Canonical bilaterally commutative groupoids

Vesna Celakoska-Jordanova

Received: 2.X. 2014 / Revised: 5.XII. 2014 / Accepted: 13.XII. 2014

Abstract

A groupoid \boldsymbol{G} is called bilaterally commutative if it satisfies the identities $(x y) z \approx(y x) z$ and $x(y z) \approx x(z y)$. A description of free objects in the variety \mathcal{B}_{c} of bilaterally commutative groupoids and their characterization by means of injective objects in \mathcal{B}_{c} is presented.

Keywords Variety of groupoids • Free groupoid • injective groupoid
Mathematics Subject Classification (2010) 08B20, 03C05

1 Introduction and preliminaries

JEŽEK and KEPKA in [5] studied varieties of groupoids (a groupoid being an algebra with one binary operation) defined by a set of linear identities with length $\leqslant 6$. They obtained that there are 16 such non-equivalent linear identities and investigated some of the groupoid varieties, denoted by $\mathcal{V}_{0}, \ldots, \mathcal{V}_{15}$, determined only by one of those 16 identities. It was also proved that there are exactly 56 groupoid varieties, denoted by $\mathcal{V}_{0}, \ldots, \mathcal{V}_{55}$, defined by a set of linear identities with length $\leqslant 6$. Among them is the groupoid variety, denoted by \mathcal{V}_{28}, that is equal to the intersection of the variety \mathcal{V}_{5}, defined by the identity $x(y z) \approx x(z y)$, and its dual variety \mathcal{V}_{13}, defined by the identity $(x y) z \approx(y x) z$. Clearly, every commutative groupoid satisfies both of the identities, but the converse is not true.

In [5] free objects in the variety \mathcal{V}_{5} (and its dual \mathcal{V}_{13}) are obtained using a free commutative groupoid over a non-empty set X. In this paper we give a description of free objects in the groupoid variety \mathcal{V}_{28} (which we call the variety of bilaterally commutative groupoids) using the term groupoid $\mathbb{T}_{X}=\left(T_{X}, \cdot\right)$ over a non-empty set X. Instead of \mathcal{V}_{28} we denote it by \mathcal{B}_{c}.

Throughout the paper the terms are denoted by $t, u, v, w \ldots$ We use the notation $P(t)$ for the set of subterms of a term $t, \operatorname{var}(t)$ for the set of all variables which occur in

[^0]t and $|t|$ for the length of t. The term groupoid \mathbb{T}_{X} is an absolutely free groupoid over X and it is injective, i.e. the operation • is an injective mapping: $t u=v w \Rightarrow t=v, u=w$. The set X is the set of primes in \mathbb{T}_{X} that generates \mathbb{T}_{X}. (An element a of a groupoid $\boldsymbol{G}=(G, \cdot)$ is said to be prime in \boldsymbol{G} if $a \neq x y$, for all $x, y \in G$.) These two properties of \mathbb{T}_{X} characterize all absolutely free groupoids.

Proposition 1.1 ([1], Lemma 1.5) A groupoid $\boldsymbol{H}=(H, \cdot)$ is an absolutely free groupoid if and only if it satisfies the following two conditions:
(i) \boldsymbol{H} is injective;
(ii) The set of primes in \boldsymbol{H} is nonempty and generates \boldsymbol{H}.

Then the set of primes is the unique free generating set for \boldsymbol{H}.
We refer to this proposition as Bruck Theorem for the class of all groupoids.
We will use the shortlex ordering of terms (denoted by \leq), i.e. terms are ordered so that a term of a particular length comes before any longer term, and amongst terms of equal length, lexicographical ordering is used, with terms earlier in the lexicographical ordering coming first. Then T_{X} is a totally ordered set. A term t is said to be orderregular if $t \in X$ or $\left(t=t_{1} t_{2} \in T_{X} \backslash X\right.$ and $\left.t_{1} \leq t_{2}\right)$; otherwise, it is order-irregular (see [2]).

For the notation and basic notions of universal algebra the reader is referred to [4]. In most cases, without mention, the operation is denoted multiplicatively: the product of two elements x, y of a groupoid is denoted by $x \cdot y$ or just $x y$. The product $x x$ is denoted by x^{2} and is called the square of x.

2 A construction of canonical bilaterally commutative groupoids

In any variety \mathcal{V} of groupoids, a groupoid $\boldsymbol{R}=(R, *)$ is called a canonical groupoid in \mathcal{V} (or \mathcal{V}-canonical groupoid) (see [3]) if the following conditions are satisfied:
(C0) $X \subseteq R \subseteq T_{X}$
(C1) $t u \in R \Rightarrow t, u \in R \wedge t * u=t u$
(C2) \boldsymbol{R} is a \mathcal{V}-free groupoid over X.
Thus, $\boldsymbol{R}=(R, *)$ is called a canonical bilaterally commutative groupoid if the conditions $(\mathrm{C} 0),(\mathrm{C} 1)$ and $(\mathrm{C} 2)$, with \mathcal{V} replaced by \mathcal{B}_{c}, are satisfied.

