
COMPARISON OF THE RESULTS OBTAINED BY PSEUDO RANDOM NUMBER
GENERATOR BASED ON IRRATIONAL NUMBERS

PhD. Dimitrievska Ristovska V., Prof. PhD. Bakeva V.
Faculty of Computer Science and Engineering- Ss. Cyril and Methodius University, Skopje, Macedonia,

vesna.dimitrievska.ristovska@finki.ukim.mk

verica.bakeva@finki.ukim.mk,

Abstract: Pseudo-random number generators (PRNG) based on irrational numbers are proposed elsewhere. They generate random
numbers using digits of real numbers which decimal expansions neither terminate nor become periodic and practically their decimal
expansion has infinite period. Using that algorithm, we generate sequences of random numbers and then we check their randomness with
statistical tests from Diehard battery. Our main idea is to check is there a difference in the randomness of the generated sequences if digits of
any irrational non- transcendental number (like √2,√3,√5, …) are used versus the case when digits of a transcendental number (like π or
e) are used. In our experiments we use about 3·107 digits of a given non-periodic irrational or transcendental number. Many experiments
were done and all generated sequences by proposed PRNG based on irrational numbers passed the Diehard tests very well. We may
conclude that there is not a significant difference in the randomness of the generated sequences in the both cases (irrational non-
transcendental versus irrational transcendental number).

Keywords: PRNG, IRRATIONAL NUMBERS, TRANSCENDENTAL NUMBERS, STATISTICAL TESTS, DIEHARD BATERY,
RANDOMNESS

1. Introduction
Pseudo-random number generator (PRNG) is an algorithm

which generates a long sequence of numbers r1, r2, … which are
elements of a given set of numbers and the distribution of generated
numbers r1, r2, … is supposed to be uniform.

A sequence of obtained random numbers r1, r2, … should have
two important properties: uniformity (i.e., they are equally probable
everywhere) and independence (i.e., the current value of a random
variable does not depend on the previous values).

In practice, we cannot construct an ideal PRNG, since the way
we are building the mechanism is not a random one, but in fact it is
completely determined by an initial value. This affects the
uniformity and independence of the produced sequences and r1, r2,
… and that is why the word "pseudo" is used and we have to
measure the randomness of the obtained sequences.

A good random number generator should have some additional
qualities as large period and small order computational complexity.

This paper is organized as follows. In Section 2 we give a
background and overview of related works. In Section 3 we explain
basic ideas for construction of our generator of pseudo random
numbers [2], basic principles for usage of statistical tests from
Diehard battery and then we present the algorithm for the generator.
The obtained results are given in Section 4. In Section 5, some
conclusions are made.

2. Background and overview of related works
In this section we present some historical facts recall on

L'Ecuyer (2017) in [4] about PRNGs which use irrational numbers.

The inspiration for using successive digits of π, e or any other
transcendental number in order to generate a random number
sequence is an old idea.

For example, Metropolis et al. (1950) in [6] succeeded to
compute 2000 decimals of π and e and confirmed that these
sequences pass elementary statistical tests. This testing was
extended to the first 10000 decimals by Pathria (1962) (in [7]) and
to 100000 decimals by Esmenjaud-Bonnardel (1965) (in [3]), and
all of these sequences very well pass elementary statistical tests.

Till now, many sequences of digits of π have been obtained and
tested and many papers have discussed this idea. The world record
in 2016 was 22 459 157 718 361 decimal digits of π, computed in

about four months by Peter Trueb using an algorithm of
Chudnovsky and Chudnovsky (1989) (in [1]), Bellard’s formula,
and the Y-Cruncher multi-threaded software (Yee, 2017) (in [9]).
However, to give good reason that the successive digits of π (or any
other given irrational number) in a given base b can be taken as
random sequence, it should be good to know that this sequence of
digits is uniformly distributed in base b, i.e., that each of the b
possible digits appears with frequency 1/b (on average) in the
infinite sequence. For π, practical counting over several digits
suggests that this is true, but there is no known proof of it.

However, the property of uniform distribution of the digits of
any given irrational number is not sufficient; we need to have the
uniform distribution of the pairs, triplets, and so on.

