Canonical bilaterally commutative groupoids

Vesna Celakoska-Jordanova

Received: 2.X.2014 / Revised: 5.XII.2014 / Accepted: 13.XII.2014

Abstract A groupoid G is called bilaterally commutative if it satisfies the identities $(xy)z \approx (yx)z$ and $x(yz) \approx x(zy)$. A description of free objects in the variety \mathcal{B}_c of bilaterally commutative groupoids and their characterization by means of injective objects in \mathcal{B}_c is presented.

Keywords Variety of groupoids · Free groupoid · injective groupoid

Mathematics Subject Classification (2010) 08B20, 03C05

1 Introduction and preliminaries

JEŽEK and KEPKA in [5] studied varieties of groupoids (a groupoid being an algebra with one binary operation) defined by a set of linear identities with length ≤ 6 . They obtained that there are 16 such non-equivalent linear identities and investigated some of the groupoid varieties, denoted by $\mathcal{V}_0, \ldots, \mathcal{V}_{15}$, determined only by one of those 16 identities. It was also proved that there are exactly 56 groupoid varieties, denoted by $\mathcal{V}_0,\ldots,\mathcal{V}_{55}$, defined by a set of linear identities with length ≤ 6 . Among them is the groupoid variety, denoted by \mathcal{V}_{28} , that is equal to the intersection of the variety \mathcal{V}_5 , defined by the identity $x(yz) \approx x(zy)$, and its dual variety \mathcal{V}_{13} , defined by the identity $(xy)z \approx (yx)z$. Clearly, every commutative groupoid satisfies both of the identities, but the converse is not true.

In [5] free objects in the variety \mathcal{V}_5 (and its dual \mathcal{V}_{13}) are obtained using a free commutative groupoid over a non-empty set X. In this paper we give a description of free objects in the groupoid variety \mathcal{V}_{28} (which we call the variety of bilaterally commutative groupoids) using the term groupoid $\mathbb{T}_X = (T_X, \cdot)$ over a non-empty set X. Instead of \mathcal{V}_{28} we denote it by \mathcal{B}_c .

Throughout the paper the terms are denoted by $t, u, v, w \dots$ We use the notation P(t) for the set of subterms of a term t, var(t) for the set of all variables which occur in

Vesna Celakoska-Jordanovao

Faculty of Natural Sciences and Mathematics

[&]quot;Ss. Cyril and Methodius University" Skopje

Arhimedova 3, 1000 Skopje, Republic of Macedonia E-mail: vesnacj@pmf.ukim.mk; celakoska@gmail.com

t and |t| for the length of t. The term groupoid \mathbb{T}_X is an absolutely free groupoid over X and it is *injective*, i.e. the operation \cdot is an injective mapping: $tu = vw \Rightarrow t = v, u = w$. The set X is the set of primes in \mathbb{T}_X that generates \mathbb{T}_X . (An element a of a groupoid $G = (G, \cdot)$ is said to be *prime* in G if $a \neq xy$, for all $x, y \in G$.) These two properties of \mathbb{T}_X characterize all absolutely free groupoids.

Proposition 1.1 ([1], Lemma 1.5) A groupoid $H = (H, \cdot)$ is an absolutely free groupoid if and only if it satisfies the following two conditions:

- (i) \boldsymbol{H} is injective;
- (ii) The set of primes in H is nonempty and generates H.

Then the set of primes is the unique free generating set for H.

We refer to this proposition as *Bruck Theorem* for the class of all groupoids.

We will use the shortlex ordering of terms (denoted by \leq), i.e. terms are ordered so that a term of a particular length comes before any longer term, and amongst terms of equal length, lexicographical ordering is used, with terms earlier in the lexicographical ordering coming first. Then T_X is a totally ordered set. A term t is said to be *orderregular* if $t \in X$ or $(t = t_1t_2 \in T_X \setminus X \text{ and } t_1 \leq t_2)$; otherwise, it is *order-irregular* (see [2]).

For the notation and basic notions of universal algebra the reader is referred to [4]. In most cases, without mention, the operation is denoted multiplicatively: the product of two elements x, y of a groupoid is denoted by $x \cdot y$ or just xy. The product xx is denoted by x^2 and is called the *square* of x.

