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Canonical Objects in Classes of (n,V)-Groupoids

Vesna Celakoska-Jordanova

Free algebras are very important in studying classes of algebras, especially varieties

of algebras. Any algebra that belongs to a given variety of algebras can be characterized as a

homomorphic image of a free algebra of that variety. Describing free algebras is an important

task that can be quite complicated, since there is no general method to resolve this problem.

The aim of this work is to investigate classes of groupoids, i.e. algebras with one binary

operation, that satisfy certain identities or other conditions, and look for free objects in such

classes.
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1. Introduction

This paper is a review of a part of my doctoral thesis ”Free and injective

objects in some classes of n-groupoids”. The thesis was prepared during the last

three years at the Institute of Mathematics in the Faculty of Natural Sciences

and Mathematics, ”Ss. Cyril and Methodius” University, Skopje, Macedonia,

and some of its parts were supported by Macedonian Academy of Sciences and

Arts through the project ”Algebraic Structures”.

We introduce the basic idea of this work. For the notation and basic

notions of universal algebra the reader is referred to [12] and [13].

Let X be an arbitrary nonempty set whose elements are called variables

and TX = (T, ·) be the set of all groupoid terms over X in signature ·. The

terms are denoted by t, u, v, w . . . . Note that TX is an absolutely free groupoid

over X, where the operation is defined by (t, u) 7→ tu. The groupoid TX is

injective, i.e. if x, y, v, w ∈ T , then xy = vw ⇒ x = v, y = w. The set X is the

set of primes in TX and generates TX . (An element a of a groupoid G = (G, ·)
is said to be prime in G if and only if a 6= xy, for all x, y ∈ G.) These two

properties of TX characterize all absolutely free groupoids ([1]; Lemma 1.5): A



342 Vesna Celakoska-Jordanova

groupoid H = (H, ·) is an absolutely free groupoid if and only if it satisfies the

following two conditions: H is injective and the set of primes in H is nonempty

and generates H. We refer to this proposition as Bruck Theorem for the class

of all groupoids.

Let V be a variety of groupoids, i.e. a class of groupoids defined by a

certain set of identities (or, equivalently, a class of groupoids that is hereditary

and closed under homomorphic images and direct products). For a given variety

V of groupoids, a free groupoid of a special form, called canonical form, is

constructed. Namely, if X is a non-empty set and TX is the term groupoid over

X, then a V-canonical groupoid R = (R, ∗) over X is a groupoid that satisfies

the following conditions:

(c0) X ⊆ R ⊆ T and t ∈ R⇒ P (t) ⊆ R, where P (t) is the set of subterms of

the term t defined by: t ∈ X ⇒ P (t) = {t} and t = t1t2 ⇒ P (t1t2) =

{t1t2} ∪ P (t1) ∪ P (t2);

(c1) tu ∈ R ⇒ t ∗ u = tu and

(c2) R is a V-free groupoid over X.

Using suitable properties of the obtained V-canonical groupoid, we introduce

the notion of V-injective groupoid that is defined separately for each particular

variety V. Then the class of V-free groupoids can be characterized by the class

of V-injective groupoids in the following way: A groupoid H = (H, ·) is a V-free

groupoid if and only if H is V-injective and the set of V-prime elements in H

is non-empty and generates H. (An element a ∈ G is said to be V-prime if and

only if any equation of the form a = bc is a consequence of the axioms in V.)

We call this property ”Bruck Theorem for the variety V”.

Such characterizations are given for some classes of (n,V)-groupoids.

