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ABSTRACT

In the present paper the authors give numerical results about 

the distribution of a special type of a sequence- the so-called 

sequence of Halton in comparison with theoretical 

estimations, obtained by theoretical examinations presented 

before. The so-called "generalized b-adic diaphony", which is 

based on the Walsh functional system over finite groups is 

taken as a measure for uniform distribution of sequences. The 

obtained numerical results show that the theoretical bounds 

about the generalized b-adic diaphony of the sequence of 

Halton give a frame in which numerical computations are 

settled. 

I. WALSH FUNCTIONS OVER FINITE GROUPS

As a main tool of our work we will use the Walsh functional 

system over finite abelian groups. Following Larcher, 

Niederreiter and W. Ch. Schmid [1] and Larcher and Pirsic 

[2] we will recall the concept of  this functional system. For a 

given integer m�1, let {b1,�,bm:1�l�m, bl�2} be a set of 

fixed integers. For 1� l�m let 
lbZ ={0,1,�,bl-1},

lb⊕  be the 

operation summation mod bl of the elements of the set 

lbZ and (
lbZ ,

lb⊕ ) is  the discrete cyclic group of order bl. 

Let G =
mbb Z...Z

1
×× and for each pair g=(g1,�,gm)�G and 

y=(y1,�,ym)�G let us set g G⊕ y= (g1
1b⊕ y1,�,gm

mb⊕ ym). 

Then, (G, G⊕ ) is a finite abelian group of order b = b1

b2�bm. For the defined base b let us denote Zb ={0,1, �, b-1}

and let �:Zb�G be an arbitrary bijection with the condition 

�(0)=0. For g,y�G let the character )y(gχ  be defined by 
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where for i�0, xi�{0,1, �, b-1} and for infinitely many values 

of i, xi�b-1. The b-adic representations of the reals in [0,1) 

will be subordinated to this rule everywhere in our work. 

Definition 1.  For an arbitrary integer k�0 and real x�[0,1) 

with the b-adic representations 
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 where for 0�i��, ki�{0,1,�,b-1}, k��0, the function 

)(, xwalkG ϕ :[0,1)�C  is defined in the following way  
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The set WG,�= { kG walϕ, :k=0, 1,�} is called the Walsh 

functional system over the finite group G with respect to the 

bijection �. Let s�1 be a fixed integer and s will denote the 

dimension everywhere in the paper. Let N0 be the set of non-

negative integers. The multivariate Walsh functions over the 

finite group G with respect to the bijection  � are defined by 

multiplication of the corresponding univariate functions, i.e. 

for a vector k=(k1,�,ks)� N0
s
and x=(x1,�,xs)�[0,1)

s
 we set  

G,�walk(x)=∏
=

s

G xwal
1

k, )(
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For any dimension s�1 the system { k, walG ϕ :k�N0
s
} is a 

complete orthonormal functional system on L2 ([0,1)
s
). In the 

case when m=1, G=Zb and  �=id the identity of the set Zb in 

itself, the obtained system id,Zb
W is the system W(b) of the 

Walsh functions in base b defined by Chrestenson [3]. The set 

W(2) is the original Walsh [4] functional system. So, for each 

integer k�0 with the b-adic representation 

��
∝

=

−−

=
==

0

1

0
 and 

i

i

ii

i

i bxxbkk
υ

, where for 0�i��, 

ki�{0,1,�,b-1}, k��0, the Walsh function bwalk:[0,1)�C is 

defined as bwalk(x)= )2exp(
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II. INTRODUCTION

Following Kuipers and Niederreiter [5] we will recall the 

concept for uniformly distributed sequences. Let �=(xi)i�0 be 

an arbitrary sequence of points in [0,1)
s
. For each integer N�1 

and an arbitrary subinterval J of [0,1)
s
 with a volume 	(J), we 

denote by �(�,�,N) the number of the points xn of the 

sequence � whose indices n satisfy the inequalities 0�n�N-1 

and belong to the interval J. The sequence � is called 

uniformly distributed in [0,1)
s
 if the equality 

)(
),,(

lim J
N

NJA

N

µ
ξ

=
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 holds for every subinterval J of 

[0,1)
s
. In general, the discrepancy and the diaphony are 

quantitative measures for uniform distribution of sequences in  

[0,1)
s
. Zinterhof [6] uses the trigonometric functional system 

to introduce the "classical" diaphony.  

