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ABSTRACT 

Concatenated codes are code constructions made of two codes 
called the inner code and the outer code [1]. The outer code is 
usually asymptotically good code over a large alphabet mq

F , 

like the Reed-Solomon code. If a greedy code is used as an 
inner code, then, following the terminology from [2], we call 
these coНОs FornОв’s МoНОs. In [2], it is suggested that the best 
МoНО Тn АoгОnМrКПt’s ОnsОmЛlО should be used as an inner 
code; thus lowering the complexity on finding a good inner 
code. In this paper we present four greedy algorithms that can 
be used to produce the inner code. Some of these algorithms 
have lower time complexity than finding the best code in the 
АoгОnМrКПt’s ensemble. 

I. INTRODUCTION 

Let qF  is a finite field of q  elements and let n
qF  is n -

dimensional vector space over qF . Then a code C  is subset 

of n
qF  of M  elements. Elements of the code ic C  are 

called codewords. 

 Let  ,d x y  denotes the Hamming distance, i.e. the 

number of coordinates in which two vectors x  and y  differ, 

and let   wt x  denotes the (Hamming) weight, i.e. the 

number of nonzero coordinates of x . Then we say that the 
code C  has (minimum) distance d  if  

   min , , , ,i j i jd d c c c c C i j    . (1) 

 We are interested in asymptotical behavior of linear 
codes. Thus a single code is of no interest to us, but an 
infinite family of codes iC , i  , of increasing length 

in . Infinite code families are more convenient to be 

described in terms of the code rate 


 
i

i

i n

k
R inflim  and the 

relative distance 


 
i

i

i n

d
inflim . 

 The code C  is linear if its codewords form k - 

dimensional linear subspace in n
qF .  We will write  , ,

q
n k d  

to denote that the code C  is linear over the field qF .  For 

linear codes there exist k  basis vectors that are kept as rows 
in a matrix G  called the gererator matrix.  For each linear 

code there is a generator matrix of type  G I A   for 

which we say that is in standard form.  It is well-known that 
for linear codes there exist a so-called parity check matrix 
H , such that ic C   0T

iHc  .  Let  G I A  is the 

generator matrix, then TH A I     is the parity check 

matrix of the same code. 

 The following theorem is a fundamental result in coding 
theory: 

Theorem 1: The code C  with parameters  , ,?
q

n k  and 

parity check matrix H  has minimal distance d  if every 
linear combination of 1d   columns of H  is linearly 
independent, and there exist a linearly dependent combination 
of d columns of H . 

 The covering radius of a code is the largest possible 
distance between the code C  and a vector from n

qF , i.e.  

  max min ,
n

q
c Cx F

d x c   . (2) 

We will use  |x y  to denote concatenation of two 

strings, and kx   to denote a string of k  symbols x , namely 

k

x x . 

We will use  ,Ball x d  to denote a Hamming ball with 

radius d  and center in x , 

     , | ,n
qBall x d y F d x y d   , (3) 

and  ,V n d  is the volume of the ball 

    
0

, 1
d

i

i

n
V n d q

i
      , (4) 

The entropy function will be denoted with the standard 
notation  H  . UsТnР StТrlТnР’s КpproбТmКtТon аО МКn 
derive asymptotic relation between the entropy function and 
the volume of a ball 

     log ,
lim
n

V n n
H

n

 
       , (5) 
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II. GREEDY ALGORITHMS 

It is well-known that a simple greedy procedure produces an 
infinite code family with parameters that follow the Gilbert-
Varshamov bound  

  1R H   . (6) 

In binary case no better code family to-date is known, but, on 
the other hand, the greedy algorithm is considered impractical 
due to its exponential time complexity. In this section we give 
an overview of the best-known greedy algorithms. 

A. GilЛОrt’s CoЧstruМtioЧ 

In РОnОrКl, GТlЛОrt’s КlРorТtСm proНuМОs К nonlТnОКr  , ,n M d  code. Given the code length n  and its minimum 

distance d , the algorithm will search the entire space n
qF  and 

greedily will add to C  the first vector x  that is at distance d  

from C , i.e.  , ,d x c d c C   .  

Theorem 2[3]: Given n  and d , the time complexity of the 

Gilbert’s КlРorТtСm Тn аorst-case is   1 R nO nq  , while the 

space complexity is  RnO nq . 