In the latest years, there are some trials to design a PRNG using
digits of any irrational number since irrational numbers have
decimal expansions that neither terminate nor become periodic,
practically their decimal expansion has infinite period. In [8],
Rogers and al. (2015) proposed an algorithm for pseudo-random 5-
digit numbers using the digits of π and made some visual and
statistical analyses for goodness of proposed generator.

In [2], the author proposed a new algorithm for generating
pseudo-random numbers using digits of any irrational number. The
randomness of obtained sequences of numbers is checked by some
statistical tests and the test results are very well.

In this our paper, the main work is: using algorithm proposed in
[2], to check is there a difference in the randomness of the
generated sequences, if digits of any irrational non- transcendental
number (like √2,√3,√5, … or the golden ratio 𝜑𝜑 = 1+√5

2
) are used

versus the case when digits of a transcendental number (like π or e)
are used.

3. PRNG based on digits of irrational numbers

3.1 The main idea in the algorithm– n-tuples
We will explain the ideas for designing a PRNG using digits of

an irrational number ([2]), by example digits of π. In this example,
we will use sequential n-tuples, for example 10-tuples of digits from
the decimal expansion of π. Using some database we will take l

167

INTERNATIONAL SCIENTIFIC JOURNAL "MATHEMATICAL MODELING" WEB ISSN 2603-2929; PRINT ISSN 2535-0986

YEAR I, ISSUE 4, P.P. 167-170 (2017)

digits of π. In the next step, decimal 10-digit number from every 10-
tuple is generated.

If we take the obtained 10-digit number (which is obtained
directly from the 10-tuple) then its value is in the range 0 <=
number <1010 and we need to check if the number is greater than
max (maximal allowed generated number). If it is true, we have to
omit the obtained number and continue with checking the next 10-
tuple. The 10-tuples are taken without overlapping.

But, we will improve the previous idea if we scale the obtained
10-digit number (which is obtained directly from the 10-tuple) from
the range 0 <= number <1010 in the range 0 <= number < 232. In
this way, there is no need to check if the scaled number is greater
than max. Note that if the sequence of generated number is uniform
then the scaled sequence will be uniform on the set {0,1,…,max}.

These steps from the last idea will be repeated until we obtain l
numbers.

3.2 Input parameters and the algorithm
In order to produce different sequences, each time when we

started generating of a new sequence, we must initialize the
beginning pointer to an arbitrary digit of the chosen irrational
number. The position of the beginning pointer will be an input
parameter. Also, the input parameter will be the length n of digits
(n-tuples) for generating of each number in the sequence (in the
previous example, we choose n = 10). Let stress that we compute
the digits of any irrational number using package Mathematica.

Algorithm
 [1] Choose an irrational number which digits will be used for

generating random numbers.

 [2] Set the length n of digits for generating of each number in
the sequence, the position s of the beginning pointer (the first digit
where the generating starts), the length l of generated sequence and
the maximum max of the generated numbers.

 [3] Let counter=0.

 [4] Until counter <=l do

 [4.1] Use slice size of n digits to generate a number r.

 [4.2] Scale 𝑟𝑟 ← � 𝑟𝑟
10𝑛𝑛−1

∙ 𝑚𝑚𝑚𝑚𝑚𝑚�.

 [4.3] Put pointer position s ← s + n.

 [4.4] counter = counter + 1.

We will notice that software realization of this algorithm and
many experiments were done using package Mathematica.

3.5. Diehard tests
Nowadays there are a lot of tests for randomness and all of them

measure the difference between the generated pseudo-random
sequences and the theoretically supposed ideal random sequence.
We say that a PRNG passes a test if the random sequences produced
by that PRNG pass the test with a probability near to 1. We can
classify PRNGs depending of the tests they have passed. So, for
obtaining a better classification we should have many different
tests.

Over several years, George Marsaglia [5] has developed
Diehard tests as a battery of statistical tests for measuring the
quality of a random number generator. This battery was published
in 1995. It consists of 15 statistical tests, and it is a comprehensive
set of statistical tests for PRNG and serves as some kind of litmus
for checking and certification of PRNG. If a PRNG passes Diehard
statistical tests, then it can be used in deeper scientific researches.