In order to define such a groupoid, we define the carrier set R by:

$$
\begin{equation*}
R=\left\{t \in T_{X}: \text { every subterm } u \text { of } t, u \neq t, \text { is order-regular }\right\} \tag{2.1}
\end{equation*}
$$

Obviously,
a) $X \subseteq R \subseteq T_{X} ; \quad t \in R \Rightarrow P(t) \subseteq R$;
b) $t, u \in R \Rightarrow[t u \notin R \Leftrightarrow t$ is order-irregular or u is order-irregular $]$;
c) $t, u \in T_{X} \Rightarrow[t u \in R \Leftrightarrow t, u \in R$ and t, u are order-regular $]$.

To define a convenient operation on R that satisfies the conditions (C1) and (C2), we consider the four possibilities for $t, u \in R$: 1) t and u are order-regular, 2) t is order-regular and $u=u_{1} u_{2}$ is order-irregular, 3) $t=t_{1} t_{2}$ is order-irregular and u is
order-regular, 4) $t=t_{1} t_{2}$ and $u=u_{1} u_{2}$ are order-irregular. We define an operation $*$ on R in the following way. For every $t, u \in R$,

$$
t * u= \begin{cases}t u, & \text { if } t u \in R, \tag{2.2}\\ t\left(u_{2} u_{1}\right), & \text { if } t \text { is order-regular } \\ & \text { and } u=u_{1} u_{2}, \quad u_{2}<u_{1} \\ \left(t_{2} t_{1}\right) u, & \text { if } t=t_{1} t_{2}, t_{2}<t_{1} \\ & \text { and } u \text { is order-regular } \\ \left(t_{2} t_{1}\right)\left(u_{2} u_{1}\right), & \text { if } t=t_{1} t_{2}, t_{2}<t_{1} \\ & \text { and } u=u_{1} u_{2}, u_{2}<u_{1}\end{cases}
$$

It is clear that $t * u$ is a uniquely determined element in R, and therefore $\boldsymbol{R}=(R, *)$ is a groupoid. The definition of $*$ can be stated by an unary operation $\cdot: T_{X} \rightarrow T_{X}$, defined by:

$$
t \in T_{X} \Rightarrow t^{\cdot}= \begin{cases}t, & \text { if } t \in X \tag{2.3}\\ t_{2} t_{1}, & \text { if } t=t_{1} t_{2}\end{cases}
$$

We call this operation a reversion in \mathbb{T}_{X}. We say that t^{\cdot} is the reversed term of t. Obviously, $t^{\cdot}=t$ if and only if $t \in X$ or t is a square in \mathbb{T}_{X}. Also, $\left(t^{\cdot}\right)^{\cdot}=t$, for every $t \in T_{X}$, i.e. \cdot is an involutory transformation on T_{X}. By c) it follows that $t \cdot \in R$, for every $t \in R$. Therefore,

$$
t * u= \begin{cases}t u, & \text { if } t u \in R \tag{2.4}\\ t u^{\cdot}, & \text { if } t \text { is order-regular, } u \text { is order-irregular } \\ t^{*} u, & \text { if } t \text { is order-irregular, } u \text { is order-regular } \\ t^{\cdot} u^{\cdot}, & \text { if } t \text { and } u \text { are order-irregular }\end{cases}
$$

The definition of $*$ can be written using the following transformation $\rho: R \rightarrow R$, which we call regulation in R, defined by:

$$
t \in R \Rightarrow \rho(t)= \begin{cases}t, & \text { if } t \text { is order-regular } \\ t_{2} t_{1}, & \text { if } t=t_{1} t_{2} \text { and } t_{2}<t_{1}\end{cases}
$$

Lemma 2.1 If $t, u \in R$, then:
a) $\rho(\rho(t))=\rho(t)$,
b) $\rho(\rho(t) \rho(u))=\rho(\rho(u) \rho(t))$.

Proof. a) It is clear.
b) Four cases for $t, u \in R$ are possible:

1) t, u are order-regular;
2) t is order-regular and u is order-irregular;
3) t is order-irregular and u is order-regular;
4) t, u are order-irregular.

