Free Groupoids in the Class of Power Left and Right Idempotent Groupoids

Vesna Celakoska-Jordanova
Faculty of Natural Sciences and Mathematics
"Ss. Cyril and Methodius University"
P.O.Box 162, Skopje, Macedonia
vesnacj@iunona.pmf.ukim.edu.mk

Abstract

The subject of this paper is the class of groupoids such that any groupoid $\boldsymbol{G}=(G, \cdot)$ of this class has the property: every subgroupoid of \boldsymbol{G} generated by any element $a \in G$ satisfies the identity $(x x)(y y) \approx x y$. It is shown that this class is a variety. A construction and a characterization of free groupoids in this variety are obtained. The word problem is solvable for this variety.

Mathematics Subject Classification: Primary 08B20; Secondary 03C05

Keywords: groupoid, subgroupoid, groupoid power, variety of groupoids, free groupoid

We will work with groupoids, i.e. algebras with one binary operation. In [5] the variety \mathcal{V} of left and right idempotent (LRI) groupoids, i.e. groupoids that satisfy the identity $(x x)(y y) \approx x y$, is considered. We investigate a class of groupoids larger than \mathcal{V}, called the class of power left and right idempotent (PLRI) groupods. A groupoid $\boldsymbol{G}=(G, \cdot)$ belongs to the class of PLRI groupoids if and only if for each element $a \in G$ the subgroupoid generated by a belongs to \mathcal{V}. We denote this class by $p \mathcal{V}$. Throughout the paper we will use the notion of groupoid power and some of its properties, stated in [6] and [8].

The purpose of this paper is to obtain: an axiom system for the class $p \mathcal{V}$, a description of free groupoids in $p \mathcal{V}$ and their characterization, using a larger class of groupoids, called the class of injective groupoids in $p \mathcal{V}$. It is shown in [5] that the word problem is solvable for the variety of LRI groupoids. The word problem is also solvable for the variety of PLRI groupoids. The main

[^0]results of this paper are Theorems 2.1, 2.4, 3.3 and 4.4.
For the notation and basic notions of universal algebra the reader is referred to [4]. In most cases, without mention, the operation is denoted multiplicatively: the product of two elements x, y of a groupoid is denoted by $x \cdot y$ or just $x y$. If $x=y$, we put x^{2} instead of $x x$ and call it the square of x. Hence, $x^{2} y^{2}=(x x)(y y), x^{2} y=(x x) y, x y^{2}=x(y y)$ etc.

1 Preliminary Notes

In what follows, $B \neq \emptyset$ will be an arbitrary set, and T_{B} will denote the set of all groupoid terms over B in the signature \cdot. The terms are denoted by $t, u, v, \ldots, x, y, \ldots \boldsymbol{T}_{B}=\left(T_{B}, \cdot\right)$ is the absolutely free groupoid (i.e. free in the class of all groupoids) with the free basis B, where the operation is defined by $(u, v) \mapsto u v$. For any term $v \in T_{B}$ we define the length $|v|$ of v and the set of subterms $P(v)$ of v by:

$$
|b|=1,|t u|=|t|+|u| ; P(b)=\{b\}, P(t u)=\{t u\} \cup P(t) \cup P(u),
$$

for any $b \in B$ and any $t, u \in T_{B}$.
Let $\boldsymbol{G}=(G, \cdot)$ be any groupoid and A a nonempty subset of G. If \boldsymbol{Q} is the subgroupoid of \boldsymbol{G} generated by A, then $Q=\cup\left\{A_{k}: k \geq 0\right\}$, where $A_{0}=A$, $A_{k+1}=A_{k} \cup A_{k} A_{k}$. Define a mapping $\chi_{Q}: Q \rightarrow N_{0}$, where N_{0} is the set of nonnegative integers, by $\chi_{Q}(x)=\min \left\{k \in N_{0}: x \in A_{k}\right\}$.

Specially, $\boldsymbol{T}_{B}=\cup\left\{B_{k}: k \geq 0\right\}$, where $B_{0}=B, B_{k+1}=B_{k} \cup B_{k} B_{k}$. The hierarchy $\chi: T_{B} \rightarrow N_{0}$ has the property $\chi(t u)=1+\max \{\chi(t), \chi(u)\}$, for all $t, u \in T_{B}$. Note that this is not true for an arbitrary groupoid \boldsymbol{G}.

The groupoid \boldsymbol{T}_{B} is injective, i.e. the operation \cdot in \boldsymbol{T}_{B} is an injective mapping: $x y=v w \Rightarrow x=v, y=w$. The set B is the set of primes in \boldsymbol{T}_{B} that generates \boldsymbol{T}_{B}. (An element a of a groupoid $\boldsymbol{G}=(G, \cdot)$ is said to be prime in \boldsymbol{G} if and only if $a \neq x y$, for all $x, y \in G$.) This two properties of T_{B} characterize all absolutely free groupoids ([1]; Lemma 1.5).

