
On the Complexity of the Greedy Construction of
Linear Error-Correcting Codes

Dejan Spasov1, Marjan Gusev1

1 Institute of Informatics, Faculty of Natural Science, Ss. Cyril and Methodius University,

Skopje, Macedonia

{dejan, marjan}@ii.edu.mk

Abstract. Greedy algorithms are one of the oldest known methods for code

construction. They are simple to define and easy to implement, but require

exponential running time. Codes obtained with greedy construction have very

good encoding parameters; hence, the idea of finding faster algorithms for code

generation seems natural. We start with an overview of the greedy algorithms

and propose some improvements. Then, we study the code parameters of long

greedy codes in attempt to produce stronger estimates. It is well known that

greedy-code parameters give raise to the Gilbert-Varshamov bound; improving

this bound is fundamental problem in coding theory.

Keywords: Linear codes, Greedy Codes, Lexicodes, Gilbert-Varshamov

Bound, Greedy Algorithms.

1 Introduction

Given an -dimensional vector space over some finite field , a code C is

any subset of

n n
qF qF

M elements. Let ()yxd , denotes the Hamming distance between two

vectors x and , i.e. the number of coordinates in which they differ; then we can

define minimum distance of a code as

y

d ()()yxdd ,min= , Cyx ∈∀ , . We write

 to denote a code of (Mn ,,)d M elements and minimum distance over . d m
qF

The main focus in this paper is on the linear codes. The codewords of a

linear code form a -dimensional subspace in . We write

kqM =
k n

qF []d

C

kn ,, to denote a

linear code of dimension and minimum distance d . A linear code has a

generator matrix and

k

n

nk ×
G () nk ×− parity check matrix H , such that .

Throughout the paper, we will assume that the generator and parity check matrices are

in standard form G , and

0=THG

[]AI= []IAT−H = .

We use () Ν∈xwt to denote the Hamming weight of the vector x , i.e. the number

of nonzero positions of x , () ()0,xdistxwt = . In addition, δ will denote the relative

distance of the code nd=δ , and will be the code rate R () nMR qlog= . A string

of ones, , will be written as , and the concatenation of two strings and

 will be represented with () . n

(M,

111…

)

n1 a
b

n

ba |

()q

In estimating the complexity of an algorithm, we adopt Random Access Machine

(RAM) as a computational model. The time complexity is measured as the number of

basic (sequential) steps needed for instance of the algorithm to end. It is considered

that RAM has unlimited memory with instant access. Thus the space complexity is

simply the number of registers used by an instance of the algorithm.

In Section 2, we study the complexity of the greedy algorithms for code

generation. In 2.3, we will introduce an algorithm that we call the Jenkins’

construction. We will show that this algorithm has better time complexity than the

similar constructions (2.1 and 2.2). In 2.4, we will explain the Lexicographic

construction- a greedy approach that originally was introduced in [1]. In this paper we

will present faster and less memory demanding version of the algorithm, generalized

over arbitrary alphabet GF . Our contribution to the algorithm is underlined with

lemma 1 and theorem 1. Using them we avoid using long coset leaders and we work

with their coset weights instead.

It is obvious that due to the exponential nature of the greedy algorithm it is

impossible to generate long codes in an acceptable time. Thus, in section 3, we want

to estimate the code parameters of the long greedy codes. In 3.1, we develop

counting mechanisms (theorems 2, 3, and 4) that give better estimate on code

parameters than the well-known Gilbert-Varshamov bound. In 3.2, we use theorem 3

to improve some published results (see (12) and (13)). Some parts in section 3 have

already been published in [14]; we present them again for the reason of completeness.

2 Greedy Algorithms for Code Construction

Fundamental problem in coding theory is how to find optimal codes. The code

 is optimal if it has maximal number of codewords d, M for a given and d .

