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ABSTRACT. Inthe present paper the so-called (Vilg,; a; y)-diaphony as a quan-
titative measure for the distribution of sequences and nets is considered. A class
of two-dimensional nets Zg’; ., of type of Zaremba-Halton constructed in a general-
ized Bz-adic system or Cantor system is introduced and the (Vilg, ; o; v)-diaphony
of these nets is studied. The influence of the vector a = (a1, 2) of exponential
parameters to the exact order of the (Vilg,; c;y)-diaphony of the nets Zg’;u is
shown. If @y = ag, then the following holds: if 1 < as < 2 the exact order is
(’)( = logN) for some € > 0, if s = 2 the exact order is (’)(—Vloj\%N) and if ag > 2

Nl—e
the exact order is O(ALM) for some € > 0. If a1 > a2, then the following holds:

if 1 < ag < 2 the exact order is O(ﬁ) for some € > 0, if as = 2 the exact
order is (’)(%) and if o > 2 the exact order is (’)(#) for some £ > 0. Here
N = By, where B, denotes the number of the points of the nets Zg’:y.
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1. Introduction

The functions of some complete orthonormal systems on the s—dimensional
unit cube [0, 1)® are used with a big success as an analytical tool for investigation
of the distribution of sequences and nets. The first example of these systems
is the trigonometric function systems. For an arbitrary integer k the function
er : [0,1) — C is defined as ey(x) = e*™** g € [0,1). For an arbitrary
vector k = (kq,...,ks) € Z° the function ey : [0 1)® — C is defined as ey(x) =
[Ty e (z),x = (21,...,x5) €[0,1)° The set Ty = {ex(x) : k € Z%x € [0,1)°}
is called trigonometric function system.

The second example is the system of the so-called Walsh functions in base b.
So, let b > 2 be a given integer. For an arbitrary integer £ > 0 and a real
x € [0,1) with the b-adic representations k=7 kb and @ = Y02 w;b~ ",
where k;,z; € {0,1,...,b— 1}, k, # 0 and for inﬁnitely many of ¢ x; £ b—1
the kth Walsh function is defined as ywaly (z) = e (Fozot++hva)

Let us signify Ng = NU {0}. For an arbitrary vector k = (k1,...,ks) € N§
the function ywaly : [0,1)° — C is defined as pwali(x) = [[;_; pwaly, (),
x=(21,...,25) €[0,1)% The set W(b) = {,walk(x) :k € N§,x € [0,1)%} is called
a system of Walsh functions in base b and was proposed by Chrestenson [2] and
W(2) is the original system of the Walsh [19] functions.

Yordzhev [2TH23] essentially used the b-adic arithmetic to solve some combi-
natorial problems.

The numerical measures for the irregularity of the distribution of sequences
and nets in [0, 1)*® give the order of the inevitable deviation of a concrete distribu-
tion from the ideal uniform distribution. Generally, they are different kinds of the
discrepancy and the diaphony. So, let £y = {x0,X1,...,Xxy—1} be an arbitrary
net of N > 1 points in [0,1)*. For an arbitrary vector x = (x1,...,x5) € [0,1)°
let us signify [0,x) = [0,21) X -+ x [0, z,) and

A(En;[0,x)) = #{x, : 0<n < N —1,x, € [0,x)}.

The star-discrepancy and the Ls—discrepancy of the net £y are defined, respec-
tively, as

D*(¢éy) =  sup W _ ij

[0,x)C[0,1)*

and
T(¢n) = /[01]s A(En:[0,x)) OX)) H“" - dz,
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In 1976 Zinterhof [24] introduced the notion of the so-called diaphony. So, the

diaphony of the net £y is defined as
2\2

1 N—-1
F(Ts;én) = Z R7*(k) N Z ex(Xn)
kez=\{0} n=0

where for each vector k= (k1, ..., ks) €Z° the coefficient R(k)=][;_, R(k;) and
for an arbitrary integer k
1 if k=0,
R(k) =

k| if k0.

In order to study sequences and nets constructed in b-adic system, in the last
twenty years, some new versions of the diaphony was defined. These kinds of the
diaphony are based on using complete orthonormal function systems constructed
also in base b. In 2001 Grozdanov and Stoilova [7] used the system W (b) of the
Walsh function to introduce the concept the so-called b-adic diaphony. So, the
b-adic diaphony of the net £y is defined as

1
2\3

F(W(b);fN): S — Z p(k)

(b+1)s—1 ez (0}

| Nl
— Z pywaly (x,,)
N n=0

where for a vector k = (k1,...,ks) € N§ the coefficient p(k) = H;Zl p(k;) and
for an arbitrary non-negative integer k

1 if k=0,
p(k)Z{

b=29 if b <k<bITl g>0,9€Z.

The diaphony F(W(2); £x) which is based on using the system W(2) is called
dyadic diaphony and was introduced by Hellekalek and Leeb [I1] .

In 1954 Roth [I6] obtained a general lower bound of the Ly —discrepancy of an
arbitrary net. He proved that for any net £ composed of N points in [0,1)® the
lower bound (log N) a1

T(n) > C(S)T (1)

holds, where C/(s) is a positive constant depending only on the dimension s.
In 1986 Proinov [I5] obtained a general lower bound of the diaphony of an
arbitrary net. So, for any net £y composed of N points in [0, 1)® the lower bound

F(Teitn) > () BN (2)

holds, where «(s) is a positive constant depending only on the dimension s.
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Cristea and Pillichshammer [3] obtained a general lower bound of the b-adic
diaphony of an arbitrary net. So, for any net {x; composed of N points in [0, 1)*

the lower bound o1
FOVO)iex) = O, 5) 12BN T 3

holds, where C(b,s) is a positive constant depending on the base b and the
dimension s.