2 A construction of canonical bilaterally commutative groupoids

In any variety \mathcal{V} of groupoids, a groupoid $\mathbf{R} = (R, *)$ is called a *canonical groupoid in* \mathcal{V} (or \mathcal{V} -canonical groupoid) (see [3]) if the following conditions are satisfied:

(C0) $X \subseteq R \subseteq T_X$

(C1) $tu \in R \Rightarrow t, u \in R \land t * u = tu$

(C2) \boldsymbol{R} is a \mathcal{V} -free groupoid over X.

Thus, $\mathbf{R} = (R, *)$ is called a *canonical bilaterally commutative groupoid* if the conditions (C0), (C1) and (C2), with \mathcal{V} replaced by \mathcal{B}_c , are satisfied.

In order to define such a groupoid, we define the carrier set R by:

$$R = \{t \in T_X : \text{ every subterm } u \text{ of } t, u \neq t, \text{ is order-regular}\}.$$
 (2.1)

Obviously,

- a) $X \subseteq R \subseteq T_X$; $t \in R \Rightarrow P(t) \subseteq R$;
- b) $t, u \in R \Rightarrow [tu \notin R \Leftrightarrow t \text{ is order-irregular or } u \text{ is order-irregular}];$
- c) $t, u \in T_X \Rightarrow [tu \in R \Leftrightarrow t, u \in R \text{ and } t, u \text{ are order-regular}].$

To define a convenient operation on R that satisfies the conditions (C1) and (C2), we consider the four possibilities for $t, u \in R$: 1) t and u are order-regular, 2) t is order-regular and $u = u_1 u_2$ is order-irregular, 3) $t = t_1 t_2$ is order-irregular and u is order-regular, 4) $t = t_1 t_2$ and $u = u_1 u_2$ are order-irregular. We define an operation * on R in the following way. For every $t, u \in R$,

$$t * u = \begin{cases} tu, & \text{if } tu \in R, \\ t(u_2u_1), & \text{if } t \text{ is order-regular} \\ & \text{and } u = u_1u_2, \quad u_2 < u_1, \\ (t_2t_1)u, & \text{if } t = t_1t_2, \quad t_2 < t_1 \\ & \text{and } u \text{ is order-regular}, \\ (t_2t_1)(u_2u_1), & \text{if } t = t_1t_2, \quad t_2 < t_1 \\ & \text{and } u = u_1u_2, \quad u_2 < u_1. \end{cases}$$
(2.2)

It is clear that t * u is a uniquely determined element in R, and therefore $\mathbf{R} = (R, *)$ is a groupoid. The definition of * can be stated by an unary operation $\cdot : T_X \to T_X$, defined by:

$$t \in T_X \Rightarrow t \cdot = \begin{cases} t, & \text{if } t \in X \\ t_2 t_1, & \text{if } t = t_1 t_2. \end{cases}$$
(2.3)

We call this operation a reversion in \mathbb{T}_X . We say that t^{\bullet} is the reversed term of t. Obviously, $t^{\bullet} = t$ if and only if $t \in X$ or t is a square in \mathbb{T}_X . Also, $(t^{\bullet})^{\bullet} = t$, for every $t \in T_X$, i.e. \cdot is an involutory transformation on T_X . By c) it follows that $t^{\bullet} \in R$, for every $t \in R$. Therefore,

$$t * u = \begin{cases} tu, & \text{if } tu \in R, \\ tu^{*}, & \text{if } t \text{ is order-regular, } u \text{ is order-irregular, } \\ t^{*}u, & \text{if } t \text{ is order-irregular, } u \text{ is order-regular, } \\ t^{*}u^{*}, & \text{if } t \text{ and } u \text{ are order-irregular.} \end{cases}$$
(2.4)

The definition of * can be written using the following transformation $\rho : R \to R$, which we call *regulation* in R, defined by:

$$t \in R \Rightarrow \rho(t) = \begin{cases} t, & \text{if } t \text{ is order-regular,} \\ t_2 t_1, & \text{if } t = t_1 t_2 \text{ and } t_2 < t_1 \end{cases}$$

Lemma 2.1 If $t, u \in R$, then:

a)
$$\rho(\rho(t)) = \rho(t)$$
, b) $\rho(\rho(t)\rho(u)) = \rho(\rho(u)\rho(t))$.