In general, finding an optimal code is considered to be a difficult problem. Trivial

way to do this is by super-exponential search over all possible orderings of the field

. For small fields (,

n

n
qF 9≤q n ≤ 256), there exist tables of best known (some of

them optimal) codes [7], but for larger spaces optimal-code parameters can be

estimated with the Gilbert-Varshamov bound and its asymptotical variant.

It is well-known fact that a simple greedy search produces a code with parameters δ and that follow the Gilbert-Varshamov bound. In binary case, unproven

conjecture is that this is the best known method for code construction. A particularly

mysterious truth is that almost all random linear codes meet the asymptotic Gilbert-

Varshamov bound.

R

2.1 The Gilbert’s Construction

In general, Gilbert’s Construction produces a nonlinear ()dMn ,, code. Given the

length and the minimum distance d , the algorithm searches over the entire space

 and greedily adds to the first vector

n
n

qF C x , such that () dcx Ccd ∈∀≥ ,, . The time

complexity of the algorithm is ()()nR+nq 1O , because there are vectors to be

checked against a set of at most

nq

M codewords, . RnqM =
Important to notice is that the space needed to store all M codewords is .

This is one of the reasons why nonlinear codes are not very popular for practical

purposes.

Rnnq

2.2 The Varshamov’s Construction

Given the codimension knm −= and the distance , the Varshamov’s algorithm

searches over and produces the parity check matrix

d
m

qF H of a linear code. The

algorithm greedily adds to H the first vector x that is not linear combination of

 or less columns of 2−d H . It can be verified that with this construction every

combination of columns of 1−d H is linearly independent; hence the resulting code

is linear with minimum distance d .

The time complexity of the algorithm is ()()()δHRnqnO +−12 , because each of the

 vectors of must be compared with at most knq − m
qF ()δnHq linear combinations,

where ()δH is the entropy function, and ()δnHq

n →∞
 represents all or less

combinations from an -element set, when . The space complexity of the

Varshamov’s construction is proportional with the dimensions of the parity check

matrix

2−d

n

H .

2.3 The Jenkins’ Construction

The idea in this construction is to build the generator matrix of a systematic code

. For each we form the vector [AIG =] m
qFx∈ ()xck |0101 …=+

⎢⎣
⎡=

+
+

1

1

k
k c

G
G

, . Then we

check if all linear combinations of rows of the matrix have Hamming

weight at least . There are two important facts about the systematic codes that help

to reduce the number and size of the row checks: every linear combination of or

more rows of has Hamming weight , and

n
qFc∈

⎥⎦
⎤

d

1+kG
d

d≥() ()
NN iiiiii aaawtNcccwt ++++=+++ ""

2121

where each is a row of , and are the parity bits of that belong to the
jic 1+kG

jia
jic A -

matrix.

The worst-case running time of the algorithm is ()()()RRHRnqnO /12 δ+− , because

vectors must be checked in

knq −
()RnRHq /δ linear combinations, while the space complexity

is proportional with the size of the A -matrix. We named this algorithm Jenkins’

construction because, to our knowledge, it was first implemented by B. Jenkins in [2],

by using divide-and-conquer strategy in such a manner that first it checks all linear

combinations of one vector, then all linear combinations of two vectors, and so on.

2.4 The Lexicographic Construction

Any linear code , with parity check matrix C H , partitions the entire space into

 disjoint sets of elements called cosets. Two vectors belong to the

same coset if and only if

n
qF

knq − kq n
qFyx ∈,

Cyx ∈− . Each coset has two special vectors: a unique

syndrome and a coset leader kn
q
−Fs∈ () F∈ n

qse . The coset leader is the

minimum weight vector in the coset. The syndrome

(se)
s is obtained with s ,

where

TxH ⋅=
x is any vector from the coset. Usually, all pairs kn−q ()()sse , are stored in a

table of size called standard array. The standard array is used to describe

minimum distance decoding principle called syndrome decoding. In syndrome

decoding, the error pattern that scrambled the transmitted message is

considered to be the coset leader

kn−nq

n
qFe∈ n

qFy∈
()se associated with the syndrome . The

weight of the heaviest coset leader in the array is called covering radius

TyH ⋅s =
ρ of the

code.

