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Abstract: Pseudo-random number generators (PRNG) based on irrational numbers are proposed elsewhere. They generate random 
numbers using digits of real numbers which decimal expansions neither terminate nor become periodic and practically their decimal 
expansion has infinite period. Using that algorithm, we generate sequences of random numbers and then we check their randomness with 
statistical tests from Diehard battery. Our main idea is to check is there a difference in the randomness of the generated sequences if digits of 
any irrational non- transcendental number (like √2,√3,√5, …  )  are used versus  the case when digits of a transcendental number (like π or 
e) are used. In our experiments we use about 3·107 digits of a given non-periodic irrational or transcendental number. Many experiments
were done and all generated sequences by proposed PRNG based on irrational numbers passed the Diehard tests very well. We may
conclude that there is not a significant difference in the randomness of the generated sequences in the both cases (irrational non-
transcendental versus irrational transcendental number).
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1. Introduction
Pseudo-random number generator (PRNG) is an algorithm

which generates a long sequence of numbers r1, r2, … which are 
elements of a given set of numbers and the distribution of generated 
numbers r1, r2, …  is supposed to be uniform.    

A sequence of obtained random numbers r1, r2, …  should have 
two important properties: uniformity (i.e., they are equally probable 
everywhere) and independence (i.e., the current value of a random 
variable  does not depend on the previous values).  

In practice, we cannot construct an ideal PRNG, since the way 
we are building the mechanism is not a random one, but in fact it is 
completely determined by an initial value. This affects the 
uniformity and independence of the produced sequences and r1, r2, 
… and that is why the word "pseudo" is used and we have to 
measure the randomness of the obtained sequences.  

A good random number generator should have some additional 
qualities as large period and small order computational complexity.  

This paper is organized as follows. In Section 2 we give a 
background and overview of related works. In Section 3 we explain 
basic ideas for construction of our generator of pseudo random 
numbers [2], basic principles for usage of statistical tests from 
Diehard battery and then we present the algorithm for the generator. 
The obtained results are given in Section 4. In Section 5, some 
conclusions are made.   

2. Background and overview of related works
In this section we present some historical facts recall on

L'Ecuyer (2017) in [4] about PRNGs which use irrational numbers. 

The inspiration for using successive digits of π, e or any other 
transcendental number in order to generate  a random number 
sequence is an old idea.  

For example, Metropolis et al. (1950) in [6] succeeded to 
compute 2000 decimals of π and e and confirmed that these 
sequences pass elementary statistical tests. This testing was 
extended to the first 10000 decimals by Pathria (1962) (in [7]) and 
to 100000 decimals by Esmenjaud-Bonnardel (1965) (in [3]), and 
all of these sequences very well pass elementary statistical tests.  

Till now, many sequences of digits of π  have been obtained and 
tested and many papers have discussed this idea. The world record 
in 2016 was 22 459 157 718 361 decimal digits of π, computed in 

about four months by Peter Trueb using an algorithm of 
Chudnovsky and Chudnovsky (1989) (in [1]), Bellard’s formula, 
and the Y-Cruncher multi-threaded software (Yee, 2017) (in [9]). 
However, to give good reason that the successive digits of π (or any 
other given irrational number) in a given base b can be taken as 
random sequence, it should be good to know that this sequence of 
digits is uniformly distributed in base b, i.e., that each of the b 
possible digits appears with frequency 1/b (on average) in the 
infinite sequence. For π, practical counting over several digits 
suggests that this is true, but there is no known proof of it.  

However, the property of uniform distribution of the digits of 
any given irrational number is not sufficient; we need to have the 
uniform distribution of the pairs, triplets, and so on. 

In the latest years, there are some trials to design a PRNG using 
digits of any irrational number since irrational numbers have 
decimal expansions that neither terminate nor become periodic, 
practically their decimal expansion has infinite period. In [8], 
Rogers and al. (2015) proposed an algorithm for pseudo-random 5-
digit numbers using the digits of π  and made some visual and 
statistical analyses for goodness of proposed generator.  

In [2], the author proposed a new algorithm for generating 
pseudo-random numbers using digits of any irrational number. The 
randomness of obtained sequences of numbers is checked by some 
statistical tests and the test results are very well. 

In this our paper, the main work is: using algorithm proposed in 
[2], to check is there a difference in the  randomness of the 
generated sequences, if digits of any irrational non- transcendental 
number (like  √2,√3,√5, …  or the golden ratio 𝜑𝜑 = 1+√5

2
 ) are used 

versus  the case when digits of a transcendental number (like π or e) 
are used. 