Proof. a) It is clear.

b) Four cases for $t, u \in R$ are possible:

1) t, u are order-regular;

- 2) t is order-regular and u is order-irregular;
- 3) t is order-irregular and u is order-regular;

4) t, u are order-irregular.

In the first case, the equality is obvious when t = u. Let $t \neq u$. Then $\rho(\rho(t)\rho(u)) = \rho(tu)$ and $\rho(\rho(u)\rho(t)) = \rho(ut)$. Here, $\rho(tu) = tu = \rho(ut)$ if t < u and $\rho(ut) = ut = \rho(tu)$, if u < t, and thus the equality holds. The fourth case is brought down to the first case, since $\rho(t), \rho(u)$ are order-regular when t, u are order-irregular. In the second case the equality is obvious when $t = \rho(u)$. Let $t \neq \rho(u)$. If $t < \rho(u)$, then: $\rho(\rho(t)\rho(u)) = \rho(t\rho(u)) = t\rho(u) = \rho(\rho(u)t) = \rho(\rho(u)\rho(t))$. The proof goes symmetrically for $\rho(u) < t$. One can show the third case similarly as the second one. \Box

4 Vesna Celakoska-Jordanova

The operation * can be presented by:

$$t, u \in R \Rightarrow t * u = \rho(t)\rho(u).$$
 (2.5)

By Lemma 2.1b), it follows that $\mathbf{R} = (R, *) \in \mathcal{B}_c$. Namely, $(t * u) * v = \rho(\rho(t)\rho(u))\rho(v) = \rho(\rho(u)\rho(t))\rho(v) = (u*t)*v$ and $t*(u*v) = \rho(t)\rho(\rho(u)\rho(v)) = \rho(t)\rho(\rho(v)\rho(u)) = t*(v*u)$.

By induction on the length of $t \in R$ one can show that X is a generating set for **R**. The set of prime elements in **R** coincides with the set X. Namely, if $t \in X$, then $t \neq u * v$, for every $u, v \in R$. If $t \in R \setminus X$, then there are $t_1, t_2 \in R$, such that $t = t_1t_2 = t_1 * t_2$. Therefore, there are no other prime elements in **R** except those in X.

The groupoid \mathbf{R} has the universal mapping property for \mathcal{B}_c over X, i.e. if $\mathbf{G} \in \mathcal{B}_c$ and $\lambda : X \to G$, then there is a homomorphism ψ from \mathbf{R} into \mathbf{G} such that $\psi(x) = \lambda(x)$, for every $x \in X$. We define the mapping $\psi : R \to G$ by $\psi(t) = \varphi(t)$, for every $t \in R$, where φ is the homomorphism from \mathbb{T}_X into \mathbf{G} that is an extension of λ . It suffices to show that $\varphi(t * u) = \varphi(t)\varphi(u)$, for any $t, u \in R$.

If t, u are order-regular, then $\varphi(t * u) = \varphi(tu) = \varphi(t)\varphi(u)$.

If t is order-regular and u is order-irregular, then $u = u_1 u_2$ and $u_2 < u_1$, so $\varphi(t * u) = \varphi(t \rho(u_1 u_2)) = \varphi(t)\varphi(u_2 u_1) = \varphi(t)(\varphi(u_2)\varphi(u_1)) = [\mathbf{G} \in \mathcal{B}_c] = \varphi(t)(\varphi(u_1)\varphi(u_2)) = \varphi(t)\varphi(u_1 u_2) = \varphi(t)\varphi(u).$

The case when t is order-irregular and u is order-regular can be shown similarly as the previous one.

If t, u are order-irregular, then $t = t_1 t_2, t_2 < t_1$ and $u = u_1 u_2, u_2 < u_1$, so $\varphi(t * u) = \varphi(\rho(t_1 t_2)\rho(u_1 u_2)) = \varphi(t_2 t_1)\varphi(u_2 u_1) = (\varphi(t_2)\varphi(t_1))(\varphi(u_2)\varphi(u_1)) = [\boldsymbol{G} \in \mathcal{B}_c] = (\varphi(t_1)\varphi(t_2))(\varphi(u_1)\varphi(u_2)) = \varphi(t)\varphi(u).$

Hence, $\mathbf{R} = (R, *)$ satisfies the conditions (C0), (C1) and (C2). Thus, the following theorem holds.