In [1], A. Trachtenberg published an algorithm that uses the standard array of a

binary code to build a new [dkn ,,] C []dknk ,1,1 ++ code in a greedy fashion. The

algorithm, named Lexicographic Construction, runs in time ()knn −Ο 22 and space

. In [4], D. Spasov improved the space complexity of the Lexicographic

Construction to , by demonstrating that the algorithm can work with the

weights of the coset leaders

(nnΟ 2)k−

(kn−)Θ 2 () Ν∈sw instead of the coset leaders ()se . In addition, in

[4], the time complexity was reduced to ()knn −Ο 2 by making the greedy choice less

time consuming. In this section, we will describe the Lexicographic Construction, as

implemented in [4], but generalized over ()qGF .

Given the code , let assume that the pairs syndrome-coset weight

are stored in a table. The Lexicographic Construction is iterative algorithm that can be

described in three steps. In the first step the covering radius of the code is found,

. In the second step, a vector from the maximum weight

[dkn ,,

m
qF∈

] ()()sws,

()() ssw ∀= ,maxρ

cosets is chosen, and a new basis codeword is formed. In the third step the table

 for the new [()(11, ++ kk sws)]dknk ,1,1 ++ code is computed from ()()sws, .

Even though, for the second step, it seems that we can not obtain a coset member

from , the following lemma shows how to get one for systematic codes: ()(sws,)
Lemma 1. Vectors l and belong to the same coset if and only if . ()sk |0 sHlT =() ss

Tk =|0Proof. H ⋅ ■

Hence, in the second step, the algorithm chooses the syndrome s of a maximum

weight coset, () ρ=sw , and attaches to it zeroes, k ()sk |0 . Then the new basis

codeword is constructed by adding 1+kc ρ−d ones:

()sk |0|ρ (1) c d
k 11

−+ =
A proof that in binary case the code []dknk ,1,1 ++ will have minimum distance

can be found in [1]. This proof can be generalized for any

d

()qGF . (())1+1,+ kk swsThe third step is an effective mechanism to build the table from the

existing ()s(ws,) . First, note that any vector that belongs to is a

syndrome of a coset. This syndrome is considered to be a concatenation of two

vectors

1+ks 1−−k1+n
q

kF

1+ks()sv |sk 1 =+ , such that v and . Second, we need the following

definition:

kn−
qs∈Fs,

Definition 1. Given two syndromes and ks s , the syndrome companion set of sk

with respect to s is the set: { }qF , (2)
ks| ∈⋅+= iyy ii is

There are disjoint syndrome companion sets and each syndrome belongs to

only one companion set. Next, we can proceed to the main result:

1−−knq

()()s(())ksw,Theorem 1. Given ρ , , and 1+kc ks 11, ++ kk sw. The table associated

with [knk ,1]d,1++ can be efficiently constructed by carrying out the following

minimization for each syndrome ()ksv |ks 1 =+

{ () ()() }ik ywsw −+ +1

ρ . (3)

sisy

qi

d

ki

ivwt

⋅+=
−=

+=
1..0

min

n
qF

kn
q
−F

Proof Outline. Any coset from can be seen as concatenation of

companion cosets from . In a simple case, the new coset leader is chosen to be

the minimum weight coset leader among the companion cosets. Companion cosets are

found by finding the syndrome companion set (2) for each syndrome ■

11 −−+ kk q

The Lexicographic Construction starts with the repetition code and iterates as long

as there are available memory resources. The space complexity of the algorithm is

() ()⎡ ⎤()(nRqnO −⋅ 1lg
2log

constd =
) . In practice, we can speak about implementation only for the

case , thus the size of the registers needed for storing can be

considered constant and the space complexity becomes

()ksw
()⎡ ⎤()()nRq −⋅Θ 1lg

2 .