2. (n,V)-Groupoids

Let V be a variety of groupoids. A groupoid G = (G, ·) is said to be

(n,V)-groupoid if and only if any subgroupoid generated by n elements of G

belongs to the variety V. The class of (n,V)-groupoids is denoted by (n,V). If

n = 1, then (1,V)-groupoids are called power V-groupoids. In that case, the

variety V is a subclass of the class (1,V), and more generally V is a subclass of

the class (n,V). For any positive integers n, k, the class (n+ k,V) is a subclass

of the class (n,V). We give a description of canonical objects in the classes

of power-commutative groupoids, power left and right idempotent groupoids,

power-slim groupoids and biassociative groupoids. Also, a characterization by

injective objects for some of this classes is given.
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Throughout the paper we will use the concept of groupoid power and

some of its properties stated in [4]. By E = (E, ·) we will denote the term

groupoid over the set {e}. The elements of E are called groupoid powers and

will be denoted by f, g, h, . . . . For any groupoid G = (G, ·), each element f ∈ E
induces a transformation fG : G → G, called an interpretation of f in G,

defined by:

eG(x) = x, (gh)G(x) = gG(x)hG(x)

for any g, h ∈ E and x ∈ G. We will write f(x) instead of fG(x) when G is

understood.

In the sequel we will present without proofs some of the main results of

this part of the thesis.

The class of commutative groupoids, i.e. groupoids that satisfy the iden-

tity xy ≈ yx, is a variety of groupoids, here denoted by Com. We investigate a

class of groupoids larger than Com, called the class of power-commutative

groupoids. It will be denoted by Pc.

If G is a groupoid, then any subgroupoid of G generated by an element

a ∈ G (denoted by 〈 a 〉) is called cyclic subgroupoid of G with a generator a.

Cyclic subgroupoids are characterized in [5]: if a ∈ G, then 〈 a 〉 = {f(a) :

f ∈ E}. A groupoid G is said to be power-commutative if and only if every

cyclic subgroupoid of G is commutative. Clearly, every commutative groupoid

is power-commutative. The set of all 2×2 matrices under the multiplication is a

nontrivial example of a power-commutative groupoid. Moreover, all semigroups

are power-commutative groupoids. Directly from the definition we obtain that

G ∈ Pc if and only if G is a union of commutative cyclic subgroupoids of G.

This result enables to obtain an axiom system for Pc, i.e. the class of power-

commutative groupoids Pc is a variety of groupoids defined by the system of

identities {f(x)g(x) ≈ g(x)f(x) : f, g ∈ E}.
In order to give a description of free objects in the variety Pc, we will

introduce an ordering of terms. Namely, let X be a linearly ordered set and let

that relation be denoted by ≤. An extension of the relation ≤ from X to T is

defined as follows.

Let t, u ∈ T . (0) If t, u ∈ X, then t ≤ u in X implies that t ≤ u in T ;

(1) If | t | < |u |, then t < u, where | t | is the length of the term t defined by

| t | = 1, if t ∈ X, |uv | = |u | + | v |, if t = uv; (2) If | t | = |u | ≥ 2 and t 6= u,

where t = t1t2, u = u1u2, then t < u ⇔ [ t1 < u1 ∨ (t1 = u1 ∧ t2 < u2) ].

The relation ≤ is a linear ordering in T .

A term t ∈ T is said to be order-regular if and only if

t ∈ X ∨ (t = t1t2 ∈ T \X ∧ t1 ≤ t2).
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Specially, a groupoid power f ∈ E is order-regular if and only if

f = e ∨ (f = f1f2 ∧ f1 ≤ f2).

We will use canonical commutative groupoids constructed as follows. Define a

subset Tc of T by

Tc = {t ∈ T : every subterm of t is order-regular}

and an operation ⊙ on Tc by

(2.1) t, u ∈ Tc ⇒ t⊙ u =

{
tu, if t ≤ u

ut, if u < t.

Then Tc = (Tc,⊙) is a canonical commutative groupoid over X.

Specially, Ec = (Ec,⊙) is a canonical commutative groupoid over {e},
where Ec = {f ∈ E : every subterm of f is order-regular} and ⊙ is defined by

(2.1).

A term t is said to be primitive in TX if and only if t 6= f(u) for any

u ∈ T and any f ∈ E \{e}; and t is said to be potent (or nonprimitive) in TX if

and only if t = f(u) for some u ∈ T and f ∈ E \ {e}. The following proposition

is true ([3]): For any potent term t there is a unique primitive term u and a

unique groupoid power f ∈ E \{e} such that t = f(u). In that case we say that:

u is the base of t, f is the power of t and denote t, t∼, respectively.