Theorem 2.2 The groupoid $\mathbf{R} = (R, *)$ is a canonical bilaterally commutative groupoid over X.

We note that (R, *) is neither left nor right cancellative groupoid. For instance, if $a, b \in X$ and t = a, u = ab, v = ba, then t * u = a(ab) = a * (ba) = t * v, but $u \neq v$.

3 A characterization of free bilaterally commutative groupoids

In this section we define a subclass of the class \mathcal{B}_c that is larger than the class of \mathcal{B}_c -free groupoids, called the class of \mathcal{B}_c -injective groupoids. For defining such a class we essentially use the properties of the corresponding canonical groupoid $\mathbf{R} = (R, *)$ in \mathcal{B}_c related to the elements on \mathbf{R} that are not prime. The class of \mathcal{B}_c -injective groupoids will be successfully defined if the following two conditions are satisfied. Firstly, the class of \mathcal{B}_c -injective groupoids should unable the characterization of \mathcal{B}_c -free groupoids analogously as in Prop.1.1: any \mathcal{B}_c -injective groupoid \mathbf{H} whose set of primes is nonempty and generates \mathbf{H} to be \mathcal{B}_c -free. Secondly, the class of \mathcal{B}_c -free groupoids has to be a proper subclass of the class of \mathcal{B}_c -injective groupoids.

Before introducing the notion of \mathcal{B}_c -injective groupoid it is necessary to investigate some properties of the already constructed \mathcal{B}_c -canonical groupoid \mathbf{R} . Every property of \mathbf{R} , whose formulation does not contain the notion prime element, is a "candidateaxion" for \mathcal{B}_c -injectivity. For instance, for every non-prime element $t \in \mathbb{R}$ there is a uniquely determined pair of divisors u, v in \mathbf{R} , i.e. t can be presented in a unique way as t = u * v. Other presentations of t = x * y, i.e. other pairs of divisors $(x, y) \in \mathbb{R} \times \mathbb{R}$ of t are concequences of the identities in the given variety.

Proposition 3.1 For every non-prime element $t \in R$ there is a uniquely determined pair $(u, v) \in R \times R$ such that t = uv = u * v = u * v = u * v = u * v = u * v.

Proof. Let $t \in R \setminus X$. Then $t \in T_X \setminus X$, so there are $u, v \in T_X$, such that t = uv, and they are uniquely determined because of the injectivity of \mathbb{T}_X . Since $uv = t \in R$, it follows that u, v are order-regular, and thus, by (2.4), uv = u * v. If u and v are primes or squares, then $u^{\cdot} = u$ and $v^{\cdot} = v$. Then, $u * v^{\cdot}$, $u^{\cdot} * v$ and $u^{\cdot} * v^{\cdot}$ are equal to u * v. If u is non-prime and not a square, since u is order-regular, then u^{\cdot} is order-irregular and $u^{\cdot} \in R$. The same is true for $v: v^{\cdot}$ is order-irregular and $v^{\cdot} \in R$. By (2.4) and (2.3), it follows that $u * v^{\cdot} = u(v^{\cdot})^{\cdot} = uv = t$, $u^{\cdot} * v = (u^{\cdot})^{\cdot} v = uv = t$ and $u^{\cdot} * v^{\cdot} = (u^{\cdot})^{\cdot} (v^{\cdot})^{\cdot} = uv = t$. \Box

The notion of reversion can be introduced for an arbitrary groupoid, too.

Definition 3.2 A groupoid $G = (G, \cdot)$ is said to be reversible if there is a transformation $\cdot : G \to G$ defined by:

$$a \in G \implies a^{\star} = \begin{cases} a, & \text{if } a \text{ is prime in } G\\ cb, & \text{if } a = bc. \end{cases}$$

$$(3.1)$$

In that case we say that the unary operation \cdot is a reversion on G.

