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Abstract

In the present paper the authors introduce a new quantitative measure for uni-
form distribution of sequences in [0, 1)s, the so-called “weighted diaphony.” The defi-
nition of the weighted diaphony is based on using the trigonometric functional system.
At a special choice of the parameters α and γ on which the weighted diaphony de-
pends, the “classical” diaphony introduced by Zinterhof is obtained. It is shown that
the computing complexity of the weighted diaphony of an arbitrary net composed
of N points in [0, 1)s is O(S.N2). Relationship between the worst-case error of the
quasi-Monte Carlo integration in a class of weighted Hilbert space and the weighted
diaphony is obtained.
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1. Introduction. Let s ≥ 1 be a fixed integer and ξ = (xn)n≥0 is an arbitrary
sequence of points in the s-dimensional unit cube [0, 1)s. For an arbitrary subinterval
J ⊆ [0, 1)s with a volume µ(J) and an arbitrary integer N ≥ 1 we denote with AN (ξ;J)
the number of the points of the sequence ξ which indices n satisfy 0 ≤ n ≤ N − 1 and
belong to the interval J . The sequence ξ is called uniformly distributed if the equality
limN→∞ N−1AN (ξ;J) = µ(J) holds for every subinterval J of [0, 1)s.

The examination of numerical measures for distribution of sequences in [0, 1)s is of
interest of the quantitative theory of the uniform distribution of sequences. In general
the discrepancy and the diaphony are quantitative measures for the irregularity of the
distribution of sequences in [0, 1)s.

Let T = {exp(2πi〈m,x〉) : m = (m1, . . . ,ms) ∈ Zs, x = (x1, . . . , xs) ∈ [0, 1)s,
〈m,x〉 =

∑s
j=1 mjxj} be the trigonometric functional system. Zinterhof [1] intro-

duces the “classical” diaphony as a numerical measure for distribution of sequences in
[0, 1)s. For each integer N ≥ 1 the diaphony FN (T ; ξ) of the first N elements of the
sequence ξ = (xn)n≥0 in [0, 1)s is defined as

FN (T ; ξ) =




∑

m∈Zs,m 6=0

R−2(m)

∣∣∣∣∣
1

N

N−1∑

n=0

exp(2πi〈m,xn〉)

∣∣∣∣∣

2




1

2
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where for each vector m = (m1, . . . ,ms) ∈ Zs R(m) =
∏s

j=1 max(1, |mj |).

For multivariate numerical integration Sloan and Woz̀niakowski [2] propose
to arrange the coordinates x1, x2, . . . , xs of the functions which are integrated and
respectively the coordinates of the nets which we use in the process of the numerical
integration in such a way that x1 is the most important coordinate, x2 is the next
one, and so on. This is realized by associating nonincreasing weights γ1, γ2, . . . , γs to
the successive coordinate direction. Following Sloan and Woz̀niakowski we will recall
the concept for the weighted L2 discrepancy. For an arbitrary sequence ξ of points in
[0, 1)s and an arbitrary integer N ≥ 1, define the discrepancy function as ∆N (ξ; t) =
N−1AN (ξ; [0, t1) × · · · × [0, ts)) − t1 . . . ts, where for 1 ≤ j ≤ s tj ∈ [0, 1) and t =
(t1, . . . , ts).

Let D denote the index set D = {1, 2, . . . , s}. For an arbitrary subset u ⊆ D let
|u| be the cardinality of u. For a vector x = (x1, x2, . . . , xs) ∈ [0, 1)s let xu denote the

vector from [0, 1)|u| containing all components of x, whose indices are in u. We denote
dxu =

∏
j∈u dxj. Let (xu,1) be the vector from [0, 1)s with components xj if j ∈ u and

components 1 if j /∈ u.
For a given vector of weights γ = (γ1, γ2, . . . , γs), where γ1 ≥ γ2 ≥ · · · ≥ γs > 0

and nonempty u ⊆ D we put γu =
∏

j∈u γj. Then the weighted L2 discrepancy of the
first N elements of the sequence ξ is defined as

L2,γ,N (ξ) =




∑

Ø 6=u⊆D

γ
u

∫

[0,1)|u|
∆2

N (ξ; (xu ,1))dxu





1

2

.