Define the carrier of a free groupoid in Pc by

(2.2) R = {t ∈ T : u ∈ P (t) ⇒ u∼ ∈ Ec},

and an operation ∗ on R by

(2.3) t, u ∈ R ⇒ t ∗ u =

{
tu, if tu ∈ R
ut, if t = u and u∼ < t∼.

One can obtain that R = (R, ∗) defined by (2.2) and (2.3) is a free power-

commutative groupoid over X in canonical form. We will use the properties of

the canonical groupoid R = (R, ∗) in Pc related to the elements of R that are not

prime, to define a subclass of the class Pc that is larger than the class of Pc-free

groupoids, called the class of Pc-injective groupoids. The class of Pc-injective

groupoids will be successfully defined if the following two conditions are satisfied.

Firstly, the class of Pc-injective groupoids should unable the characterization of

Pc-free groupoids: any Pc-injective groupoid H whose set of primes is nonempty

and generates H , to be Pc-free. Secondly, the class of Pc-free groupoids has to

be a proper subclass of the class of Pc-injective groupoids. This is done for the

class of power-commutative groupoids, i.e. the Bruck Theorem for Pc holds and
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the class of Pc-free groupoids is a proper subclass of the class of Pc-injective

groupoids.

In [7] a variety U of left and right idempotent groupoids, i.e. U =

V ar(x2y2 ≈ xy), is investigated. We investigate a larger class, called the class

of power left and right idempotent groupoids, that will be denoted by

PU . A groupoid G = (G, ·) is power left and right idempotent if and only if

every cyclic subgroupoid of G is left and right idempotent, i.e. belongs to U .

The elements of any groupoid in the class PU have almost trivial powers, i.e.

if f(x) is a power of x, then either f(x) = x or f(x) = x2, for any nontrivial

groupoid power f . As a consequence we obtain that the class PU is a variety

of groupoids defined by the identities x2 ≈ x2x ≈ xx2 ≈ x2x2. For details the

reader is referred to [3].

Define the carrier of the desired PU -canonical groupoid R by

(2.4) R = {t ∈ T : (∀u ∈ P (t)) |u∼ | ≤ 2},

and an opperation ∗ on R by

(2.5) t, u ∈ R⇒ t ∗ u =

{
tu, if tu ∈ R
v2, if t = u = v, | t∼ | + |u∼ | ≥ 3.

One can show that the groupoid R = (R, ∗) defined by (2.4) and (2.5) is a free

power left and right idempotent groupoid over X in canonical form.

We use the properties of the obtained PU -canonical groupoid (R, ∗) that

are related to the elements in (R, ∗) that are not prime. Namely, if t ∈ R, then

t ∗ t is an idempotent element in R; t is idempotent in R if and only if t is a

square in R and if t is idempotent in R, then there is a unique nonidempotent

u ∈ R, i.e. u 6= u ∗ u, such that t = u ∗ u. Also, for every t ∈ R \X there is a

unique pair (u, v) ∈ R × R such that t = uv = u ∗ v. We say that (u, v) is the

pair of divisors of t in R. If u = v, then u is a divisor of t.

Define a PU -injective groupoid in the following way. A groupoid H =

(H, ·) is said to be PU -injective if and only if the following conditions are satis-

fied:

(0) H ∈ PU

(1) If a ∈ H is idempotent, then there is a unique nonidempotent c ∈ H,

such that a = c2 and the equality a = xy holds if and only if {x, y} ⊆ {c, c2}.
(In that case c is the divisor of a or c is the base of a.)

(2) If a ∈ H is nonidempotent and nonprime in H , then there is a unique

pair (c, d) ∈ H ×H, such that a = cd and c 6= d.

(Note thet c, d can be both idempotents; one idempotent and the other

nonidempotent; both nonidempotents.)