A characterization of reversible groupoids is given by the following

Proposition 3.3 A groupoid **G** is reversible if and only if

$$(\forall a, b, c, d \in G) (ab = cd \Rightarrow ba = dc).$$

Proof. Let G be a reversible groupoid and let ab = cd. Then $ba = (ab)^{\cdot} = (cd)^{\cdot} = dc$. Conversely, let (p,q) be a par of divisors of a, i.e. a = pq. Then $a^{\cdot} = qp$. Assume that (x, y) is another pair of divisors of a, i.e. a = xy. Then, pq = xy implies that qp = yx. Hence, $a^{\cdot} = qp = yx$, i.e. \cdot is a well defined mapping. Thus, G is reversible. \Box

Proposition 3.4 Any groupoid G has at most one reversion. If a reversion exists, then it is an involution (and hence a permutation) on G.

Proof. Let f and g be reversions on G and $a \in G$. If a is prime in G, then f(a) = g(a). If a = bc, then f(a) = cb. Let a = xy and g(a) = yx. Since a = bc = xy, it follows that f(a) = f(bc) = f(xy) = yx = g(xy) = g(a). Thus, if a reversion on G exists, then it is unique. The reversion f is an involution. Namely, if a is prime, then f(f(a)) = f(a) = a, and if a = bc, then f(f(a)) = f(cb) = bc = a. \Box

Example 3.1 It is clear that every commutative groupoid is reversible. The groupoids $G_1 = (G_1, \cdot), G_2 = (G_2, \cdot), G_3 = (G_3, \cdot)$ and $G_4 = (G_4, \cdot)$ given below with the tables a), b), c) and d) respectively, are as follows: G_1 is not reversible, since $ba = bb \neq ab$; G_2 is reversible that is not commutative and is not bilaterally commutative; G_3 is

reversible and bilaterally commutative groupoid that is not commutative; G_4 is a bilaterally commutative groupoid that is not commutative and is not reversible, since ab = bb = c, but $ba = d \neq bb = c$.

a)	$ \begin{array}{c c} $	b)	$ \begin{array}{c} \cdot a & b & c \\ \hline a & a & c & b \\ b & b & a & b \\ c & c & c & a \end{array} $
c)	$\begin{array}{c c} \hline a & b & c & d \\ \hline a & a & c & a & a \\ b & d & b & a & a \\ c & a & a & a & a \\ d & a & a & a & a \end{array}$	d)	$ \begin{array}{c} \cdot a & b & c & d \\ \hline a & a & c & a & a \\ b & d & c & a & a \\ c & a & a & a & a \\ d & a & a & a & a \end{array} $

e) The following groupoid, constructed similarly as in [5], gives an example of an infinite bilaterally commutative groupoid that is not reversible. Let f, g be two surjective endomorphisms on a commutative group (G, +). Define a new operation \cdot on G by:

$$(\forall a, b \in G) \ a \cdot b = f(a) + g(b).$$

If $f \neq g$, then the obtained groupoid (G, \cdot) is not commutative. Note that: if $fg = f^2$, then the equality $(a \cdot b) \cdot c = (b \cdot a) \cdot c$ holds, and, if $gf = g^2$, then the equality $a \cdot (b \cdot c) = a \cdot (c \cdot b)$ holds, for all $a, b, c \in G$. So, if both equalities $fg = f^2$ and $gf = g^2$ hold, then the groupoid (G, \cdot) is bilaterally commutative.

Let (G, +) be the free commutative group over the infinite set $\{x_1, x_2, \ldots, x_n, \ldots\}$ and let f, g be defined by: $f(x_1) = f(x_2) = g(x_1) = g(x_2) = g(x_3) = x_1, f(x_3) = x_2$ and $f(x_i) = g(x_i) = x_{i-2}$ for $i \ge 4$. Then, (G, \cdot) is a bilaterally commutative groupoid that is not commutative and is not a semigroup. By Prop.3.3, (G, \cdot) is not reversible: $x_1x_3 = f(x_1) + g(x_3) = x_1 + x_1 = f(x_2) + g(x_1) = x_2x_1$, but $x_3x_1 = f(x_3) + g(x_1) = x_1x_3 = f(x_3) + g(x_1) = x_1x_3 = x_$ $x_2 + x_1 \neq x_1 + x_1 = f(x_1) + g(x_2) = x_1 x_2.$

Proposition 3.5 If $G = (G, \cdot)$ is a bilaterally commutative and reversible groupoid, then $ab = ab^{\bullet} = a^{\bullet}b = a^{\bullet}b^{\bullet}$, for any $a, b \in G$.

