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Abstract

The subject of this paper is the class of groupoids such that any
groupoid G = (G, ·) of this class has the property: every subgroupoid of
G generated by any element a ∈ G satisfies the identity (xx)(yy) ≈ xy.
It is shown that this class is a variety. A construction and a characteri-
zation of free groupoids in this variety are obtained. The word problem
is solvable for this variety.
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We will work with groupoids, i.e. algebras with one binary operation. In
[5] the variety V of left and right idempotent (LRI) groupoids, i.e. groupoids
that satisfy the identity (xx)(yy) ≈ xy, is considered. We investigate a class
of groupoids larger than V, called the class of power left and right idempo-
tent (PLRI) groupods. A groupoid G = (G, ·) belongs to the class of PLRI
groupoids if and only if for each element a ∈ G the subgroupoid generated by
a belongs to V. We denote this class by pV. Throughout the paper we will use
the notion of groupoid power and some of its properties, stated in [6] and [8].

The purpose of this paper is to obtain: an axiom system for the class pV,
a description of free groupoids in pV and their characterization, using a larger
class of groupoids, called the class of injective groupoids in pV. It is shown in
[5] that the word problem is solvable for the variety of LRI groupoids. The
word problem is also solvable for the variety of PLRI groupoids. The main
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results of this paper are Theorems 2.1, 2.4, 3.3 and 4.4.
For the notation and basic notions of universal algebra the reader is referred

to [4]. In most cases, without mention, the operation is denoted multiplica-
tively: the product of two elements x, y of a groupoid is denoted by x · y or
just xy. If x = y, we put x2 instead of xx and call it the square of x. Hence,
x2y2 = (xx)(yy), x2y = (xx)y, xy2 = x(yy) etc.

1 Preliminary Notes

In what follows, B �= ∅ will be an arbitrary set, and TB will denote the set
of all groupoid terms over B in the signature ·. The terms are denoted by
t, u, v, . . . , x, y, . . . TB = (TB, ·) is the absolutely free groupoid (i.e. free in the
class of all groupoids) with the free basis B, where the operation is defined by
(u, v) �→ uv. For any term v ∈ TB we define the length | v | of v and the set of
subterms P (v) of v by:

| b | = 1, | tu | = | t | + | u |; P (b) = {b}, P (tu) = {tu} ∪ P (t) ∪ P (u),

for any b ∈ B and any t, u ∈ TB.
Let G = (G, ·) be any groupoid and A a nonempty subset of G. If Q is the

subgroupoid of G generated by A, then Q = ∪{Ak : k ≥ 0}, where A0 = A,
Ak+1 = Ak ∪ AkAk. Define a mapping χQ : Q → N0, where N0 is the set of
nonnegative integers, by χQ(x) = min{k ∈ N0 : x ∈ Ak}.

Specially, TB = ∪{Bk : k ≥ 0}, where B0 = B, Bk+1 = Bk ∪ BkBk. The
hierarchy χ : TB → N0 has the property χ(tu) = 1 + max{χ(t), χ(u)}, for all
t, u ∈ TB. Note that this is not true for an arbitrary groupoid G.

The groupoid TB is injective, i.e. the operation · in TB is an injective
mapping: xy = vw ⇒ x = v, y = w. The set B is the set of primes in TB

that generates TB. (An element a of a groupoid G = (G, ·) is said to be
prime in G if and only if a �= xy, for all x, y ∈ G.) This two properties of TB

characterize all absolutely free groupoids ([1]; Lemma 1.5).

Theorem 1.1 A groupoid H = (H, ·) is an absolutely free groupoid if and
only if it satisfies the following two conditions:

(i) H is injective;
(ii) The set of primes in H is nonempty and generates H.
Then the set of primes is the unique free basis of H.

We refer to this proposition as Bruck Theorem for the class of all groupoids.

By T e = (Te, ·) we denote the absolutely free groupoid with one-element basis
{e}. The terms over {e} are called groupoid powers ([5]) and will be denoted
by f, g, h, . . .. We will state a few properties of groupoid powers that will be
used further on.
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For any groupoid G = (G, ·), each term f over {e} induces a transformation
fG : G → G, called an interpretation of f in G, defined by fG(x) = ϕx(f),
where ϕx : Te → G is the homomorphism from T e into G such that ϕx(e) = x.
In other words, for any g, h ∈ Te and x ∈ G

eG(x) = x, (gh)G(x) = gG(x)hG(x).