Now we will present the constructions of objects for which usually the names
low-discrepancy sequences and nets are used. The most famous examples was
proposed by Van der Corput [I7] and Halton [9]. So, let b > 2 be a given integer.
For an arbitraryinteger ¢ > 0 with the b-adic representation ¢ = ZT:O i;b7, where
ij € {0,1,...,b—1}, i # 0 we put py(i) = 37" 5747 The sequence (26(1)) 0
is called Van der Corput-Halton sequence. a

In another direction of effort to improve the construction of the Halton se-
quences, several researches have studied various ways of generalizing its defi-
nition. The first technique is to include permutations, chosen either determin-
istically or randomly, in the radical-inverse function. This idea was developed
by Faure [5l[6]. Let ¥ = (0;);>0 be an arbitrary sequence of permutations of the
set of the b-adic integers {0,1,...,b — 1} which fix 0, so for j > 0 ¢;(0) = 0.
The generalized radical inverse functions p,? : Ng — [0,1) with respect to the
sequence Y is defined by py’ (327 i;07) = 71 Uljj(jfl) The sequence (p;'(4)), -,
is called generalized Van der Corput sequence in base b with respect to the
sequence .

The sequence (pb(z)) was used for many purposes, especially to construct

i>0
two-dimensional nets. Let b > 2 and v > 0 be fixed integers. For an arbitrary
integer ¢ such that 0 < i < b” — 1 we denote 7,(i) = 3. The net Ry, =

{(m(2),pp(i)) : 0 < i < b” — 1} is called a net of Roth [16] in base b.
Roth proved that the Lo—discrepancy T'(Rz,) of the net Rs, have an exact

order O(*&X) where N = 2”. According to the lower bound (1) the order

O(IO?VN ) is not the best possible.

There exist two important techniques to improve the order of the Lo — discrep-
ancy of arbitrary net. They are a digital shift and a symmetrization of the points
of net. The first approach was realized in 1969 by Halton and Zaremba [I10].
For a given integer v > 1, Halton and Zaremba used the original net of Van
der Corput {p2(i) = 0.ipé1 ...%,—1 : i; € {0,1}, 0 < j < v — 1} and change the
digits i; that stay in the even positions with the digits 1 — ;. In this way the
net {z9(i) = 0.(1 —ip)i1(1 —id2)... :¢; € {0,1}, 0 < j < v — 1} is obtained.
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The net Zs, = {(n2(i),22(i)) : 0 < i < 2” — 1} which now usually is called
a net of Zaremba—Halton is constructed. It is shown that the Ls—discrepancy
of the net Z,, has an exact order O(—Vk’]?N), N = 2%, which of course is the
best possible.

In 1998 Xiao [20] proved the exactness of the lower bound (2) of the diaphony
for dimension s = 2. It is shown that the diaphony of the nets of Roth R; , and

Zaremba—Halton Zj, ,,, both constructed in arbitrary base b > 2, have an exact
order O(W), N =10b".

Grozdanov and Stoilova [7] proved the exactness of the lower bound (3) of the
b-adic diaphony for dimension s = 2. They proved that the b-adic diaphony of the
nets I, and 73, haves an exact order O(@), N =1b".

The rest of the paper is organized in the following manner: In Section 2
some preliminary notations are presented. In Section 3 the construction of the
nets Zg*, of type of Zaremba—Halton in generalized Bs-adic system is pro-
posed and the distribution of concrete net is graphically illustrated. The main
results are presented in Section 4. In Theorem 1 upper and lower bounds of the
(Vilg,; a; y)-diaphony of the nets ZB ., are exposed. Theorem [2 states the as-
ymptotic behaviour of the (Vilg,; ,fy) diaphony of the nets Zz* . ITn Section 5
the main results are proved.

2. Some preliminary notations

In 1947 Vilenkin [I8] proposed new complete orthonormal function system
defined in generalized number system. We will remind the construction of the
functions of this system. Let the sequence of integers B = {bo, bi,bg,...:b; > 2
for i > 0} be given. The so-called generalized powers are defined by the next
recursive manner. We put By = 1 and for j > 0 define B, = B;.b;.

DEFINITION 1. For an arbitrary integer k¥ > 0 and a real € [0,1) which
in the so-called generalized B-adic number system or Cantor system have the

representations of the form k =Y okiB; and and x = > 2, B where
for i > 0, k;,z; € {0,1,. — 1}, k, # 0 and for infinitely many ¢ we have
x; # b;—1, the kth Vllenkln functlon g Vilg : [0,1) — Cis defined as g Vilg(z) =

ikj

v 27r1I
Hj:oe "

We will present the multidimensional version of the Vilenkin functions.
For 1 <j < slet B; = {o{, 0,65 ... : 0% > 2 for i > 0} be given
s sequences of integer numbers Let us denote Bs = (By,. .., Bs).

31



VESNA DIMITRIEVSKA RISTOVSKA—VASSIL GROZDANOV—TSVETELINA PETROVA

DEFINITION 2. For an arbitrary vector k = (k1,...,ks) € N§ the kth function
of Vilenkin s, Vil : [0,1)® — C is defined as p, Vilk(x) = [[;_, B, Vily, (),
x = (x1,...,25) € [0,1)°. The system Vilg, = {5, Vilk(x) : k € N§, x€[0,1)°}
is called Vilenkin function system.