Proof. If a, b are prime elements in G, then $a^{\cdot} = a$ and $b^{\cdot} = b$. If a is prime in G and b = cd, then ab = a(cd) = a(dc) = ab. It is clear that $ab = a \cdot b = a \cdot b$. One can prove the case when a = cd and b is prime in G, symmetrically. If a = cd, b = c'd', then ab = a(c'd') = a(d'c') = ab, $ab = (cd)b = (dc)b = a \cdot b$ and $ab = (cd)(c'd') = ab \cdot b$ $(cd)(d'c') = (dc)(d'c') = a \cdot b \cdot . \square$

For the groupoid $\mathbf{R} = (R, *)$ the transformation \odot , defined by

$$t \in R \Rightarrow t^{\odot} = \begin{cases} t, & \text{if } t \in X \\ v * u, & \text{if } t = u * v. \end{cases}$$
(3.2)

is a reversion of **R**. Let $u, v \in R$. If $uv \in R$, then $(u * v)^{\odot} = (uv)^{\bullet}$. If $uv \notin R$, then $(u * v)^{\odot} \neq (uv)$. For instance, if u is order-regular and $v = v_1 v_2$ is order-irregular,

then $uv, vu \notin R$ and $(u * v)^{\odot} = v * u = (v_1v_2) * u = (v_2v_1) u \neq (v_1v_2) u = vu = (uv)^{\cdot}$. For every $u \in R$, $t = u * u^{\odot}$ is a square. Namely, if u is order-regular, then $u * u^{\odot} = u * u = u^2$, and if $u = u_1u_2$ is order-irregular, then $u * u^{\odot} = (u_1u_2) * (u_2u_1) = u^2$.

 $(u_2u_1)(u_2u_1) = (u^{\cdot})^2$. If t is non-prime in **R**, then $t^{\odot} = t$ if and only if the divisors of t in R are equal or one of the divisors is a reversed non-prime non-square of the other. Thus, the following proposition holds.

Proposition 3.6 Let $\mathbf{R} = (R, *)$ be the \mathcal{B}_c -canonical groupoid over X and let $u, v \in R$. Then:

- a) **R** is reversible.
- b) If $uv \in R$, then $(u * v)^{\odot} = (uv)^{\bullet}$, and if $uv \notin R$, then $(u * v)^{\odot} \neq (uv)^{\bullet}$. c) $t = u * u^{\odot}$ is a square: $t = u^2$ if u is order-regular, or, $t = (u^{\bullet})^2$ if u is order-irregular.
- d) If t is non-prime in **R**, then $t^{\odot} = t$ if and only if t is a square.

We will use these properties for introducing the notion of \mathcal{B}_c -injective groupoid.

Definition 3.7 A groupoid $\mathbf{H} = (H, \cdot)$ is called \mathcal{B}_c -injective if it satisfies the following conditions:

- (0) $\boldsymbol{H} \in \mathcal{B}_c$.
- (1) H is reversible.
- (2) If z is a non-prime element in **H** and (c,d) is a pair of divisors of z (i.e. z = cd), then: $z = ab \Rightarrow (a, b) \in \{(c, d), (c, d), (c, d), (c, d)\}.$
- (3) If z is a non-prime element in **H**, then z = z if and only if z is a square.

By Proposition 3.6, the groupoid $\mathbf{R} = (R, *)$ satisfies the conditions (0) - (3). Since every \mathcal{B}_c -free groupoid over X is isomorphic with **R**, it follows that

Proposition 3.8 The class of \mathcal{B}_c -free groupoids is a subclass of the class of \mathcal{B}_c injective groupoids.