The different kinds of the diaphony which is based on using 

orthonormal functional systems in base b�2 as the dyadic 

diaphony introduced by Hellekalek and Leeb [7], the b-adic 
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diaphony, see Grozdanov and Stoilova [8], the generalizations 

of the b-adic diaphony, see Grozdanov, Nikolova and 

Stoilova [9] have been considered so far as quantitative 

measures for uniform distribution of sequences in [0,1)
s
. As a 

quantitative measure presenting the quality of the distribution 

of the points of a sequence in [0,1)
s
 we will expose and use 

the so-called generalized b-adic diaphony. So, following [9] 

we recall the next definition. 

Definition 2. For each integer N�1 the generalized b-adic 

diaphony FN(WG,�;�) of the first N elements of the sequence 

�=(xi)i�0 in [0,1)
s
 is defined by 

2

,

1

1

1)1(

1
,

0

,
)()();( � �

≠∈

−

=
−+

=
0kNk

k
xk

s
G

s

N

oi

iwalNbGN WF
ϕ

ρξϕ

 where for a vector k=(k1,�,ks)�N0
s
, 
(k)=�s

	=1
(k	), and for 

an arbitrary integer k�0 
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In [6] it is proved that the next theorem holds. 

Theorem 1. The sequence � of points in [0,1)
s
 is uniformly 

distributed in [0,1)
s
 if and only if the next equality holds 

0);( ,lim =
→∝

ξϕGN WF
N

. 

Figure 1: Well distributed sequence of 16 points 

III. ESTIMATIONS FOR THE GENERALIZED B-ADIC DIAPHONY 

OF THE SEQUENCE OF HALTON 

Definition 3. Let b�2 be an arbitrary fixed integer. The 

sequence of Halton Hb=Hb(i)i�0 is defined as follows: if an 

arbitrary non-negative integer i has the b-adic representation 
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Figure 2: First 25 points from the Halton sequence, b=5 

The sequence Hb was introduced by Halton. 

According to the results exposed in [10] and [11], the 

following two theorems hold. 

Theorem 2. For each integer N�1 the generalized b-adic 

diaphony of the sequence of Halton Hb satisfies the inequality 

)(]1)1[()();( 21
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where the constants c1(b) and c2(b) are defined respectively as 
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Theorem 3. For infinitely many values of integer N�1 the 

generalized b-adic diaphony of the sequence of Halton Hb

satisfies the inequality 
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where the constants c3(b) and c4(b) are defined respectively as 
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IV. NUMERICAL TESTS FOR THE THE GENERALIZED B-ADIC 

DIAPHONY OF THE SEQUENCE OF HALTON

In this paper we have examined some examples of the Halton 

sequence Hb (for different basis b=2,3,6,10,16) in the special 

case when the dimensionality of the points is one i.e. s=1;

bijection � is the identical bijection. In the numerical 

computations values of the generalized b-adic diaphony FN( 

WG,�;Hb) of the first N elements of the Hb, are obtained when 

infinite sum in the definition of the generalized b-adic 

diaphony FN( WG,�;Hb) will be replaced with a finite sum of 

100 members. In the following text we will use the word 

�diaphony� with a meaning of �the generalized b-adic 

diaphony�.  

A. Results for case b=2 

The first 16 elements of the Halton sequence, in the case 

when base b=2 are shown on the next figure, and on Fig.1.  

