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ABSTRACT

In the present paper the authors give numerical results about
the distribution of a special type of a sequence- the so-called
sequence of Halton in comparison with theoretical
estimations, obtained by theoretical examinations presented
before. The so-called "generalized bh-adic diaphony", which is
based on the Walsh functional system over finite groups is
taken as a measure for uniform distribution of sequences. The
obtained numerical results show that the theoretical bounds
about the generalized b-adic diaphony of the sequence of
Halton give a frame in which numerical computations are
settled.

. WALSH FUNCTIONS OVER FINITE GROUPS

As a main tool of our work we will use the Walsh functional
system over finite abelian groups. Following Larcher,
Niederreiter and W. Ch. Schmid [1] and Larcher and Pirsic
[2] we will recall the concept of this functional system. For a

given integer m>1, let {by,...,b,:1</<sm, b =2} be a set of
fixed integers. For 1< /<m let Zb/ ={0,1,...,b,—1},@b/ be the
operation summation mod b, of the elements of the set

Z », and (Z b ,® p ) is the discrete cyclic group of order b;.
Let G = Zbl XX Zb” and for each pair g=(g,...,g,,)eG and

V=1, yn)eG let us set g@;y= (21D y1,...8. D, yu).

Then, (G,@G) is a finite abelian group of order b = b,

b,...b,,. For the defined base b let us denote Z, ={0,1, ..., b-1}
and let ¢:Z,—~G be an arbitrary bijection with the condition

¢(0)=0. For gyeG let the character J,(y) be defined by

X (Y)= H exp(27d %) . For an arbitrary real xe[0,1)
1=

/

oc

—i-1
i=0 Xi b ’

we will use the b-adic representation Xx = z
where for 20, x;6/0,1, ..., b-1} and for infinitely many values
of i, x;#b-1. The b-adic representations of the reals in [0,1)
will be subordinated to this rule everywhere in our work.

Definition 1. For an arbitrary integer k>0 and real x€[0,1)

with the b-adic representations
_ v i _ o< —i-1
k= Zi:o k,b" and x = Z[ZO xb™,

where for O=<i<v, ke{0,1,...,b-1}, k,#0, the function

6.oWal, (x) :[0,1)~C is defined in the following way
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G.p wal, (x) = HZq;(k,.) (o(x,))

The set Wg = {G’(p wal, k=0, 1,...} is called the Walsh

functional system over the finite group G with respect to the
bijection ¢. Let s=1 be a fixed integer and s will denote the
dimension everywhere in the paper. Let IV, be the set of non-
negative integers. The multivariate Walsh functions over the
finite group G with respect to the bijection ¢ are defined by
multiplication of the corresponding univariate functions, i.e.
for a vector k=(k,, ...,k)e Ny’and x=(x, ...,x,)€[0,1)* we set

Gowaly(x)= H GoWal,(x,).

4=l

For any dimension s>1 the system {; , wal, keNy'} is a
complete orthonormal functional system on L, ([0,1)°). In the
case when m=1, G=Z, and ¢=id the identity of the set Z; in
itself, the obtained system Wz,,,id is the system W(b) of the
Walsh functions in base b defined by Chrestenson [3]. The set

W(2) is the original Walsh [4] functional system. So, for each
integer k>0 with the b-adic representation

k= Zf:o kibi and x = z:o xl.b’H , where for 0<i<v,
kie{0,1,...,b-1}, k,#0, the Walsh function ywal,:[0,1)->C is

v k.
defined as ,wali(x)= H exp(27 %) :

i=0

II. INTRODUCTION

Following Kuipers and Niederreiter [5S] we will recall the
concept for uniformly distributed sequences. Let £=(x;) be
an arbitrary sequence of points in [0,1)°. For each integer N>1
and an arbitrary subinterval J of [0,1)° with a volume u(J), we
denote by A(£J,N) the number of the points x, of the
sequence ¢ whose indices 7 satisfy the inequalities O<n<N-1
and belong to the interval J. The sequence ¢ is called

uniformly  distributed in  [0,1)° if the equality
. AE,J,N

hInb = 1(J) holds for every subinterval J of

N—ec N

[0,1)°. In general, the discrepancy and the diaphony are
quantitative measures for uniform distribution of sequences in
[0,1)°. Zinterhof [6] uses the trigonometric functional system
to introduce the "classical" diaphony.

The different kinds of the diaphony which is based on using
orthonormal functional systems in base b>2 as the dyadic
diaphony introduced by Hellekalek and Leeb [7], the b-adic
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diaphony, see Grozdanov and Stoilova [8], the generalizations
of the b-adic diaphony, see Grozdanov, Nikolova and
Stoilova [9] have been considered so far as quantitative
measures for uniform distribution of sequences in [0,1)°. As a
quantitative measure presenting the quality of the distribution
of the points of a sequence in [0,1)° we will expose and use
the so-called generalized h-adic diaphony. So, following [9]
we recall the next definition.