Theorem 3.9 (Bruck Theorem for \mathcal{B}_c) A groupoid $H = (H, \cdot)$ is \mathcal{B}_c -free if and only if it satisfies the following conditions:

- (i) **H** is \mathcal{B}_c -injective.
- (ii) The set P of primes in H is nonempty and generates H.

Proof. If **H** is \mathcal{B}_c -free over X, then by Prop.3.8, **H** is \mathcal{B}_c -injective. By the fact that **H** is isomorphic to \mathcal{B}_c -canonical groupoid **R** and the proof of Theorem 2.2, it follows that X is the set of primes in \boldsymbol{H} that generates \boldsymbol{H} .

Let (i) and (ii) hold. It suffices to show that **H** has the universal mapping property for \mathcal{B}_c over P. For that purpose, put $P_0 = P$, $P_{k+1} = P_k \cup P_k P_k$ and define an infinite sequence of subsets C_0, C_1, \ldots of **H** by:

$$C_0 = P, C_1 = C_0 C_0, \dots,$$

$$C_{k+1} = \{a \in H \setminus P : (c,d) | a \Rightarrow \{c,d\} \subset C_0 \cup \dots \cup C_k \land \{c,d\} \cap C_k \neq \emptyset\}.$$

Then, one can show (similarly as in Lemma 4.2 in [2]) that $P_k = C_0 \cup C_1 \cup \cdots \cup C_k$ and $H = \bigcup \{C_k : k \ge 0\}$, where $C_k \ne \emptyset$ for any $k \ge 0$ and $C_i \cap C_j = \emptyset$, for $i \ne j$.

Let $G \in \mathcal{B}_c$ and $\lambda : P \to G$ is a mapping. Using the fact that H is a disjoint union of the sets C_k , define a sequence of mappings $\varphi_k : P_k \to G$ by: $\varphi_0(x) = \lambda(x)$ for every $x \in P$ and φ_k to be an extension of φ_{k-1} for every $k \ge 1$. Assume that $\varphi_k : P_k \to G$ is a well defined mapping. Define a mapping $\varphi_{k+1}: P_{k+1} \to G$ by:

$$\varphi_{k+1}(x) = \begin{cases} \varphi_k(x), & \text{if } x \in P_k, \\ \varphi_k(u)\varphi_k(v), & \text{if } x = uv \in C_{k+1}. \end{cases}$$

To show that φ_{k+1} is a well defined mapping, it suffices to take $x \in C_{k+1}$. Since H is \mathcal{B}_c -injective, x can be presented as $x = uv = u \cdot v = u \cdot v$. Let's take, for instance, uv and $u \cdot v$, where $u \in C_i$, $v \in C_j$, $1 \le i, j \le k$ and at least one of i, j is k, for example j = k. Then:

$$\varphi_{k}(u^{\cdot})\varphi_{k}(v^{\cdot}) = \varphi_{k}(u^{\cdot})\varphi_{k}(v_{2}v_{1}) = \varphi_{k}(u^{\cdot})(\varphi_{k}(v_{2})\varphi_{k}(v_{1})) = [\boldsymbol{G} \in \mathcal{B}_{c}]$$

$$= \varphi_{k}(u^{\cdot})(\varphi_{k}(v_{1})\varphi_{k}(v_{2})) = \varphi_{k}(u^{\cdot})\varphi_{k}(v_{1}v_{2})$$

$$= \varphi_{k}(u_{2}u_{1})\varphi_{k}(v)$$

$$= (\varphi_{k}(u_{2})\varphi_{k}(u_{1}))\varphi_{k}(v) = [\boldsymbol{G} \in \mathcal{B}_{c}]$$

$$= (\varphi_{k}(u_{1})\varphi_{k}(u_{2}))\varphi_{k}(v) = \varphi_{k}(u)\varphi_{k}(v).$$

Thus, $\varphi_k(x)$ does not depend on the presentation of x. Hence, φ_{k+1} is a well defined mapping. Note that φ_k is a homomorphism for every $k \ge 1$.