Theorem 1.1 A groupoid $\boldsymbol{H}=(H, \cdot)$ is an absolutely free groupoid if and only if it satisfies the following two conditions:
(i) \boldsymbol{H} is injective;
(ii) The set of primes in \boldsymbol{H} is nonempty and generates \boldsymbol{H}.

Then the set of primes is the unique free basis of \boldsymbol{H}.
We refer to this proposition as Bruck Theorem for the class of all groupoids.
By $\boldsymbol{T}_{e}=\left(T_{e}, \cdot\right)$ we denote the absolutely free groupoid with one-element basis $\{e\}$. The terms over $\{e\}$ are called groupoid powers ([5]) and will be denoted by f, g, h, \ldots. We will state a few properties of groupoid powers that will be used further on.

For any groupoid $\boldsymbol{G}=(G, \cdot)$, each term f over $\{e\}$ induces a transformation $f^{G}: G \rightarrow G$, called an interpretation of f in \boldsymbol{G}, defined by $f^{G}(x)=\varphi_{x}(f)$, where $\varphi_{x}: T_{e} \rightarrow G$ is the homomorphism from \boldsymbol{T}_{e} into \boldsymbol{G} such that $\varphi_{x}(e)=x$. In other words, for any $g, h \in T_{e}$ and $x \in G$

$$
e^{G}(x)=x, \quad(g h)^{G}(x)=g^{G}(x) h^{G}(x) .
$$

We write $f(x)$ instead of $f^{G}(x)$ when \boldsymbol{G} is understood.
Next statements concerning groupoid powers are shown in [8].
Theorem 1.2 If $f, g \in T_{e}, t, u \in T_{B}$, then a) $|f(t)|=|f| \cdot|t|$;
b) $f(t)=g(u) \&(|t|=|u| \vee|f|=|g|) \Leftrightarrow(f=g \& t=u)$;
c) $f(t)=g(u) \&|t| \geq|u| \Leftrightarrow\left(\exists!h \in T_{e}\right)(t=h(u) \& g=f(h))$.

If an operation " \circ " is defined on the set T_{e} by: $f \circ g=f(g)$, then one obtains that $\left(T_{e}, \circ, e\right)$ is a cancellative monoid ([6], Prop. 1.6).

An element $c \in G$ is said to be primitive in $\boldsymbol{G}=(G, \cdot)$ if and only if for any $a \in G$ and any $f \in T_{e}$, the following implication is true: $c=f(a) \Rightarrow f=e$.

Specially, primitive elements in \boldsymbol{T}_{B} are called primitive terms.
We essentially use Lemma 1.3 ([2], Lemma 3.1) in the proof of Lemma 1.4 and in the next section.

Lemma 1.3 For any term $v \in T_{B}$ there is a uniquely determined primitive term $u \in T_{B}$ and a uniquely determined groupoid power $f \in T_{e}$ such that $v=f(u)$.

In that case we call u the base of v, f the power of $v,|f|$ the exponent of v, and denote by $\underline{v}, v^{\sim},\left|v^{\sim}\right|$, respectively.

Lemma 1.4 Let $v, w \in T_{B}$.
a) If v, w have different bases, then $v w$ is a primitive term in T_{B}.
b) The terms v, w have the same base t if and only if t is the base of $v w$ and $(v w)^{\sim}=v^{\sim} w^{\sim}$.

Proof. Let $v, w \in T_{B}$. Then, by Lemma $1.3 v=f(t), w=g(u)$ and $v w=$ $h(\alpha)$, where $t=\underline{v}, u=\underline{w}, \alpha=\underline{v w}, f=v^{\sim}, g=w^{\sim}, h=(v w)^{\sim}$.
a) Let $t=\underline{v} \neq \underline{w}=u$. We will show that $h=e$. Suppose that $h \neq e$. Then, there are $h_{1}, h_{2} \in T_{e}$, such that $h=h_{1} h_{2}$. The following is true:

$$
f(t) g(u)=v w=h(\alpha)=\left(h_{1} h_{2}\right)(\alpha)=\left(h_{1}(\alpha)\right)\left(h_{2}(\alpha)\right) .
$$