Definition 2. For each integer N>1 the generalized b-adic
diaphony Fy(Wg &) of the first N elements of the sequence
&E=(x;)i=9 in [0,1)% is defined by

FuWepi&) = os 2, P
keN,' k0

where for a vector k=(k, ...,k) &Ny, p(k)=IT,-p(k,), and for
an arbitrary integer k>0

N-1 2

LNZ Gowal (xl)

i=o

) Lk=0
PRI = p2e vk b <k < b ge N,
In [6] it is proved that the next theorem holds.

Theorem 1. The sequence & of points in [0,1)* is uniformly
distributed in [0,1)° if and only if the next equality holds

limFN (WG,rﬂ;é) =0.

N—ec

Figure 1: Well distributed sequence of 16 points

III. ESTIMATIONS FOR THE GENERALIZED B-ADIC DIAPHONY
OF THE SEQUENCE OF HALTON

Definition 3. Let »>2 be an arbitrary fixed integer. The
sequence of Halton H,=H (i) is defined as follows: if an
arbitrary non-negative integer i has the b-adic representation

i= ijo a, (i)bf we replace H, (i) = Zj:o a, (l-)b—_/—l .

Figure 2: First 25 points from the Halton sequence, b=5

The sequence H,, was introduced by Halton.

According to the results exposed in [10] and [11], the
following two theorems hold.

Theorem 2. For each integer N>1 the generalized b-adic
diaphony of the sequence of Halton H,, satisfies the inequality

Fy(W,, s H,) <L\ Je (b)Log[(b—1)N +1]+¢,(b)

G,p°
where the constants c¢;(b) and c,(b) are defined respectively as
2b* —2b—-1 b-1)’
26722621y =0=D
Log(b) b

Theorem 3. For infinitely many values of integer N>1 the
generalized b-adic diaphony of the sequence of Halton H,
satisfies the inequality

Cl(b) =

Fy(Wg i H,) > aley(b)Logl(b* = DN +1]+¢,(b).

Nl
where the constants c3(b) and c,(b) are defined respectively as
(b*-2)’
2b+1)°b*(b—1)Log(b)

cy(b) =

(b*-2)°
(b+1)*p2(b-1)"

c,(b)=—

IV. NUMERICAL TESTS FOR THE THE GENERALIZED B-ADIC
DIAPHONY OF THE SEQUENCE OF HALTON

In this paper we have examined some examples of the Halton
sequence H, (for different basis b=2,3,6,10,16) in the special
case when the dimensionality of the points is one i.e. s=1;
bijection ¢ is the identical bijection. In the numerical
computations values of the generalized b-adic diaphony Fy(
W . Hy) of the first N elements of the /), are obtained when
infinite sum in the definition of the generalized b-adic
diaphony Fy( Wg . H,) will be replaced with a finite sum of
100 members. In the following text we will use the word
“diaphony” with a meaning of “the generalized b-adic
diaphony”.

A.  Results for case b=2

The first 16 elements of the Halton sequence, in the case
when base »=2 are shown on the next figure, and on Fig.1.

1131 % 37 1 8 5 13 3 11 7 15
{DF EJ’ EJ’ EJ’ EJ’ EF EF EJ’ I I R }

Figure 3: First 16 points from the Halton sequence, 5=2

The values (with some precision) of the diaphony of the first
N elements (N=100,200,...,1700) of the Halton sequence are
shown on Fig.4.
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N Diaphony of first N el.
lon. 0.0123269
zoo. 0.00567684
300, 0.0044145
400, 0.00229564
Loo. 0.002345354
GO0, 0.00195191
700. 0.001687
aoo. 0.00108253
a0no. 0.00108695
looa, 0.00113537
lioa. 0.00118231
lznoa, 0.000871521
lz00. 0.00096274
lann, 0.000882904
1500, 0.000838525
lana, 0.000441942
1700, 0.000739875

Figure 4: Table of diaphony of the first N elements of the
Halton sequence, b=2

The following figure (Fig.5) shows upper (red line), lower
(green line) bounds and values of the diaphony, presented on
the previous figure.
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Figure 5: Diaphony of the first N elements of the Halton
sequence, b=2

It is obvious that numerical results obtained in these
computations, shown with red points on Fig.5, are settled
exactly between two theoretical estimations - the lower and
the upper bounds. According to this example, the lower
bound is a better approximation than the upper bound. Results
obtained from computations with 200 summands go with the
previous conclusion.

B.  Results for case b=3

The first 20 elements of the Halton sequence, in the case
when base 5=3 are shown on the next figure, and on Fig.7.

a1 &1 258 1 W18 4 13 & 7 168 2 1

{’5’ N N N A A A 27}
Figure 6: First 20 points from the Halton sequence, 5=3

Figure 7: First 20 points from the Halton sequence, b=3

The values of the diaphony of the first N elements
(N=100,200,...,1700) of the Halton sequence are shown on
Fig.8.