We write f(x) instead of fG(x) when G is understood.
Next statements concerning groupoid powers are shown in [8].

Theorem 1.2 If f, g ∈ Te, t, u ∈ TB, then
a) | f(t) | = | f | · | t | ;
b) f(t) = g(u) & (| t | = | u | ∨ | f | = | g |) ⇔ (f = g & t = u) ;
c) f(t) = g(u) & | t | ≥ | u | ⇔ (∃ ! h ∈ Te) (t = h(u) & g = f(h)).

If an operation ”◦” is defined on the set Te by: f ◦ g = f(g), then one obtains
that (Te, ◦, e) is a cancellative monoid ([6], Prop. 1.6).

An element c ∈ G is said to be primitive in G = (G, ·) if and only if for any
a ∈ G and any f ∈ Te, the following implication is true: c = f(a) ⇒ f = e.

Specially, primitive elements in TB are called primitive terms.
We essentially use Lemma 1.3 ([2], Lemma 3.1) in the proof of Lemma 1.4

and in the next section.

Lemma 1.3 For any term v ∈ TB there is a uniquely determined primitive
term u ∈ TB and a uniquely determined groupoid power f ∈ Te such that
v = f(u).

In that case we call u the base of v, f the power of v, | f | the exponent of
v, and denote by v, v∼, | v∼ |, respectively.

Lemma 1.4 Let v, w ∈ TB.
a) If v, w have different bases, then vw is a primitive term in TB.
b) The terms v, w have the same base t if and only if t is the base of vw and
(vw)∼ = v∼w∼.

Proof. Let v, w ∈ TB. Then, by Lemma 1.3 v = f(t), w = g(u) and vw =
h(α), where t = v, u = w, α = vw, f = v∼, g = w∼, h = (vw)∼.

a) Let t = v �= w = u. We will show that h = e. Suppose that h �= e.
Then, there are h1, h2 ∈ Te, such that h = h1h2. The following is true:

f(t)g(u) = vw = h(α) = (h1h2)(α) = (h1(α))(h2(α)).

Since TB is injective, it follows that h1(α) = f(t) and h2(α) = g(u). If
|α | = | t |, then by Theorem 1.2 b), α = t, h1 = f . Therefore, h2(t) = g(u).
There are three cases (only): | t | = | u |, | t | > | u | and | u | > | t |. The case
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| t | = | u | is not possible. Namely, by Theorem 1.2 b), it follows that t = α = u,
that contradicts the supposition t �= u. The case | t | > | u | is not possible,
too. Indeed, if h2(t) = g(u), then by Theorem 1.2 c), there is a unique l ∈ Te

such that t = l(u), g = h2(l). As u is a primitive term, it follows that l = e,
i.e. t = e(u) = u, that contradicts t �= u. By the same argument, the case
| u | > | t | is not possible, too.

b) Let v = w = t. Then h(α) = f(t)g(t) = (fg)(t). Since α is a primitive
term and | fg | ≥ 2, it follows that h �= e. Let h = h1h2. Then f(t)g(t) =
h(α) = (h1h2)(α) = (h1(α))(h2(α)). Since TB is injective, it follows that
h1(α) = f(t), h2(α) = g(t). As t and α are primitive terms, neither | t | > |α |
nor |α | > | t |. Therefore, | t | = |α |. By Theorem 1.2 b), it follows that
f = h1, g = h2 and t = α. Thus t is the base of vw. By vw = (fg)(t), it
follows that (vw)∼ = h = fg = v∼w∼.

Conversely, let t = v �= w = u. Then by a), vw is the base of vw, so h = e.
This implies that h �= fg, that contradicts (vw)∼ = v∼w∼.

2 Construction of free groupoids in the class

of PLRI groupoids

Here, the class of LRI groupoids, i.e. groupoids that satisfy the identity x2y2 ≈
xy is denoted by V. It is shown in [5] that the axiom x2y2 ≈ xy is equivalent
with the system of axioms x2y ≈ xy, xy2 ≈ xy and that, if G ∈ V, then a ∈ G
is a square if and only if a is an idempotent.

A groupoid G = (G, ·) is said to be power left and right idempotent (PLRI)
if and only if for any a ∈ G the subgroupoid of G generated by {a}, denoted
by 〈 a 〉, is LRI groupoid. The class of all PLRI groupoids is denoted by pV.

The following theorem shows that the elements of any groupoid of the class
pV have almost trivial powers, i.e. if f(x) is a power of x, then either f(x) = x
or f(x) = x2, for any groupoid power f , f �= e.