Figure 3: First 16 points from the Halton sequence, b=2 

The values (with some precision) of the diaphony of the first 

N elements (N=100,200,�,1700) of the Halton sequence are 

shown on Fig.4. 
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Figure 4: Table of  diaphony of the first N elements of the 

Halton sequence, b=2 

The following figure (Fig.5) shows upper (red line), lower 

(green line)  bounds and values of the diaphony, presented on 

the previous figure. 

Figure 5: Diaphony of the first N elements of the Halton 

sequence, b=2 

It is obvious that numerical results obtained in these 

computations, shown with red points on Fig.5, are settled 

exactly between two theoretical estimations - the lower and 

the upper bounds. According to this example, the lower 

bound is a better approximation than the upper bound. Results 

obtained from computations with 200 summands go with the 

previous conclusion.   

B. Results for case b=3 

The first 20 elements of the Halton sequence, in the case 

when base b=3 are shown on the next figure, and on Fig.7. 

Figure 6: First 20 points from the Halton sequence, b=3 

Figure 7: First 20 points from the Halton sequence, b=3 

The values of the diaphony of the first N elements 

(N=100,200,�,1700) of the Halton sequence are shown on 

Fig.8. 

Figure 8: Table of  the diaphony of the first N elements of the 

Halton sequence, b=3 

The following figure shows upper (red) and lower (green)  

bounds and values of the diaphony, presented on Fig.8. 

Figure 9: Diaphony of the first N elements of the Halton 

sequence, b=3 

C. Results for case b=6 

The first 20 elements of the Halton sequence, in the case 

when base b=6 are shown on Fig.10 and on Fig.11. 

  

Figure 10: First 20 points from the Halton sequence, b=6 
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Figure 11: First 20 points from the Halton sequence, b=6 

The values of the diaphony of the first N elements 

(N=100,200,�,1000) of the Halton sequence are shown on 

Fig.12. 

Figure 12: Table of  the diaphony of the first N elements of 

the Halton sequence, b=6 

The following figure shows upper (red line), lower (green 

line)  bounds and values of the diaphony, presented on the 

previous figure. 

Figure 13: Diaphony of the first N elements of the Halton 

sequence, b=6 

D. Results for case b=10 

The first 20 elements of the Halton sequence, in the case 

when base b=10 are shown on the next figure, and on Fig.14.  

Figure 14: First 20 points from the Halton sequence, b=10 

Figure 15: First 20 points from the Halton sequence, b=10 

The values of the diaphony of the first N elements 

(N=100,200,�,1000) of the Halton sequence are shown on 

Fig.16. 

Figure 16: Diaphony of the first N elements of the Halton 

sequence, b=10 

The following figure shows upper (red) and lower (green)  

bounds and values of the diaphony, for b=10, presented on  

Fig.16. 

Figure 17: Diaphony of the first N elements of the Halton 

sequence, b=10 

E. Results for case b=16 

The first 20 elements of the Halton sequence, in the case 

when base b=16 are shown on the next figure, and on Fig.19.  

Figure 18: First 20 points from the Halton sequence, b=16 
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Figure 19: First 20 points from the Halton sequence, b=16 

The values of the diaphony of the first N elements 

(N=100,200,�,1000) of the Halton sequence are shown on 

Fig.20. 

Figure 20: Diaphony of the first N elements of the Halton 

sequence, b=16 

The following figure shows upper (red) and lower (green)  

bounds and values of the diaphony, for b=16, presented on  

Fig.20. 

Figure 21: Diaphony of the first N elements of the Halton 

sequence, b=16 

Figure 22: Diaphony of the first N elements of the Halton 

sequence, with lower bound, b=16 

Figure 23: Diaphony of the first N elements of the Halton 

sequence, with lower bound, b=3 

V. CONCLUSIONS

The results that were presented on the previous tables and 

figures obviously show that numerical results obtained in 

computations are settled exactly between the lower and upper 

theoretical estimations, given in [11]. According to all these 

examples, the lower bound is a better approximation than the 

upper bound. 
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