The function system Vilg, was introduced by Vilenkin and independently
from him this system was proposed by Price [14] in 1957. For the system Vilg,
also the name a multiplicative system is used, see Hewitt and Ross [12].

We will present one property of the functions of the system Vilg_ . For ar-
o0

bitrary reals x,y € [0,1) with the B-adic representations z =) " 5 and

Y= Zl 0 B , where for i > 0 x;,y; € {0,1,...,b; — 1} and for infinitely many 4

we have z;, yz ;é b; — 1, we define the operation

. 63[0 Dy, = (Z x; +y; (mod bl)> (mod 1),

= Bi1

For arbitrary vectors x = (z1,...,25) € [0,1)* and y = (y1,...,ys) € [0,1)®

we define the Bgs-adic operation x EB[ZES’D y = (11 635_311) Y1, .-+, L @[3;1) Ys)-
Then, for each vector k € N the equality holds
5. Vil (x 25" y) = 5, Vil(x).5, Vilk(y)- (4)

We need to introduce some notations. For arbitrary reals a > 1 and v > 0
by using the sequence B of bases we define the coefficient

1 if k=0,
R(a;~; B k) =
(37; B k) 2 if B, <k<Bg, g>0, g€
g
Let us denote p(a;v; B) = > o~ R(a;v; B; k). Then, we have that
by —1
(e B wz st
Now, let oo = (o, ...,5) and v = (71,...,75), where for 1 <j <s a; >1
and y; > -+ > 75 > 0, be given vectors of exponential parameters and coordi-

nate weights. For an arbitrary vector k = (k1,...,ks) € N§j by using the set B;
we define the coefficient R(a;v; Bs;k) = [[;- 1R(aj,fyj,B k;). Let us define
the quality C(a;vy; Bs) = ZkeNg\{O} R(a;v; Bs; k). In explicit form we have

Cle;v; Bs) = [T 1t + mlays vy By — 1.
=1
Baycheva and Grozdanov [1] proposed the concept of the (Vilg,;a;~y)-dia-
phony.
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DEFINITION 3. The (Vilg,; a;y)-diaphony of an arbitrary net {x = {xo,x1, ...
...,xXny—1} of N >1 points in [0, 1)* is defined as )
2\3
1

N—-1
1
F(Vile :a:~: _ i Bo; k)| — il N
(Vl Bs;a77a£N> C<a;7785) keNZS\{OR;OZ;fYaB ) NnZ_OBsVI k(X )
s =

where the coefficients R(«;~; Bs; k) and the constant C'(«;y; Bs) are defined as
above.

)

In general, the motives for us to introduce the coefficients R(«;v; Bs; k) are
relevant to quasi-Monte Carlo integration in a function class which is a reproduc-
ing kernel Hilbert space. In fact, the (Vilg,; a; v)-diaphony is the worst-case error
of the integration. Here we will use the (Vilg,; «; y)-diaphony as a quantitative
measure for the quality of the distribution of nets.

3. The nets of type of Zaremba-Halton constructed
in generalized number system

We will remind the constructive principle of the sequence of Van der Corput
defined in a generalized B-adic system.

DEFINITION 4. For an arbitrary integer ¢ > 0 with the B-adic representation
i = imBm +im—1Bm—_1+ - +i9By, where for 0 < j <m i; € {0,1,...,b; — 1}
and 7,, # 0, we put

The sequence wp = (pp(%))i>o is called a sequence of Van der Corput constructed
in the generalized B-adic system.

The star-discrepancy of the sequence wp was studied by Haddley, Lertchoosa-
kul and Nair [§] and also by Lertchoosakul and Nair [I3].

We will introduce the constructive principle of two-dimensional nets of type
of Zaremba-Halton. For this purpose let

B = {bg;), o b ) b > for > 0}
be a given sequence of bases. We define the sequence

By = {bg2>, b, b D) b =2 for > 0}
in the following manner. We put 662) = bl(,l_)l, bgz) = bl(,l_)z, cee bl(,2_)1 = b(()l) and
the bases b,(,z), bl(izl, ... can be chosen arbitrary.
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Let v > 1 be an arbitrary and fixed integer. We have that
1 1 2 1
BM =5V b =@ b = B
and let us denote

B, =B = B®.

An arbitrary integer ¢ such that 0 < ¢ < B, — 1 we present in the Bs-adic
system as
i =iy 1BP, +i, 2B, + -+ i;B® +iBY,
where for
0<j<v—1, i€ {0,1,...,b§2)—1}.

Then, the quantities 1, (i) = & and pp, (i) have, respectively the B;-adic and

the Bs-adic representations of the form
ng, (1) = 0.iy—19y—2...790 and pp,(i) = 0.ipi1 .. .1p—1.

Let k = 0.kp—1Kp—2... Ko and u = O.ugpty - . - fhy—1, where for 0 < j <wv —1
Kooioj € {0,108 — 1} and py € {0,1,...,0 — 1}, be fixed By-adic and
Bs-adic rational numbers. Let us define the quantities n; (i) =0z, (7) @Egil)n and

. N 0,1
2, (i) = pe.(0) &, .

DEFINITION 5. Let v > 1 be an arbitrary and fixed integer. Let £ and u be as
already defined. The two-dimensional net

Zgl, = {05, (0), 25, ()) : 0<i < B, — 1}
we will call a net of type of Zaremba-Halton constructed in the generalized

Bs-adic system.

