
9th Conference for Informatics and Information Technology (CIIT 2012)

ON IMPROVING THE DECODING OF RANDOM CODES BASED ON

QUASIGROUPS

Aleksandra Popovska-Mitrovikj Smile Markovski Verica Bakeva

UKIM, Faculty of Computer Science and Engineering

{aleksandra.popovska.mitrovikj, smile.markovski, verica.bakeva}@finki.ukim.mk

Abstract

In this paper we examine the influence of the length of the
messages on the performances of error-correcting codes
based on quasigroup transformations proposed elsewhere.
We made simulations for binary symmetric channel, for
different lengths of messages with the same rate and find
the packet-error probability (PER) and the bit-error prob-
ability (BER). Also we give some ideas for speed-up the
decoding process and improving the performances of ran-
dom codes based on quasigroups.

Key words: error-correcting code, random code, packet-
error probability, bit-error probability, quasigroup, quasi-
group transformation.

I. Introduction

Here we consider the codes defined in [3] and our task is
to investigate the influence of the length of the messages
to the code performances with the same rate. First we
give some definitions and explanation of the coding and
decoding algorithm of these codes.

A. Quasigroups and Quasigroups string transformation

A quasigroup (Q, ∗) is a groupoid, i.e., a set Q with a
binary operation ∗ : Q2 → Q, such that for all u, v ∈ Q,
there exist unique x,y ∈ Q, satisfying the equalities u ∗
x = v and y ∗ u = v. In the sequel we assume that the
set Q is a finite set. The cardinality of this set, | Q |, is
called an order of the quasigroup. The main body of the
multiplication table of a quasigroup is a Latin square over
the set Q. Given a quasigroup (Q,∗) a new operation \,
called a parastrophe, can be derived from the operation ∗
as follows:

x ∗ y = z ⇔ y = x\z. (1)

Then the algebra (Q,∗,\) satisfies the identities:

x\(x ∗ y) = y and x ∗ (x\y) = y,

and (Q,\) is also a quasigroup.
Quasigroup string transformations are defined on a fi-

nite set Q (i.e., an alphabet Q) endowed with a quasi-
group operation ∗, and they are mappings from Q+ to
Q+, where Q+ is the set of all nonempty words on Q.
Note that Q+ =Q∪Q2∪Q3 Here, we use two types of
quasigroup transformations as explained below. Let l ∈Q
be a fixed element, called a leader. For every ai, bi ∈ Q,
e− and d−transformations are defined as follows:

el(a1a2 . . .an) = b1b2 . . . bn⇔ bi+1 = bi ∗ ai+1,
dl(a1a2 . . .an) = b1b2 . . . bn⇔ bi+1 = ai\ai+1,

(2)

for each i= 0,1, . . . ,n−1, where b0 = a0 = l. By using the
identities x\(x ∗ y) = y and x ∗ (x\y) = y, we have that
dl(el(a1a2 . . . an)) = a1a2 . . . an and el(dl(a1a2 . . . an)) =
a1a2 . . . an. This means that el and dl are permutations
on Qn, mutually inverse. In the code design compositions
of el and dl are used.

Theorem 1: [4] Consider an arbitrary string α =
a1a2 . . .an where ai ∈Qi, and let β be obtained after k ap-
plications of an e−transformation on α. If n is an enough
large integer then, for each 1 ≤ t ≤ k, the distribution of
substrings of β of length t is uniform. (We note that for
t > k the distribution of substrings of β of length t is not
uniform.)

Code design uses the alphabet Q = {0, 1, ..., 9, a, b,
c, d, e, f} of nibbles and a quasigroup operation ∗ on Q,
together with its parastrophe \.

B. Description of coding

Let M = m1m2...mr be a block of Nblock bits, where
mi is a nibble (4-bit letter); hence, Nblock = 4r. We
first add redundancy as zero bits and produce block
L = L(1)L(2)...L(s) = L1L2...Lm of N bits, where L(i) are
4-nibble words, Li are nibbles, so m= 4s, N = 16s. After
erasing the redundant zeros from each L(i), the message
L will produce the original message M . On this way
we obtain an (Nblock,N) code with rate R = Nblock/N .
The codeword is produced from L after applying the
encryption algorithm given in Figure 1. For that aim,
previously, a key k = k1k2 . . . kn of length n nibbles
should be chosen. The obtained codeword of M is
C = C1C2...Cm, where Ci are nibbles.