The Diehard battery consists of Birthday Spacings Test,
Overlapping 5-Permutation Test (OPERM-5), Binary rank tests,
31× 31 Binary Matrix, 32 × 32 Binary Matrix, 6 × 8 Binary Matrix,
Bitstream Test, Test OQSO (Overlapping quadruples sparse
occupancy test), Test DNA, Count the 1's Test for specific bytes,
Parking test, Minimum Distance Test, 3D Spheres Test, Squeeze
Test, Overlapping Sums Test, Runs Test and Craps Test.

We will note that the most of the tests in Diehard return a p-
value, which should be uniform on [0,1) if the input file contains
truly independent random bits. Those p-values are obtained by p =
F(X), where F is the assumed cumulative distribution function of
the sample (random variable X) – often normal. But that assumed F
is just an asymptotic approximation, for which the fit will be worst
in the tails. Therefore p < 0.025 or p > 0.975 means that the PRNG
has "failed the test at the 0.05 level".

4. Results obtained from Diehard tests and
discussion

Diehard tests have requirements with precise format of the
numbers whose randomness they test. Explicitly, the file of the
numbers should be a binary file of a hexadecimal integer
nonnegative numbers with approximately 11 MB size. There should
be ten numbers in each row, about 2 870 000 numbers in the file
and the maximum number in the file should be max = 232 − 1.

As we mentioned previously, some of Diehard tests give p-
value, and some of them are performed several times and the result
from these tests is the ratio of the number of passed tests and the
total number of tests. Therefore, we presented the results in
separated tables depends on the kind of test output.

In the next tables we will present some of the obtained results of
Diehard tests applied to the sequences generated by our proposed
algorithm in [2].

In Table 1, we present the percentage of passed Diehard test for
14 sequences generated by our PRNG using different irrational
numbers or same irrational number with different initial pointer s or
with different initial length n. The bold line in the table separates
the sequences obtained from the digits of non-transcendent
irrational numbers from them obtained from the digits of
transcendent irrational numbers. Note that almost all sequences pass
more than 90% of the Diehard test. Exception is only the sequence
obtained using the digits from the sin 1, where the percentage of
passed tests is between 80%and 90%, but it is satisfactory.

Table 1 Success of Diehard tests

Irrational
number

Seq.
number n s

Time for
sequence

generation (in
sec.)

Success
of

Diehard
tests

ϕ Seq. 1 10 1 630 91 %
√2 Seq. 2a 10 2 670 99 %
√2 Seq. 2b 10 1 678 98 %
√3 Seq. 3a 10 6 636 97 %
√3 Seq. 3b 12 2 653 92 %
√7 Seq. 4a 10 6 654 99 %
√7 Seq. 4b 10 3 662 91 %

sin 1 Seq. 5a 10 2 351 85 %
sin 1 Seq. 5b 10 4 478 87 %
sin 1 Seq. 5c 9 4 529 86 %
π Seq. 6 10 8 485 94 %
e Seq. 7a 10 2 586 90 %
e Seq. 7b 10 1 577 94%

ln 2 Seq. 8 10 3 627 95 %

In Table 2 and Table 3, we present the results from Diehard
tests obtained from sequences generated from the digits of non-

168

INTERNATIONAL SCIENTIFIC JOURNAL "MATHEMATICAL MODELING" WEB ISSN 2603-2929; PRINT ISSN 2535-0986

YEAR I, ISSUE 4, P.P. 167-170 (2017)

transcendent numbers. In Table 2, we give the results of Diehard
test which output is p-value and in Table 3, the results when the
output is the ratio of the number of passed tests and the total
number of tests. The red (bold) values in the tables mean that the
sequence does not pass the corresponding test.