Since \boldsymbol{T}_{B} is injective, it follows that $h_{1}(\alpha)=f(t)$ and $h_{2}(\alpha)=g(u)$. If $|\alpha|=|t|$, then by Theorem 1.2 b$), \alpha=t, h_{1}=f$. Therefore, $h_{2}(t)=g(u)$. There are three cases (only): $|t|=|u|,|t|>|u|$ and $|u|>|t|$. The case
$|t|=|u|$ is not possible. Namely, by Theorem 1.2 b), it follows that $t=\alpha=u$, that contradicts the supposition $t \neq u$. The case $|t|>|u|$ is not possible, too. Indeed, if $h_{2}(t)=g(u)$, then by Theorem 1.2 c), there is a unique $l \in T_{e}$ such that $t=l(u), g=h_{2}(l)$. As u is a primitive term, it follows that $l=e$, i.e. $t=e(u)=u$, that contradicts $t \neq u$. By the same argument, the case $|u|>|t|$ is not possible, too.
b) Let $\underline{v}=\underline{w}=t$. Then $h(\alpha)=f(t) g(t)=(f g)(t)$. Since α is a primitive term and $|f g| \geq 2$, it follows that $h \neq e$. Let $h=h_{1} h_{2}$. Then $f(t) g(t)=$ $h(\alpha)=\left(h_{1} h_{2}\right)(\alpha)=\left(h_{1}(\alpha)\right)\left(h_{2}(\alpha)\right)$. Since \boldsymbol{T}_{B} is injective, it follows that $h_{1}(\alpha)=f(t), h_{2}(\alpha)=g(t)$. As t and α are primitive terms, neither $|t|>|\alpha|$ nor $|\alpha|>|t|$. Therefore, $|t|=|\alpha|$. By Theorem 1.2 b), it follows that $f=h_{1}, g=h_{2}$ and $t=\alpha$. Thus t is the base of $v w$. By $v w=(f g)(t)$, it follows that $(v w)^{\sim}=h=f g=v^{\sim} w^{\sim}$.

Conversely, let $t=\underline{v} \neq \underline{w}=u$. Then by a), $v w$ is the base of $v w$, so $h=e$. This implies that $h \neq f g$, that contradicts $(v w)^{\sim}=v^{\sim} w^{\sim}$.

2 Construction of free groupoids in the class of PLRI groupoids

Here, the class of LRI groupoids, i.e. groupoids that satisfy the identity $x^{2} y^{2} \approx$ $x y$ is denoted by \mathcal{V}. It is shown in [5] that the axiom $x^{2} y^{2} \approx x y$ is equivalent with the system of axioms $x^{2} y \approx x y, x y^{2} \approx x y$ and that, if $\boldsymbol{G} \in \mathcal{V}$, then $a \in G$ is a square if and only if a is an idempotent.

A groupoid $\boldsymbol{G}=(G, \cdot)$ is said to be power left and right idempotent (PLRI) if and only if for any $a \in G$ the subgroupoid of \boldsymbol{G} generated by $\{a\}$, denoted by $\langle a\rangle$, is LRI groupoid. The class of all PLRI groupoids is denoted by $p \mathcal{V}$.

The following theorem shows that the elements of any groupoid of the class $p \mathcal{V}$ have almost trivial powers, i.e. if $f(x)$ is a power of x, then either $f(x)=x$ or $f(x)=x^{2}$, for any groupoid power $f, f \neq e$.

Theorem 2.1 $\boldsymbol{G} \in p \mathcal{V}$ if and only if $(\forall x \in G)\left(\forall f \in T_{e} \backslash\{e\}\right) f(x)=x^{2}$.
Proof. The direct statement can be shown by induction on length $|f|$. Conversely, let $y, z \in\langle x\rangle$. Then there are $f, g \in T_{e}$ such that $y=f(x), z=g(x)$. In that case, $y z=f(x) g(x)=(f g)(x)$ and $y^{2} z^{2}=(f(x))^{2}(g(x))^{2}=\left(f^{2} g^{2}\right)(x)$. Let $h=f g, l=f^{2} g^{2}$. Since $|h|=|f g| \geq 2$ and $|l|=\left|f^{2} g^{2}\right| \geq 4$, it follows that $h, l \in T_{e} \backslash\{e\}$. By the hypothesis $f(x)=x^{2}$ for all $f \in T_{e} \backslash\{e\}$, we obtain that $h(x)=x^{2}=l(x)$. Therefore, $y^{2} z^{2}=\left(f^{2} g^{2}\right)(x)=x^{2}=h(x)=l(x)=$ $(f g)(x)=y z$ and thus $\langle x\rangle \in \mathcal{V}$.

As a consequence, we obtain:
Corollary 2.2 A groupoid $\boldsymbol{G}=(G, \cdot)$ is a $p \mathcal{V}$-groupoid if and only if

$$
(\forall x \in G)\left(\forall f, g \in T_{e}\right)(f(x))^{2}(g(x))^{2}=f(x) g(x)
$$

Theorem 2.1 enables to obtain a finite system of axioms for the variety $p \mathcal{V}$ (and thus the variety $p \mathcal{V}$ is finitely based).

Corollary 2.3 The class of $p \mathcal{V}$-groupoids is a variety defined by the identities $x^{2} \approx x^{2} x \approx x x^{2} \approx x^{2} x^{2}$.