For reference purposes, theorem 2.2 published in [5] is a generalization of theorem

3 from [1] for -ary alphabet. Our Theorem 1, not only shows that the same

conclusion can be derived for coset weights

q ()sw , but also shows how to find the

coset companions. In contrast, the method used for finding coset companions in [1] is

binary search.

3 Estimate of the Parameters of the Greedy Codes. The
Gilbert-Varshamov bound.

Let H is the parity check matrix of some binary code []dkn ,1,1 −− . Let

 denotes the set of all unique (,− k)2−dnH ()kn − -tuples that are linear combination

of columns of (2−d) H . Then a code with parameters []dkn ,, does exist provided

() 222, −≤−− −kndknH (4)

The existence of [lower-bounds the existence of the optimal code for given

 and . Let V denotes the number of all possible or less combinations

from an -element set

]

)

dkn ,,()dn,n d

n

d

() ∑= ⎟⎟⎠
⎞⎜⎜⎝

⎛= d

i d

n
dnV

0

, .
(5)

Then, since (2, −− dknH cannot be larger than ()2,1 −− dnV we obtain a simple

combinatorial estimate of (4)

() 222,1 −≤−− −kndnV (6)

known as the Gilbert-Varshamov (GV) bound. One of the most challenging problems

in coding theory is how to improve the GV bound, especially for infinite code length

. In binary case, so far, only one asymptotic improvement is known [8], and a few

non-asymptotic ones (see [10], [12], and [13]).

n

3.1 Some results on the Gilbert-Varshamov bound

We start with a simple improvement of the GV bound for the case when is even

number:

d

Theorem 2. Let the minimum distance is even number. Then the code

does exist provided

d []dkn ,,

() 223,2 1 −≤−− −−kndnV . (7)

Proof. Construct the code []tkn 2,, from the code []12,,1 −− tkn by adding overall

parity check. Use (6) to find []12,,1 −− tkn . ■

It can be shown that the right-hand of (7) is always smaller than the right-hand of

(6) by a factor dn . Despite the simplicity of theorem 2, we have not found any

publication that mentions it. Theorem 3 was presented in [14]; however later we

discovered that it was already published in similar fashion in [13]:

Theorem 3. [13] The code []dkn ,, can be extended to a code with parameters

 provided that [dlkln ,,1 +++]
()()∑−

+==
−≤−−⎟⎟⎠

⎞⎜⎜⎝
⎛2,min

2
1

22,
dl

ii
i

knidnV
i

l
.

(8)

Interesting to note is that the existence of []dkn ,, can be supported with the

Varshamov bound (6), or by using (8) recursively. The recursion ends with the

repetition code.

Proof Outline. We build the parity check matrix recursively from ,

. In order to estimate

1+mH mH[mmm LHH =+1] ()2, −− dknH , we count only those linear

combinations that include odd number of vectors from . The parameter l is the

number of columns of the matrix . ■

mL

mL

In absence of stronger evidence, simulations suggest that theorem 3 non-

asymptotically improves the GV bound when const=δ .
If we compare code parameters that are solution of (8) with the parameters

obtained from running the greedy algorithm [4], we will notice a considerable gap.

This implies that many linear combinations from ()2, −− dknH are counted multiple

times. Theorem 4 attempts to improve this over-counting:

Theorem 4. The code [can be extended to a code with parameters

 provided that

]] dkn ,,[dlkln ,,1 +++
()()

()()()
kn

dl

tt
t

t

ii
i

id

itj

dl

ii
i

jditjiddnV
j

d

i

t

t

l

idnV
i

l

−

+== +==

−

−=

+==

≤−+−+−−⎟⎟⎠
⎞⎜⎜⎝

⎛⎟⎟⎠
⎞⎜⎜⎝

⎛⎟⎟⎠
⎞⎜⎜⎝

⎛−

−−⎟⎟⎠
⎞⎜⎜⎝

⎛

∑ ∑ ∑
∑

2',max','
'

2

1

',

',min

2
2

2
1

'

',min

2
1

.