The aims of this research are:� To define a new version of the diaphony, the so-called “weighted diaphony” and
to prove that the weighted diaphony is a quantitative measure for uniform dis-
tribution of sequences in [0, 1)s.� To show that from the weighted diaphony definition at a special choice of the
parameters on which it depends the “classical” diaphony is obtained.� To show that the computing complexity of the weighted diaphony of an arbitrary
net, composed of N points in [0, 1)s, is O(S.N2).� To obtain the relationship between the worst-case error of the integration in the
weighted Hilbert space Hs,α,γ (see Section 3) which is based on using determined
nets in [0, 1)s and the weighted diaphony of these nets.

2. Statement of the results. In order to give the form of the so-called “weighted
diaphony” (see Definition 1), the parameters α and γ will be used. To characterize
the importance of the different coordinates of the nets in [0, 1)s the parameters (or
“weights”) γ = (γ1, γ2, . . . , γs), where γ1 ≥ γ2 ≥ · · · ≥ γs > 0 will be used. The
fixed real number α > 1 will characterize the rate of decay of the Fourier coefficients
of a special function G(α,γ; ·) constructed in Theorem 2. This function will play an
important role in defining the weighted diaphony. In the next definition we will give
the concept of the weighted diaphony:

Definition 1. Let α ≥ 2 be an arbitrary even integer and γ = (γ1, γ2, . . . , γs),
where γ1 ≥ γ2 ≥ · · · ≥ γs > 0 is an arbitrary vector of real weights. For each integer
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N ≥ 1 the weighted diaphony FN (T ;α,γ; ξ) of the first N elements of the sequence
ξ = (xn)n≥0 of points in [0, 1)s is defined as

FN (T ;α,γ; ξ)

=



 1∏s
j=1[1 + 2γjζ(α)] − 1

∑

m∈Zs,m 6=0

r(α,γ;m)

∣∣∣∣∣
1

N

N−1∑

n=0

exp(2πi〈m,xn〉)

∣∣∣∣∣

2




1

2

,

where for each vector m = (m1, . . . ,ms) ∈ Zs the coefficient r(α,γ;m) is defined as
r(α,γ;m) =

∏s
j=1 r(α, γj ;mj) and for an arbitrary real γ > 0 and integer m we define

r(α, γ;m) =

{
1, if m = 0,
γ

mα , if m 6= 0,

and ζ(α) is the well-known Riemann’s zeta-function.
Theorem 1. The sequence ξ of points in [0, 1)s is uniformly distributed if and

only if the equality
lim

N→∞
FN (T ;α,γ; ξ) = 0

holds for each even integer α ≥ 2 and for an arbitrary vector γ of positive weights.
From the point of view of the practical application of the weighted diaphony we

note the following: for each integer N ≥ 1 and an arbitrary sequence ξ of points in
[0, 1)s the inequalities

(1) 0 ≤ FN (T ;α,γ; ξ) ≤ 1

have to hold for each even integer α ≥ 2 and an arbitrary vector γ of positive weights.
The multiplier (

∏s
j=1[1 + 2γjζ(α)] − 1)−1 guarantees that the inequalities (1) hold.

For each integer N ≥ 1 and an arbitrary sequence ξ of points in [0, 1)s from the
Definition 1 at the special choice of the parameters α = 2 and γ = 1 = (1, . . . ,1) we

obtain the equality

√(
1 + π2

3

)s

− 1 · FN (T ; 2,1; ξ) = FN (T ; ξ), i.e. the “classical” di-

aphony FN (T ; ξ) of the sequence ξ with an exactness of the multiplier

√(
1 + π2

3

)s

− 1

is obtained from Definition 1.
Lemma 1. For arbitrary integer numbers µ and h such that 0 ≤ h ≤ µ let us

define the coefficients κ(µ, h) = − µ!
(µ+1−h)! . Let α ≥ 2 be an arbitrary and fixed integer

and let γ > 0 be an arbitrary real. We introduce the matrices

K(α) =





κ(0, 0) κ(1, 0) κ(2, 0) . . . κ(α − 1, 0) κ(α, 0)
0 κ(1, 1) κ(2, 1) . . . κ(α − 1, 1) κ(α, 1)
0 0 κ(2, 2) . . . κ(α − 1, 2) κ(α, 2)

. . . . . . . . . . . . . . . . . .
0 0 0 . . . κ(α − 1, α − 1) κ(α,α − 1)
0 0 0 . . . 0 κ(α,α)





and B(α, γ) = [−1, 0, . . . , 0, γ·(2πi)α ]T , where the matrix B(α, γ) is with α+1 elements.
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(i) We define the functions φ(α, j) as: φ(α,α) = −1
α! and for j = α−1, α−2, . . . , 1, 0

φ(α, j) = 1
j!