In the first case, the equality is obvious when $t=u$. Let $t \neq u$. Then $\rho(\rho(t) \rho(u))=$ $\rho(t u)$ and $\rho(\rho(u) \rho(t))=\rho(u t)$. Here, $\rho(t u)=t u=\rho(u t)$ if $t<u$ and $\rho(u t)=$ $u t=\rho(t u)$, if $u<t$, and thus the equality holds. The fourth case is brought down to the first case, since $\rho(t), \rho(u)$ are order-regular when t, u are order-irregular. In the second case the equality is obvious when $t=\rho(u)$. Let $t \neq \rho(u)$. If $t<\rho(u)$, then: $\rho(\rho(t) \rho(u))=\rho(t \rho(u))=t \rho(u)=\rho(\rho(u) t)=\rho(\rho(u) \rho(t))$. The proof goes symmetrically for $\rho(u)<t$. One can show the third case similarly as the second one.

The operation $*$ can be presented by:

$$
\begin{equation*}
t, u \in R \Rightarrow t * u=\rho(t) \rho(u) \tag{2.5}
\end{equation*}
$$

By Lemma 2.1b), it follows that $\boldsymbol{R}=(R, *) \in \mathcal{B}_{c}$. Namely, $(t * u) * v$ $=\rho(\rho(t) \rho(u)) \rho(v)=\rho(\rho(u) \rho(t)) \rho(v)=(u * t) * v$ and $t *(u * v)=\rho(t) \rho(\rho(u) \rho(v))=$ $\rho(t) \rho(\rho(v) \rho(u))=t *(v * u)$.

By induction on the length of $t \in R$ one can show that X is a generating set for \boldsymbol{R}. The set of prime elements in \boldsymbol{R} coincides with the set X. Namely, if $t \in X$, then $t \neq u * v$, for every $u, v \in R$. If $t \in R \backslash X$, then there are $t_{1}, t_{2} \in R$, such that $t=t_{1} t_{2}=t_{1} * t_{2}$. Therefore, there are no other prime elements in \boldsymbol{R} except those in X.

The groupoid \boldsymbol{R} has the universal mapping property for \mathcal{B}_{c} over X, i.e. if $\boldsymbol{G} \in \mathcal{B}_{c}$ and $\lambda: X \rightarrow G$, then there is a homomorphism ψ from \boldsymbol{R} into \boldsymbol{G} such that $\psi(x)=\lambda(x)$, for every $x \in X$. We define the mapping $\psi: R \rightarrow G$ by $\psi(t)=\varphi(t)$, for every $t \in R$, where φ is the homomorphism from \mathbb{T}_{X} into \boldsymbol{G} that is an extension of λ. It suffices to show that $\varphi(t * u)=\varphi(t) \varphi(u)$, for any $t, u \in R$.

If t, u are order-regular, then $\varphi(t * u)=\varphi(t u)=\varphi(t) \varphi(u)$.
If t is order-regular and u is order-irregular, then $u=u_{1} u_{2}$ and $u_{2}<u_{1}$, so $\varphi(t * u)=$ $\varphi\left(t \rho\left(u_{1} u_{2}\right)\right)=\varphi(t) \varphi\left(u_{2} u_{1}\right)=\varphi(t)\left(\varphi\left(u_{2}\right) \varphi\left(u_{1}\right)\right)=\left[\boldsymbol{G} \in \mathcal{B}_{c}\right]=\varphi(t)\left(\varphi\left(u_{1}\right) \varphi\left(u_{2}\right)\right)$ $=\varphi(t) \varphi\left(u_{1} u_{2}\right)=\varphi(t) \varphi(u)$.

The case when t is order-irregular and u is order-regular can be shown similarly as the previous one.

If t, u are order-irregular, then $t=t_{1} t_{2}, t_{2}<t_{1}$ and $u=u_{1} u_{2}, u_{2}<u_{1}$, so $\varphi(t *$ $u)=\varphi\left(\rho\left(t_{1} t_{2}\right) \rho\left(u_{1} u_{2}\right)\right)=\varphi\left(t_{2} t_{1}\right) \varphi\left(u_{2} u_{1}\right)=\left(\varphi\left(t_{2}\right) \varphi\left(t_{1}\right)\right)\left(\varphi\left(u_{2}\right) \varphi\left(u_{1}\right)\right)=\left[\boldsymbol{G} \in \mathcal{B}_{c}\right]=$ $\left(\varphi\left(t_{1}\right) \varphi\left(t_{2}\right)\right)\left(\varphi\left(u_{1}\right) \varphi\left(u_{2}\right)\right)=\varphi(t) \varphi(u)$.

Hence, $\boldsymbol{R}=(R, *)$ satisfies the conditions (C0), (C1) and (C2). Thus, the following theorem holds.

Theorem 2.2 The groupoid $\boldsymbol{R}=(R, *)$ is a canonical bilaterally commutative groupoid over X.

We note that $(R, *)$ is neither left nor right cancellative groupoid. For instance, if $a, b \in X$ and $t=a, u=a b, v=b a$, then $t * u=a(a b)=a *(b a)=t * v$, but $u \neq v$.