Now, we are ready to start a construction of free groupoids in $p \mathcal{V}$. Assuming that B is a nonempty set and $\boldsymbol{T}_{B}=\left(T_{B}, \cdot\right)$ the absolutely free groupoid with the free basis B, we are looking for a canonical groupoid ([7]) in $p \mathcal{V}$, i.e. a groupoid $\boldsymbol{R}=(R, *)$ with the following properties:
i) $B \subset R \subset T_{B}, \quad$ ii) $t u \in R \Rightarrow t, u \in R \& t * u=t u$
iii) \boldsymbol{R} is a free groupoid in $p \mathcal{V}$ with the free basis B.

Define the carrier of the desired groupoid \boldsymbol{R} as the set

$$
\begin{equation*}
R=\left\{t \in T_{B}:(\forall u \in P(t))\left|u^{\sim}\right| \leq 2\right\} . \tag{1}
\end{equation*}
$$

Thus, $t \in R$ if and only if t has no subterm that has an exponent greater than 2. The following properties of R are clear:
a) $B \subset R \subset T_{B} ; t \in R \Rightarrow P(t) \subset R$.
b) $t, u \in R \Rightarrow\left[t u \notin R \Leftrightarrow(\exists x \in R)\left(\exists f \in T_{e},|f| \geq 3\right) t u=f(x)\right]$.
(Namely, since $t, u \in R$, it follows that: $t=f_{1}(x), u=f_{2}(x)$, where $\left|f_{1}\right|,\left|f_{2}\right| \leq 2$ and $x=\underline{t}=\underline{u}$. If $t u \notin R$, then $\left|f_{1}\right|=2$ or $\left|f_{2}\right|=2$. Thus $|f|=\left|f_{1} f_{2}\right|=\left|f_{1}\right|+\left|f_{2}\right| \geq 3$. The converse is obvious.)
c) $t, u \in T_{B} \Rightarrow\left[t u \in R \Leftrightarrow t, u \in R \quad \&\left|(t u)^{\sim}\right|=2\right]$.

Define an operation $*$ on R by:

$$
t, u \in R \Rightarrow t * u= \begin{cases}t u, & \text { if } t u \in R \tag{2}\\ x^{2}, & \text { if } \underline{t}=\underline{u}=x,\left|t^{\sim}\right|+\left|u^{\sim}\right| \geq 3\end{cases}
$$

One can show that $\boldsymbol{R}=(R, *)$ is a groupoid. By (2), Theorem 2.1 and induction on length, one can show the properties $1^{\circ}-4^{\circ}$.
$1^{\circ} . B$ is the set of primes in \boldsymbol{R} and generates \boldsymbol{R}.
The interpretation of groupoid powers in the groupoid \boldsymbol{R} is given by:

$$
e_{*}(t)=t,(f g)_{*}(t)=f_{*}(t) * g_{*}(t),
$$

for any $t \in R$ and $f, g \in T_{e}$.
2°. Let $t \in R$ and $f \in T_{e} \backslash\{e\}$.
a) If t is not a square in \boldsymbol{T}_{B}, then $f_{*}(t)=t^{2}$, and, specially, $t * t=t^{2}$.
b) If t is a square of x in \boldsymbol{T}_{B}, where x is a primitive term in \boldsymbol{T}_{B}, then
$f_{*}(t)=t$, and, specially, $t * t=t$.
As a consequence of 2° one obtains that for each $f \in T_{e} \backslash\{e\}$ and $t \in R$, $f_{*}(t)=t * t$, and therefore (by Theorem 2.1):
$3^{\circ} . \boldsymbol{R} \in p \mathcal{V}$.
4°. For any $\boldsymbol{G} \in p \mathcal{V}$ and any mapping $\lambda: B \rightarrow G$, there is a homomorphism $\psi: \boldsymbol{R} \rightarrow \boldsymbol{G}$ that extends λ, i.e. \boldsymbol{R} has the universal mapping property for $p \mathcal{V}$ over B.
Proof. Let φ be the homomorphism from \boldsymbol{T}_{B} into \boldsymbol{G} that extends λ. Let $\psi: R \rightarrow G$ be the restriction of φ on R, i.e. $\psi=\left.\varphi\right|_{R}$. It suffices to show that for any $t, u \in R, \varphi(t * u)=\varphi(t) \varphi(u)$. If $t u \in R$, then $t * u=t u$, and the proposition clearly holds. Let $t u \notin R$, i.e. let $t=f(x), u=g(x)$, where $x=\underline{t}=\underline{u}$ and $|f| \leq 2,|g| \leq 2,|f g| \geq 3$. Then $t * u=x^{2}$, so $\varphi(t * u)=\varphi\left(x^{2}\right)=\varphi((f g)(x))=\varphi(f(x) g(x))=\varphi(t u)=\varphi(t) \varphi(u)$. By 1° to 4° it follows that:

Theorem 2.4 The groupoid $\boldsymbol{R}=(R, *)$, defined by (1) and (2) is free in $p \mathcal{V}$ with the free basis B.

