ο 2  by making the greedy choice less 

time consuming. In this section, we will describe the Lexicographic Construction, as 

implemented in [4], but generalized over ( )qGF .  

Given the code , let assume that the pairs syndrome-coset weight  

are stored in a table. The Lexicographic Construction is iterative algorithm that can be 

described in three steps. In the first step the covering radius of the code is found, 

. In the second step, a vector from the maximum weight 

[ dkn ,,

m
qF∈

] ( )( )sws,

( )( ) ssw ∀= ,maxρ



cosets is chosen, and a new basis codeword is formed. In the third step the table 

 for the new [( )( 11, ++ kk sws ) ]dknk ,1,1 ++  code is computed from ( )( )sws, . 

Even though, for the second step, it seems that we can not obtain a coset member 

from , the following lemma shows how to get one for systematic codes: ( )( sws, )
Lemma 1. Vectors l  and  belong to the same coset if and only if . ( )sk |0 sHlT =( ) ss

Tk =|0Proof. H ⋅                   ■ 

Hence, in the second step, the algorithm chooses the syndrome s  of a maximum 

weight coset, ( ) ρ=sw , and attaches to it  zeroes, k ( )sk |0 . Then the new basis 

codeword  is constructed by adding 1+kc ρ−d  ones: 

( )sk |0|ρ  (1) c d
k 11

−+ =
A proof that in binary case the code [ ]dknk ,1,1 ++  will have minimum distance  

can be found in [1]. This proof can be generalized for any 

d

( )qGF . ( ( ))1+1,+ kk swsThe third step is an effective mechanism to build the table  from the 

existing ( )s( ws, ) . First, note that any vector  that belongs to  is a 

syndrome of a coset. This syndrome  is considered to be a concatenation of two 

vectors 

1+ks 1−−k1+n
q

kF

1+ks( )sv |sk 1 =+ , such that v  and . Second, we need the following 

definition: 

kn−
qs∈Fs,

Definition 1. Given two syndromes  and ks s , the syndrome companion set of sk 

with respect to s is the set: { }qF   ,  (2) 
ks| ∈⋅+= iyy ii is

There are  disjoint syndrome companion sets and each syndrome belongs to 

only one companion set. Next, we can proceed to the main result: 

1−−knq

( )( )s( ( ))ksw,Theorem 1. Given ρ , , and 1+kc ks 11, ++ kk sw.  The table  associated 

with [ knk ,1 ]d,1++  can be efficiently constructed by carrying out the following 

minimization for each syndrome ( )ksv |ks 1 =+   

{ ( ) ( )( ) }ik ywsw −+ +1

ρ . (3) 

sisy

qi

d

ki

ivwt

⋅+=
−=

+=
1..0

min

n
qF

kn
q
−F

Proof Outline. Any coset from  can be seen as concatenation of  

companion cosets from . In a simple case, the new coset leader is chosen to be 

the minimum weight coset leader among the companion cosets. Companion cosets are 

found by finding the syndrome companion set (2)  for each syndrome                     ■ 

11 −−+ kk q

The Lexicographic Construction starts with the repetition code and iterates as long 

as there are available memory resources. The space complexity of the algorithm is 



( ) ( )⎡ ⎤( )( nRqnO −⋅ 1lg
2log

constd =
) . In practice, we can speak about implementation only for the 

case  , thus the size of the registers needed for storing  can be 

considered constant and the space complexity becomes 

( )ksw
( )⎡ ⎤( )( )nRq −⋅Θ 1lg

2 .  

For reference purposes, theorem 2.2 published in [5] is a generalization of theorem 

3 from [1] for -ary alphabet. Our Theorem 1, not only shows that the same 

conclusion can be derived for coset weights 

q ( )sw , but also shows how to find the 

coset companions. In contrast, the method used for finding coset companions in [1] is 

binary search. 

3 Estimate of the Parameters of the Greedy Codes. The 
Gilbert-Varshamov bound. 

Let H  is the parity check matrix of some binary code [ ]dkn ,1,1 −− . Let 

 denotes the set of all unique ( ,− k )2−dnH ( )kn − -tuples that are linear combination 

of  columns of ( 2−d ) H . Then a code with parameters [ ]dkn ,,  does exist provided 

( ) 222, −≤−− −kndknH  (4) 

The existence of [  lower-bounds the existence of the optimal code for given 

 and . Let V  denotes the number of all possible  or less combinations 

from an -element set 

]

)

dkn ,,( )dn,n d

n

d

( ) ∑= ⎟⎟⎠
⎞⎜⎜⎝

⎛= d

i d

n
dnV

0

, . 
(5) 