Dimitrievska Ristovska, Grozdanov and Petrova [4] presented a code of pro-
gram that can construct arbitrary net of type of Zaremba-Halton. Many
examples are considered and graphically illustrated. Here we will give only
one example. We choose the parameters in the following manner:

v =206,
bV =2, oV =3, oV =4, V=5 V=6 o =8s,
b =8, bV =6, 0V =5 =4, 2P=3 =2
k=0.121071 and p=0.750121.

The distribution of the points of the net Zz"  is given in Figure 1.
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FIGURE 1.

4. Statements of the main results

Here we will present the main results of the paper. They are lower and upper
bounds of the (Vilg,; a;7)-diaphony of the nets Zg;’f ., of type of Zaremba— Hal-
ton. These bounds will permit us to obtain the exact orders and the asymptotic
behavior of the (Vilp,; a; v)-diaphony of the nets Z" . The influence of the vec-
tor a of exponential parameters to the exact orders of the (Vilg,; a; 7y)-diaphony
of the nets Z3" will be shown.

THEOREM 1. Let us suppose that the sequences By and Bs of bases are limited
from abowve, i.e., there exists a constant M > 2 such that for each 7 > 0 and
T=1,2 we have bET) <M.

Let Zg’;fy be an arbitrary net of type of Zaremba— Halton. Then, there exist
constants CL. and Cr, 7 = 1,2,3,4, such that the (Vilg,; a;v)-diaphony of the
net Zg’;jy satisfies the inequalities

1= 1 1
/ 1)]j@2—a1 ! / !

Bp?
v g:0

B()él +as—1
v
v—1

. 1 an—aq
< F2(V1IB2; a;y; Z82 V) < Cq Bos Z[Bél)] 2
v 9=0

1 1

+ Cy— B +Cs3—= Ba2 C47B31+a2_1'

The constants C.. and C; will be obtained in explicit form within the proof
of the theorem.
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In the next theorem we will present the exact orders of the (Vilg,;a;~y)-
-diaphony of the nets Z g’;‘ , of the type of Zaremba—Halton. These exact orders
depend on the exponential parameters a; and «s. So, the following theorem
holds.

THEOREM 2. Let the conditions of Theorem 1 be realzzed Let Zy ’“ be an arbi-
trary net of type of Zaremba— Halton. Let us denote B, = Then the diaphony
F(Vilg,; s v; Zg)',) = F(:) satisfies the following:

(i) If a1 = ag, then F(-) = O(—V;’%;V);

(i1) If 1 < ag < 2, then there exists some € > 0 such F(-) = O(~ IOgN)'

(i2) If ag =2, then F(-) = (9( 1‘;\»‘}?;1\7);

(i3) If a > 2, then there exists some € > 0 such that F(-) = O (¥ logN);

(i) If o1 > g, then F(-) = o(;&);

N2

(iil) If 1 < ay < 2, then there exists some € > 0 such that F(-) = (’)( 1 );
(ii2) If as = 2, then F(-) = O(+);

(ii3) If iy > 2, then there exists some € > 0 such that F(-) = O(5i7=)-

5. Proofs of the main results

Some preliminary results: To prove Theorems 1 and 2 we need to obtain the
exact values of the trigonometric sums of the net {np, (i) : 0 <i < B, —1} with
respect to the system Vilg,, of the net {pp,(i) : 0 <1i < B, — 1} with respect
to the system Vilp, and of the two-dimensional net {(np, (i), pp,(i)) : 0 < i <
B, — 1} with respect to the system Vilg,.

LEMMA 1. Let v > 1 be an arbitrary fixed integer. Then, the following holds:

(i) For each integers g, k and | such that 0<g<v —1, Bél) §k§3521—1 and
Bgz) Slngﬁlfl the equalities hold

B,—1 B,—1
> 5 Vilk(np, (1)) =0 and > p, Vili(ps,(i)) =0
i=0 =0
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(ii) For each integers g, k and | such that g > v, Bél) <k< B;21 —1 and

B(2) <Il< Bﬁ-)1 — 1 the equalities hold

-1

—1
Z By Vilk (5, (1)) ‘ Vil p32<l))‘
=0

Bl, if k(I)=0 (mod B,),
B { 0 if k()#0 (mod B,).
Proof.
(i) Let 0 < g < v—1 be a fixed. Let an arbitrary integer Bél) <k< 3221 —1 have
the Bi-adic representation k = k0B61)+k1B§1)+- . -+kgB§1), where for 0 < j < g,
k; € {0,1,...,b8" —1} and ky # 0. Then, we have

Z B, Vilk (15, (1)) =

(1) (1)
b(l) 1 koz) b£71>—1 27-rik'qi"(_)l_g bg+1—1 b, -1
1 1
b b —
E e E e 9 E 1... E 1=
ZU 1= =0 i,,_l_g:O i,,_z_g:O i():O

(ii) Let ¢ > v be a fixed and Bél) <k< 3221 — 1 be an arbitrary integer.
Let us assume that & = 0(mod B,)). Then, k has the Bj-adic representation

k=kyB{" + - + kB,

hence we have that

07,,/ 1—j5

B, Vil (5, (i H o 1 and > B, Vili(ns, (i) = By.

