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Abstract: In this paper we introduce, analyze and apply persistent homology, one of the main algorithms of TDA, on some real data 
sets from the bio-medical field. Topological data analysis (TDA) is a field which is a synergy between mathematics, data science and computer 
science. The main goal of TDA is studying the shape of data using topological techniques. TDA proposes new algorithms that deal with these 
problems based on tools or concepts from algebraic topology and pure mathematics. We analyze the results and give a topological 
characterization of the dataset and propose to use them in future work. 
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1. Introduction 

 

       Topology is a mathematical field that studies properties of 
topological spaces, such as connectedness and compactness, 
invariant of continuous deformations. Algebraic topology studies 
topological spaces using techniques from algebra by associating 
algebraic objects such as groups with topological spaces. One of the 
main tools of algebraic topology is homology. Homology is a 
mathematical tool which associates sequences of algebraic objects 
with topological spaces. One way to study a topological space is to 
find and compute its homology groups. The motivation behind 
defining homology groups was that two shapes can be distinguished 
by examining their holes. For example, a disk is different from a 
circle, or a disk is not a circle, because the disk is solid while the 
circle has a hole through it. Homology groups are set of invariants of 
a topological space. These invariants characterize the topological 
space. The number of structures for some dimension k is the rank of 
the 𝑘-dimensional homology group of the topological space. The 
number of such structures is known as a Betti number (𝛽 ) of 
dimension 𝑘. 

       The main idea of Topological Data Analysis is application of 
these mathematical concepts on real data. Persistent homology is an 
algorithm from TDA that use homology as main idea. The algorithm 
computes topological features of a space. 

       

2. Mathematical Background 

 

The starting point is to construct a topological space from a given 
dataset. We will define some necessary mathematical concepts. 

Definition 1. A 𝒌-simplex is a convex hull of 𝒌 + 𝟏 affinely 
independent points 𝑺 = {𝒙𝟎, 𝒙𝟏, , … , 𝒙𝒌}  ⊆ ℝ𝒅 . The points of S are 

vertices of the simplex. 
The low dimensional simplices (plural: simplices or simplexes) 

have special names: 

- a 0-simplex is  called a vertex; 

- a 1-simplex is called an edge; 

- a 2-simplex is called a triangle: 

-  
Figure 1. 0-simplex 1-simplex, 2-simplex, 3-simplex 

 

Definition 2. Let σ be a k-simplex defined 𝒐𝒏 𝑺 =
{𝒙𝟎, 𝒙𝟏, , … , 𝒙𝒌}. A simplex 𝝉 defined by 𝑻 ⊆  𝑺 is a face of 𝝈 and 
has 𝝈 as a coface. The relationship is denoted with 𝝈 ≥  𝝉 and 𝝉 ≤
 𝝈. 

      Definition 3. Let K be a set. Simplicial complex S is a collection 
of subsets of 𝑲 called simplices such that:  

1. For all 𝒙 ∈  𝑲, {𝒙}  ∈  𝑺.  

2. If τ ⊆ σ ∈ S, then τ ∈ S. 

 
Figure 2.  An example of a simplicial complex 
 

We call the sets {x} the vertices of K. Definition 3 gives a more 
abstract definition of simplicial complex that can be applied to a data 
where vertices will be the data points. Topological invariants of the 
space, such as holes and number of connected components, can be 
computed from a simplicial complex, see Figure 2. One of the key 
ideas of TDA is to construct a simplicial complex from a dataset. 
There are a few ways to construct such a simplicial complex [1].  In 
other words simplicial complexes are high dimensional analogues of 
graphs. We will explain the steps of the process. 

1. Construction of a topological space from a given point cloud 

The open (metric) ball of radius  ε >0 centered at a point 𝑚 ∈ 𝑀, 
usually denoted by 𝐵(𝑚; ε) is defined by 
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𝐵(𝑚; ε) = {n ∈ 𝑀 | 𝑑(𝑚, 𝑛) ≤ ε} 

Let 𝑴 be a point cloud in ℝ𝒅 and 𝜺 > 𝟎. The 𝜺 −neighborhood of the 
point cloud 𝑴 is the set 𝑺(𝒎; 𝜺), defined as  

 

𝑺(𝒎; 𝛆) = 𝑩

𝒎𝛆𝐌  

(𝒎, 𝛆), 𝛆 ≥ 𝟎. 

It is known that every 𝛆 −neighborhood is a topological space. 
PH gives a summary of a sequence of such topological spaces for 
different values for 𝛆. The key idea here is to see how topological 
characteristics are changing and which features are the same as 𝛆 
increases. 

