The 9™ Conference for Informatics and Information Technology (CIIT 2012)

NONLINEAR TURBO CODES BASED ON QUASIGROUP STRING PROCESSING

Dejan Spasov

Faculty of Computer Science and Engineering

Skopje, Macedonia

ABSTRACT

Use of quasigroup transformations to build error-correcting
codes was first proposed by Gligoroski, Markovski, and
Kocarev [1]. However, their decoding algorithm was based on
the exponential-time minimum-distance decoding algorithm,
in which the brute-force search for the error pattern is
confined in blocks of 16 bits and upper-bounded to two or
three errors per block. We point out that any quasigroup-
based error-correcting code, designed so far, can be modeled
as finite state machine, thus it can be decoded in polynomial
time with the well-known Viterbi algorithm or the MAP
decoding algorithm. In order to improve the error-correcting
capability of quasigroup codes, in this paper we build an
error-correcting system based on the Turbo-code design
principles. We present the error-correcting capabilities of our
Turbo-code system over the Gaussian channel.

1. INTRODUCTION

Let Q be a finite alphabet of |Q| letters and let Q" be the set
of all strings of length n over Q. A code C is a subset of
Q" of M elements. Elements of the code ¢, e C are called
codewords.

Let d(x,y) denote the Hamminng distance between two
strings x,yeQ", i.e. d(x,y)e N is the number of positions
in which x and y differ. We say that C is an (n,M ,d) code,

d:min{d(cl.,cj)|ci,cj eC,i;tj} (1)

where d is the so-called (minimum) distance of the code C .

Some codes are gifted with efficient (polynomial) procedure
to find the nearest codeword ¢ e C (in terms of Hamming
distance) for any string x € 0", namely

¢ =argmin{d(x,c,)|c, e C}. 2
The process of finding the nearest codeword is known as
decoding. Codes with polynomial decoding procedures can be
used for transmission of digital information over a noisy

channel. A k-letter message meQ*,k<n,is one-to-one
encoded into an n-letter codeword ¢, € C and sent over a

©2012 Faculty of Computer Science and Engineering

noisy channel. The channel can arbitrarily change few letters,
but the receiver may still be able to deduce which codeword
has been sent, thus recovering the original message m .

II. CONVOLUTIONAL CODES

Convolutional codes are one of the oldest known classes of
error-correcting codes that were introduced by P. Elias in
1955 [2]. Given a binary operation * and a k-letter message
M e Q" the idea is to produce an n-letter codeword ¢,, € C
by pseudo-randomly applying the binary operation * over the
letters of the message M Thus a convolutional encoder is a
circuit made of two parts: a shift register that stores the
message m and a combinatorial logic which is commonly
implemented with XOR gates (Fig. 1).

Shift Registers

\ \ \ \ J .

Combinatorial Logic

Input
N Output

Figure 1: Diagram of convolutional encoder.

For information sequence M of k letters, a convolutional
encoder with [,/ <k, shift registers produces N output
sequences of at most k +/ letters each, thus producing a code
with rate approximately equal to 1/N . Further increase of the
code rate is possible by puncturing out some of the output
letters from the encoder’s output. The i -th letter in each of
the N output sequences is obtained by combining the i -th
letter from the information sequence M and the content of
the shift register. F ig. 2 is an example of ar ate %
convolutional encoder with four memory registers. The
combinatorial logic of the encoder is described with the
generators of the convolutional code, expressed as octal
numbers. The generators of the convolutional code on fig. 2
are g, =31 for the upper output and g, =21 for the lower
out.

There are two main categories of convolutional encoders:
recursive and non-recursive convolutional encoders. The
convolutional encoder on fig. 2 is an example of non-
recursive convolutional encoder. A convolutional encoder is

221

The 9™ Conference for Informatics and Information Technology (CIIT 2012)

non-recursive if for the 7 -th letter in each of the N output
sequences the content of the memory registers depends only
on the i -th letter and the previous i—/ letters of the input
sequence m . A convolutional encoder is recursive if for the
i -th letter in each of the N output sequences the content of
the memory registers depends on all i letters of the input
sequence m. Thus recursive encoders are circuits with
infinite impulse response. We can make recursive encoder
from a non-recursive on (like the (37,21)) by making a
feedback with one of the outputs (Fig. 3).