Let us assume that k& # 0(mod B,). Then, k has the Bj-adic representation
of the form k = k,BS") + -+ + kB + ky_1BY, + -+ + by B + koBY,
where there exists at least one index 9, 0 < § < v — 1 such that ks # O.
Hence, we obtain that

B,—1
> B, Vil (ns, (i) =
1=0

(1)

b§P -1 koI bV —1 ksiv_1s 11, ki
o L [6)
g e b E e b5 E e oo =0. O
iy —1=0 iy—1-6=0 i0=0

The other equalities of the lemma can be proved by similar manner.
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LEMMA 2. Let v > 1 be an arbitrary fized integer. Then, the following holds:

(i) Let the integers g1 and go such that 0 < g1 <v—1and 0 < go <v—1 be
arbitrary. For an arbitrary integer 0 < g < g1 let us define the set

; Algisg) = { ks by = kOBY + &) BY + - 4 kD BY,
or
] (1 (1) 1 1
g<i<g, kVe{o1,.. 00 —11 kY #£0, KD #o).

For an arbitrary integer k1 € A(g1; g) let us define the Ba-adic integer

(1)B(2)

F=FEBO _ +E B &y B,

v—1—g1 g1—1 V 91

where for g < j < g1 we put E(l) = bg-l) — k;l) (mod b;l)). Then, for each integer
ko such that Bg) <k < B;z)ﬂ — 1 the equalities hold

Byl B, if ko= El,
vil )) - 1, Vil )| = -
; By Vg, (7731 (7’)) By Vilk, (sz (Z))‘ { 0 i ko 7& .

In the case when ky = ki we have that go =v —1—g

(i) Let the integers g1 and go such that 0 < g1 < v —1 and go > v be arbitrary.
For an arbitrary integer k1, B( ) <k < Bg )+1 —1 we will use the By-adic repre-
sentation ki = 32", lc(l)B(1 , where for0 < j <v—1 kj(»l) €{0,1,.. .,b(l)—l}

Jj=0"j )
—(1) B(z)’

By using the integer ki let us define the Bo-adic integer ky = Z;’;& k, 1_;B;

where for 0 < j <v —1 we put E;D = bél) — kj(»l) (mod bél)).
An arbitrary integer ks, Bg) <k < B(2) — 1 we will present in the Bs-adic
Jorm ko =020 (2)3(2) + 3 (2)3(2) = k:' + K. Then, the equalities hold

j=0 J =v J
B,—1 . / 7.
v ) ) ) ) B, if ks =k,
2 o Vs (100 52Vl 0 9) :{ 0 it K £T

(iii) Let the integers g1 and go such that 0 < go < v —1 and g1 > v be arbitrary.
For an arbitrary integer ko, BéQ <k < Bé2)+1 —1 we will use the Bs-adic repre-
sentation ko = Z; é kj(z)B@), where for0 < j<v-—1 k:](?) € {0,1,..., b§2) —1}.
By using the integer ko let us define the Bi-adic integer ko = Z;:é k(2) B(l)

v—1—j
where for 0 < j<v—1 E;z) = b;Z) - kj(?) (mod bg-z)).
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An arbitrary integer kq, Bé}) <k < Béi)ﬂ — 1 we will present in the Bi-adic
Jorm ky =020 k(-l)Bj(l)+ S k(-l)Bj(l) = ki + k{. Then, the equalities hold

j=0 "3 Jj=v
B,—1 s ! 7.
. B, it K =k,
" 5 Vill, (08, ()) - 5, Vili, (95, (0)) | = N
yard B k (7731( )) B k?z( Bz( )) { 0 ‘£ ki 7& %o

(iv) Let the integers g1 and g such that g1 > v and g2 > v be arbitrary. An ar-
bitrary integer kq, Bé}) <k < B;?H — 1 we will present in the By-adic form

k1 = Z;’;& k](l)Bj(l) + ?1:1/ kj(-l)Bj(l) = ki + kY. By using the integer k| let us

define the Bs-adic integer Ell = Z;:é El(,l_)l_ij@), where for 0 < 7 < v -1
we put Eg»l) = bgl) - kj(-l) (mod bgl)).

An arbitrary integer ks, Bg) <ky < Bg)_i_l — 1 we will present in the By-adic

form ko = Z;:é kJ@)Bf) +202, kj(?)Bj@) = kb + k. Then, the equalities hold

B,—1 . / 7!
v ) ) ) ) B, if ks =k,
Z By Vllkl (7731 (Z)) " B2 VZlkz (sz (7’)) = —
—~ 0 if K#£E,.

Proof. (i) Let k1 € A(g1;g) be an arbitrary integer. Then, we have that

( k( Ty
Lk v1— Lg41'v—2—g
) ) 2ri—L Y29 ;(1)1 9 2mi—2 LD
B, Vilg, (7731 (z)) =e g -e g+1
( )
27|—ik571 (i;u—ql 27rik§1 11’(;)1_01
Pgy'—1 e bgy (5)

Let us assume that the conditions go = ¥ —1—g and ko = k1 hold. This means
that ko has the Bs-adic representation

_ 1.(2) (2) (2) (2) (2) (2)
ko = kV_l_ngV_l_gl + k'/—ngv—gl REE kv—l—gBV—l—g’
here for v —1—gi <j<v—-1-gk® =%  Tn h
where for v g <j<v g k;” =k, _;_;. Then, we have
B, Vilg, (pB, (1)) =
(2) . 2 2 ) 2 )
27Tiky—1—gllv—1—g1 27riku—g11'”_91 27rik<y,)2 giv—2—g 27Tik<y,)1 giv—1—g
el NE) NE) O]
e v—1—gq e v—g1 Lo e v—2—g -e v—1—g —
(1), S I S (1)
omifelsize  oimeflusfoe 2mi- o gpla ol
by e bof1 ... b1 e ba1 . (6)
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From () and (@) we obtain that