B. VarshaЦov’s CoЧstruМtioЧ 

Given n  and d , the Varshamov-type algorithms search 

over the codimension m
qF , 1,2,...m  , and greedily add to the 

parity-check matrix H  the first vector x  that is NOT  2d  -linear combination of columns of H .  We will make 

a difference between two variants of the algorithm: with 
exponential space complexity and with polynomial space 
complexity. 

Theorem 3[4]: Given n  and d , the time complexity of 
tСО VКrsСКmov’s КlРorТtСm аТtС polвnomТКl spКМО 
complexity in worst-case is   22 H nO n q  . The space 

complexity is  2O n . 

Let assume that we have reserved a space of mq  bits, 

such that for each vector m
qF   we have a unique bit 

location at the address  i  .  Let  , 2 m
qH m d F   is the 

set of all vectors spanned by 2d   columns of H  and let  

    1 , 2

0 , 2

H m d
i

H m d

 
         

TСОn tСО VКrsСКmov’s КlРorТtСm аТtС ОбponОntТКl spКМО 
complexity will search through the array  i  .  The first 

 such that   0i   , will be added as a column to H . Then 

the algorithm updates the array  i  . 

Theorem 4[4]: Given n  and d , the space and time 
МomplОбТtв oП tСО VКrsСКmov’s КlРorТtСm аТtС polвnomТКl 
space complexity are   H nO q  . 

C. JОЧkiЧs’ CoЧstruМtioЧ 

TСО JОnkТns’ КlРorТtСm ЛuТlНs tСО РОnОrКtor mКtrТб oП К 
systematic code  G I A .  Let assume that the algorithm 

has already produced the generator matrix G  for the code  , ,n k d . Then, for each m
qx F  the algorithm forms the 

vector 1
n

k qc F  ,  1 10...0|kc x  , and checks if all linear 

combinations of rows of 1
1

k
k

G
G

c


      have weight greater 

than or equal to d . 
Theorem 5[4]: Given n  and d , the time complexity of the 

JОnkТns’ КlРorТtСm Тn аorst-case is  3 nO n q .  

To our record this algorithm was first published by B. 
Jenkins in [5], so we call Тt tСО JОnkТns’ КlРorТtСm. 

D. Lexicographic Construction 

Lexicographic Construction is a variation of the Jenkins 
algorithm with exponential space complexity. This algorithm 
was first introduced in [6], then subsequently improved in [7]. 
Bellow it is given generalization of the algorithm over 
arbitrary alphabet. 

Given the code   , ,n k d  with generator matrix kG .  Let 

for each syndrome s  we denote with  w s  the Hamming 

weight of the coset leader  e s . Let assume that the pairs 

  ,s w s  for the code  , ,n k d  are kept in a look-up table. 

The Lexicographic Construction is iterative algorithm that 
can be described in 3 steps. In the first step, using linear 

search over   ,s w s , the algorithm finds the covering radius 

 .  In the second step it picks arbitrary syndrome s  with 

weight  w s   and forms a new codeword with the 

construction  1 1 0d k
kc s  . In the third step the algorithm 

builds the table   1 1,k ks w s   from   ,s w s .   

Given two syndromes ks  and s .  The companion set of the 

syndrome ks  with respect to the syndrome s  is the set:  

  | ,
ks i i k qK y y s i s i F     . (7) 

We use the concept of companion sets to easily explain the 

creation of the new table   1 1,k ks w s  : 

Theorem 6[4]: Given  , ks , and   ,s w s .  The table 

  1 1,k ks w s   can be constructed with the following 

minimization: 

       
1

1 min
i sk

q

d
k iy K

i F

w s wt v i w y


 


    (8) 
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for each syndrome   1 |ks v s  .  

Theorem 7[4]: The space complexity of the 
Lexicographic Construction is:  

 
    

  
Θ loР  

Θ  0        

H n

H n

n q за МoЧst

q за







  
. (9) 

While the time complexity is   H nO nq  . 

E. АozОЧМraПt’s ОЧsОЦЛlО 

АoгОnМrКПt’s ОnsОmЛlО is not a code, but an ensemble of 
codes   C  with code rate 1 2R   [2,8]. The idea is to find 

a family of t  disjoint sets 1, , tC C  that partition the entire 

space n
qF , such that each C  is a linear subspace. If 

 ,t V n d , then there exist at least one set C  that is a 

linear code with parameters  , log ,n C d   .  In addition, if 

we assume that all sets C  are of same size, i.e. C C  , 

, t   , then the code dimension is easily determined, 

namely  log 2nk т .  