N

‘\
*DJ—DMT h

e

Figure 2: The (37,21) convolutional encoder

Output

Input f

14

NP

Hplgliy

{ A Output

)
»

Figure 3: Design of a recursive encoder from the (37,21) non-
recursive encoder

We say that the encoder is systematic if one of the N output
sequences is identical to the input information sequence.

A. Trellis Diagram and decoding of convolutional codes

A convolutional encoder with [/ registers is finite state
machine with 2 states. Trellis diagram is labelled k -partite
graph, in which every path represents a valid codeword. The
trellis diagram on fig. 4 corresponds to the recursive encoder
on fig. 3. Vertices of the & disjoint sets in the trellis represent
all possible 2’ states of the encoder. On fig. 4 vertices are
labelled as decimal numbers, such that the content of the
leftmost register corresponds to the most significant bit in the
decimal number. Edge labels represent the input letters to the
encoder and the appropriate output letters produced by the
encoder separated by the slash symbol.

Trellis diagram of convolutional codes gives a hint about the
decoding process; if the received sequence does not

Pr{xk =1/ observation}

LLR(x,)= log 3)

Pr{x, = 0/ observation}

222

represent a valid path through the trellis diagram, then we
can conclude that errors have occurred. The decoding
objective is to find the most probable valid path though the
trellis. Several decoding algorithms exist for decoding
convolutional codes. The most famous ones are the Viterbi
algorithm [3],[4] and the BCJR algorithm [5]. The Viterbi
algorithm is universally used and is highly parallelizable.

Figure 4: Trellis diagram of a convolutional code

B. Turbo codes

Invented by C. Berrou, A. Glavieux, and P. Thitimajshima
[6], turbo codes were the first practical system that achieved
signal-to-noise ratio of 0.7 dB above the Sahnnon’s limit to
provide bit error probability of 10”. The turbo encoder is a
special type of convolutional encoder that uses two or more
recursive encoders connected via parallel concatenation
scheme (fig. 5). It is obvious from figure 5 that turbo codes
are systematic, i.e. the input sequence appears as output
sequence X. Turbo encoder on figure 5 has a code rate of 1/3,
but higher coding rates can be achieved by puncturing out
parts of the outputs from the recursive encoders y; and y,.
The purpose of the interleaver is to provide random
permutation of the input sequence, thus allowing identical
recursive encoders to be used in the design.

Since a turbo code is made of two parallel systematic
recursive convolutional codes, the decoding process involves
separate decoding of each of the systematic recursive
convolutional codes (Fig. 6).

Input X

N
»

Recursive
Convolutional v Output
Encoder T !

o T
Interleaver
: J Y2
Recursive
Convolutional

Encoder

Figure 5: Turbo encoder

The 9™ Conference for Informatics and Information Technology (CIIT 2012)

LLR,
LRy LLR,

DEC,fory, | lnterlaver |-
X

Y2

JLLRZ

DEC, and DEC, are modified BCJR decoders [5] that output
the logarithm of likelihood ratio (LLR) for each bit x,

DEC, fory,

Figure 6: Turbo decoder

where Pr{xk = l/observation} is the a posteriori probability
of the bit x,. DEC, outputs LLR quantities for each bit x, .
These quantities are fed to DEC, to produce its own estimates
LLR,. The turbo decoding process is iterative, and in the next
iteration LLR, quantities are fed into DEC;.

III. CODES DERIVED FROM QUASIGROUP TRANSFORMATIONS

A quasigroup is an alphabet O endowed with binary
operation *:QxQ — Q, such that for all u,v € O there exist
unique x, y € O such that

ukx=v

y *u=v ’
From engineering perspective, quasigroup operations can be
seen as circuit with two inputs and one output (Fig. 7 a)). The
circuit works the following way: any random string (€ Q")
that enters on the input 1 will change its representation

according to the quasigroup table (Fig. 7 b)) and the values on
the input 2.