346 Vesna Celakoska-Jordanova

It is proved in [3] that the Bruck Theorem for PU holds, that neither of

the classes PU -free and PU -injective groupoids is hereditary and that the class

of PU -free groupoids is a proper subclass of the class of PU -injective groupoids.

An Evans’ result ([8]) is used to show that the word problem is solvable

for the variety PU . Note that if a partial groupoid A is strongly embeddable

into a power left and right idempotent groupoid, then it satisfies the following

condition:

(j0) if a ∈ A is such that a2 is defined, then a2a, aa2 and a2a2 are also

defined and a2a = aa2 = a2a2 = a2.

For a partial groupoid A satisfying (j0) we define a groupoid (G, ◦) as

follows:

(j1) if xy is defined in A, then x ◦ y = xy

(j2) if x2 is not defined in A, then x ◦ x = x

(j3) if xy is not defined in A and x 6= y, then x ◦ y = c, where c is a fixed

element in A.

It is shown that if A is a partial groupoid satisfying (j0), then (G, ◦)
defined above by (j1) – (j3) is a power left and right idempotent groupoid. As

a special case of the Evans’ Theorem we obtain the following theorem: if every

partial PU -groupoid is embeddable into a PU -groupoid, then the word problem is

solvable for the variety PU . As a corollary, we have that the word problem for

the variety PU is solvable.

The variety of groupoids that satisfy the identity x(yz) ≈ xz is called the

variety of slim groupoids. We investigate the class of power-slim groupoids,

i.e. the class of groupoids such that every cyclic subgroupoid satisfies the identity

x(yz) ≈ xz. Our purpose is to construct free objects in that class. First we will

give a description of the free slim groupoids (slightly different then the given

description in [11]). The variety of slim groupoids will be denoted by Vs. Define

a subset Fs of T by

(2.6) Fs = {t ∈ T : (∀u, v,w ∈ T ) u(vw) 6∈ P (t)}

and an operation ∗ on Fs by

(2.7) t, u ∈ Fs ⇒ t ∗ u =

{
tu, if u ∈ X

tu2, if u = u1u2 ∧ u2 ∈ X.

The groupoid Fs = (Fs, ∗) defined by (2.6) and (2.7) is a canonical slim

groupoid over X. Specially, if X = {e}, then the canonical slim groupid over {e}
is denoted by Es = (Es, ∗), where Es = {f ∈ E : (∀g, h, j ∈ E) g(hj) 6∈ P (f)},
i.e. Es = {en : n ≥ 1}, and f, g ∈ Es ⇒ f ∗ g = fe.

A groupoid G = (G, ·) is said to be a power-slim groupoid if and only if
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every cyclic subgroupoid of G is a slim groupoid. The class of such groupoids will

be denoted by Ps. Using the characterization of cyclic groupoids, we obtain that

Ps is a variety of groupoids defined by the set of identities {f(x) ( g(x)h(x) ) ≈
f(x)h(x) : f, g, h ∈ E}.

Define a subset R of T by

(2.8) R = {t ∈ T : (∀u ∈ P (t)) u∼ ∈ Es}
and an operation ∗ on R by

(2.9) t, u ∈ R⇒ t ∗ u =

{
tu, if (tu)∼ ∈ Es

t u, if t = u ∧ |u∼ | ≥ 2.

One can show that the groupoid R = (R, ∗) defined by (2.8) and (2.9)

is a canonical power-slim groupoid over X. The groupoid R = (R, ∗) is right

cancellative and it is not left cancellative.

In the paper [9] the variety of biassociative groupoids, denoted by

Bass is considered. A groupoid G is said to be biassociative if and only if every

subgroupoid generated by at most two elements of G is a subsemigroup. Free

objects are constructed using a chain of partial biassociative groupoids that sat-

isfy certain properties. The obtained free objects are not canonical. In [10] the

obtained free objects have canonical form.