Table 2: Results from Diehard tests applied on the sequences generated by
PGNG when irrational number is non-transcendental. Obtained p-values
are presented

Seq.
name

Seq.
1

Seq.
2a

Seq.
2b

Seq.
3a

Seq.
3b

Seq.
4a

Seq.
4b

Irr.
number ϕ √2 √2 √3 √3 √7 √7

 p-value
Birthday
Spacings

test
0.10 0.87 0.37 0.40 0.23 0.15 0.34

OPERM-
5

0.15
0.14

0.82
0.12

0.08
0.57

0.91
0.80

0.29
0.70

0.31
0.72

0.93
0.49

Binary-
31 test 0.34 0.85 0.78 0.32 0.68 0.32 0.73

Binary-
32 test 0.79 0.36 0.32 0.86 0.64 0.72 0.46

Binary-
6x8 test 0.89 0.971 0.54 0.82 0.83 0.57 0.09

Count-
Stream

test

0.55
0.68

0.91
0.28

0.64
0.68

0.24
0.23

0.36
0.28

0.52
0.50

0.23
0.70

Parking
test 0.48 0.30 0.73 0.30 0.18 0.38 0.977

Minim.
Distance

test
0.99 0.09 0.82 0.57 0.004 0.51 0.32

3D
Spheres 0.88 0.96 0.74 0.92 0.28 0.47 0.15

Sqeeze
test 0.004 0.71 0.14 0.45 0.53 0.96 0.17

O-SUM
test 0.42 0.31 0.50 0.03 0.30 0.48 0.26

Run test

0.12
0.80
0.39
0.86

0.85
0.69
0.19
0.27

0.96
0.14
0.34
0.61

0.12
0.02
0.82
0.40

0.47
0.68
0.78
0.40

0.80
0.52
0.87
0.91

0.65
0.31
0.82
0.56

Craps
test

0.49
0.81

0.92
0.24

0.26
0.41

0.24
0.03

0.39
0.92

0.75
0.30

0.99
0.24

Table 3: Results from Diehard tests applied on the sequences generated by
PGNG when irrational number is non-transcendental. No. of passed tests /
No. of total tests are presented

Seq.
name Seq. 1 Seq.

2a
Seq.
2b

Seq.
3a

Seq.
3b

Seq.
4a

Seq.
4b

Irr.
number ϕ √2 √2 √3 √3 √7 √7

 No. of passed tests / total tests

Bit
stream

test
20/20 19/20 20/20 19/20 20/20 20/20 20/20

OPSO 23/23 22/23 18/23 21/23 17/23 21/23 22/23

OQSО 26/28 28/28 28/28 28/28 25/28 25/28 28/28
DNA
test 31/31 28/31 28/31 31/31 30/31 30/31 31/31

Count
Bytes
test

23/25 23/25 22/25 23/25 24/25 24/25 24/25

From the last two tables, we can conclude that the generated
sequences passed almost all Diehard tests.

In Table 4 and Table 5, we present the results from Diehard
tests obtained from sequences generated from the digits of
transcendent irrational numbers.

Table 4: Results from Diehard tests applied on the sequences generated by
PGNG when irrational number is transcendental. Obtained p-values are
presented

Seq.
name

Seq.
5a

Seq.
5b

Seq.
5c

Seq.
6

Seq.
7a

Seq.
7b

Seq.
8

Irr.
number sin 1 sin 1 sin 1 π e e ln 2

 p-value
Birthday
Spacings

test
0.40 0.05 0.17 0.56 0.03 0.08 0.24

OPERM-
5

0.98
0.94

0.05
0.73

0.20
0.99

0.68
0.32

0.95
0.27

0.19
0.99

0.57
0.49

Binary-
31 test 0.33 0.66 0.41 0.77 0.49 0.81 0.99

Binary-
32 test 0.60 0.61 0.62 0.65 0.72 0.32 0.64

Binary-
6x8 test 0.18 0.22 0.89 0.55 0.31 0.16 0.14

Count-
Stream

test

0.40
0.26

0.01
0.34

0.87
0.03

0.43
0.31

0.90
0.45

0.80
0.51

0.80
0.04

Parking
test 0.006 0.19 0.98 0.71 0.27 0.34 0.69

Minim.
Distance

test
0.92 0.03 0.55 0.01 0.35 0.86 0.72

3D
Spheres 0.49 0.09 0.99 0.86 0.78 0.46 0.15

Sqeeze
test 0.14 0.84 0.61 0.27 0.87 0.66 0.85

O-SUM
test 0.99 0.003 0.36 0.31 0.61 0.52 0.82

Run test

0.53
0.08
0.97
0.52

0.25
0.93
0.39
0.013

0.76
0.34
0.84
0.21

0.10
0.61
0.13
0.73

0.42
0.74
0.97
0.48

0.36
0.28
0.39
0.71

0.25
0.65
0.44
0.51

Craps
test

0.15
0.35

0.05
0.58

0.71
0.60

0.45
0.67

0.99
0.99

0.86
0.83

0.46
0.64

Table 5: Results from tests in Diehard battery, when irrational number is
transcendental. Results are given with No. of passed tests / No. of total tests.