B, Vil, (05, () - B, Vily, (pB, (1)) =

(1) (1)
NG L ST zwiw”l%(;r)l”” 2-g
. oD e o
1 1
27ri(k'57 ), ’V< )i a1 o (k<1)+k( Dyi, 1-gy
(1) T
. e by -1 . e b<) =1

and hence 707" 5, Vily, (15, (i) - 8, Vilk, (p5,(i)) = B,
Let us assume that ky #k;. We will consider two cases. First, let gop=v—1—g

and there is at least one index §, v—1—g; <J§ <v—1—g such that kl(,z_)l_gl =
Ei), cee k(2 1—s F k(l) . 1(/2)1—g = E;l). From (5) and (6) we obtain that
B,—1 i —
Z B, Vﬂk?l (7731 <Z>) " By VﬂkQ (sz <Z>) = Z
i=0 i,_1=0

(1) _ (1) 1
b.‘?l*l 1 b,/ -1 27ri(k§]1)+k( Myiy_1_ "

€Y
2. 2 e "
iy—g,=0iy_1_g, =0

bfil)_l 27 1(k(1>+k(2>1 §liv—_1-5

)
> E

iy—1-5=0
1 — (1) (1)
b‘g -1 Qﬂ-im bq‘H by Z1—1
(1)
E e bg E 1. E 1=0.
1;,/7179:0 7;1/—2—;7:0 i9=0

Second, let us assume that go # v — 1 — g. We have that

91 ori fv—1—j v—1—g opisy=1—=3"i
B, Vilg, (1731 (Z)) = H e i = e b5
Jj=g j=r—1l-g1
Let an arbitrary integer ko such that Bg) < ko < B;2)+1 — 1 have the Bs-adic
representation ky = k(()2)B(()2) -+ k 92 , where kg2 # 0. Hence, we have
that
k(25

5
27i
)

g2
B, V11k2 DB, z) H J
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Let us assume that 0 < g5 < v — 1 — g1. In this case we have that
B,—1
Z B Vﬂk?l (7731 (Z)) * B> VﬂkQ (p32 (Z))
i=0
g2 b;2) 1.4 _J <' ov—2—g b;2)

IO T I

j=0 1i;=0 j=g2+1 i;=0

1
v—1—g b(2) 1 .kf/)l 7] —1 b(2) 1

SN U ST | I SR

j=v—1—g1 ;=0 j=v—g ;=0

Let us assume that v —1 — g1 < g9 < v —1— g. In this case we have that

B,—1
§ By Vllkl (7731 (7’)) " B> Vﬂkz (sz (Z))
1=0
v—2—g; b(2> 1 7‘,1’“(2> b<2) 1 (k(1>1—j+k.§'2)>'ij
NE) @
- U PO | DO ’
7=0 i;=0 Jj=v—1—g11;=0
2 1 2
v—1—g b1 .ki’l kodi gt e b1

1D STINE U | SRR

Jj=g2+1 ;=0 j=v—g ;=0

Let us assume that v —1 > go > v — 1 — ¢g. In this case we have that

B,—1
§ By Vﬂk?l (7731 <Z>) " Ba VﬂkQ (sz <Z>)
=0 2 1 2
ye2—gy b~ mk() po1—g b1 (le SR
-1l DR | D SR
bj J
i;=0 j=v—1-—g11;=0
(2) _ (2) (2)
g2 b mk<2) v—1 bj -1
11 Z R | B D
j=v—g ;=0 j=g2+1 ;=0

The statements (ii), (iii) and (iv) of the Lemma 2] can be proved by similar
technique. Here, we will leave out the details. O

A proof of Theorem 1. We will apply the equality (4) to the trigonometric
sums of the nets {ng, (1) : 0 <i < B, =1}, {2p,(4) : 0 <i < B, — 1} and
Zgt, = {(n3, (1), 2p,(i)) : 0 <i < B, — 1} with respect to the functions of the
systems Vilp,, Vilg, and Vilg,. According to Definition [3] we have that
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F?(Vilg,; 037 Zg,)

B —1 2
1 00 1 g+1 1 B,—1 Vi .
C(a;v; Ba) VIZ [B(l)]al Z B_u Z B 1k(7731(1))
g=0 | DPg k=B i=0
B(<72+)1_1 1 »—1 2
722 (2) Z B Z B, Vili(pB, (7))
[Bg =@ |7 =0
v—1 v—1 v—1 oo 0 1 <7>
S) 35 35 95 365 95 RS vp o] It re
91=092=0 g1=0g2=v gq1=vg2=0 g1=vga=v g1 [ 92}
B;11>+1_1 By, -1 B,—1 2
1 . . . .
Z Z Z B, Vilk, (7781 <Z>) B, Vilk, (sz <Z>)
k1=B{D ky=B@ |~ =0
1
=————mX by Y3+ X4i+Ys+ 2
C(Oé;v;Bz)hl 1+ 722 +m72(Bs + X4+ X5 + 6)],

where the constant
Cl(a;v; Ba) = plan;yi; Br) + p(oe; y2; Be) + pl(ar;yi; Br) - ploe; ve; Be).

