
The 10th Conference for Informatics and Information Technology (CIIT 2013)

©2013 Faculty of Computer Science and Engineering

PROGRESS REPORT ON GREEDY ALGORITHMS IN CODING THEORY

Dejan Spasov

Faculty of Computer Sciences and Engineering

Skopje, Macedonia

ABSTRACT

Greedy algorithms in Coding Theory are simple to define

and easy to implement, but require exponential running time.

Codes obtained with greedy constructions have very good

parameters, thus improving the running time of these

algorithms may lead to discovery of new codes with best

known parameters. We give an overview of greedy

algorithms and discuss further improvements.

I. INTRODUCTION

Let n

qF be n -dimensional vector space over finite field qF .

Let ()yxd , denote the Hamming distance between two

vectors n

qFyx Î, , and let ()dMn ,, be an M -size code C

over the n -dimensional space n

qF with minimum distance

d . (The minimum distance d of a code C is defined as

()()yxdd ,min= , Cyx Î" , .)

The main focus in this paper will be on linear codes, i.e.

k -dimensional linear subspaces of n

qF . We write []dkn ,, to

denote a linear code of dimension k and minimum distance

d . A linear code is completely determined with its nk ´

generator matrix G or its () nkn ´- parity check matrix H ,

such that 0=THG . Throughout the paper, we will assume

that the generator and parity check matrices are in standard

form , i.e. []AIG = , and []IAH T-= .

We use () NÎxwt to denote the Hamming weight of the

vector x , i.e. the number of nonzero positions of x

(() ()0,xdistxwt =).

Asymptotically speaking, d will denote the relative

distance of the code nd=d , and R will be the code rate

() nMR qlog= . A string of n ones, 111K , will be written

as n1 , and the concatenation of two strings a and b will be

represented with ()ba | .

Fundamental problem in coding theory is how to find

optimal codes. The code ()dMn ,, is optimal if it has

maximal number of codewords M for a given n and d . In

general, finding an optimal code is considered to be a difficult

problem. Trivial way to do this is by super-exponential search

over all possible orderings of the field n

qF . For small fields

(9£q , 256£n), there exist tables of best known (some of

them optimal) codes [1], but for larger spaces optimal-code

parameters can be estimated with the Gilbert-Varshamov

bound and its asymptotical variant.

In estimating the complexity of an algorithm, we adopt

Random Access Machine (RAM) as a computational model.

The time complexity is measured as the number of basic

(sequential) steps needed for instance of the algorithm to end.

It is considered that RAM has unlimited memory with instant

access. Thus the space complexity is simply the number of

registers used by an instance of the algorithm.

II. GREEDY ALGORITHMS

It is well-known that simple greedy search produces a

code with parameters that follow the Gilbert-Varshamov

bound. Here we give a brief overview of these algorithms.

A. Gilbert Construction

In general, Gilbert’s Construction produces a nonlinear

()dMn ,, code. Given the length n and the minimum

distance d , the algorithm will search the entire
n

qF and

greedily adds to C the first vector x , such that

() Ccdcxd Î"³ ,, . The time complexity of this algorithm is

()()nRnqO +1 , and space complexity is determined by the size

of C , i.e. Rnnq .

B. Varshamov Construction

The Varshamov’s algorithm [X] produces the parity check

matrix H of a linear code. The algorithm greedily adds to

H the first vector x that is not linear combination of 2-d

or less columns of H . The space complexity of this

construction limited to the space need to store the parity

check matrix , which is quadratic with respect to code length

n , i.e. ()2)1(nRO - . The time complexity, compared to

Gilbert construction, is also improved
()()()dHRnqnO +-12

.

197

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 10
th

 Conference for Informatics and Information Technology (CIIT 2013)

C. Jenkins’ Construction

The idea in this construction is to build the A matrix of a

systematic code []AIG = . Each kn

qFx -Î is inserted as a

row in A . Then for each i -linear combinations of rows of A ,

where ()2-£ di , we check if it has Hamming weight at least

id - . The space complexity, determined by the A matrix, is

()()21 RnRO - and the time complexity is

()()()RRHRnqnO /12 d+- .