3 A characterization of free bilaterally commutative groupoids

In this section we define a subclass of the class \mathcal{B}_{c} that is larger than the class of \mathcal{B}_{c}-free groupoids, called the class of \mathcal{B}_{c}-injective groupoids. For defining such a class we essentially use the properties of the corresponding canonical groupoid $\boldsymbol{R}=(R, *)$ in \mathcal{B}_{c} related to the elements on \boldsymbol{R} that are not prime. The class of \mathcal{B}_{c}-injective groupoids will be successfully defined if the following two conditions are satisfied. Firstly, the class of $\mathcal{B}_{c^{-}}$injective groupoids should unable the characterization of $\mathcal{B}_{c^{-}}$ free groupoids analogously as in Prop.1.1: any \mathcal{B}_{c}-injective groupoid \boldsymbol{H} whose set of primes is nonempty and generates \boldsymbol{H} to be \mathcal{B}_{c}-free. Secondly, the class of \mathcal{B}_{c}-free groupoids has to be a proper subclass of the class of \mathcal{B}_{c}-injective groupoids.

Before introducing the notion of \mathcal{B}_{c}-injective groupoid it is necessary to investigate some properties of the already constructed \mathcal{B}_{c}-canonical groupoid \boldsymbol{R}. Every property
of \boldsymbol{R}, whose formulation does not contain the notion prime element, is a "candidateaxiom" for \mathcal{B}_{c}-injectivity. For instance, for every non-prime element $t \in R$ there is a uniquely determined pair of divisors u, v in \boldsymbol{R}, i.e. t can be presented in a unique way as $t=u * v$. Other presentations of $t=x * y$, i.e. other pairs of divisors $(x, y) \in R \times R$ of t are concequences of the identities in the given variety.

Proposition 3.1 For every non-prime element $t \in R$ there is a uniquely determined pair $(u, v) \in R \times R$ such that $t=u v=u * v=u * v^{\cdot}=u \cdot * v=u \cdot * v^{\cdot}$.

Proof. Let $t \in R \backslash X$. Then $t \in T_{X} \backslash X$, so there are $u, v \in T_{X}$, such that $t=u v$, and they are uniquely determined because of the injectivity of \mathbb{T}_{X}. Since $u v=t \in R$, it follows that u, v are order-regular, and thus, by (2.4), $u v=u * v$. If u and v are primes or squares, then $u^{\bullet}=u$ and $v^{*}=v$. Then, $u * v^{*}, u^{\bullet} * v$ and $u^{*} * v^{*}$ are equal to $u * v$. If u is non-prime and not a square, since u is order-regular, then u^{*} is order-irregular and $u^{*} \in R$. The same is true for $v: v^{*}$ is order-irregular and $v^{*} \in R$. By (2.4) and (2.3), it follows that $u * v^{\cdot}=u\left(v^{\cdot}\right) \cdot=u v=t, u \cdot * v=\left(u^{\cdot}\right) \cdot v=u v=t$ and $u^{\bullet} * v^{\cdot}=\left(u^{*}\right)^{\cdot}\left(v^{\bullet}\right) \cdot=u v=t$.

The notion of reversion can be introduced for an arbitrary groupoid, too.
Definition 3.2 A groupoid $\boldsymbol{G}=(G, \cdot)$ is said to be reversible if there is a transformation $\cdot: G \rightarrow G$ defined by:

$$
a \in G \Rightarrow a^{\cdot}= \begin{cases}a, & \text { if } a \text { is prime in } G \tag{3.1}\\ c b, & \text { if } a=b c .\end{cases}
$$

In that case we say that the unary operation \cdot is a reversion on \boldsymbol{G}.
A characterization of reversible groupoids is given by the following
Proposition 3.3 A groupoid \boldsymbol{G} is reversible if and only if

$$
(\forall a, b, c, d \in G)(a b=c d \Rightarrow b a=d c) .
$$

Proof. Let \boldsymbol{G} be a reversible groupoid and let $a b=c d$. Then $b a=(a b)^{\cdot}=(c d)^{\cdot}=d c$. Conversely, let (p, q) be a par of divisors of a, i.e. $a=p q$. Then $a^{\cdot}=q p$. Assume that (x, y) is another pair of divisors of a, i.e. $a=x y$. Then, $p q=x y$ implies that $q p=y x$. Hence, $a \cdot=q p=y x$, i.e. \cdot is a well defined mapping. Thus, \boldsymbol{G} is reversible.
Proposition 3.4 Any groupoid \boldsymbol{G} has at most one reversion. If a reversion exists, then it is an involution (and hence a permutation) on G.