Note that, if $a, b \in B$ are distinct elements in B, then $a *(b * b)=a * b^{2}=$ $a b^{2} \neq a b=a * b$, and therefore: if $|B| \geq 2$, then $\boldsymbol{R} \notin \mathcal{V}$.

Since \boldsymbol{R} has the properties: $B \subset R \subset T_{B} ; t u \in R \Rightarrow t, u \in R \& t * u=t u$; \boldsymbol{R} is free in $p \mathcal{V}$ with the free basis B, it follows that \boldsymbol{R} is a canonical groupoid in $p \mathcal{V}$. The class of free groupoids in $p \mathcal{V}$ will be denoted by $p \mathcal{V}_{f}$.

The following properties of $(R, *)$ are clear.
Lemma 2.5 a) For any $x \in R, x * x$ is an idempotent in \boldsymbol{R}.
b) $t \in R$ is an idempotent in \boldsymbol{R} if and only if t is a square in \boldsymbol{R}.
c) If $t \in R$ is an idempotent in \boldsymbol{R}, then there is a unique nonidempotent $x \in R$ (i.e. $x \neq x * x$) such that $t=x * x$.
d) $t \in R$ is primitive in \boldsymbol{R} if and only if t is primitive in \boldsymbol{T}_{B}.

Lemma 2.6 Let I be the set of all idempotents in \boldsymbol{R} and N be the set of all nonidempotents in \boldsymbol{R}. If $z \in R$ is a nonidempotent and z is not prime in \boldsymbol{R}, then one of the following cases is possible:

1) $z=\alpha * \beta, \alpha, \beta \in I, \alpha \neq \beta$;
2) $z=x * \alpha, \alpha \in I, x \in N$;
3) $z=\alpha * x, \alpha \in I, x \in N$;
4) $z=x * y, x, y \in N, x \neq y$.

Lemma 2.7 For any $t \in R \backslash B$ there is exactly one pair $(u, v) \in R^{2}$, such that $t=u v=u * v$.

We say that (u, v) is the pair of divisors of t in \boldsymbol{R}. In this case: $u=v$ if and only if $u^{2} \in R$ (if and only if u is not a square); then we say that u is the divisor of t.

Remark. The Lemma 2.7 does not exclude existence of distinct pairs $\left(u_{1}, v_{1}\right)$, $\left(u_{2}, v_{2}\right)$ in R^{2}, such that $u_{1} * v_{1}=u_{2} * v_{2}$. For example, if $a \in B$, then $\left(a, a^{2}\right),\left(a^{2}, a^{2}\right) \in R^{2}$ and $a * a^{2}=a^{2}=a^{2} * a^{2}$. Note that $a a^{2}$ and $a^{2} a^{2}$ are not in R.

3 Injective groupoids in the variety of PLRI groupoids

In this section we define a subclass of the class $p \mathcal{V}$ larger than the class $p \mathcal{V}_{f}$, called the class of injective groupoids in $p \mathcal{V}$. For defining the class of injective groupoids as a subclass of a given variety \mathcal{W} we essentially use properties of the corresponding canonical groupoid in \mathcal{W}, that has to be previously constructed. We will look for an axiom system of the class of injective groupoids in \mathcal{W} among the properties of the corresponding canonical groupoid $\boldsymbol{R}=(R, *)$ in \mathcal{W}, that are related to the properties of the elements in \boldsymbol{R} that are not \mathcal{W}-prime. If the identities that are the axioms of the variety \mathcal{W} are normal, i.e. neither of its sides is a variable, then \mathcal{W}-prime element in \boldsymbol{R} means the same as prime element defined before Theorem 1.1. Here, we will use the suitable properties of $(R, *)$ contained in Lemmas 2.5, 2.6, 2.7.

We say that a groupoid $\boldsymbol{H}=(H, \cdot)$ is injective in the variety $p \mathcal{V}$ if and only if the following conditions are satisfied:
0) $\boldsymbol{H} \in p \mathcal{V}$

1) If $a \in H$ is an idempotent, then there is a unique nonidempotent $c \in H$, such that $a=c^{2}$ and the equality $a=x y$ holds if and only if $\{x, y\} \subseteq\left\{c, c^{2}\right\}$. (In that case we say that c is the divisor of a or c is the base of a.)
2) If $a \in H$ is a nonidempotent and is not prime in \boldsymbol{H}, then there is a unique pair $(c, d) \in H^{2}$, such that $a=c d$ and $\underline{c} \neq \underline{d}$. (Note that c, d could be both idempotents; one idempotent and the other nonidempotent; both nonidempotents.)