3. PRNG based on digits of irrational numbers

3.1 The main idea in the algorithm– n-tuples 
We will explain the ideas for designing a PRNG using digits of 

an irrational number ([2]), by example digits of π. In this example, 
we will use sequential n-tuples, for example 10-tuples of digits from 
the decimal expansion of π. Using some database we will take l 

167

INTERNATIONAL SCIENTIFIC JOURNAL "MATHEMATICAL MODELING" WEB ISSN 2603-2929; PRINT ISSN  2535-0986

YEAR I, ISSUE 4, P.P. 167-170 (2017)



digits of π. In the next step, decimal 10-digit number from every 10-
tuple is generated. 

If we take the obtained 10-digit number (which is obtained 
directly from the 10-tuple) then its value is in the range 0 <= 
number <1010 and we need to check if the number is greater than 
max (maximal allowed generated number). If it is true, we have to 
omit the obtained number and continue with checking the next 10-
tuple. The 10-tuples are taken without overlapping.  

But, we will improve the previous idea if we scale the obtained 
10-digit number (which is obtained directly from the 10-tuple) from 
the range  0 <= number <1010 in the range 0 <= number < 232. In 
this way, there is no need to check if the scaled number is greater 
than max. Note that if the sequence of generated number is uniform 
then the scaled sequence will be uniform on the set {0,1,…,max}. 

These steps from the last idea will be repeated until we obtain l 
numbers. 

 

3.2 Input parameters and the algorithm  
In order to produce different sequences, each time when we 

started generating of a new sequence, we must initialize the 
beginning pointer to an arbitrary digit of the chosen irrational 
number. The position of the beginning pointer will be an input 
parameter. Also, the input parameter will be the length n of digits 
(n-tuples) for generating of each number in the sequence (in the 
previous example, we choose n = 10). Let stress that we compute 
the digits of any irrational number using package Mathematica. 

Algorithm 
  [1] Choose an irrational number which digits will be used for 

generating random numbers. 

 [2] Set the length n of digits for generating of each number in 
the sequence, the position s of the beginning pointer (the first digit 
where the generating starts), the length l of generated sequence and 
the maximum max of the generated numbers. 

 [3]  Let counter=0. 

 [4] Until counter <=l do 

 [4.1] Use slice size of n digits to generate a number r.  

 [4.2] Scale 𝑟𝑟 ← � 𝑟𝑟
10𝑛𝑛−1

∙ 𝑚𝑚𝑚𝑚𝑚𝑚�. 

 [4.3] Put pointer position s ← s + n. 

 [4.4]  counter = counter + 1. 

We will notice that software realization of this algorithm and 
many experiments were done using package Mathematica. 

 

3.5. Diehard tests 
Nowadays there are a lot of tests for randomness and all of them 

measure the difference between the generated pseudo-random 
sequences and the theoretically supposed ideal random sequence. 
We say that a PRNG passes a test if the random sequences produced 
by that PRNG pass the test with a probability near to 1. We can 
classify PRNGs depending of the tests they have passed. So, for 
obtaining a better classification we should have many different 
tests. 

Over several years, George Marsaglia [5] has developed 
Diehard tests as a battery of statistical tests for measuring the 
quality of a random number generator.  This battery was published 
in 1995. It consists of 15 statistical tests, and it is a comprehensive 
set of statistical tests for PRNG and serves as some kind of litmus 
for checking and certification of PRNG. If a PRNG passes Diehard 
statistical tests, then it can be used in deeper scientific researches. 

The Diehard battery consists of Birthday Spacings Test, 
Overlapping 5-Permutation Test (OPERM-5), Binary rank tests, 
31× 31 Binary Matrix, 32 × 32 Binary Matrix, 6 × 8 Binary Matrix, 
Bitstream Test, Test OQSO (Overlapping quadruples sparse 
occupancy test), Test DNA, Count the 1's Test for specific bytes, 
Parking test, Minimum Distance Test, 3D Spheres Test, Squeeze 
Test, Overlapping Sums Test, Runs Test and Craps Test. 

We will note that the most of the tests in Diehard return a p-
value, which should be uniform on [0,1) if the input file contains 
truly independent random bits. Those p-values are obtained by p = 
F(X), where F is the assumed cumulative distribution function of 
the sample (random variable X) – often normal. But that assumed F 
is just an asymptotic approximation, for which the fit will be worst 
in the tails. Therefore p < 0.025 or  p > 0.975 means that the PRNG 
has "failed the test at the 0.05 level". 

 

4. Results obtained from Diehard tests and 
discussion  

Diehard tests have requirements with precise format of the 
numbers whose randomness they test. Explicitly, the file of the 
numbers should be a binary file of a hexadecimal integer 
nonnegative numbers with approximately 11 MB size. There should 
be ten numbers in each row, about 2 870 000 numbers in the file 
and the maximum number in the file should be max = 232 − 1. 

As we mentioned previously, some of Diehard tests give p-
value, and some of them are performed several times and the result 
from these tests is the ratio of the number of passed tests and the 
total number of tests. Therefore, we presented the results in 
separated tables depends on the kind of test output. 