According to statements (i) and (ii) of Lemma/ll for the sum ¥; we consecu-
tively obtain:

> 1
Xy = Z [Bg(gl)]al @ Z W 1
g=v
By <k< B -
k=0 (mod B )

> 1 [ 1 1) M-1 1

=y — pD L pM) Ly (b<1>71)}<
1)1 v v+1 g—1\"g - 1)7a1—1

g=v [Bg )] B, g=v [B.‘(J )] '

M1 N S S 1 -
Do — D) 10, D) oy —
By (Bt (Bt (B

M- l P S 1 . ]
- 1 1 D, 1

B, - [Bl(/ )}a1—1 [b,(, )]a1—1 [b,(, )bl(/lﬂal_l
Ml{ 1 1 (M -1).2m 1

By | Tt TRemE T T T om 2 B

IN
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1) (1) (1)
21>Z B(l [f,)'bu+1"'bg_1]

oo

1 1
- 5 1)7a1—1
By g=v [Bé )]
1 1 1 (9)
B (B [ T Bl
- 1 1 1 1
= Bx +Ma1 1+(Ma1 1)2+"'
M1
Mo — M By
By using similar technique we can prove that
Me: 1 _(M-1)-2 1
_— <X . 10
Me: _MBgE - 2° 2m -2 BE (10)

Now, we will estimate the sum 3. For this purpose we will use the state-
ment (i) of Lemma By using the introduced sets A(g1;g) we consecutively

obtain vl Z Z Z

Vg =D
g1=0 9=0 ki1€A(g1;9) 92= 0

(2)
Bgz+1_1 B,—1

< ) BL > 5 Vil (15,(2)) - 5, Vi, (p5, () (11)

k2:B<2> Yoi=0

-5

910

1 2
[B_él) B_éz)

g1 1

2

For the cardinality of the set A(gy;g) we will use the bounds

1)
bg+1 '

| 21.

(2)
[B k1€A(g1;9)

1
Bél) v—1—g

Y

1 1
g1 —1 <[A(g1;9)| < b(l 5231' bél) 1 (M= 1),

as we assume that in the cases when g=¢g;—1 and g=g; we have b;l_gl b(l) =1,

also if g = g1, then b(1 bélJZl b(l_1 = 1. Hence, we obtain that

(1) (1)

B 1 B

A(9159)| > " = 77
by BYY T M By
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We directly can check up that the last inequality is true if g = g1 — 1 and g = ¢;.

From (II]) we consecutively obtain

g1 1

M —1) Z 5 Z ; RS
g1= 0 Bé(h [Bz(/ )1 g]a2
g1
1 1
- -1 Z 1 Z 1 2
a0l Bél a5 BV (B, ]
< (M = 1)M*— [BV]™
By2 g1=0 [Bé})]al—l g=0
1A 1
< (M —-1)M™— Y —
By o= (B!
1 1
1)jas—1
[B!(h)] : |:1 + 2042—1 + (2042—1)2
v—1
(M — 1)(2M)a2 1 (1o —az.
= 2as _ 9 Bo? gz_;)[Bg ] 2 ;

wl g 1
g >
M Z (1) a;—1 g B(l) [B(Z) ]az

g1= 0 v—1—g
202 1 1 "D
- Q2 —
2 3B 2 i 2 B
v g1=0 [ g1 ] g=0
v—1
202 ] 1 (1) qan—1
> M B2 Z [B(l)]ch—l [Bgl_l] 2
g1=0 g1
2% e 1 (1)702-1
> e B D o — 1By
v g1=0 [Bgl ]

v—1

202 1 1)1 —an
= Nes Boe > o[BG

44
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To estimate the sum ¥4 we will use the integers k% introduced in the condition
of the statement (ii) of Lemma[2l We will obtain the following:

B

v—1 o g1+1
1
W=D o 2 (2) Z 21
g1=0 [Bgl ] go=v [Bg2 B(l) kY
— ) - 1By & 1 (2)(2) @) (12
Z 1 Z 2 [b bu-i-l' bg l(bg _1)}
g1=0 B( ) o ga2=v [B;z)}az . ’
v—1 1 o) 1
SRS De e
g1=0 [Bél)]al_l ga2=v [Béz)](m o
v—1 [ee)
1 1 1
=(M—-1)"— Z 1 Z 2 (14)
B, g1=0 [351)]0”_1 go=v [Béz)]%_l
- 1 > 1
<SM-1)°5 > —m—> —5
B'/ g1=0 [B.f(h)]al_l ga=v [Bfgz)]a2_1
1 1 1
< (M —-1)>%*—= |1
( ) B, { + ga1—1 + (201-1)2 + ]
1 1 1 1
Bo 1 + Qaz—1 + (202-1)2 +
oa1taz 1
= (M —1)* ;
( ) (201 — 2)(222 — 2) Bp?’
S > Z s 26, b
(1) -1 (B, SRR
g1= 0 go=v 92
= 1
T D
B g1= O B!gl a1 go=v [BS(JQ)}OLZ !
. 1 P B 1 N (15)
- B, [Bc()l)]al_l [B,(/z)]a2_1 [bl(,z)}az_l [bz(/z) ,bl(i)_ﬂaz—l

1 1 1

= BS2 {1+ Moz—1 + (Mea2—1)2 +]
M2 1

~ Me2> — M B2*
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By using the statements (iii) and (iv) of Lemmal[2l we can prove the estimations

M 1 Qa1taz 1
- <Y M—1)? 16
Ma1_MBgl — 5<( ) (2&1_2)(2a2_2) BSI ( )

and
Mtz 1
(Mo = M)(M = M) Bgree ]
ga1+az 1
<Y < (M —1)? (17)

(201 — 2)(202 — 2) ggrtez—l’

From (@), @), @), @0), (@2), @3), (14), [@3), (I8) and (I7) we obtain that
F*(Vilg,; a;7; Zg,,)

v—1
1 202 ] an—o QM 1
> Y [BM]ETN ¢
_C<Oé;’)/;82){MO‘2B32 g:()[ g ] —i_MO‘l—lB,?‘1
n 2M 2 1 n Mertaz 1