2. Construction of a simplicial complex from topological space  

In our experiments we will use Vietoris-Rips complexes. For a 
given point cloud 𝑴 and 𝛆 ≥ 𝟎 we construct Vietoris-Rips complex 
denoted as 𝑽𝑹(𝑴; 𝛆). 𝑽𝑹(𝑴; 𝛆) is defined as: 

𝑽𝑹(𝑴; 𝛆) = 𝑽𝑹(𝑴; 𝛆)𝒏 

𝒏 𝟎

 

𝑽𝑹(𝑴; 𝛆)𝒏

= (𝒎𝟎, … , 𝒎𝒏) 𝒅 𝒎𝒊𝒎𝒋 ≤ 𝛆, 𝐟𝐨𝐫 𝐚𝐥𝐥 𝐢, 𝐣 ∈ {𝟏, 𝟐, … , 𝐧}  

Note that 𝑽𝑹(𝑴; 𝛆)𝒏 is the set of all n-simplexes of the simplicial 
complex. The simplicial complex constructed from the topological 
space is the approximation of the topological space. Hence, every 
simplicial complex is a topological space which is why we can 
analyze its topological features. 

3. Computing and representing homology groups 

Linear algebra is used for computing homology groups of a given 
simplicial complex. The 𝒌𝒕𝒉 homology group 𝑯𝒌(S) of a simplicial 
complex 𝑺 is defined as abelian quotient group. The rank of the 𝑯𝒌,
𝒓𝒂𝒏𝒌(𝑯𝒌(𝑺)), is called 𝒌𝒕𝒉 Betti number of 𝑺. It gives a measure of 
the number of k-dimensional holes in S. The homology groups are 
computed for every simplicial complex derived from the topological 
space for each 𝛆. Thus, by increasing 𝛆 we can trail elements of 
homology groups of the corresponding complex 𝑽𝑹(𝑴; 𝛆).  We can 
visualize the existence of homology groups as 𝛆 increases using a 
persistent barcode. Persistent barcode is a topological summary of a 
topological space. When an element shows at some 𝛆, we say that an 
element is born and denote that 𝛆 as  𝛆𝒃𝒊𝒓𝒕𝒉. When the element 
disappears at some 𝛆 (it is mapped to 0), we say that the element has 
died and we denote that 𝛆 as  𝛆𝒅𝒆𝒂𝒕𝒉. Every element is represented 
with a “bar” (a line in the persistent barcode) on the interval 
[ 𝛆𝒃𝒊𝒓𝒕𝒉.  𝛆𝒅𝒆𝒂𝒕𝒉). For example, in 𝑯𝟎 , this will correspond to the 

formation of a connected component in the simplicial complex at 

 𝛆𝒃𝒊𝒓𝒕𝒉 and connecting that component with others in a way that they 
will form a circle in  𝛆𝒅𝒆𝒂𝒕𝒉, see Figure 3. If we observe the Figure 3, 
we can see that the orange line is a bar which corresponds to an 
element of a homology group of dimension 1, which appears near  𝛆𝟐. 
It clearly be seen that there is one circle at the last simplex. Also, we 
can see that near  𝛆𝟐 there is one violet line which means that we have 
one connected component which corresponds with the given simplex.  

 

3. Diabetes datasets 

 

      For this case study we picked two diabetes datasets. First dataset 
is the Miller-Reaven dataset. Reaven and Miller (1979) examined the 
relationship among blood chemistry measures of glucose tolerance 
and insulin in 145 non-obese adults [10]. They used the PRIM9 
system to visualize the data in 3D, and discovered a peculiar pattern 
that looked like a large blob with two wings in different directions. 
In this dataset, the data is split up in three categories. Data from non-
diabetic patients, data from patients with diabetes classified as overt 
and data from patients with diabetes classified as chemical diabetes. 
Overt diabetes is the most advanced stage, characterized by elevated 
fasting blood glucose concentration and classical symptoms. 
Preceding overt diabetes is the latent or chemical diabetic stage, with 
no symptoms of diabetes but demonstrable abnormality of oral or 
intravenous glucose tolerance. There are 145 observations on the 
following 6 variables: 

       relwt 

relative weight, expressed as the ratio of actual weight to 
expected weight, given the person's height, a numeric vector 

glufast 

fasting plasma glucose level, a numeric vector 

glutest 

test plasma glucose level, a measure of glucose intolerance, a 
numeric vector 

instest 

plasma insulin during test, a measure of insulin response to oral 
glucose, a numeric vector 

sspg 

Figure 3. An example of Vietoris-Rips filtration of a space. There are different complexes for different 
values for ε. Violet horizontal lines shows barcodes in dimension 0 and orange line shows barcode for 
dimension 1. 
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Figure 6. Persistent for non-diabetic group 

Figure 9. Persistent barcode for diabetic data 

steady state plasma glucose, a measure of insulin resistance, a 
numeric vector 

group 

diagnostic group, a factor with levels Normal, Chemical_Diabetic, 
Overt_Diabetic. 

 

4. Preliminary results and discussion 

      First, we apply persistent homology for each diabetic group of 
data. For the Chemical_Diabetic group the results are given in Figure 
4 and for Overt_Diabetic group the results are given in Figure 5.  