In the next tables we will present some of the obtained results of 
Diehard tests applied to the sequences generated by our proposed 
algorithm in [2].  

In Table 1, we present the percentage of passed Diehard test for 
14 sequences generated by our PRNG using different irrational 
numbers or same irrational number with different initial pointer s or 
with different initial length n. The bold line in the table separates 
the sequences obtained from the digits of non-transcendent 
irrational numbers from them obtained from the digits of 
transcendent irrational numbers. Note that almost all sequences pass 
more than 90% of the Diehard test. Exception is only the sequence 
obtained using the digits from the sin 1, where the percentage of 
passed tests is between 80%and 90%, but it is satisfactory.  

 
Table 1 Success of Diehard tests 

Irrational 
number 

Seq. 
number n s 

Time for 
sequence 

generation (in 
sec.) 

Success 
of 

Diehard 
tests 

ϕ Seq. 1 10 1 630 91 % 
√2 Seq. 2a 10 2 670 99 % 
√2 Seq. 2b 10 1 678 98 % 
√3 Seq. 3a 10 6 636 97 % 
√3 Seq. 3b 12 2 653 92 % 
√7 Seq. 4a 10 6 654 99 % 
√7 Seq. 4b 10 3 662 91 % 

sin 1 Seq. 5a 10 2 351 85 % 
sin 1 Seq. 5b 10 4 478 87 % 
sin 1 Seq. 5c 9 4 529 86 % 
π Seq. 6 10 8 485 94 % 
e Seq. 7a 10 2 586 90 % 
e Seq. 7b 10 1 577 94% 

ln 2 Seq. 8 10 3 627 95 % 
 

In Table 2 and Table 3, we present the results from Diehard 
tests obtained from sequences generated from the digits of non-
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transcendent numbers. In Table 2, we give the results of Diehard 
test which output is p-value and in Table 3, the results when the 
output is the ratio of the number of passed tests and the total 
number of tests. The red (bold) values in the tables mean that the 
sequence does not pass the corresponding test.  

 

Table 2: Results from Diehard tests applied on the sequences generated by 
PGNG when irrational number is non-transcendental. Obtained  p-values 
are presented 

Seq. 
name 

Seq. 
1 

Seq. 
2a 

Seq. 
2b 

Seq. 
3a 

Seq. 
3b 

Seq. 
4a 

Seq. 
4b 

Irr.  
number ϕ √2 √2 √3 √3 √7 √7 

 p-value 
Birthday 
Spacings 

test 
0.10 0.87 0.37 0.40 0.23 0.15 0.34 

OPERM-
5 

0.15 
0.14 

0.82 
0.12 

0.08 
0.57 

0.91 
0.80 

0.29 
0.70 

0.31 
0.72 

0.93 
0.49 

Binary- 
31 test 0.34 0.85 0.78 0.32 0.68 0.32 0.73 

Binary- 
32 test 0.79 0.36 0.32 0.86 0.64 0.72 0.46 

Binary-
6x8 test 0.89 0.971 0.54 0.82 0.83 0.57 0.09 

Count-
Stream 

test 

0.55 
0.68 

0.91 
0.28 

0.64 
0.68 

0.24 
0.23 

0.36 
0.28 

0.52 
0.50 

0.23 
0.70 

Parking 
test 0.48 0.30 0.73 0.30 0.18 0.38 0.977 

Minim.  
Distance 

test 
0.99 0.09 0.82 0.57 0.004 0.51 0.32 

3D 
Spheres 0.88 0.96 0.74 0.92 0.28 0.47 0.15 

Sqeeze 
test 0.004 0.71 0.14 0.45 0.53 0.96 0.17 

O-SUM 
test 0.42 0.31 0.50 0.03 0.30 0.48 0.26 

Run test 

0.12 
0.80 
0.39 
0.86 

0.85 
0.69 
0.19 
0.27 

0.96 
0.14 
0.34 
0.61 

0.12 
0.02 
0.82 
0.40 

0.47 
0.68 
0.78 
0.40 

0.80 
0.52 
0.87 
0.91 

0.65 
0.31 
0.82 
0.56 

Craps 
test 

0.49 
0.81 

0.92 
0.24 

0.26 
0.41 

0.24 
0.03 

0.39 
0.92 

0.75 
0.30 

0.99 
0.24 

 

Table 3: Results from Diehard tests applied on the sequences generated by 
PGNG when irrational number is non-transcendental. No. of passed tests / 
No. of total tests are presented 

Seq. 
name Seq. 1 Seq. 