The class of all injective groupoids in $p \mathcal{V}$ is denoted by $p \mathcal{V}_{i}$. From the definition of injective groupoid in $p \mathcal{V}$ and Lemmas 2.5, 2.6 and 2.7 we obtain:

Corollary 3.1 Every free groupoid in $p \mathcal{V}$ is injective in $p \mathcal{V}$.
If $\boldsymbol{H}=(H, \cdot) \in p \mathcal{V}_{i}$ and $a \in H$, then the subgroupoid $Q=\left\{a^{2}\right\}$ of \boldsymbol{H} is not injective in $p \mathcal{V}$. This implies the following proposition:

Corollary 3.2 Neither of the classes $p \mathcal{V}_{f}, p \mathcal{V}_{i}$ is hereditary.
The following statement gives a description of free groupoids in $p \mathcal{V}$ within the class of injective groupoids in $p \mathcal{V}$.

Theorem 3.3 (Bruck Theorem for the variety $p \mathcal{V}$) A groupoid $\boldsymbol{H} \in$ $p \mathcal{V}$ is free in $p \mathcal{V}$ if and only if the following conditions are satisfied:
(i) \boldsymbol{H} is injective in $p \mathcal{V}$.
(ii) The set of primes in \boldsymbol{H} is nonempty and generates \boldsymbol{H}.

Proof. The "if part" follows by Corollary 3.1 and Theorem 2.4. Conversely, let $\boldsymbol{H} \in p \mathcal{V}$ and (i) and (ii) be satisfied. Define a sequence of sets ($\left.H_{k}: k \geq 0\right)$ by $H_{0}=P, H_{k+1}=H_{k} \cup H_{k} H_{k}$, where P is the set of primes in \boldsymbol{H}. Then $H=\cup\left\{H_{k}: k \geq 0\right\}$. Define a hierarchy of the elements in \boldsymbol{H} as a mapping $\chi: H \rightarrow N_{0}$ by:

$$
\chi(a)=\left\{\begin{aligned}
0, & \text { if } a \in H_{0} \\
k+1, & \text { if } a \in H_{k+1} \backslash H_{k} .
\end{aligned}\right.
$$

Note that, if $P=\{a\}=H_{0}$, then $H_{1}=\left\{a, a^{2}\right\}=H_{2}=\ldots$, i.e. for any $k \geq 1, H_{k+1} \backslash H_{k}=\emptyset$. However, if $|P| \geq 2$, then the sequence $\left(H_{k}: k \geq 0\right)$ will not terminate, i.e. $H_{k+1} \backslash H_{k} \neq \emptyset$, for each $k \geq 0$. Namely, $H_{0}=P=$ $\{a, b, \ldots\}, a \neq b$, implies that $H_{1}=H_{0} \cup\left\{a^{2}, b^{2}, a b, \ldots\right\}$. There are at least two idempotents in H_{1} with distinct bases, for instance a^{2} and b^{2}, and at least two nonprime nonidempotents, for instance $a b$ and $b a$ in H_{1}, that are not in H_{0}. Thus $H_{1} \backslash H_{0} \neq \emptyset$. There are at least two idempotents with distinct bases in H_{2}, for instance $(a b)^{2}$ and $(b a)^{2}$, that are not in H_{1} and also, there are at least two nonidempotents in H_{2}, for instance $(a b)(b a)$ and $a^{2}(a b)$, that are not in H_{1}. Thus $H_{2} \backslash H_{1} \neq \emptyset$. Continuing this way, we come to the conclusion that $H_{k+1} \backslash H_{k} \neq \emptyset$, for each $k \geq 0$. (We come to the same conclusion if we put: $c_{0}=a b, c_{1}=c_{0} a, c_{2}=c_{1} b, \ldots, c_{2 k+1}=c_{2 k} a, c_{2 k+2}=c_{2 k+1} b$, where $k \geq 0$. Then, for each nonnegative integer $n, c_{n} \in H_{n} \backslash H_{n-1}$, i.e. $H_{n} \backslash H_{n-1} \neq \emptyset$.)

For any product $c d$ in \boldsymbol{H} the following equality is true:

$$
\begin{equation*}
\chi(c d)=1+\max \{\chi(c), \chi(d)\} . \tag{3}
\end{equation*}
$$

We will prove this equality by induction on hierarchy. If $a \in H_{1} \backslash H_{0}$, then $a=c d$, where $c, d \in H_{0}, \chi(c)=\chi(d)=0$ and $\chi(a)=1$. If $a=c d$ is an idempotent, then $c=d$, i.e. $a=c^{2}$ and thus $1+\max \{\chi(c), \chi(c)\}=1=\chi(a)=$ $\chi(c d)$. If $a=c d$ is a nonidempotent (clearly $c \neq d$), then $1+\max \{\chi(c), \chi(d)\}=$ $1+0=1=\chi(a)=\chi(c d)$. Thus, (3) holds for $k=0$. Suppose that (3) is true for $k \leq n$ and let $c d \in H_{n+1} \backslash H_{n}$. Then $c, d \in H_{n}, \max \{\chi(c), \chi(d)\}=n$ and $\chi(c d)=n+1$. Therefore, $1+\max \{\chi(c), \chi(d)\}=n+1=\chi(c d)$. Hence, (3) is true, for each $k \geq 0$.