    We can see that the persistent barcodes are different. In Figure 4, 
the persistent barcode has more red bars, which means that there are 
more circles in the simplex constructed from the data for the 
Chemical_Diabetic group. In this case, there is significant 
topological difference in the simplexes which means the shape of the 
data of the two groups is different. A question that arises here is 
which physical or real factor makes the difference? These factors 
may be crucial for better understanding the different types of 
diabetes.  

     Next, we apply persistent homology on both the diabetic group 
and the non-diabetic group. The results are given in Figure 6 and 
Figure 7.  

According to the barcodes in Figure 6 and Figure 7, we can 
conclude that topological characteristics in the data of diabetic and 
non-diabetic groups are obvious. In the second persistent barcode, 
there are circles which are present most of the time.  

We apply persistent homology on the second dataset which 
contains data from diabetic and non-diabetic patients. This dataset is 
originally from the National Institute of Diabetes and Digestive and 
Kidney Diseases. The objective of the dataset is to diagnostically 
predict whether or not a patient has diabetes based on certain 
diagnostic measurements included in the dataset. Several constraints 
were placed on the selection of these instances from a larger database. 
In particular, all patients in this dataset are females at least 21 years 
old and of Pima Indian heritage. The results are given in Figure 8 and 
Figure 9. 

 

5. Further work and application in bio-medical field 

 

The main goal is to link the differences of the topological 
characterizations of the two types of diabetes to real factors. 
Persistent homology, and in general, TDA, can be applied in the bio-
medical field in many areas. The application of statistics allowed 
significant progress in understanding diseases. Knowing that, and the 
fact that TDA gives a new way of analyzing the data, specifically, 
analyzing the shape of the data, we think that TDA will be useful for 
medicine. It can be used to see how one factor changes the 
topological characteristics of the topological space underneath the 
given data, and how it is related to a disease. If we work in three 
dimensional Euclidean space, we may find some structural 
deformations of a system in the body. For example, to observe the 
deformations of the vasculature of some organ or tissue. In the future, 
we will investigate how persistent homology can be applied to 
characterize retinal and liver vasculature networks. TDA can also be 
applied on big data from the healthcare field. 
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Figure 4. Persistent barcode for the Chemical_Diabetic group 

Figure 5. Persistent barcode for the Overt_Diabetic group 

Figure 7. Persistent for diabetic groups 

Figure 8. Persistent barcode for non-diabetic data 

111

INTERNATIONAL SCIENTIFIC JOURNAL "MATHEMATICAL MODELING" WEB ISSN 2603-2929; PRINT ISSN 2535-0986

YEAR III, ISSUE 4, P.P. 109-112 (2019)



References 
 

 

[1] H. Edelsbrunner, “Persistent homology: theory and practice”,  2014. 

[2] Gunnar Carlsson, “Topology and data”. Bulletin of the American 
Mathematical Society. 46 (2), 2009, pp. 255–308. 

[3] J. R. Munkres,  Topology. vol. 2. Upper Saddle River: Prentice Hall, 
2000 

[4] llen Hatcher, Algebraic topology.  Cambridge University Press, 2002 

[5] G. Carlsson, A. Zomorodian, A. Collins, L. Guibas, J. (2005-12-01). 
"Persistence barcodes for shapes". International Journal of Shape 
Modeling. 

[6] Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, and Clément Maria. 
“Introduction to the r package tda. “, arXiv preprint arXiv:1411.1830, 
2014. 

[7] https://s3.amazonaws.com/cdn.ayasdi.com/wp-
content/uploads/2018/11/12131418/TDA-Based-Approaches-to-Deep-
Learning.pdf 

[8] https://en.wikipedia.org/wiki/Fluoroscopy 

[9]  Ulrich Bauer and Michael Lesnick.” Induced matchings of barcodes 
and the algebraic stability of persistence. In Proceedings of the thirtieth 
annual symposium on Computational geometry”, p. 355, 2014. 

[10] Reaven, G. M. and Miller, R. G. (1979). An attempt to define the nature 
of chemical diabetes using a multidimensional analysis. Diabetologia, 
16, 17-24. 

[11] A. J. Zomorodian, Topology for Computing, Cambridge, 2005 

[12] J. Nicponski and J.-H. Jung, Topological data analysis of vascular 
disease: A theoretical framework, BioRxiv, (2019), p. 637090. 

[13]  D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, Stability of 
persistence diagrams, Discrete & Computational Geometry, (2007), pp. 
103–120 

[14] A. Zomorodian and G. Carlsson, Computing persistent homology, 
Discrete & Computational Geometry, 33 (2005), pp. 249–274 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

         

112

INTERNATIONAL SCIENTIFIC JOURNAL "MATHEMATICAL MODELING" WEB ISSN 2603-2929; PRINT ISSN 2535-0986

YEAR III, ISSUE 4, P.P. 109-112 (2019)