Then, since ( 2, −− dknH  cannot be larger than ( )2,1 −− dnV  we obtain a simple 

combinatorial estimate of (4) 

( ) 222,1 −≤−− −kndnV  (6) 

known as the Gilbert-Varshamov (GV) bound. One of the most challenging problems 

in coding theory is how to improve the GV bound, especially for infinite code length 

. In binary case, so far, only one asymptotic improvement is known [8], and a few 

non-asymptotic ones (see [10], [12], and [13]).  

n

3.1 Some results on the Gilbert-Varshamov bound 

We start with a simple improvement of the GV bound for the case when  is even 

number: 

d

Theorem 2. Let the minimum distance  is even number. Then the code  

does exist provided 

d [ ]dkn ,,



( ) 223,2 1 −≤−− −−kndnV . (7) 

Proof.  Construct the code [ ]tkn 2,,  from the code [ ]12,,1 −− tkn  by adding overall 

parity check. Use (6) to find [ ]12,,1 −− tkn .             ■ 

It can be shown that the right-hand of (7) is always smaller than the right-hand of 

(6) by a factor dn . Despite the simplicity of theorem 2, we have not found any 

publication that mentions it. Theorem 3 was presented in [14]; however later we 

discovered that it was already published in similar fashion in [13]: 

Theorem 3. [13] The code [ ]dkn ,,  can be extended to a code with parameters 

 provided that  [ dlkln ,,1 +++ ]
( )( )∑−

+==
−≤−−⎟⎟⎠

⎞⎜⎜⎝
⎛2,min

2
1

22,
dl

ii
i

knidnV
i

l
. 

(8) 

Interesting to note is that the existence of [ ]dkn ,,  can be supported with the 

Varshamov bound (6), or by using (8) recursively. The recursion ends with the 

repetition code.  

Proof Outline. We build the parity check matrix  recursively from , 

. In order to estimate 

1+mH mH[ mmm LHH =+1 ] ( )2, −− dknH , we count only those linear 

combinations that include odd number of vectors from . The parameter l  is the 

number of columns of the matrix .              ■ 

mL

mL

In absence of stronger evidence, simulations suggest that theorem 3 non-

asymptotically improves the GV bound when const=δ . 
If we compare code parameters that are solution of (8) with the parameters 

obtained from running the greedy algorithm [4], we will notice a considerable gap. 

This implies that many linear combinations from ( )2, −− dknH  are counted multiple 

times. Theorem 4 attempts to improve this over-counting:  

Theorem 4. The code [  can be extended to a code with parameters 

 provided that  

]] dkn ,,[ dlkln ,,1 +++
( )( )

( )( )( )
kn

dl

tt
t

t

ii
i

id

itj

dl

ii
i

jditjiddnV
j

d

i

t

t

l

idnV
i

l

−

+== +==

−

−=

+==

≤−+−+−−⎟⎟⎠
⎞⎜⎜⎝

⎛⎟⎟⎠
⎞⎜⎜⎝

⎛⎟⎟⎠
⎞⎜⎜⎝

⎛−

−−⎟⎟⎠
⎞⎜⎜⎝

⎛

∑ ∑ ∑
∑

2',max','
'

2

1

',

',min

2
2

2
1

'

',min

2
1

. 

(9) 

where 2' −= dd . 

Proof Outline. We will show an example of the case when a vector is counted 

twice with (8).  Let . Then for any two columns , there 

exist  columns in  such that 

[ mmm LHH =+1

mH

] mLll ∈21,

02−d 22121 =+++++ −dhhhll " . If we transfer 

some vectors on the right-hand side we obtain 



  

2212211 −++ ++++=++++ diii hhhlhhhl "" .  

Hence, we observe that the vector ihhhl ++++ "211  is counted twice. Theorem 4 

is simply a generalization of this observation that includes all linear combinations of 

even number of vectors from .                       ■  mL

For Hamming codes  ( , there is no difference between theorem 3 and 4; 

however, for  inequality (9) becomes slightly better, namely 

)

2

3d =
5d =

11 3
2 2 3

n kn l l
l n − −⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − + ≤⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ . 

(10) 

 

3.2 Comparison with prior work 

To the best of our knowledge, theorem 3 was first published in [13] in order to 

estimate the parameters of the greedy lexicodes. However, in [13] it is not mentioned 

that  needs not to be a greedy code, and that (8) can be used recursively, first 

to guarantee existence of , then the existence of 

[ dkn ,, ] ][ dkn ,, [ ]dlkln ,,1 +++ . 

Elia [10] reported the following result: Let the code [ ]dkn ,1,2 −−  does exist. 