Now, we are ready to prove the "only if part" of Theorem 3.3, i.e. that \boldsymbol{H} is free in $p \mathcal{V}$ when (i) and $(i i)$ are satisfied. Let $G \in p \mathcal{V}$ and $\lambda: P \rightarrow G$ be any mapping. Define a sequence of mappings $\psi_{0}, \psi_{1}, \ldots, \psi_{k}, \ldots$ on H_{0}, $H_{1}=H_{0} \cup H_{0} H_{0}, \ldots, H_{k}=H_{k-1} \cup H_{k-1} H_{k-1}, \ldots$, respectively, as follows:
$\psi_{0}: H_{0} \rightarrow G$, by $\psi_{0}=\lambda ; \quad \psi_{1}: H_{1} \rightarrow G$, by $\psi_{1}(a)=\psi_{0}(a)$, if $a \in H_{0}$ and $\psi_{1}(a)=\psi_{0}(c) \psi_{0}(d)$, if $a=c d$, where $c, d \in H_{0}$.

Suppose that ψ_{i} is defined for all $1 \leq i \leq k$.
Define a mapping $\psi_{k+1}: H_{k+1} \rightarrow G$ by:
$\psi_{k+1}(a)=\left\{\begin{array}{l}\psi_{k}(a), \text { if } a \in H_{k}, \\ \psi_{k}(c) \psi_{k}(d), \text { if } a \in H_{k+1} \backslash H_{k},(c, d) \text { is the pair of divisors of } a ; \\ \left(\psi_{k}(c)\right)^{2}, \text { if } a \in H_{k+1} \backslash H_{k}, a=c^{2}, \text { i.e. c is the divisor of } a .\end{array}\right.$
The homomorphism condition for ψ_{i} is satisfied for the "bad products" too. Indeed, $\psi_{i}\left(x x^{2}\right)=\psi_{i}\left(x^{2}\right)=\psi_{i}(x) \psi_{i}(x)=\psi_{i}(x)\left(\psi_{i}(x)\right)^{2}$.

So, we obtain an infinite sequence of mappings $\psi_{0}, \psi_{1}, \ldots, \psi_{k}, \ldots$ such that every ψ_{i+1} is an extension of $\psi_{i}, i \geq 0$. Putting $\psi=\cup\left\{\psi_{i}: i \geq 0\right\}$ we obtain that $\psi: H \rightarrow G$ is a well-defined mapping and homomorphism from \boldsymbol{H} into \boldsymbol{G}, i.e. for any $x y \in H, \psi(x y)=\psi(x) \psi(y)$. Namely, $x y \in H$ implies that there is a positive integer r such that $x y \in H_{r}$, and thus $\psi(x y)=\psi_{r}(x y)=$ $\psi_{r}(x) \psi_{r}(y)=\psi(x) \psi(y)$.

Thus, the universal mapping property for $p \mathcal{V}$ over P is satisfied. Hence, \boldsymbol{H} is a free groupoid in $p \mathcal{V}$ with the free basis P.

Bellow a construction of injective groupoid in $p \mathcal{V}$ that is not free in $p \mathcal{V}$ is given.

Let N be an infinite set, I a set equivalent and disjoint with $N, H=N \cup I$ and $\varphi: N \rightarrow I$ a bijection. Let $D=\{(x, y): x, y \in N \cup I, x \neq y\}$. Since N is infinite it follows that the sets N, I and D are equivalent. Therefore, there is an injective mapping $\psi: D \rightarrow N$. Define an operation "." in $H=N \cup I$ by:

$$
n \cdot n=\varphi(n), \quad i \cdot i=i, \quad x \cdot y=\psi(x, y)
$$

for any $n \in N, i \in I,(x, y) \in D$.
One can verify that $\boldsymbol{H}=(H, \cdot)$ is a groupoid that is injective in $p \mathcal{V}$. If ψ is a bijection, then there are no prime elements in \boldsymbol{H}. So, by the Bruck Theorem for the variety $p \mathcal{V}$ (Theorem 3.3), \boldsymbol{H} is not a free groupoid in $p \mathcal{V}$. Therefore, the following proposition holds.