(9)

where 2' −= dd .

Proof Outline. We will show an example of the case when a vector is counted

twice with (8). Let . Then for any two columns , there

exist columns in such that

[mmm LHH =+1

mH

] mLll ∈21,

02−d 22121 =+++++ −dhhhll " . If we transfer

some vectors on the right-hand side we obtain

2212211 −++ ++++=++++ diii hhhlhhhl "" .

Hence, we observe that the vector ihhhl ++++ "211 is counted twice. Theorem 4

is simply a generalization of this observation that includes all linear combinations of

even number of vectors from . ■ mL

For Hamming codes (, there is no difference between theorem 3 and 4;

however, for inequality (9) becomes slightly better, namely

)

2

3d =
5d =

11 3
2 2 3

n kn l l
l n − −⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − + ≤⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ .

(10)

3.2 Comparison with prior work

To the best of our knowledge, theorem 3 was first published in [13] in order to

estimate the parameters of the greedy lexicodes. However, in [13] it is not mentioned

that needs not to be a greedy code, and that (8) can be used recursively, first

to guarantee existence of , then the existence of

[dkn ,,]][dkn ,, []dlkln ,,1 +++ .

Elia [10] reported the following result: Let the code []dkn ,1,2 −− does exist.

Then the code does exist too, provided [dkn ,,]
() 123,2 −−≤−− kndnV . (11)

If we restrict to be at most 1 then (8) is precisely Elia's result. Moreover, letting

 we obtain improvement of (11); namely, assuming prior existence of the code

, the code does exist if the following holds true

l
2≤l

n ,3−[]dk ,2− [dkn ,,]
() 223,3 −−≤−− kndnV . (12)

Even though (7) and (11) are the same inequality, they are used in a different

context. In [10], inequality (11) is used only after the existence of []dkn ,, is secured.

In theorem 2, prior existence of []dkn ,, is not required, but (7) is restricted only for

codes with even minimum distance.

Barg, Guritman, and Simonis [12] reported the following remark: The code

 with covering radius [dkn ,,] 2−≤ dρ can be extended to []dkdn ,1,1 +−−+ ρ . In

this context, if the covering radius of []dkn ,, is strictly less than 2−d , then (8)

guarantees existence of the trivial lengthening []dk,,1n + . However if we have prior

knowledge of the covering radius, we can modify (8) so that we obtain at least the

same result as in [12]. For example, similar to (11), we can extend remark 13 from

[12], i.e. if

() 12,1 −−≤− knnV α . (13)

for some 1−≤ dα , then any []dkn ,, code can be extended to an []dkdn ,2, +−+ ρ

code. For 3−= dα this reduces to (12).

Jiang and Vardy have developed a graph-theoretic approach to asymptotically

improve the GV bound for nonlinear codes [8], [9]. They were able to show that the

code (does exist provided)dMn ,,

() ⎡ ⎤Mn

n

dnV
c 2log

2
1, −≤−

.
(14)

where the constant is at least c ()121 o+ , as reported in [9]. How does (8) compares

with (14)? So far, we were unable to prove that the left-hand of (8) can be smaller by

a factor . Hence, one may assume that (14) guarantees existence of a code with

better parameters than (8). However, in general inequality (14) guarantees existence

of a non-linear code, while (8) pertains to the linear codes. Gaborit and Zemor [11]

proved that some linear double circulant codes follow (14), but only for code rates of

n

21 . If a linear code is proved to comply with (14), then (8) and (14) will complement

each other. Namely, Jiang and Vardy reported that (14) improves the GV bound when

the relative distance δ is constant. On the other hand, (8) improves the GV bound

even when δ approaches to zero.

Conclusion

In section II, we have introduced four exponential-time greedy algorithms. In binary

case these algorithms remain asymptotically the best known method for code

construction. An open problem is to find polynomial-time construction that meets the

greedy-code parameters, or to prove non-existence of such an algorithm.