Proof. Let f and g be reversions on \boldsymbol{G} and $a \in G$. If a is prime in \boldsymbol{G}, then $f(a)=g(a)$. If $a=b c$, then $f(a)=c b$. Let $a=x y$ and $g(a)=y x$. Since $a=b c=x y$, it follows that $f(a)=f(b c)=f(x y)=y x=g(x y)=g(a)$. Thus, if a reversion on \boldsymbol{G} exists, then it is unique. The reversion f is an involution. Namely, if a is prime, then $f(f(a))=f(a)=a$, and if $a=b c$, then $f(f(a))=f(c b)=b c=a$.

Example 3.1 It is clear that every commutative groupoid is reversible. The groupoids $\boldsymbol{G}_{1}=\left(G_{1}, \cdot\right), \boldsymbol{G}_{2}=\left(G_{2}, \cdot\right), \boldsymbol{G}_{3}=\left(G_{3}, \cdot\right)$ and $\boldsymbol{G}_{4}=\left(G_{4}, \cdot\right)$ given below with the tables a), b), c) and d) respectively, are as follows: \boldsymbol{G}_{1} is not reversible, since $b a=b b \neq a b$; \boldsymbol{G}_{2} is reversible that is not commutative and is not bilaterally commutative; \boldsymbol{G}_{3} is
reversible and bilaterally commutative groupoid that is not commutative; \boldsymbol{G}_{4} is a bilaterally commutative groupoid that is not commutative and is not reversible, since $a b=b b=c$, but $b a=d \neq b b=c$.

а) $\left.\quad$| $\cdot \mid a b$ |
| :--- |
| $a\|a\|$ |
| b | \right\rvert\, \(\begin{aligned} \& b

\& b\end{aligned}\)

b) \quad| \cdot | a | b | c |
| :---: | :--- | :--- | :--- |
| a | a | c | b |
| b | b | a | b |
| c | c | c | a |

$\frac{\cdot a b c d}{\square a c a a}$

$\cdot a b c d$
$a \mid a c a a$

c) $\begin{array}{rlllll}b & d & b & a & a \\ c & a & a & a & a \\ d & a & a & a & a\end{array}$
d) $\quad \begin{array}{llllll}b & d & c & a & a \\ c & a & a & a & a \\ d & a & a & a & a\end{array}$
e) The following groupoid, constructed similarly as in [5], gives an example of an infinite bilaterally commutative groupoid that is not reversible. Let f, g be two surjective endomorphisms on a commutative group $(G,+)$. Define a new operation \cdot on G by:

$$
(\forall a, b \in G) a \cdot b=f(a)+g(b)
$$

If $f \neq g$, then the obtained groupoid (G, \cdot) is not commutative.
Note that: if $f g=f^{2}$, then the equality $(a \cdot b) \cdot c=(b \cdot a) \cdot c$ holds, and, if $g f=g^{2}$, then the equality $a \cdot(b \cdot c)=a \cdot(c \cdot b)$ holds, for all $a, b, c \in G$. So, if both equalities $f g=f^{2}$ and $g f=g^{2}$ hold, then the groupoid (G, \cdot) is bilaterally commutative.

Let $(G,+)$ be the free commutative group over the infinite set $\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$ and let f, g be defined by: $f\left(x_{1}\right)=f\left(x_{2}\right)=g\left(x_{1}\right)=g\left(x_{2}\right)=g\left(x_{3}\right)=x_{1}, f\left(x_{3}\right)=x_{2}$ and $f\left(x_{i}\right)=g\left(x_{i}\right)=x_{i-2}$ for $i \geq 4$. Then, (G, \cdot) is a bilaterally commutative groupoid that is not commutative and is not a semigroup. By Prop.3.3, (G, \cdot) is not reversible: $x_{1} x_{3}=f\left(x_{1}\right)+g\left(x_{3}\right)=x_{1}+x_{1}=f\left(x_{2}\right)+g\left(x_{1}\right)=x_{2} x_{1}$, but $x_{3} x_{1}=f\left(x_{3}\right)+g\left(x_{1}\right)=$ $x_{2}+x_{1} \neq x_{1}+x_{1}=f\left(x_{1}\right)+g\left(x_{2}\right)=x_{1} x_{2}$.

Proposition 3.5 If $\boldsymbol{G}=(G, \cdot)$ is a bilaterally commutative and reversible groupoid, then $a b=a b^{\bullet}=a \cdot b=a \cdot b^{\bullet}$, for any $a, b \in G$.

Proof. If a, b are prime elements in \boldsymbol{G}, then $a^{\cdot}=a$ and $b^{\cdot}=b$. If a is prime in \boldsymbol{G} and $b=c d$, then $a b=a(c d)=a(d c)=a b \cdot$. It is clear that $a b=a \cdot b=a^{\cdot} b^{\cdot}$. One can prove the case when $a=c d$ and b is prime in \boldsymbol{G}, symmetrically. If $a=c d, b=c^{\prime} d^{\prime}$, then $a b=a\left(c^{\prime} d^{\prime}\right)=a\left(d^{\prime} c^{\prime}\right)=a b \cdot, a b=(c d) b=(d c) b=a \cdot b$ and $a b=(c d)\left(c^{\prime} d^{\prime}\right)=$ $(c d)\left(d^{\prime} c^{\prime}\right)=(d c)\left(d^{\prime} c^{\prime}\right)=a^{\cdot} b^{\cdot}$.