Theorem 3.4 The class of free groupoids in $p \mathcal{V}$ is a proper subclass of the class of injective groupoids in $p \mathcal{V}$, i.e. $p \mathcal{V}_{f} \subset p \mathcal{V}_{i}$.

4 Word problem for the variety of PLRI groupoids

We will use an Evans's result ([3]) to show that the word problem is solvable for the variety $p \mathcal{V}$.

For a groupoid \boldsymbol{G} and a nonempty subset D of G we define a partial groupoid D_{G} with the underlying set D as follows: for $a, b \in D$ the product $a b$ is defined in D_{G} if and only if this product in \boldsymbol{G} belongs to D, and in this
case the product in D_{G} is equal to the product in \boldsymbol{G}.
By a homomorphism of a partial groupoid A into a partial groupoid B we mean a mapping $f: A \rightarrow B$ such that: whenever a, b are elements of A such that $a b$ is defined, then $f(a) f(b)$ is defined in B and $f(a b)=f(a) f(b)$. We say that A is embeddable into B if there is an injective homomorphism of A into B. We say that a partial groupoid A is strongly embeddable into a groupoid \boldsymbol{G} if it is isomorphic to D_{G}, for a nonempty subset D of G.

Clearly, if a partial groupoid A is strongly embeddable into a $p \mathcal{V}$-groupoid, then it satisfies the following condition:
(0) if $a \in A$ is such that a^{2} is defined, then $a^{2} a, a a^{2}$ and $a^{2} a^{2}$ are also defined and $a^{2} a=a a^{2}=a^{2} a^{2}=a^{2}$.

For a partial groupoid A satisfying (0) we define a groupoid (G, \circ) as follows:
(i) if $x y$ is defined in A, then $x \circ y=x y$
(ii) if x^{2} is not defined in A, then $x \circ x=x$
(iii) if $x y$ is not defined in A and $x \neq y$, then $x \circ y=c$, where c is a fixed element in A.

Theorem 4.1 If A is a partial groupoid satisfying (0), then (G, \circ) is a PLRI groupoid.
Proof. Let $a \in G$. If a^{2} is not defined in A, then by (ii) we obtain that $(a \circ a) \circ a=a \circ a, a \circ(a \circ a)=a \circ a,(a \circ a) \circ(a \circ a)=a \circ a$. If a^{2} is defined in A, then by (0) and (i) we obtain that $(a \circ a) \circ a=a^{2} \circ a=a^{2} a=a^{2}$, $a \circ(a \circ a)=a \circ a^{2}=a a^{2}=a^{2},(a \circ a) \circ(a \circ a)=a^{2} \circ a^{2}=a^{2} a^{2}=a^{2}$. Therefore, (G, \circ) is a PLRI groupoid.

Corollary 4.2 A partial groupoid is strongly embeddable into $p \mathcal{V}$-groupoid if and only if it satisfies the condition (0).

As a special case of the Evans's Theorem ([3]) we obtain the following
Theorem 4.3 If every partial $p \mathcal{V}$-groupoid is embeddable into a p \mathcal{V}-groupoid, then the word problem is solvable for the variety $p \mathcal{V}$.

As a corollary, we have the following
Theorem 4.4 The word problem for the variety $p \mathcal{V}$ is solvable.

References

[1] R.H. Bruck, A Survey of Binary Systems, Springer-Verlag 1958.
[2] V. Celakoska-Jordanova, Cyclic subgroupoids of an absolutely free groupoid, Proceedings of III Congress of SMM, Struga, 2005, Macedonia, $217-224$.
[3] T. Evans, Embeddability and the word problem, J. London Math. Soc. 28 (1953), $76-80$.
[4] R.N. McKenzie, G.F. McNulty, W.F. Taylor, Algebras, Latices, Varieties, Wadsworth \& Brooks/Cole, Volume I, Monterey, CA, 1987.
[5] G. Čupona, N. Celakoski, On groupoids with the identity $x^{2} y^{2}=x y$, Contributions Sec. Math. Tech. Sci., Macedonian Academy of Sciences and Arts, XVIII, 1-2 (1997), 5-15.
[6] G. Čupona, N. Celakoski, S. Ilić, Groupoid powers, Bulletin mathématique, 25 (LI) Skopje, Macedonia, (2001), 5-12.
[7] G. Čupona, N. Celakoski, B. Janeva, Injective groupoids in some varieties of groupoids, Proceedings of II Congesss of SMIM, Ohrid 2000, Macedonia, $47-55$.
[8] G. Čupona, S. Ilić, Free groupoids with $x^{n}=x$, II, Novi Sad J. Math., Vol.29, No.1. (1999), 147 - 154.

Received: December 20, 2007

[^0]: ${ }^{1}$ Research support by Macedonian Academy of Sciences and Arts, within the project "Algebraic structures" (project manager G.Čupona)