Moz —1B2* (Mo — M) (Mo — M) Bgrro21

= 1 1 1

]. 1 o —Q1
= Ci BOLQ Z [Bg(] )] ’ + Cé BOLI + C'-./)) Ba2 + 04/1 Bal +042—1
v g:0 v v v

and
F?(Vilg,; 037 Zg,)

1 (M —1)(2M)*2 1 2 qyras—a
- - Bz
< C(Oé;’)/;82) {’71’72 a2 _ 9 B> gz_;)[ g ]
M = D (e (M = Do)
a1 g \ LT 202 _2 ) B
M =D (b e (M = D)
202 g \ 2T 201 _2 ) BE®
gai1+az 1
M —1)?
+ 7172( ) (2041 — 2)(2a2 — 2) Bgl-i-az—l }
v—1
1 s —on 1 1 1
= Cl Bséz Z[Bs(] )] ’ + 02 Bsq + 03 332 + C4B31+a2_1’

9=0

where the values of the constants C. and C,, 7 = 1,2, 3,4, are evident. Theo-
rem [ is finally proved. O
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Proof of Theorem 2. According to results of Theorem [ the following in-
equalities hold

v—1
1 - 1 1 1
! 1)1 ®2—o1 ! ! !
Ci g Z()[Bé ] + Cs o + Cs gz + Cigarrant
< F?(Vilg,; o;7v; 2", (18)
1 v—1 1 1
< Cipar D [BU]™ T + Copr + G + Ci
v g=0

B(Xl-‘roég—l :
v

(i) Let us assume that a3 = ag. Then, from (I8) we obtain that

v 1
Cigas + (Gt Cé)@ + CQW
< F2(V1132a 75 ZBz y) (19)
1 1
< Ci—— Ba2 (02 + 03)B32 + Cy B?,OQ_I .
Let us denote B, = N. Then, the equality N = bél) : bgl) e bl(,l_)1 gives us
that
2 < N < MY, log N <y < logN.
- logM — — log2
Hence, from ([9) we obtain that

Ct logN 1 , 1
Tog i New (G2t )y + Cagan

. " Ci log N 1 1
< F2(Vilg,; a;7; Zgh,) < 10g12 ]\fm + (Cy + CS)NO‘Z +Cy N T

. C] log N / i1 ! !
J\}gnoo{IOgM Noz T (Ce + C’?’)Na? T
< Vn_{go F2(Vilg,; a;; zZgl,

. Ci log N 1 1
<1
_Ngmoo{log2 Nar T (C2+ Ca) s + Ca }

(o) N2(X2—1
SO
| . N2 PP(Vilgseqv3 Z5),) O
< lim <
logM =~ N—oo log N log 2
and
) log N
F(Vilg,; ;7; Zgl,) = O(~—=—)-
N2
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The order O~ 1°§2 ) is the exact order of the diaphony F(Vilg,; a;7; Zg!,).
2 )
(i1) If 1 < ag < 2, then there exists some ¢ > 0 such that %% = 1 — ¢ and
from (i) follows that F(Vilg,; s v; Zg5)",) = O ( Y log,N).

Nl—¢

(2) If ap = 2, then from (i) F(Vils,;a57; Zgh) = O (—VINSN )
(i3) If ap > 2, then there exists some ¢ > 0 such that 2 =1+ ¢ and
from (i) follows that F(Vilg,; s v; Z5),) = O ( Y logN).

Nl+e

(ii) Let us assume that oy > ap. Then, the inequalities hold

v—1 o]
L< ) [BPI™T™ <Y BV
g=0 g=0

1
=14+ + .-
e oo
<1 1 1 B 2
- +2a1—oc2 + (2al—a2)2 t+-= Qa1 _ 9as’
From (I8)) and the above inequalities we obtain
1 1
(Cl + C3)Ba2 + Céﬁ + CZLW < F (VIIBQ,OZ ;3 ZBZ V)
v v
Cy - 2™ 1 1 1
< <72a1 s 03> 5 Cogar + Ciparrant
! ! ! 1 ! 1 ao 2
Cl+C3+C2B(X1—Oé2 +C4BO‘1_1 <B F (VllB27a ’77ZB2 l/)
v v
Cy - 2™ 1 1
S gm —gm PO O TG
lim |+ C)+ Ch— + O
Ngnoo 1 st 2N0¢1—a2 + 4Na1—1
< Jim N°2. F2(Vilg,; a;7; Zg,)
. Cq 2% Cs Cy
= ]\;gnoo |:2041 — Qa2 +C3+Noc1—a2 +Nocl—1 ’
. . Cp-2%
Cl+Ci < ngnoo N2 . F?(Vilg,; a;7; Zg",) < Ssmgm T Cs

and

F(Vilg,; o %ZB2 PYy=0 <N22> )
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is clear that the order O(%_Z) is the exact order of the diaphony

N2

F(Vilg,; a;7; Zg’;fy :

(ii1) If 1 < az < 2, then there exists some ¢ > 0 such that %> = 1 — ¢ and

from (ii) follows that F(Vilg,;o;v; Zg",) = O (§1=).

(ii2) If g = 2, then from (ii) follows that F(Vilg,; s v; Zg)",) = O (%)-

(ii3) If ap > 2, then there exists some € > 0 such that <* =1+ ¢ and

(1]

(10]
(11]

(12]

(13]
(14]

(15]

from (ii) follows that F(Vilg,; ;s v; Zg,) = O (§i=)-
Theorem 2 is finally proved. 0
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