Let G = (G, ·) be a groupoid and a, b ∈ G. We denote by 〈 a, b 〉 the sub-

groupoid of G generated by a, b and by 〈 a 〉 the subgroupoid generated by a.

Clearly, 〈 a 〉 ⊆ 〈 a, b 〉 and if b ∈ 〈 a 〉, then 〈 a, b 〉 = 〈 a 〉; specially, 〈 a, a 〉 = 〈 a 〉.
The subgroupoids 〈 a, b 〉 and 〈 b, a 〉 are equal.

Let a1, a2, . . . , an be a finite sequence of elements in a groupoid G. We

denote by a1a2 . . . an the product of the sequence a1, a2, . . . , an in G defined as

follows:

i) if n = 3, then a1a2a3
df
= a1(a2a3) and

ii) if n ≥ 3, then a1a2 . . . an
df
= a1(a2 . . . an).

We call a1a2 . . . an the main product of the sequence a1, a2, . . . , an. If

n = 1 and n = 2, then a1 and a1a2 will also be called the main products of the

sequences a1 and a1, a2 respectively.

Let t, u ∈ T and 〈 t, u 〉 be the subgroupoid of TX generated by t, u.

Each element x of 〈 t, u 〉 is a product of a finite sequence of elements x1, . . . , xn

(n ≥ 1), where each xi is either t or u, i.e. {x1, x2, . . . , xn} ⊆ {t, u}. Any such

product is constructed by the two generators t, u and therefore we call it a binary

product or shortly biproduct. Thus, if a term x ∈ T is an element of 〈 t, u 〉, then

we say that x has a representation as a biproduct (or shortly, x is a biproduct)
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with the generating pair {t, u} and denote it by x〈 t,u 〉. (In this case we also say

that x is the carrier of the biproduct x〈 t,u 〉.) If t, u, x ∈ T , where x ∈ 〈 t, u 〉,
t 6∈ 〈u 〉 and u 6∈ 〈 t 〉, then x has a unique representation as a biproduct with the

generating pair {t, u}.
A biproduct x〈 t,u 〉 of a term x is said to be maximal in TX if and only

if for any biproduct x〈α,β 〉 of x, the hierarchy χ〈α,β 〉(x) does not exceed the hi-

erarchy χ〈 t,u 〉(x), i.e. χ〈α,β 〉(x) ≤ χ〈 t,u 〉(x). (For details the reader is referred

to [10].)

Let x = x1x2 . . . xm be the main product of x1, x2, . . . , xm in TX .

If {x1, x2, . . . , xm} ⊆ {t, u}, for some terms t, u of T , then we call

x1x2 . . . xm the main biproduct of x in TX with the generating pair {t, u} and

denote it by xt,u. (If u = t, i.e. the generating ”pair” is {t, t}, we write xt

instead of xt,t.)

If x = x1x2 . . . xm and x = x′1x
′
2 . . . x

′
n are main biproducts of x in TX

with the same generating pair {t, u}, then m = n and xi=x
′
i, for i = 1, 2, . . . ,m.

Specially, any maximal biproduct of x ∈ TX , that is a main biproduct, is

uniquely determined.

We define the desired groupoid R = (R, ∗) by:

(2.10)

R = {x ∈ T : every biproduct of any subterm of x is a main biproduct}

and an operation ∗ on R as follows.

Let x, y ∈ R, x = x1x2 . . . xm, y = y1y2 . . . yn be maximal biproducts and

put

(2.11) x ∗ y =

{
xy, if xy ∈ R

x1x2 . . . xmy1y2 . . . yn, if xy 6∈ R.

The groupoid R = (R, ∗), defined by (2.10) and (2.11) is a canonical biassocia-

tive groupoid over X.

The problem of power V-groupoids can be expanded to power V-ternary

groupoids or power V-n-ary groupoids. For instance, we can investigate power-

commutative ternary groupoids and power-semicommutative ternary groupoids,

since a canoninical description of free objects in the varieties of commutative

ternary groupoids and semicommutative ternary groupoids are obtained in the

thesis.
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