First we should note that there is slight improvement

compared to Varshamov construction, due to the smaller

dimensions of the A matrix. Second, the algorithm heavily

depends on efficient algorithm for computing the Hamming

weight of a vector [2].

D. Lexicograpfic construction

Again, in this construction we build the A matrix of a

systematic code []AIG = . For each kn

qFx -Î we reserve

()kn-log space. Thus, in the memory, we create a data

structure of size ()() ()nRqnR -- 11log . In the x-th ()kn-log -sized

cell of this structure we store the number of rows of A that

make a linear combination equal to x. Lexicographic

construction is simply a linear search over this data structure,

thus the time complexity is ()() ()()nRqnRO -- 11log [3].

III. ALGORITHMS FOR COMPUTING HAMMING WEIGHT

Since the Jenkins’ construction depends on fast algorithms for

computing the Hamming weight, in this section we list some

of them. We start with one of the most widely used

algorithms:

Algorithm #1

 x=(x&0x55555555)+((x&0xaaaaaaaa)>> 1);
 x=(x&0x33333333)+((x&0xcccccccc)>> 2);

 x=(x&0xf0f0f0f0)+((x&0xf0f0f0f0)>> 4);

 x=(x&0xff00ff00)+((x&0xff00ff00)>> 8);
 x=(x&0xffff0000)+((x&0xffff0000)>>16);

 return x;

End of Algorithm #1

In this setting, it is considered that Algorithm #1 uses 20

()nO basic operations. The number of basic operations can be

reduced to 15 (see Algorithm #2) [4].

Algorithm #2
 x-=(x >> 1) & 0x55555555;

x =(x & 0x33333333) + ((x >> 2) & 0x33333333);

 x =(x + (x>>4))& 0xf0f0f0f0;
 x+= x >> 8;

 x+= x >> 16;

return x&0x7f;
End of Algorithm #2

However, if we precompute and store the weight of each

16-bit or 32-bit word, then the following algorithm will

retrieve the hamming weight from the memory in ()()nO log

time

Algorithm #3

 char hw_table[65536]; // H. weight storage
int p=0,*p1=(int *)&p, *p2= p1+1;

 #define wt(x) (p=x, hw_table[*p1]+hw_table[*p2])

End of Algorithm #3

IV. CONCLUSION AND FUTURE WORK

The algorithm that we use to search for good codes is a

combination of the lexicographic construction and the

Jennkins’ algorithm [X]. With this algorithm we were able to

find the following best-known codes: [68, 50, 9]4, [67, 49, 9]4

and [92, 75, 8]4 [1]. The running time of this algorithm is

determined by the Jenkins’ algorithm, with constant

improvement due to the lexicographic construction. For

certain (smaller) minimum distances this constant

improvement can be very useful to achieve good results. Thus

improving the algorithm for computing the Hamming weight

is particularly useful in our search for new best known codes.

Bellow we compare the performance of the Jenkins’

algorithm in case when we use algorithm #1 and algorithm

#3. It is obvious that the speed-up is asymptotical. This is

expected result even between algorithm #1 and algorithm #2

since Hamming weight function is called exponential number

of times. Our future work is to employ algorithm #3 in order

to find new best codes.

Fig. 1. Running time of the Jenkins’ algorithm in case it uses algorithm #1

and algorithm #3

REFERENCES

[1] Grassl, M. "Bounds on the minimum distance of linear codes and

quantum codes." Online available at: http://www.codetables.de.

[2] Jenkins B. "Tables of lexicodes." Online available at:

http://burtleburtle.net/bob/math/lexicode.html.

[3] Spasov, D. “Some properties of good codes”. PhD Thesis, Ss. Cyril and

Methodius University, Skopje, 2010.

[4] Wikipedia. "Hamming weight." Online available at:

http://en.wikipedia.org/wiki/Hamming_weight.

198

The 10th Conference for Informatics and Information Technology (CIIT 2013)