2a 
Seq. 
2b 

Seq. 
3a 

Seq. 
3b 

Seq. 
4a 

Seq. 
4b 

Irr. 
number ϕ √2 √2 √3 √3 √7 √7 

 No. of passed tests / total tests 

Bit 
stream 

test  
20/20 19/20 20/20 19/20 20/20 20/20 20/20 

OPSO 23/23 22/23 18/23 21/23 17/23 21/23 22/23 

OQSО 26/28 28/28 28/28 28/28 25/28 25/28 28/28 
DNA 
test 31/31 28/31 28/31 31/31 30/31 30/31 31/31 

Count 
Bytes 
test 

23/25 23/25 22/25 23/25 24/25 24/25 24/25 

 

 

From the last two tables, we can conclude that the generated 
sequences passed almost all Diehard tests.  

 

In Table 4 and Table 5, we present the results from Diehard 
tests obtained from sequences generated from the digits of 
transcendent irrational numbers.  

 

Table 4: Results from Diehard tests applied on the sequences generated by 
PGNG when irrational number is transcendental. Obtained p-values are 
presented 

Seq. 
name 

Seq. 
5a 

Seq. 
5b 

Seq. 
5c 

Seq. 
6 

Seq. 
7a 

Seq. 
7b 

Seq. 
8 

Irr. 
number sin 1 sin 1 sin 1 π e e ln 2 

 p-value 
Birthday 
Spacings 

test 
0.40 0.05 0.17 0.56 0.03 0.08 0.24 

OPERM-
5 

0.98 
0.94 

0.05 
0.73 

0.20 
0.99 

0.68 
0.32 

0.95 
0.27 

0.19 
0.99 

0.57 
0.49 

Binary-
31 test 0.33 0.66 0.41 0.77 0.49 0.81 0.99 

Binary-
32 test 0.60 0.61 0.62 0.65 0.72 0.32 0.64 

Binary-
6x8 test 0.18 0.22 0.89 0.55 0.31 0.16 0.14 

Count-
Stream 

test 

0.40 
0.26 

0.01 
0.34 

0.87 
0.03 

0.43 
0.31 

0.90 
0.45 

0.80 
0.51 

0.80 
0.04 

Parking 
test 0.006 0.19 0.98 0.71 0.27 0.34 0.69 

Minim. 
Distance 

test 
0.92 0.03 0.55 0.01 0.35 0.86 0.72 

3D 
Spheres 0.49 0.09 0.99 0.86 0.78 0.46 0.15 

Sqeeze 
test 0.14 0.84 0.61 0.27 0.87 0.66 0.85 

O-SUM 
test 0.99 0.003 0.36 0.31 0.61 0.52 0.82 

Run test 

0.53 
0.08 
0.97 
0.52 

0.25 
0.93 
0.39 
0.013 

0.76 
0.34 
0.84 
0.21 

0.10 
0.61 
0.13 
0.73 

0.42 
0.74 
0.97 
0.48 

0.36 
0.28 
0.39 
0.71 

0.25 
0.65 
0.44 
0.51 

Craps 
test 

0.15 
0.35 

0.05 
0.58 

0.71 
0.60 

0.45 
0.67 

0.99 
0.99 

0.86 
0.83 

0.46 
0.64 

 

Table 5: Results  from tests in Diehard battery, when irrational number is 
transcendental. Results are given with No. of passed tests / No. of total tests. 

Seq. 
name 

Seq. 
5a 

Seq. 
5b 

Seq. 
5c Seq. 6 Seq. 

7a 
Seq. 
7b Seq. 8 

Irr. 
number sin 1 sin 1 sin 1 π e e ln 2 

 No. of passed tests / total tests 
Bit 

stream 
test    

19/20 19/20 19/20 16/20 18/20 20/20 19/20 

OPSO 19/23 21/23 20/23 20/23 21/23 21/23 23/23 

OQSО 27/28 28/28 25/28 28/28 27/28 27/28 24/28 
DNA 
test 30/31 30/31 29/31 31/31 30/31 26/31 31/31 

Count 
Bytes 
test 

20/25 24/25 23/25 25/25 23/25 23/25 24/25 

 

Analyzing the results from Table 4 and Table 5, we can 
conclude that the sequences generated from the digits of 
transcendent irrational numbers also passed almost all Diehard tests. 
As we concluded from Table 1, exception is only the sequence 
obtained using the digits from the sin 1, where the results are a little 
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bit worse, but these sequences also passed more of the considered 
tests. 

5. Conclusions 
In this paper, we generate sequences using PRNG based on 

digits of different irrational numbers. Our goal is to check if the 
kind of irrational numbers (non-transcendent or transcendent) has 
influence to the randomness of generated sequences. Our 
expectations were that the transcendent numbers will give better 
results than non-transcendent ones, but the results reject our 
expectations. They confirm that almost all tested irrational numbers 
are good for using in our PRNGs and there is not a significant 
difference in the randomness of the generated sequences in the both 
cases. 
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