Then the code  does exist too, provided [ dkn ,, ]
( ) 123,2 −−≤−− kndnV . (11) 

If we restrict  to be at most 1  then (8) is precisely Elia's result. Moreover, letting 

 we obtain improvement of (11); namely, assuming prior existence of the code 

, the code  does exist if the following holds true 

l
2≤l

n ,3−[ ]dk ,2− [ dkn ,, ]
( ) 223,3 −−≤−− kndnV . (12) 

Even though (7) and (11) are the same inequality, they are used in a different 

context. In [10], inequality (11) is used only after the existence of [ ]dkn ,,  is secured. 

In theorem 2, prior existence of [ ]dkn ,,  is not required, but (7) is restricted only for 

codes with even minimum distance. 

Barg, Guritman, and Simonis [12] reported the following remark: The code 

 with covering radius [ dkn ,, ] 2−≤ dρ  can be extended to [ ]dkdn ,1,1 +−−+ ρ . In 

this context, if the covering radius of [ ]dkn ,,  is strictly less than 2−d , then (8) 

guarantees existence of the trivial lengthening [ ]dk,,1n + . However if we have prior 

knowledge of the covering radius, we can modify (8) so that we obtain at least the 

same result as in [12]. For example, similar to (11), we can extend remark 13 from 

[12], i.e. if 



( ) 12,1 −−≤− knnV α . (13) 

for some 1−≤ dα , then any [ ]dkn ,,  code can be extended to an [ ]dkdn ,2, +−+ ρ  

code. For 3−= dα  this reduces to (12). 

Jiang and Vardy have developed a graph-theoretic approach to asymptotically 

improve the GV bound for nonlinear codes [8], [9]. They were able to show that the 

code (  does exist provided )dMn ,,

( ) ⎡ ⎤Mn

n

dnV
c 2log

2
1, −≤−

. 
(14) 

where the constant  is at least c ( )121 o+ , as reported in [9]. How does (8) compares 

with (14)? So far, we were unable to prove that the left-hand of (8) can be smaller by 

a factor . Hence, one may assume that (14) guarantees existence of a code with 

better parameters than (8). However, in general inequality (14) guarantees existence 

of a non-linear code, while (8) pertains to the linear codes. Gaborit and Zemor [11] 

proved that some linear double circulant codes follow (14), but only for code rates of 

n

21 . If a linear code is proved to comply with (14), then (8) and (14) will complement 

each other. Namely, Jiang and Vardy reported that (14) improves the GV bound when 

the relative distance δ  is constant. On the other hand, (8) improves the GV bound 

even when δ  approaches to zero. 

Conclusion 

In section II, we have introduced four exponential-time greedy algorithms. In binary 

case these algorithms remain asymptotically the best known method for code 

construction. An open problem is to find polynomial-time construction that meets the 

greedy-code parameters, or to prove non-existence of such an algorithm.  

The exponent in the growth rate of an exponential algorithm is the key factor that 

determines the running time. Our goal was to find algorithms with smaller exponents 

in the worst-case running time; though improving the worst-case running time not 

necessarily guarantees faster algorithm. More important is the average-case running 

time. In the case of the Lexicographic Construction the worst-case equals the average-

case. However, in the case of the Jenkins’ construction, we leave the average-case 

complexity as open problem.  On the other hand, the best-case complexity of the 

Gilbert’s construction is . Comparing this best-case with the Lexicographic 

construction’s worst-case, we concluded that not only the Lexicographic Construction 

has better space complexity than the Gilbert’s construction, but also it is faster for, at 

least, code rates  

( knqΟ )
21≥R .  

In general, finding a faster algorithm is a difficult task, since a faster algorithm will 

have to check only a fraction of the   codeword candidates or only a fraction of knq −



the   row checks. The solution that we propose is combination of the 

Lexicographic construction and the Jenkins’ construction. First, as long as there are 

available memory resources, run the Lexicographic construction. Then, after the 

entire memory is used, continue with the Jenkins’ construction, while the table 

 is still kept in memory for reducing the number of row checks.  

⎟⎟⎠
⎞⎜⎜⎝

⎛
d

k

( )s( ws, )
In section III, we tried to count only once as many linear combinations as possible 

from of the parity check matrix H . The complex theorem 4 has the best possible 

estimate on ( ), 2H n k d− − . However, even for 5d = , there is a big difference 

between the estimated results (11) and simulated results [4]. The obvious conclusion 

is that there are still many combinations that are counted multiple times, but we 

believe that asymptotical improvements similar to [8] may exist for linear codes.  
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