Given a string S :(sl,...,s") over the alphabet O and
random letter aeQ; E-transformation is the string
E =(e,,...,e,) such that [1]
def
e =axs,
def
€ =S %e
o input 1
> "'.*." ’pu{ @]] d
Lz :' alb a ¢ d
zc'. b a ¢ d b
i ¢ d b a ¢
d ¢ d b a
a) b)

Figure 7: Circuit representation of quasigroup operations

The size of the alphabet Q is called order of the quasigroup.
In this paper we will work with quasigroups of order 4. We
will use these quasigroups over binary strings in such a way
that each pair of adjacent binary symbols from the string enter
in parallel in the quasigroup circuit as one letter from the

alphabet of size 4 (Fig. 8 a)). Each two-bit combination is
mapped to a letter from the alphabet of size 4 (Fig. 8 b)).

inputs 1-1°
out oo 01 10 11
- 2 00|01 00 10 11
L, 0100 10 11 01
2y 2 10|11 o1 00 10

11 (10 11 01 00

) b)
Figure 8: Quasigroup operations of order 4 over binary strings
Assuming existence of a circuit that performs quasigroup

operations (Fig. 7), the E-transformation circuit will need
additional memory register to store the previous letter (Fig. 9

a)).

) over the alphabet QO and
the

Given a string S:(sl,.. s

59,

random letter aeQ; D-transformation is
D=(d,,...,d,) such that [1]

string

def
d =axs,

def
di =8, %8,,

Circuit representation of the D-transformation is given on Fig.

9b).

a) b)

Figure 9: Circuit representation of E-transformation and
D- transformation

We can combine E and D transformations to build more
complex transformations. For example, four E-transformation
circuits can be connected in cascade line (Fig. 10).

Figure 10: Complex quasigroup-based transformation

Let M = (ml,...,mk) be a message that we wish to encode,
i.e. a string over Q. Let v, ve O, be a special letter, i.c. a
blank space, and let ¥ =(v,...,v) is a string of n—k blank
spaces. Let the string / consists of all letters from M and V'
arranged in pseudo-random fashion. For example,

1 =(ml,mz,v,v,m3,m4,v,v...,mH,mk,v,v).

(4)

223

The 9™ Conference for Informatics and Information Technology (CIIT 2012)

Then the codeword C =(c,,...,c,) that corresponds to the
message M is obtained from a complex quasigroup-based
transformation (as in Fig. 10) over the string 7 .

Let M :<m,,...,m;,) and M = (ml,...,m;) are two
messages that differ in the last letter. Then it is obvious that
regardless of the complex quasigroup transformation, the two
codewords C' and C" will differ in at most 3 positions.
Hence, the construction (4) cannot be better than Hamming
codes. Intuitively, we expect that the string
1 :(ml,mz,m3,m4,v,v,v,v...,mH,mkfz,mkfl,mk,v,v,v,v)
may produce a better result than (4) and the best results we
expect to happen with

I:(m,,mz,m3,m4,...,mkfl,mk,v,v,...,v))

Thus in this paper we seek to develop codes that are
systematic in nature.

IV. TURBO CODES BASED ON QUASIGROUP TRANSFORMATIONS

We have developed an error-correcting system based on turbo
codes in which XOR operations are replaced with quasigroup
operations. The new turbo encoder looks like the old turbo
encoder (Fig. 5), but employs modified recursive encoders
based on quasigroup operations (Fig. 11).

Each memory cell can store one letter from the alphabet Q ;
thus an encoder with / memory cells is a finite state machine
with 7% states. We use an encoder with /=2 memory cells
that operates with quasigroups of order 4. The resulting
encoder will have 16 states thus making it comparable with
the original turbo encoder designed by Berrou, Glavieux, and
Thitimajshima [6]. Since we wanted to work with binary
strings, we had to adapt the encoder from figure 11 work with
binary sequences (Fig. 12).

-]

Output

Figure 11: Recursive convolutional encoder based on
quasigroup transformation

224

Output

Figure 12: Recursive convolutional encoder based on
quasigroup transformation

a b [d a b c d
a b a ¢ d a a b e d
b a c d b b b a d [
¢ d b A ' ¢ ¢ d a b

¢ 4 b a d|d ¢ b a

non-fractal fractal

Figure 13: Non-fractal and fractal quasigroups of order 4

Quasigroups of order 4 are studied in detail in [7] and divided
into two classes: fractal and non-fractal. It has been
hypothesized that non-fractal quasigroups are suited for
practical use in coding theory. Our encoder (Fig.12) uses non-
fractal quasigroup (Fig.13). If we use the fractal quasigroup,
the trellis diagram of the encoder will be irregular and the
error rate (BER) at the decoder will increase. However, this
fact does not exclude the use of fractal quasigroups in
designing turbo encoders.