Theorem 2.1 G ∈ pV if and only if (∀x ∈ G)(∀f ∈ Te \ {e}) f(x) = x2.

Proof. The direct statement can be shown by induction on length | f |. Con-
versely, let y, z ∈ 〈 x 〉. Then there are f, g ∈ Te such that y = f(x), z = g(x).
In that case, yz = f(x)g(x) = (fg)(x) and y2z2 = (f(x))2(g(x))2 = (f 2g2)(x).
Let h = fg, l = f 2g2. Since | h | = | fg | ≥ 2 and | l | = | f 2g2 | ≥ 4, it follows
that h, l ∈ Te \{e}. By the hypothesis f(x) = x2 for all f ∈ Te \{e}, we obtain
that h(x) = x2 = l(x). Therefore, y2z2 = (f 2g2)(x) = x2 = h(x) = l(x) =
(fg)(x) = yz and thus 〈 x 〉 ∈ V.

As a consequence, we obtain:

Corollary 2.2 A groupoid G = (G, ·) is a pV-groupoid if and only if

(∀x ∈ G)(∀f, g ∈ Te) (f(x))2(g(x))2 = f(x)g(x).
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Theorem 2.1 enables to obtain a finite system of axioms for the variety pV
(and thus the variety pV is finitely based).

Corollary 2.3 The class of pV-groupoids is a variety defined by the iden-
tities x2 ≈ x2x ≈ xx2 ≈ x2x2.

Now, we are ready to start a construction of free groupoids in pV. Assuming
that B is a nonempty set and TB = (TB, ·) the absolutely free groupoid with
the free basis B, we are looking for a canonical groupoid ([7]) in pV, i.e. a
groupoid R = (R, ∗) with the following properties:

i) B ⊂ R ⊂ TB, ii) tu ∈ R ⇒ t, u ∈ R & t ∗ u = tu

iii) R is a free groupoid in pV with the free basis B.

Define the carrier of the desired groupoid R as the set

R = {t ∈ TB : (∀u ∈ P (t)) | u∼ | ≤ 2}. (1)

Thus, t ∈ R if and only if t has no subterm that has an exponent greater than
2. The following properties of R are clear:

a) B ⊂ R ⊂ TB; t ∈ R ⇒ P (t) ⊂ R.
b) t, u ∈ R ⇒ [tu �∈ R⇔ (∃x ∈ R)(∃f ∈ Te, | f | ≥ 3) tu = f(x)].
(Namely, since t, u ∈ R, it follows that: t = f1(x), u = f2(x), where

|f1|, |f2| ≤ 2 and x = t = u. If tu �∈ R, then |f1| = 2 or |f2| = 2. Thus
| f | = | f1f2 | = | f1 | + | f2 | ≥ 3. The converse is obvious.)

c) t, u ∈ TB ⇒ [tu ∈ R ⇔ t, u ∈ R & | (tu)∼ | = 2].

Define an operation ∗ on R by:

t, u ∈ R ⇒ t ∗ u =

{
tu, if tu ∈ R
x2, if t = u = x, | t∼ | + | u∼ | ≥ 3

(2)

One can show that R = (R, ∗) is a groupoid. By (2), Theorem 2.1 and
induction on length, one can show the properties 1◦ − 4◦.

1◦. B is the set of primes in R and generates R.
The interpretation of groupoid powers in the groupoid R is given by:

e∗(t) = t, (fg)∗(t) = f∗(t) ∗ g∗(t),

for any t ∈ R and f, g ∈ Te.
2◦. Let t ∈ R and f ∈ Te \ {e}.
a) If t is not a square in TB, then f∗(t) = t2, and, specially, t ∗ t = t2.
b) If t is a square of x in TB, where x is a primitive term in TB, then
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f∗(t) = t, and, specially, t ∗ t = t.
As a consequence of 2◦ one obtains that for each f ∈ Te \ {e} and t ∈ R,

f∗(t) = t ∗ t, and therefore (by Theorem 2.1):
3◦. R ∈ pV.
4◦. For any G ∈ pV and any mapping λ : B → G, there is a homomorphism

ψ : R → G that extends λ, i.e. R has the universal mapping property for pV
over B.
Proof. Let ϕ be the homomorphism from TB into G that extends λ. Let
ψ : R → G be the restriction of ϕ on R, i.e. ψ = ϕ|R. It suffices to show
that for any t, u ∈ R, ϕ(t ∗ u) = ϕ(t)ϕ(u). If tu ∈ R, then t ∗ u = tu,
and the proposition clearly holds. Let tu �∈ R, i.e. let t = f(x), u = g(x),
where x = t = u and | f | ≤ 2, | g | ≤ 2, | fg | ≥ 3. Then t ∗ u = x2, so
ϕ(t ∗ u) = ϕ(x2) = ϕ((fg)(x)) = ϕ(f(x)g(x)) = ϕ(tu) = ϕ(t)ϕ(u).
By 1◦ to 4◦ it follows that:

Theorem 2.4 The groupoid R = (R, ∗), defined by (1) and (2) is free in
pV with the free basis B.