N Digphony of first N el.
100, 0.0149381
200, 0.0079%7914
300, 0.00428082
400, 0.00366215
S00. 0.00307501
a00. 0.00237821
Joo. 0.00z00537
aoo. O.oo0L179707
Q0a0. 0.001l19696
1000, 0.00129245
1100, 0.00145309
lzoo, 0.0010939:
1300, 0.00110131
1400, 0.0o011001s
1500, 0.000965597
1la00, 0.00096585
1700, 0.000554594

Figure 8: Table of the diaphony of the first NV elements of the
Halton sequence, h=3

The following figure shows upper (red) and lower (green)
bounds and values of the diaphony, presented on Fig.8§.
Diaphony with bounds
0035
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1000 1250 1500

250 500 7E0

Figure 9: Diaphony of the first N elements of the Halton
sequence, b=3

C. Results for case b=6

The first 20 elements of the Halton sequence, in the case
when base =6 are shown on Fig.10 and on Fig.11.

{01112517131925311275
!

Figure 10: First 20 points from the Halton sequence, b=6
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Figure 11: First 20 points from the Halton sequence, 5=6 Figure 15: First 20 points from the Halton sequence, b=10

The values of the diaphony of the first N elements The values of the diaphony of the first N elements
(N=100,200,...,1000) of the Halton sequence are shown on (N=100,200,...,1000) of the Halton sequence are shown on

Fig.12. Fig.16.
N Digphony of first N el.

N Digphony of first N el. 100, 0.,00447214
oo, 0.0172971 200, 0.00394544
Z00. 0. 00852726 00, 0.00324416
a0o. 0.00469765 400, 0.00255834
400, 0. 00369266 soo. O.00204657
LS00, 0.0031717s8 coo. 0.00170556
00, 0.0022135:2 Fo0. 0.00139036
T0o. 0.00z57218 aoo. 0.00093711
aoo. 0.0021352 Q0a. 0.000495904
a0n. 0.0006415 1000, 0.
rooo, 0.00172971

Figure 16: Diaphony of the first N elements of the Halton
Figure 12: Table of the diaphony of the first N elements of sequence, b=10

the Halton sequence, 5=6 The following figure shows upper (red) and lower (green)

The following figure shows upper (red line), lower (green bounds and values of the diaphony, for »=10, presented on
line) bounds and values of the diaphony, presented on the Fig.16.

previous ﬁgure~ Diaphony mith bounds

Diapheny with bounds 0. 1a
.1z
0.0% 01
008
0-08 0.06
004
n.04
o0z
| S S S S i
v.ozpo, 200 200 E00 §00 1000
L]
* ) . .
e el | Figure 17: Diaphony of the first N elements of the Halton

Z00 400 GO0 GO0 1000 sequence, b=10

Figure 13: Diaphony of the first N elements of the Halton
sequence, b=6 E.  Results for case b=16
The first 20 elements of the Halton sequence, in the case

_ when base 5=16 are shown on the next figure, and on Fig.19.
D. Results for case b=10 { LL3 1831718503 nTl 1 108

The first 20 elements of the Halton sequence, in the case
when base »=10 are shown on the next figure, and on Fig.14.
{D L L T ) B 91} Figure 18: First 20 points from the Halton sequence, b=16

Figure 14: First 20 points from the Halton sequence, 5=10
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Figure 19: First 20 points from the Halton sequence, 5=16

The values of the diaphony of the first N elements
(N=100,200,...,1000) of the Halton sequence are shown on

Fig.20.

N
laoa.
Z00.
300.
40a.
a0a.
aood.
Toa.
goa.
a0a.
looo.

Digphony of first N el.
L0E9zZ005
L0324505
LE2AE565
L0243091
L01l06499
0190268
01383268
0114343
L0153794
L0087TE337

o e s s Y s Y s Y s Y s Y o o

Figure 20: Diaphony of the first N elements of the Halton

sequence, b=16

The following figure shows upper (red) and lower (green)
bounds and values of the diaphony, for 5=16, presented on

Fig.20.

Diaphony mith bound=

-
. »
- * - * * * oy

Z0n 200 Goo oo 1000

Figure 21: Diaphony of the first N elements of the Halton

sequence, b=16

Diapheny with lower Lound

o025

o_o2

0O_0zs

0o_0l1s

0005

i)
Zoo 300 00 00 1000

Figure 22: Diaphony of the first N elements of the Halton
sequence, with lower bound, b=16

Diaphony with lower bound
0.005
o.003
o.o0:z2
0.00z

o.ool

250 500 TR0 1000 150 1500

Figure 23: Diaphony of the first N elements of the Halton
sequence, with lower bound, b=3

V. CONCLUSIONS

The results that were presented on the previous tables and
figures obviously show that numerical results obtained in
computations are settled exactly between the lower and upper
theoretical estimations, given in [11]. According to all these
examples, the lower bound is a better approximation than the
upper bound.
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