The turbo decoder in this paper is based on the turbo decoder
published in [8] with appropriate modifications to
accommodate the new trellis diagram of a quasigroup-based
turbo encoder.

Fig. 14 shows simulation results of our turbo-code-like
system for messages of length N =1024 bits over AWGN
channel, while figures 15 and 16 compare our system with the
original turbo-code system [6].

IV. CONCLUSION

In [9] we have asked about feasible error-correcting systems
based on quasigroup transformations. Here we presented one
possible solution to this problem. Moreover, we have shown
that any quasigroup-based error-correcting system developed
so far can be decoded in polynomial time. In order to achieve
this goal, we have used systematic recursive codes that are
connected in turbo-code scheme. We have tested our system
over AWGN channel and compared the results with the
performance of the original turbo-code system [6]. From
figures 15 and 16 we see that our system outperforms the
original turbo-code system for small block lengths.

The 9™ Conference for Informatics and Information Technology (CIIT 2012)

10’ T T

N=1024 bits

~+=1 iteration
+-2 iterations
~o—4 iterations

107 -8 iterations

—e- 16 iterations

107 I I I I I I I I
02 04 0.6 038 1 12
SNR [dB]

Figure 14: Bit Error Rate performance of our turbo system
over AWGN channel

10

10— — N=1024 bits

1oL [Fo-4 iterations quasigroup-based

~o-4 iterations Berrou, et al

@~ 16 iterations quasigroup-based
—5-16_iterations Berrou, et al

10°! I I I ! I I I I I
0 02 0.4 0.6 08 1 12 4 6 8
SNR [dB]

Figure 15: Comparison of our turbo system with the original
turbo system for long block lengths

Several questions remain open. We have not provided a
design of a quasigroup circuit (Fig. 7 and 8). In this context,
we ask if fractal quasigroups can be used to reduce the design
complexity and if turbo-code systems can be built using
fractal quasigroups. However, the most important open
problem is to investigate the performance of quasigroup-
based turbo-codes over higher alphabets. We believe that
larger alphabets are more natural to this class of error-
correcting codes and that quasigroups may particularly be
useful over alphabets that cannot have field structure.

N=100 bits

107

2-4 iterations quasigroup-based .
&4 iterations Berrou, et al
©-16 iterations quasigroup-based °
o~ 16 iterations Berrou, et al.

10° I I I I
1 L5 2 25 3 3.5

SNR [dB]

Figure 16: Comparison of our turbo system with the original
turbo system for short block lengths

REFERENCES

[1] D. Gligoroski, D., Markovski, S., Kocarev, L. ”Error-Correcting Codes
Based on Q uasigroups.” Proceedings of 16" International Conference on
Computer Communication and Networks, pp. 16-172,2007.

[2] Elias, P. “Coding for noisy Channels.” IRE Convention Record, Part IV,
pp. 37-46 (1955).

[3] Viterbi, A. J. “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm.” [EEE Transactions on
Information Theory vol. 13, no. 2, pp. 260-269, 1967.

[4] Forney, G. D. “The Viterbi Algorithm.” [EEE Transactions on
Information Theory vol. 61, no. 3, pp. 268-278, 1973.

[5] Bahl, L., Cocke, J., Jelinek, F., Raviv, J. “Optimal Decoding of Linear
Codes for minimizing symbol error rate.” IEEE Transactions on Information
Theory, vol. 20, no. 2, pp.284-287, 1974.

[6] Berrou, L., Cocke, J., Jelinek, F., Raviv, J. “Optimal Decoding of
Linear Codes for minimizing symbol error rate.” /IEEE Transactions on
Information Theory, vol. 20, no. 2, pp.284-287, 1974.

[7] Dimitrova, V. Quasigroup processed arrays, their Boolean presentation
and application in cryptography and coding. PhD Thesis, University Ss.
Cyril and Methodius, Skopje, 2010.

[8] Spasov, D., Maggio, G. M., K ocarev, L. “ A Practical Algorithm for
turbo decoding Enhancement.” ISCAS 2004 vol. 4, pp.621-624, 2004.

[91 Spasov, D. “Open Problems in Designing Convolutional Codes Based
on Quasigroups.” CIIT 2011 vol. 8, pp.22-24, Bitola, 2011.

225