∑α
h=j+1 κ(h, j)φ(α, h). Then the solution C = [C0, C1, . . . , Cα]T of the

system K(α) · C = B(α, γ) is given in the form C0 = 1 + φ(α, 0)γ(2πi)α and for
1 ≤ j ≤ α Cj = φ(α, j)γ(2πi)α .

(ii) For the solution of the system K(α) · C = B(α, γ) we obtain some partial

results: Cα = − (2πi)αγ

α! , Cα−1 = (2πi)αγ

(α−1)!2 , Cα−2 = − (2πi)αγ

(α−2)!12 , Cα−3 = 0, Cα−4 = (2πi)αγ

(α−4)!720 ,

Cα−5 = 0, Cα−6 = − (2πi)αγ

(α−6)!
1

6.7! , Cα−7 = 0, Cα−8 = (2πi)αγ

(α−8)!
3

10! , Cα−9 = 0, Cα−10 =

− (2πi)αγ

(α−10)!
5

6.11! , Cα−11 = 0, Cα−12 = (2πi)αγ

(α−12)!
691

15.14! , Cα−13 = 0.

Lemma 2. Let α ≥ 2 be an arbitrary fixed even integer.
(i) For an arbitrary real γ > 0 let us construct the polynomial

g(α, γ;x) = Cαxα + Cα−1x
α−1 + · · · + C1x + C0, x ∈ [0, 1),

where C = [C0, C1, . . . , Cα]T is the solution of the system K(α) · C = B(α, γ). Then
for each integer m the Fourier coefficient ĝ(α, γ;m) of the polynomial g(α, γ; ·) satisfies
the equality ĝ(α, γ;m) = r(α, γ;m), where the coefficient r(·) is defined in Definition 1.

(ii) Let γ = (γ1, γ2, . . . , γs), where γ1 ≥ γ2 ≥ · · · ≥ γs > 0 is an arbitrary
vector of weights. For 1 ≤ j ≤ s let B(α, γj) = [−1, 0, . . . , 0, γj · (2πi)α]T and Cj =

[C
(j)
0 , C

(j)
1 , . . . , C

(j)
α ]T are the solutions of the systems K(α) · Cj = B(α, γj). For 1 ≤

j ≤ s we define the polynomials g(α, γj ;x) = C
(j)
α xα + C

(j)
α−1x

α−1 + · · · + C
(j)
1 x + C

(j)
0 ,

x ∈ [0, 1) and

G(α,γ;x) = −1 +
s∏

j=1

g(α, γj ;xj), x = (x1, . . . , xs) ∈ [0, 1)s.

Then for each vector m ∈ Zs the Fourier coefficient Ĝ(α,γ;m) of the function G(α,γ ; ·)
satisfies the equality

(2) Ĝ(α,γ;m) =

{
0, if m = 0,
r(α,γ;m), if m 6= 0.

Theorem 2. Let N ≥ 1 be an arbitrary integer and ξN = {x0,x1, . . . ,xN−1} is
an arbitrary net, composed of N points in [0, 1)s. For each even integer α ≥ 2 and an
arbitrary vector of positive weights γ the weighted diaphony F (T ;α,γ; ξN ) of the net
ξN satisfies the equality

F 2(T ;α,γ; ξN ) =
1∏s

j=1[1 + 2γjζ(α)] − 1

1

N2

N−1∑

n=0

N−1∑

m=0

G(α,γ;xn − xm),

where the function G(·) is defined in the condition of Lemma 2.
3. Multivariate integration in the weighted Hilbert space Hs,α,γ. Let α > 1

be an arbitrary real and γ = (γ1, γ2, . . . , γs), where γ1 ≥ γ2 ≥ · · · ≥ γs > 0 is an
arbitrary vector of weights. Sloan and Woz̀niakowski [3] introduce the reproducing
kernel weighted Hilbert space Hs,α,γ with a norm ‖·‖s,α,γ. The space Hs,α,γ is composed
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of 1-periodical with respect to all arguments complex-valued L1([0, 1)
s) functions f ,

defined on [0, 1)s with absolutely convergent Fourier series and for which ‖f‖s,α,γ < ∞.
Let for an arbitrary integer N ≥ 1 ξN = {x0,x1, . . . ,xN−1} be a net composed of

N points in [0, 1)s. The worst-case error e(T ; s, α,γ; ξN ) of the integration in the space
Hs,α,γ is defined as

e(T ; s, α,γ; ξN ) = sup
f∈Hs,α,γ ,‖f‖s,α,γ≤1

{∣∣∣∣∣

∫

[0,1)s

f(x) dx −
1

N

N−1∑

n=0

f(xn)

∣∣∣∣∣

}
.