Note that, if a, b ∈ B are distinct elements in B, then a ∗ (b ∗ b) = a ∗ b2 =
ab2 �= ab = a ∗ b, and therefore: if |B | ≥ 2, then R �∈ V.

Since R has the properties: B ⊂ R ⊂ TB; tu ∈ R ⇒ t, u ∈ R & t∗u = tu;
R is free in pV with the free basis B, it follows that R is a canonical groupoid
in pV. The class of free groupoids in pV will be denoted by pVf .

The following properties of (R, ∗) are clear.

Lemma 2.5 a) For any x ∈ R, x ∗ x is an idempotent in R.
b) t ∈ R is an idempotent in R if and only if t is a square in R.
c) If t ∈ R is an idempotent in R, then there is a unique nonidempotent x ∈ R
(i.e. x �= x ∗ x) such that t = x ∗ x.
d) t ∈ R is primitive in R if and only if t is primitive in TB.

Lemma 2.6 Let I be the set of all idempotents in R and N be the set of
all nonidempotents in R. If z ∈ R is a nonidempotent and z is not prime in
R, then one of the following cases is possible:
1) z = α ∗ β, α, β ∈ I, α �= β; 3) z = α ∗ x, α ∈ I, x ∈ N ;
2) z = x ∗ α, α ∈ I, x ∈ N ; 4) z = x ∗ y, x, y ∈ N , x �= y.

Lemma 2.7 For any t ∈ R \ B there is exactly one pair (u, v) ∈ R2, such
that t = uv = u ∗ v.

We say that (u, v) is the pair of divisors of t in R. In this case: u = v if
and only if u2 ∈ R (if and only if u is not a square); then we say that u is the
divisor of t.
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Remark. The Lemma 2.7 does not exclude existence of distinct pairs (u1, v1),
(u2, v2) in R2, such that u1 ∗ v1 = u2 ∗ v2. For example, if a ∈ B, then
(a, a2), (a2, a2) ∈ R2 and a ∗ a2 = a2 = a2 ∗ a2. Note that aa2 and a2a2 are not
in R.

3 Injective groupoids in the variety

of PLRI groupoids

In this section we define a subclass of the class pV larger than the class pVf ,
called the class of injective groupoids in pV. For defining the class of injective
groupoids as a subclass of a given variety W we essentially use properties of the
corresponding canonical groupoid in W, that has to be previously constructed.
We will look for an axiom system of the class of injective groupoids in W among
the properties of the corresponding canonical groupoid R = (R, ∗) in W, that
are related to the properties of the elements in R that are not W-prime. If
the identities that are the axioms of the variety W are normal, i.e. neither of
its sides is a variable, then W-prime element in R means the same as prime
element defined before Theorem 1.1. Here, we will use the suitable properties
of (R, ∗) contained in Lemmas 2.5, 2.6, 2.7.

We say that a groupoid H = (H, ·) is injective in the variety pV if and
only if the following conditions are satisfied:

0) H ∈ pV
1) If a ∈ H is an idempotent, then there is a unique nonidempotent c ∈ H ,

such that a = c2 and the equality a = xy holds if and only if {x, y} ⊆ {c, c2}.
(In that case we say that c is the divisor of a or c is the base of a.)

2) If a ∈ H is a nonidempotent and is not prime in H , then there is a
unique pair (c, d) ∈ H2, such that a = cd and c �= d. (Note that c, d could
be both idempotents; one idempotent and the other nonidempotent; both
nonidempotents.)

The class of all injective groupoids in pV is denoted by pVi. From the
definition of injective groupoid in pV and Lemmas 2.5, 2.6 and 2.7 we obtain:

Corollary 3.1 Every free groupoid in pV is injective in pV.

If H = (H, ·) ∈ pVi and a ∈ H , then the subgroupoid Q = {a2} of H is not
injective in pV. This implies the following proposition:

Corollary 3.2 Neither of the classes pVf , pVi is hereditary.