Put $\varphi = \bigcup \{\varphi_k : k \ge 0\}$. Then φ is a mapping from H into G that is an extension of λ and it is a homomorphism from H into G. Namely, if x is prime in H, then $\varphi(x) = \varphi_0(x) = \lambda(x)$. Let $x \in H \setminus P$ and let (u, v) be the pair of divisors of x. Then, there are $i, j \ge 0$, such that $u \in C_i, v \in C_j$. If $m = \max\{i, j\}$, then $u, v \in P_m$. So, $\varphi(x) = \varphi(uv) = \varphi_{m+1}(uv) = \varphi_m(u)\varphi_m(v) = \varphi(u)\varphi(v)$. Hence, H has the universal mapping property for \mathcal{B}_c over P. Since H is \mathcal{B}_c -injective, it follows that $H \in \mathcal{B}_c$, and therefore H is \mathcal{B}_c -free groupoid over P. \Box

Remark The following question remains open: are there \mathcal{B}_c -injective groupoids that are not \mathcal{B}_c -free?

We state some notes on subgroupoids of \mathcal{B}_c -injective groupoids.

Let Q be a subgroupoid of a groupoid G. If G is reversible, then there is a reversion ${}^{\triangleright} : Q \to Q$ defined as usual. Namely, let $a \in Q$. If a is not prime in Q, then a = bcfor some $b, c \in Q$ and we can put $a^{\triangleright} = a^{\bullet}$. If a is prime in Q, put $a^{\triangleright} = a$. Thus, every subgroupoid of a reversible groupoid is reversible. Specially, (R, *) is reversible. Note that the reversion on Q is not necessarily the restriction of the reversion on G, since prime elements in Q are not necessarily prime elements in G.

Proposition 3.10 The class of \mathcal{B}_c -injective groupoids is hereditary.

Proof. Let \boldsymbol{H} be a \mathcal{B}_c -injective groupoid and let \boldsymbol{Q} be a subgroupoid of \boldsymbol{H} . In order to show that \boldsymbol{Q} is a \mathcal{B}_c -injective groupoid it suffices to check the conditions (2) and (3) of Def. 3.7.

Let z be a nonprime element in Q. Then (2) directly follows from Prop.3.5. To show the "if part" of (3), let $z^{\triangleright} = z$. Then $z^{\triangleright} = z^{\bullet}$ in H, where \cdot is the reversion on H. Since H is a \mathcal{B}_c -injective groupoid, it follows that z is a square. For the "only if part", let z be a square in Q. Then z is a square in H and thus $z^{\bullet} = z$. Since $z^{\bullet} = z^{\triangleright}$, it follows that $z^{\triangleright} = z$. \Box

There are subgroupoids of an infinite rank in a \mathcal{B}_c -free groupoid of rank 1.

Proposition 3.11 Let $H = (H, \cdot)$ be a \mathcal{B}_c -free groupoid with one element generating set $\{a\}$ and let $C = \{c_k : k \ge 1\}$ be defined by:

$$c_1 = a^2, \qquad c_{k+1} = ac_k.$$

Then the rank of the subgroupoid Q of H is infinite.

Proof. It is easily seen that $c_i = c_j \Rightarrow i = j$ and thus C is infinite. Every element $c_k \in C$ is prime in Q, since c_k , for $k \ge 1$, is not a product of elements in Q. \Box

References

- BRUCK, R.H. A survey of binary systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft 20, Reihe: Gruppentheorie Springer Verlag, Berlin-Göttingen-Heidelberg, 1958.
 CELAKOSKA-JORDANOVA, V. Free power-commutative groupoids, Math. Slovaca, 65 (2015), 23-
- CELAKOSKA-JORDANOVA, V. Free power-communication groupoids in some varieties of groupoids, 32.
 CUPONA, G.; CELAKOSKI, N.; JANEVA, B. Injective groupoids in some varieties of groupoids, 2nd Congress of the Mathematicians and Computer Scientists of Macedonia (Macedonian) (Ohrid, 2000), 47-55, Sojuz. Mat. Inform. Maked., Skopje, 2003.
 DENECKE, K.; WISMATH, S.L. Universal Algebra and Applications in Theoretical Computer Science, Chapman & Hall/CRC, Boca Raton, FL, 2002.
 JEŽEK, J.; KEPKA, T. Varieties of groupoids determined by short linear identities, Czechoslovak Math. J., 39 (1989), 644-658.