For the groupoid $\boldsymbol{R}=(R, *)$ the transformation ${ }^{\odot}$, defined by

$$
t \in R \Rightarrow t^{\odot}= \begin{cases}t, & \text { if } t \in X \tag{3.2}\\ v * u, & \text { if } t=u * v\end{cases}
$$

is a reversion of \boldsymbol{R}. Let $u, v \in R$. If $u v \in R$, then $(u * v)^{\odot}=(u v)^{\cdot}$. If $u v \notin R$, then $(u * v)^{\odot} \neq(u v) \cdot$. For instance, if u is order-regular and $v=v_{1} v_{2}$ is order-irregular, then $u v, v u \notin R$ and $(u * v)^{\odot}=v * u=\left(v_{1} v_{2}\right) * u=\left(v_{2} v_{1}\right) u \neq\left(v_{1} v_{2}\right) u=v u=(u v)^{\circ}$.

For every $u \in R, t=u * u^{\odot}$ is a square. Namely, if u is order-regular, then $u * u^{\odot}=$ $u * u=u^{2}$, and if $u=u_{1} u_{2}$ is order-irregular, then $u * u^{\odot}=\left(u_{1} u_{2}\right) *\left(u_{2} u_{1}\right)=$
$\left(u_{2} u_{1}\right)\left(u_{2} u_{1}\right)=\left(u^{\cdot}\right)^{2}$. If t is non-prime in \boldsymbol{R}, then $t^{\odot}=t$ if and only if the divisors of t in \boldsymbol{R} are equal or one of the divisors is a reversed non-prime non-square of the other. Thus, the following proposition holds.
Proposition 3.6 Let $\boldsymbol{R}=(R, *)$ be the \mathcal{B}_{c}-canonical groupoid over X and let $u, v \in R$. Then:
a) \boldsymbol{R} is reversible.
b) If $u v \in R$, then $(u * v)^{\odot}=(u v)^{\cdot}$, and if $u v \notin R$, then $(u * v)^{\odot} \neq(u v)^{\cdot}$.
c) $t=u * u^{\odot}$ is a square: $t=u^{2}$ if u is order-regular, or, $t=\left(u^{\cdot}\right)^{2}$ if u is order-irregular.
d) If t is non-prime in \boldsymbol{R}, then $t^{\odot}=t$ if and only if t is a square.

We will use these properties for introducing the notion of \mathcal{B}_{c}-injective groupoid.
Definition 3.7 A groupoid $\boldsymbol{H}=(H, \cdot)$ is called \mathcal{B}_{c}-injective if it satisfies the following conditions:
(0) $\boldsymbol{H} \in \mathcal{B}_{c}$.
(1) \boldsymbol{H} is reversible.
(2) If z is a non-prime element in \boldsymbol{H} and (c, d) is a pair of divisors of z (i.e. $z=c d$), then: $z=a b \Rightarrow(a, b) \in\left\{(c, d),\left(c, d^{\cdot}\right),\left(c^{\cdot}, d\right),\left(c^{\cdot}, d^{\cdot}\right)\right\}$.
(3) If z is a non-prime element in \boldsymbol{H}, then $z^{*}=z$ if and only if z is a square.

By Proposition 3.6, the groupoid $\boldsymbol{R}=(R, *)$ satisfies the conditions (0)-(3). Since every \mathcal{B}_{c}-free groupoid over X is isomorphic with \boldsymbol{R}, it follows that
Proposition 3.8 The class of \mathcal{B}_{c}-free groupoids is a subclass of the class of $\mathcal{B}_{c^{-}}$ injective groupoids.
Theorem 3.9 (Bruck Theorem for \mathcal{B}_{c}) A groupoid $\boldsymbol{H}=(H, \cdot)$ is \mathcal{B}_{c}-free if and only if it satisfies the following conditions:
(i) \boldsymbol{H} is \mathcal{B}_{c}-injective.
(ii) The set P of primes in \boldsymbol{H} is nonempty and generates \boldsymbol{H}.

Proof. If \boldsymbol{H} is \mathcal{B}_{c}-free over X, then by Prop.3.8, \boldsymbol{H} is \mathcal{B}_{c}-injective. By the fact that \boldsymbol{H} is isomorphic to \mathcal{B}_{c}-canonical groupoid \boldsymbol{R} and the proof of Theorem 2.2, it follows that X is the set of primes in \boldsymbol{H} that generates \boldsymbol{H}.