Seq.
name

Seq.
5a

Seq.
5b

Seq.
5c Seq. 6 Seq.

7a
Seq.
7b Seq. 8

Irr.
number sin 1 sin 1 sin 1 π e e ln 2

 No. of passed tests / total tests
Bit

stream
test

19/20 19/20 19/20 16/20 18/20 20/20 19/20

OPSO 19/23 21/23 20/23 20/23 21/23 21/23 23/23

OQSО 27/28 28/28 25/28 28/28 27/28 27/28 24/28
DNA
test 30/31 30/31 29/31 31/31 30/31 26/31 31/31

Count
Bytes
test

20/25 24/25 23/25 25/25 23/25 23/25 24/25

Analyzing the results from Table 4 and Table 5, we can
conclude that the sequences generated from the digits of
transcendent irrational numbers also passed almost all Diehard tests.
As we concluded from Table 1, exception is only the sequence
obtained using the digits from the sin 1, where the results are a little

169

INTERNATIONAL SCIENTIFIC JOURNAL "MATHEMATICAL MODELING" WEB ISSN 2603-2929; PRINT ISSN 2535-0986

YEAR I, ISSUE 4, P.P. 167-170 (2017)

bit worse, but these sequences also passed more of the considered
tests.

5. Conclusions
In this paper, we generate sequences using PRNG based on

digits of different irrational numbers. Our goal is to check if the
kind of irrational numbers (non-transcendent or transcendent) has
influence to the randomness of generated sequences. Our
expectations were that the transcendent numbers will give better
results than non-transcendent ones, but the results reject our
expectations. They confirm that almost all tested irrational numbers
are good for using in our PRNGs and there is not a significant
difference in the randomness of the generated sequences in the both
cases.

Acknowledgements
This work was partially financed by the Faculty of Computer

Science and Engineering at the "Ss. Cyril and Methodius"
University in Skopje.

References

1. Chudnovsky D., G. Chudnovsky The computation of
classical constants, in: Proceedings of the National Academy of
Sciences of the USA 86, 1989, pp. 8178--8182

2. Dimitrievska Ristovska, V. Pseudo random generator based
on irrational numbers, in: Trajanov D., V. Bakeva (eds.): ICT-
Innovations 2017, Data Driven Innovations, Conference Web
Proceedings, 2017, pp. 105--113

3. Esmenjaud-Bonnardel M. ´Etude Statistique des D´ecimales
de Pi, Revue Francaise de Techniques Informatiques 8 (4), 1965,
pp. 295--306

4. L'Ecuyer P. History of uniform random number generation,
Chan W. K. V., D’Ambrogio A., Zacharewicz G., Mustafee N.,
Wainer G., and Page E., eds.: DIRO, GERAD, and CIRRELT,
Proceedings of the 2017 Winter Simulation Conference, 2017

5. Marsaglia G., W. W. Tsang Some difficult-to-pass tests of
randomness, Journal of Statistical Software, Volume 7, Issue 3,
2002

6. Metropolis N., G. Reitwiesner, J. von Neumann Statistical
Treatment of Values of First 2000 Decimals Digits of E and Pi
Calculated on the ENIAC, Mathematical Tables and Other Aids to
Computation 4, 1950

7. Pathria R. K. A Statistical study of randomness among the
first 10000 digits of Pi, Mathematics of Computation 16, 1962, pp.
188--197

8. Rogers I., G. Harrell, J. Wang Using Pi digits to generate
random numbers: A Visual and statistical analysis, Int'l Conf.
Scientific computing | CSC'15 |

9. Yee A. J. Y-Cruncher—A Multi-Threaded Pi-Program, 2017

170

INTERNATIONAL SCIENTIFIC JOURNAL "MATHEMATICAL MODELING" WEB ISSN 2603-2929; PRINT ISSN 2535-0986

YEAR I, ISSUE 4, P.P. 167-170 (2017)

