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ABSTRACT

Greedy algorithms in Coding Theory are simple to define 

and easy to implement, but require exponential running time. 

Codes obtained with greedy constructions have very good 

parameters, thus improving the running time of these 

algorithms may lead to discovery of new codes with best 

known parameters. We give an overview of greedy 

algorithms and discuss further improvements.

I. INTRODUCTION

Let n

qF be n -dimensional vector space over finite field qF .

Let ( )yxd ,  denote the Hamming distance between two 

vectors n

qFyx Î, , and let ( )dMn ,, be an M -size code C

over the n -dimensional space n

qF  with minimum distance 

d . (The minimum distance d of a code C is defined as 

( )( )yxdd ,min= , Cyx Î" , .) 

The main focus in this paper will be on linear codes, i.e. 

k -dimensional linear subspaces of n

qF . We write [ ]dkn ,,  to 

denote a linear code of dimension k  and minimum distance 

d . A linear code is completely determined with its nk ´

generator matrix G or its ( ) nkn ´-  parity check matrix H ,

such that 0=THG . Throughout the paper, we will assume 

that the generator and parity check matrices are in standard 

form , i.e. [ ]AIG = , and [ ]IAH T-= . 

We use ( ) NÎxwt  to denote the Hamming weight of the 

vector x , i.e. the number of nonzero positions of x

( ( ) ( )0,xdistxwt = ).

Asymptotically speaking, d  will denote the relative 

distance of the code nd=d , and R  will be the code rate

( ) nMR qlog= . A string of n  ones, 111K ,  will be written 

as n1 ,  and the concatenation of two strings a  and b  will be 

represented with ( )ba | .

Fundamental problem in coding theory is how to find 

optimal codes. The code ( )dMn ,,  is optimal if it has 

maximal number of codewords M  for a given n  and d . In 

general, finding an optimal code is considered to be a difficult 

problem. Trivial way to do this is by super-exponential search 

over all possible orderings of the field n

qF .  For small fields 

( 9£q , 256£n ), there exist tables of best known (some of 

them optimal) codes [1], but for larger spaces optimal-code 

parameters can be estimated with the Gilbert-Varshamov 

bound and its asymptotical variant. 

In estimating the complexity of an algorithm, we adopt 

Random Access Machine (RAM) as a computational model. 

The time complexity is measured as the number of basic 

(sequential) steps needed for instance of the algorithm to end. 

It is considered that RAM has unlimited memory with instant 

access. Thus the space complexity is simply the number of 

registers used by an instance of the algorithm. 

II. GREEDY ALGORITHMS

It is well-known that simple greedy search produces a 

code with parameters that follow the Gilbert-Varshamov 

bound. Here we give a brief overview of these algorithms. 

A. Gilbert Construction 

In general, Gilbert’s Construction produces a nonlinear 

( )dMn ,,  code. Given the length n  and the minimum 

distance d , the algorithm will search the entire 
n

qF  and 

greedily adds to C  the first vector x , such that 

( ) Ccdcxd Î"³ ,, . The time complexity of this algorithm is 

( )( )nRnqO +1 , and space complexity is determined by the size 

of C , i.e. Rnnq .

B. Varshamov Construction 

The Varshamov’s algorithm [X] produces the parity check 

matrix H  of a linear code. The algorithm greedily adds to 

H the first vector x  that is not linear combination of 2-d

or less columns of H . The space complexity of this 

construction limited to the space need to store the parity 

check matrix , which is quadratic with respect to code length 

n , i.e. ( )2)1( nRO - .  The time complexity, compared to 

Gilbert construction, is also improved 
( )( )( )dHRnqnO +-12

.
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C. Jenkins’ Construction

The idea in this construction is to build the A matrix of a 

systematic code [ ]AIG = . Each kn

qFx -Î  is inserted as a 

row in A . Then for each i -linear combinations of rows of A ,

where ( )2-£ di , we check if it has Hamming weight at least 

id - . The space complexity, determined by the A matrix, is 

( )( )21 RnRO -  and the time complexity is  

( )( )( )RRHRnqnO /12 d+- .

First we should note that there is slight improvement 

compared to Varshamov construction, due to the smaller 

dimensions of the A matrix. Second, the algorithm heavily 

depends on efficient algorithm for computing the Hamming 

weight of a vector [2]. 

D. Lexicograpfic construction

Again, in this construction we build the A matrix of a 

systematic code [ ]AIG = .  For each kn

qFx -Î we reserve 

( )kn-log  space. Thus, in the memory, we create a data 

structure of size ( )( ) ( )nRqnR -- 11log . In the x-th ( )kn-log -sized 

cell of this structure we store the number of rows of A  that 

make a linear combination equal to x. Lexicographic 

construction is simply a linear search over this data structure, 

thus the time complexity is ( )( ) ( )( )nRqnRO -- 11log  [3].    

III. ALGORITHMS FOR COMPUTING HAMMING WEIGHT

Since the Jenkins’ construction depends on fast algorithms for 

computing the Hamming weight, in this section we list some 

of them. We start with one of the most widely used 

algorithms: 

Algorithm #1  

 x=(x&0x55555555)+((x&0xaaaaaaaa)>> 1); 
 x=(x&0x33333333)+((x&0xcccccccc)>> 2); 

 x=(x&0xf0f0f0f0)+((x&0xf0f0f0f0)>> 4); 

 x=(x&0xff00ff00)+((x&0xff00ff00)>> 8); 
 x=(x&0xffff0000)+((x&0xffff0000)>>16); 

 return x;

End of Algorithm #1  

In this setting, it is considered that Algorithm #1 uses 20 

( )nO  basic operations. The number of basic operations can be 

reduced to 15 (see Algorithm #2) [4]. 

Algorithm #2  
 x-=(x >> 1) & 0x55555555; 

x =(x & 0x33333333) + ((x >> 2) & 0x33333333);

 x =(x + (x>>4))& 0xf0f0f0f0;
 x+= x >>  8;  

 x+= x >> 16; 

return x&0x7f; 
End of Algorithm #2  

However, if we precompute and store the weight of each 

16-bit or 32-bit word, then the following algorithm will 

retrieve the hamming weight from the memory in ( )( )nO log

time  

Algorithm #3  

 char hw_table[65536]; // H. weight storage  
int p=0,*p1=(int *)&p, *p2= p1+1; 

 #define wt(x) (p=x, hw_table[*p1]+hw_table[*p2]) 

End of Algorithm #3  

IV. CONCLUSION AND FUTURE WORK 

The algorithm that we use to search for good codes is a 

combination of the lexicographic construction and the 

Jennkins’ algorithm [X]. With this algorithm we were able to 

find the following best-known codes: [68, 50, 9]4, [67, 49, 9]4

and [92, 75, 8]4 [1]. The running time of this algorithm is 

determined by the Jenkins’ algorithm, with constant 

improvement due to the lexicographic construction. For 

certain (smaller) minimum distances this constant 

improvement can be very useful to achieve good results. Thus 

improving the algorithm for computing the Hamming weight 

is particularly useful in our search for new best known codes. 

Bellow we compare the performance of the Jenkins’ 

algorithm in case when we use algorithm #1 and algorithm 

#3. It is obvious that the speed-up is asymptotical. This is 

expected result even between algorithm #1 and algorithm #2 

since Hamming weight function is called exponential number 

of times. Our future work is to employ algorithm #3 in order 

to find new best codes. 

Fig. 1. Running time of the Jenkins’ algorithm in case it uses algorithm #1  

and algorithm #3 
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