The following statement gives a description of free groupoids in pV within
the class of injective groupoids in pV.
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Theorem 3.3 (Bruck Theorem for the variety pV) A groupoid H ∈
pV is free in pV if and only if the following conditions are satisfied:

(i) H is injective in pV.
(ii) The set of primes in H is nonempty and generates H.

Proof. The ”if part” follows by Corollary 3.1 and Theorem 2.4. Conversely,
let H ∈ pV and (i) and (ii) be satisfied. Define a sequence of sets (Hk : k ≥ 0)
by H0 = P , Hk+1 = Hk ∪ HkHk, where P is the set of primes in H . Then
H = ∪{Hk : k ≥ 0}. Define a hierarchy of the elements in H as a mapping
χ : H → N0 by:

χ(a) =

{
0, if a ∈ H0

k + 1, if a ∈ Hk+1 \Hk.

Note that, if P = {a} = H0, then H1 = {a, a2} = H2 = . . ., i.e. for any
k ≥ 1, Hk+1 \Hk = ∅. However, if |P | ≥ 2, then the sequence (Hk : k ≥ 0)
will not terminate, i.e. Hk+1 \ Hk �= ∅, for each k ≥ 0. Namely, H0 = P =
{a, b, . . .}, a �= b, implies that H1 = H0 ∪ {a2, b2, ab, . . .}. There are at least
two idempotents in H1 with distinct bases, for instance a2 and b2, and at least
two nonprime nonidempotents, for instance ab and ba in H1, that are not in
H0. Thus H1 \H0 �= ∅. There are at least two idempotents with distinct bases
in H2, for instance (ab)2 and (ba)2, that are not in H1 and also, there are at
least two nonidempotents in H2, for instance (ab)(ba) and a2(ab), that are not
in H1. Thus H2 \ H1 �= ∅. Continuing this way, we come to the conclusion
that Hk+1 \ Hk �= ∅, for each k ≥ 0. (We come to the same conclusion if we
put: c0 = ab, c1 = c0a, c2 = c1b,. . . , c2k+1 = c2ka, c2k+2 = c2k+1b, where k ≥ 0.
Then, for each nonnegative integer n, cn ∈ Hn \Hn−1, i.e. Hn \Hn−1 �= ∅.)

For any product cd in H the following equality is true:

χ(cd) = 1 + max{χ(c), χ(d)}. (3)

We will prove this equality by induction on hierarchy. If a ∈ H1 \ H0,
then a = cd, where c, d ∈ H0, χ(c) = χ(d) = 0 and χ(a) = 1. If a = cd is an
idempotent, then c = d, i.e. a = c2 and thus 1+max{χ(c), χ(c)} = 1 = χ(a) =
χ(cd). If a = cd is a nonidempotent (clearly c �= d), then 1+max{χ(c), χ(d)} =
1 + 0 = 1 = χ(a) = χ(cd). Thus, (3) holds for k = 0. Suppose that (3) is true
for k ≤ n and let cd ∈ Hn+1 \Hn. Then c, d ∈ Hn, max{χ(c), χ(d)} = n and
χ(cd) = n+ 1. Therefore, 1 + max{χ(c), χ(d)} = n+ 1 = χ(cd). Hence, (3) is
true, for each k ≥ 0.

Now, we are ready to prove the ”only if part” of Theorem 3.3, i.e. that
H is free in pV when (i) and (ii) are satisfied. Let G ∈ pV and λ : P → G
be any mapping. Define a sequence of mappings ψ0, ψ1, . . . , ψk, . . . on H0,
H1 = H0 ∪H0H0, . . . , Hk = Hk−1 ∪Hk−1Hk−1, . . . , respectively, as follows:

ψ0 : H0 → G, by ψ0 = λ ; ψ1 : H1 → G, by ψ1(a) = ψ0(a), if a ∈ H0 and
ψ1(a) = ψ0(c)ψ0(d), if a = cd, where c, d ∈ H0.
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Suppose that ψi is defined for all 1 ≤ i ≤ k.
Define a mapping ψk+1 : Hk+1 → G by:

ψk+1(a) =

⎧⎪⎨
⎪⎩
ψk(a), if a ∈ Hk,
ψk(c)ψk(d), if a ∈ Hk+1 \Hk, (c, d) is the pair of divisors of a;
(ψk(c))

2, if a ∈ Hk+1 \Hk, a = c2, i.e. c is the divisor of a.