Let (i) and $(i i)$ hold. It suffices to show that \boldsymbol{H} has the universal mapping property for \mathcal{B}_{c} over P. For that purpose, put $P_{0}=P, P_{k+1}=P_{k} \cup P_{k} P_{k}$ and define an infinite sequence of subsets C_{0}, C_{1}, \ldots of \boldsymbol{H} by:

$$
\begin{aligned}
& C_{0}=P, C_{1}=C_{0} C_{0}, \ldots \\
& C_{k+1}=\left\{a \in H \backslash P:(c, d) \mid a \Rightarrow\{c, d\} \subset C_{0} \cup \cdots \cup C_{k} \wedge\{c, d\} \cap C_{k} \neq \emptyset\right\}
\end{aligned}
$$

Then, one can show (similarly as in Lemma 4.2 in [2]) that $P_{k}=C_{0} \cup C_{1} \cup \cdots \cup C_{k}$ and $H=\cup\left\{C_{k}: k \geq 0\right\}$, where $C_{k} \neq \varnothing$ for any $k \geq 0$ and $C_{i} \cap C_{j}=\varnothing$, for $i \neq j$.

Let $\boldsymbol{G} \in \mathcal{B}_{c}$ and $\lambda: P \rightarrow G$ is a mapping. Using the fact that H is a disjoint union of the sets C_{k}, define a sequence of mappings $\varphi_{k}: P_{k} \rightarrow G$ by: $\varphi_{0}(x)=\lambda(x)$ for every $x \in P$ and φ_{k} to be an extension of φ_{k-1} for every $k \geq 1$. Assume that $\varphi_{k}: P_{k} \rightarrow G$ is a well defined mapping. Define a mapping $\varphi_{k+1}: P_{k+1} \rightarrow G$ by:

$$
\varphi_{k+1}(x)= \begin{cases}\varphi_{k}(x), & \text { if } x \in P_{k} \\ \varphi_{k}(u) \varphi_{k}(v), & \text { if } x=u v \in C_{k+1}\end{cases}
$$

To show that φ_{k+1} is a well defined mapping, it suffices to take $x \in C_{k+1}$. Since \boldsymbol{H} is $\mathcal{B}_{c^{\prime}}$ injective, x can be presented as $x=u v=u^{\cdot} v=u v^{*}=u^{\cdot} v^{*}$. Let's take, for instance, $u v$ and $u^{\cdot} v^{*}$, where $u \in C_{i}, v \in C_{j}, 1 \leq i, j \leq k$ and at least one of i, j is k, for example $j=k$. Then:

$$
\begin{aligned}
\varphi_{k}\left(u^{*}\right) \varphi_{k}\left(v^{*}\right) & =\varphi_{k}\left(u^{*}\right) \varphi_{k}\left(v_{2} v_{1}\right)=\varphi_{k}\left(u^{*}\right)\left(\varphi_{k}\left(v_{2}\right) \varphi_{k}\left(v_{1}\right)\right)=\left[\boldsymbol{G} \in \mathcal{B}_{c}\right] \\
& =\varphi_{k}\left(u^{*}\right)\left(\varphi_{k}\left(v_{1}\right) \varphi_{k}\left(v_{2}\right)\right)=\varphi_{k}\left(u^{*}\right) \varphi_{k}\left(v_{1} v_{2}\right) \\
& =\varphi_{k}\left(u_{2} u_{1}\right) \varphi_{k}(v) \\
& =\left(\varphi_{k}\left(u_{2}\right) \varphi_{k}\left(u_{1}\right)\right) \varphi_{k}(v)=\left[\boldsymbol{G} \in \mathcal{B}_{c}\right] \\
& =\left(\varphi_{k}\left(u_{1}\right) \varphi_{k}\left(u_{2}\right)\right) \varphi_{k}(v)=\varphi_{k}(u) \varphi_{k}(v) .
\end{aligned}
$$

Thus, $\varphi_{k}(x)$ does not depend on the presentation of x. Hence, φ_{k+1} is a well defined mapping. Note that φ_{k} is a homomorphism for every $k \geq 1$.

Put $\varphi=\cup\left\{\varphi_{k}: k \geq 0\right\}$. Then φ is a mapping from H into G that is an extension of λ and it is a homomorphism from \boldsymbol{H} into \boldsymbol{G}. Namely, if x is prime in \boldsymbol{H}, then $\varphi(x)=\varphi_{0}(x)=\lambda(x)$. Let $x \in H \backslash P$ and let (u, v) be the pair of divisors of x. Then, there are $i, j \geq 0$, such that $u \in C_{i}, v \in C_{j}$. If $m=\max \{i, j\}$, then $u, v \in P_{m}$. So, $\varphi(x)=\varphi(u v)=\varphi_{m+1}(u v)=\varphi_{m}(u) \varphi_{m}(v)=\varphi(u) \varphi(v)$. Hence, \boldsymbol{H} has the universal mapping property for \mathcal{B}_{c} over P. Since \boldsymbol{H} is \mathcal{B}_{c}-injective, it follows that $\boldsymbol{H} \in \mathcal{B}_{c}$, and therefore \boldsymbol{H} is \mathcal{B}_{c}-free groupoid over P.