For code rates 1 2R   we construct the WozenМrКПt’s 

ensemble as follows: for each   from  2kGF  we define the 

set C  to be 

     , | 2kC x x x GF   . (10) 

We can think of the sets C  as linear  , ,?n k  codes with 

generator matrix  G I I .  Since there are 2k  disjoint 

sets C  that cover the entire space 2
nF , the collection  C  

Тs ТnНООН АoгОnМrКПt’s ОnsОmЛlО. In tСТs ОnsОmЛlО tСОrО Тs Кt 
least one code with minimum distance d , such that d  is the 
largest integer solution of 

   2, 2
n

V n d  . (11) 

In orНОr to ПТnН tСО ЛОst МoНО Тn tСО АoгОnМrКПt’s ОnsОmЛlО, 
for each 22nF  , first we construct the generator matrix 

 G I I , then we find the minimum distance of the 

code. The time complexity of this approach is  c nO n q . 

III.  REED-SOLOMON CODES 

Let each string  im  of m  bits is interpreted as field 

element, namely  2m
im GF . Then every message 

0 1 1[ ... ]KM m m m   can be interpreted as polynomial  

   1
0 1 1  K

KM x m m x m x    . (12) 

Let   is the primitive element, then a codeword of the Reed-
Solomon code is the N -touple 

    0 2 1, , , ,  2m
Nn n n n n GF    (13) 

where 

  i
in M  . (14) 

Reed-Solomon codes are linear codes with minimum distance 

equal to 1N K  .  For each field  mGF q  and for each two 

N  and K , such that mK N q  , there exist a  , , 1N K N K   Reed-Solomon code. 

IV. CONCATENATED CODES 

Even though, in binary case, greedy algorithms produce 
codes with best-known parameters, they are considered 
impractical due to their exponential complexity with respect 
to the code length. Moreover no special-case poly-time 
algorithm that meets (6) has been designed to date nor has its 
non-existence been proved. Faced with this difficulty we are 
willing to accept codes with parameters that lag behind (6). 
Thus we say that the code  , ,n Rn n  is asymptotically good 

if 0R  . 

Concatenation is code construction technique that 
produces sub-optimal, but asymptotically good codes. The 
simplest example of concatenation is the conversion of the  2, , 1 mN K N K   Reed-Solomon code into binary code by 

encoding each field element of   2mGF  with a good 

 2, ,n m d  binary code. The resulting concatenated code has 

parameters  
2

, , 1nN mK d N K   .  If a greedy search is 

used to produce the code  2, ,n m d , then following the 

terminology from [2] we call these codes ForЧОy’s МoНОs. 

Let  RSR K N  and RS D N   are the code rate and 

the relative distance of the RS code. Let GVR k n  and 

GV d n   are the code rate and the relative distance of the 

greedy code. Then the concatenated code has relative distance 

 GV RS     (15) 

and code rate 

     , 1 1GV GV
GV

R H
   

      . (16) 
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Given  , the best code rate   R   is obtained with the 

maximization  

     
1 2

max ,
GV

GVR R     . (17) 

 R   is known as the ZyaЛlov’s ЛouЧН. Figure 1 shows the 

Zyablov bound compared with the Gilbert-Varshamov bound, 
and the gap between the concatenated codes and the greedy 
codes.   

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1.0

 

Figure 1: Zyablov bound. 

V. CONCLUSION 

If we use  2, , 1 mN K N K   Reed-Solomon code, s.t. 

2 1mN   ,  as the outer code and greedily search for the 
inner code then the resulting code construction will be 
polynomial with respect to N . In [2] M. Sudan suggested 
that the best МoНО Тn АoгОnМrКПt’s ОnsОmЛlО to ЛО ПounН КnН 
used as an inner code, thus lowering the complexity of the 
brute-force search for the inner code. From Section II we can 
observe tСКt tСО МomplОбТtв oП ПТnНТnР tСО ЛОst АoгОnМrКПt’s 
code is the same as the complОбТtв oП tСО JОnkТns’ 
construction. However, Jenkins’ construction has two 
advantages: 1) finite-field operations are avoided and 2) the 
obtained code rates is not restricted to 1/2.  Moreover, from 
section II, we can see that we can further lower the 
complexity of producing the inner code by using either the 
Lexicographic construction or the Varshamov algorithm with 
exponential space complexity. However, even with the use of 
these new greedy algorithms, the overall code construction is 
not totally explicit. Totally explicit constructions can be 
achieved by using all 2m  МoНОs Пrom tСО АoгОnМrКПt’s 
ensemble. This construction is known as Justesen codes [9]. 
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