The homomorphism condition for ψi is satisfied for the ”bad products” too.
Indeed, ψi(xx

2) = ψi(x
2) = ψi(x)ψi(x) = ψi(x)(ψi(x))

2.
So, we obtain an infinite sequence of mappings ψ0, ψ1, . . . , ψk, . . . such that

every ψi+1 is an extension of ψi, i ≥ 0. Putting ψ = ∪{ψi : i ≥ 0} we obtain
that ψ : H → G is a well-defined mapping and homomorphism from H into
G, i.e. for any xy ∈ H , ψ(xy) = ψ(x)ψ(y). Namely, xy ∈ H implies that
there is a positive integer r such that xy ∈ Hr, and thus ψ(xy) = ψr(xy) =
ψr(x)ψr(y) = ψ(x)ψ(y).

Thus, the universal mapping property for pV over P is satisfied. Hence, H
is a free groupoid in pV with the free basis P .

Bellow a construction of injective groupoid in pV that is not free in pV is
given.

Let N be an infinite set, I a set equivalent and disjoint with N , H = N ∪ I
and ϕ : N → I a bijection. Let D = {(x, y) : x, y ∈ N ∪ I, x �= y}. Since N is
infinite it follows that the sets N , I and D are equivalent. Therefore, there is
an injective mapping ψ : D → N . Define an operation ”·” in H = N ∪ I by:

n · n = ϕ(n), i · i = i, x · y = ψ(x, y),

for any n ∈ N , i ∈ I, (x, y) ∈ D.
One can verify that H = (H, ·) is a groupoid that is injective in pV. If ψ is

a bijection, then there are no prime elements in H . So, by the Bruck Theorem
for the variety pV (Theorem 3.3), H is not a free groupoid in pV. Therefore,
the following proposition holds.

Theorem 3.4 The class of free groupoids in pV is a proper subclass of the
class of injective groupoids in pV, i.e. pVf ⊂ pVi.

4 Word problem for the variety of

PLRI groupoids

We will use an Evans’s result ([3]) to show that the word problem is solvable
for the variety pV.

For a groupoid G and a nonempty subset D of G we define a partial
groupoid DG with the underlying set D as follows: for a, b ∈ D the product
ab is defined in DG if and only if this product in G belongs to D, and in this
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case the product in DG is equal to the product in G.
By a homomorphism of a partial groupoid A into a partial groupoid B we

mean a mapping f : A → B such that: whenever a, b are elements of A such
that ab is defined, then f(a)f(b) is defined in B and f(ab) = f(a)f(b). We say
that A is embeddable into B if there is an injective homomorphism of A into
B. We say that a partial groupoid A is strongly embeddable into a groupoid
G if it is isomorphic to DG, for a nonempty subset D of G.

Clearly, if a partial groupoid A is strongly embeddable into a pV-groupoid,
then it satisfies the following condition:

(0) if a ∈ A is such that a2 is defined, then a2a, aa2 and a2a2 are also
defined and a2a = aa2 = a2a2 = a2.

For a partial groupoid A satisfying (0) we define a groupoid (G, ◦) as fol-
lows:

(i) if xy is defined in A, then x ◦ y = xy
(ii) if x2 is not defined in A, then x ◦ x = x
(iii) if xy is not defined in A and x �= y, then x ◦ y = c, where c is a fixed

element in A.

Theorem 4.1 If A is a partial groupoid satisfying (0), then (G, ◦) is a
PLRI groupoid.

Proof. Let a ∈ G. If a2 is not defined in A, then by (ii) we obtain that
(a ◦ a) ◦ a = a ◦ a, a ◦ (a ◦ a) = a ◦ a, (a ◦ a) ◦ (a ◦ a) = a ◦ a. If a2 is defined
in A, then by (0) and (i) we obtain that (a ◦ a) ◦ a = a2 ◦ a = a2a = a2,
a◦ (a◦a) = a◦a2 = aa2 = a2, (a◦a)◦ (a◦a) = a2 ◦a2 = a2a2 = a2. Therefore,
(G, ◦) is a PLRI groupoid.

Corollary 4.2 A partial groupoid is strongly embeddable into pV-groupoid
if and only if it satisfies the condition (0).

As a special case of the Evans’s Theorem ([3]) we obtain the following

Theorem 4.3 If every partial pV-groupoid is embeddable into a pV-groupoid,
then the word problem is solvable for the variety pV.

As a corollary, we have the following

Theorem 4.4 The word problem for the variety pV is solvable.
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