Remark The following question remains open: are there \mathcal{B}_{c}-injective groupoids that are not \mathcal{B}_{c}-free?

We state some notes on subgroupoids of \mathcal{B}_{c}-injective groupoids.
Let \boldsymbol{Q} be a subgroupoid of a groupoid \boldsymbol{G}. If \boldsymbol{G} is reversible, then there is a reversion $\triangleright: Q \rightarrow Q$ defined as usual. Namely, let $a \in Q$. If a is not prime in Q, then $a=b c$ for some $b, c \in Q$ and we can put $a^{\triangleright}=a^{\text {. }}$. If a is prime in \boldsymbol{Q}, put $a^{\triangleright}=a$. Thus, every subgroupoid of a reversible groupoid is reversible. Specially, $(R, *)$ is reversible. Note that the reversion on \boldsymbol{Q} is not necessarily the restriction of the reversion on \boldsymbol{G}, since prime elements in \boldsymbol{Q} are not necessarily prime elements in \boldsymbol{G}.
Proposition 3.10 The class of \mathcal{B}_{c}-injective groupoids is hereditary.
Proof. Let \boldsymbol{H} be a \mathcal{B}_{c}-injective groupoid and let \boldsymbol{Q} be a subgroupoid of \boldsymbol{H}. In order to show that \boldsymbol{Q} is a \mathcal{B}_{c}-injective groupoid it suffices to check the conditions (2) and (3) of Def. 3.7.

Let z be a nonprime element in \boldsymbol{Q}. Then (2) directly follows from Prop.3.5. To show the "if part" of (3), let $z^{\triangleright}=z$. Then $z^{\triangleright}=z^{*}$ in \boldsymbol{H}, where ${ }^{\cdot}$ is the reversion on \boldsymbol{H}. Since \boldsymbol{H} is a \mathcal{B}_{c}-injective groupoid, it follows that z is a square. For the "only if part", let z be a square in \boldsymbol{Q}. Then z is a square in \boldsymbol{H} and thus $z^{*}=z$. Since $z^{*}=z^{\triangleright}$, it follows that $z^{\triangleright}=z$.

There are subgroupoids of an infinite rank in a \mathcal{B}_{c}-free groupoid of rank 1.
Proposition 3.11 Let $\boldsymbol{H}=(H, \cdot)$ be a \mathcal{B}_{c}-free groupoid with one element generating set $\{a\}$ and let $C=\left\{c_{k}: k \geq 1\right\}$ be defined by:

$$
c_{1}=a^{2}, \quad c_{k+1}=a c_{k}
$$

Then the rank of the subgroupoid \boldsymbol{Q} of \mathbf{H} is infinite.
Proof. It is easily seen that $c_{i}=c_{j} \Rightarrow i=j$ and thus C is infinite. Every element $c_{k} \in C$ is prime in \boldsymbol{Q}, since c_{k}, for $k \geq 1$, is not a product of elements in \boldsymbol{Q}.

References

1. Bruck, R.H. - A survey of binary systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft 20, Reihe: Gruppentheorie Springer Verlag, Berlin-Göttingen-Heidelberg, 1958.
2. Celakoska-Jordanova, V. - Free power-commutative groupoids, Math. Slovaca, 65 (2015), 2332.
3. Čupona, Ǵ.; Celakoski, N.; Janeva, B. - Injective groupoids in some varieties of groupoids, 2nd Congress of the Mathematicians and Computer Scientists of Macedonia (Macedonian) (Ohrid, 2000), 47-55, Sojuz. Mat. Inform. Maked., Skopje, 2003.
4. Denecke, K.; Wismath, S.L. - Universal Algebra and Applications in Theoretical Computer Science, Chapman \& Hall/CRC, Boca Raton, FL, 2002.
5. Ježek, J.; Kepka, T. - Varieties of groupoids determined by short linear identities, Czechoslovak Math. J., 39 (1989), 644-658.

[^0]: Vesna Celakoska-Jordanovao
 Faculty of Natural Sciences and Mathematics
 "Ss. Cyril and Methodius University" Skopje
 Arhimedova 3, 1000 Skopje, Republic of Macedonia
 E-mail: vesnacj@pmf.ukim.mk; celakoska@gmail.com