The next result is obtained.
Theorem 3. The worst-case error e(T ; s, α,γ; ξN ) of the integration in the repro-

ducing kernel weighted Hilbert space Hs,α,γ, which is based on using the net ξN and
the weighted diaphony of the net ξN are connected with the equality

e(T ; s, α,γ; ξN ) =

√√√√
s∏

j=1

[1 + 2γjζ(α)] − 1 · F (T ;α,γ; ξN ).

4. Proof of the main results. Proof of Theorem 1. The Weyl criterion (see
Kuipers and Niederreiter [4], Theorem 6.2) gives that the sequence ξ = (xn)n≥0 is
uniformly distributed in [0, 1)s if and only if the equality

(3) lim
N→∞

1

N

N−1∑

n=0

exp(2πi〈m,xn〉) = 0

holds for each vector m ∈ Zs and m 6= 0.
Let the sequence ξ be uniformly distributed in [0, 1)s. From (3) for every ǫ > 0

there is an index Nǫ such that for each integer N ≥ Nǫ the inequality

(4)

∣∣∣∣∣
1

N

N−1∑

n=0

exp(2πi〈m,xn〉)

∣∣∣∣∣ < ǫ

holds. From Definition 1 and (4) we have that for each even integer α ≥ 2 and for an
arbitrary vector γ of positive weights

F 2
N (T ;α,γ; ξ) <

ǫ2

∏s
j=1[1 + 2γjζ(α)] − 1

∑

m∈Zs,m 6=0

r(α,γ;m) = ǫ2.

The last inequality gives that the equality limN→∞ FN (T ;α,γ; ξ) = 0 holds for each
even integer α ≥ 2 and an arbitrary vector γ of positive weights.

We note that for each fixed vector m ∈ Zs and m 6= 0 we have that

(5)

∣∣∣∣∣
1

N

N−1∑

n=0

exp(2πi〈m,xn〉)

∣∣∣∣∣ ≤

√∏s
j=1[1 + 2γjζ(α)] − 1

r(α,γ;m)
FN (T ;α,γ; ξ).

Let now the equality limN→∞ FN (T ;α,γ; ξ) = 0 holds for each even integer α ≥ 2
and for an arbitrary vector γ of positive weights. Hence, the inequality (5) gives that
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the equality limN→∞
1
N

∑N−1
n=0 exp(2πi〈m,xn〉) = 0 holds for each vector m ∈ Zs and

m 6= 0. Then from (3) the sequence ξ is uniformly distributed in [0, 1)s. Theorem 1 is
completely proved.

Proof of Theorem 2. In Lemma 2 (ii) the Fourier coefficients of the function
G(·) are presented. So, we have the equality

(6) G(α,γ;x) =
∑

m∈Zs

Ĝ(α,γ;m) exp(2πi〈m,x〉), ∀x ∈ [0, 1)s.

Let ξN = {x0,x1, . . . ,xN−1} be an arbitrary net composed of N ≥ 1 points in
[0, 1)s. From (2) and (6) we consecutively obtain

1∏s
j=1[1 + 2γjζ(α)] − 1

1

N2

N−1∑

n=0

N−1∑

m=0

G(α,γ;xn − xm)

=
1∏s

j=1[1 + 2γjζ(α)] − 1

1

N2

N−1∑

n=0

N−1∑

m=0

∑

m∈Zs

Ĝ(α,γ;m) exp(2πi〈m,xn − xm〉)

=
1∏s

j=1[1 + 2γjζ(α)] − 1

∑

m∈Zs,m 6=0

r(α,γ;m)

∣∣∣∣∣
1

N

N−1∑

n=0

exp(2πi〈m,xn〉)

∣∣∣∣∣

2

= F 2
N (T ;α,γ; ξN ).
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