The exponent in the growth rate of an exponential algorithm is the key factor that

determines the running time. Our goal was to find algorithms with smaller exponents

in the worst-case running time; though improving the worst-case running time not

necessarily guarantees faster algorithm. More important is the average-case running

time. In the case of the Lexicographic Construction the worst-case equals the average-

case. However, in the case of the Jenkins’ construction, we leave the average-case

complexity as open problem. On the other hand, the best-case complexity of the

Gilbert’s construction is . Comparing this best-case with the Lexicographic

construction’s worst-case, we concluded that not only the Lexicographic Construction

has better space complexity than the Gilbert’s construction, but also it is faster for, at

least, code rates

(knqΟ)
21≥R .

In general, finding a faster algorithm is a difficult task, since a faster algorithm will

have to check only a fraction of the codeword candidates or only a fraction of knq −

the row checks. The solution that we propose is combination of the

Lexicographic construction and the Jenkins’ construction. First, as long as there are

available memory resources, run the Lexicographic construction. Then, after the

entire memory is used, continue with the Jenkins’ construction, while the table

 is still kept in memory for reducing the number of row checks.

⎟⎟⎠
⎞⎜⎜⎝

⎛
d

k

()s(ws,)
In section III, we tried to count only once as many linear combinations as possible

from of the parity check matrix H . The complex theorem 4 has the best possible

estimate on (), 2H n k d− − . However, even for 5d = , there is a big difference

between the estimated results (11) and simulated results [4]. The obvious conclusion

is that there are still many combinations that are counted multiple times, but we

believe that asymptotical improvements similar to [8] may exist for linear codes.

References

1. Trachtenberg, A.: Designing Lexicographic Codes with a Given Trellis Complexity. In:

IEEE Trans. Information Theory, vol. 48, No. 1, January 2001, pp. 89-100

2. Jenkins, B.: Tables of Binary Lexicodes. In:

http://www.burtleburtle.net/bob/math/lexicode.html

3. Barg, A.: Complexity Issues in Coding Theory. In: Handbook of Coding Theory. Elsevier

Science, (1998)

4. Spasov, D.: Implementing the Lexicographic Construction. Available at:

http://nislab.bu.edu/nislab/projects/lexicode/index.html

5. O’Brien, K., Fitzpatrick, P.: Covering radius construction codes with minimum distance at

most 8 are normal. Available at: http://www.bcri.ucc.ie/BCRI_01.pdf

6. Vardy, A.: Algorithmic Complexity in Coding Theory and the Minimum Distance Problem.

In: STOC (1997)

7. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. Available

at: http://www.codetables.de. Accessed on 2009-09-02

8. Jiang, T., Vardy, A.: Asymptotic improvement of the Gilbert-Varshamov bound on the size

of binary codes. In: IEEE Trans. Inform. Theory vol. 50, pp. 1655-1664, 2004.

9. Vu, V., Wu, L.: Improving the Gilbert-Varshamov bound for q-ary codes. In: IEEE Trans.

Inform. Theory 51, 2005, pp. 3200-3208.

10. Elia, M.: Some results on the existence of binary linear codes. IEEE Trans. Inform. Theory

29, 1983, pp. 933-934.

11. Gaborit, P., Zemor, G.: Asymptotic improvement of the Gilbert-Varshamov bound for

binary linear codes. IEEE Trans. Inform. Theory 54, 2008, pp. 3865-3872.

12. Barg, A., Guritman, S., Simonis, J.: Strengthening the Gilbert-Varshamov Bound. Lin. Alg.

Appl. 307, 2000, 119-129.

13. O’Brien, K., Fitzpatrick, P.: Improving the Varshamov bound by counting components in

the Varshamov graph. In: Designs, Codes, and Cryptography, Vol. 39, No. 3, (2006)

14. Spasov, D., Gusev, M.: Some notes on the binary Gilbert-Varshamov bound. In: Sixth

International Workshop on Optimal Codes and Related Topics, Varna, Bulgaria, (2009)