C. Description of decoding

After transmission through a noise channel (for our ex-
periments we use binary symmetric channel), the code-
word C will be received as message D =D(1)D(2)...D(s) =
D1D2...Dm, where D(i) are blocks of 4 nibbles and Dj are
nibbles. The decoding process consists of four steps: (i)
procedure for generating the sets with predefined Ham-
ming distance, (ii) inverse coding algorithm, (iii) proce-
dure for generating decoding candidate sets and (iv) de-
coding rule.

The probability that ≤ t bits in D(i) are not correctly
transmitted is P (p; t) =

∑t

k=0

(

16
k

)

pk(1− p)16−k, where p
is probability of bit-error in a binary symmetric channel.
Let Bmax be an integer such that 1−P (p;Bmax)≤ qB and
Hi = {α|α ∈ Q4, H(D(i), α) ≤ Bmax}, for i = 1,2, . . . , s,
where H(D(i),α) is the Hamming distance between D(i)

c©2012 Faculty of Computer Science and Engineering

214

9th Conference for Informatics and Information Technology (CIIT 2012)

Encryption Decryption

Input: Key k = k1k2 . . .kn Input: The pair
and L= L1L2 . . .Lm (a1a2 . . .as,k1k2 . . .kn)
Output: codeword Output: The pair
C = C1C2...Cm (c1c2 . . . cs,K1K2 . . .Kn)

For j = 1 to m For i= 1 to n

X← Lj ; Ki← ki;
T ← 0; For j = 0 to s− 1
For i= 1 to n X,T ← aj+1;
X← ki ∗X; temp←Kn;
T ← T ⊕X; For i= n to 2
ki←X; X← temp \X;

kn← T T ← T ⊕X;
Output: Cj ←X temp←Ki−1;

Ki−1←X;
X← temp \X;
Kn← T ;
cj+1←X;

Output:
(c1c2 . . . cs,K1K2 . . .Kn)

Figure1: Algorithm for encryption and decryption

and α.

The decoding candidate sets S0, S1, S2,. . . , Ss are de-
fined iteratively. Let S0 = (k1 . . . kn;λ), where λ is the
empty sequence. Let Si−1 be defined for i ≥ 1. Then Si

is the set of all pairs (δ,w1w2 . . .w16i) obtained by using
the sets Si−1 and Hi as follows (Here, wj are bits). For
each (β,w1w2 . . .w16(i−1)) ∈ Si−1 and each element α ∈H,
we apply the inverse coding algorithm (i.e. algorithm for
decryption given in Figure 1) with input (α, β). If the
output is the pair (γ,δ) and if both sequences γ and L(i)

have the redundant nibbles in the same positions, then
the pair (δ,w1w2 . . .w16(i−1)c1c2 . . . c16)≡ (δ,w1w2 . . .w16i)
is an element of Si.

The decoding of the received codeword D is given by
the following rule: If the set Ss contains only one element
(d1 . . .dn,w1 . . .w16s) then L= w1 . . .w16s. In this case, we
say that we have a successful decoding. In the case when
the set Ss contains more than one element, we say that
the decoding of D is unsuccessful (of type more-candidate-

errors). In the case when Sj = ∅ for some j ∈ {1, . . . , s},
the process will be stopped (null-error appears). We con-
clude that for some m≤ j, D(m) contains more than Bmax

errors, resulting with Cm /∈H.

Theorem 2: [3] The packet-error probability of these
codes is q = 1− (1− qB)

s.

II. The influence of the length of the messages

to the code performances

In the known error-correcting codes, the probabilities of
bit-error and packet error decrease when the length of the
message increase. We will show that it is not case for ran-
dom codes based on quasigroups. From the formula for
theoretical packet-error probability given in Theorem 2, it
is clear that for larger number of blocks in the codeword
the packet-error probability is larger. This follow from
the fact that in this case we have more iteration in the
process of decoding and in each of them the correct block
should be in the appropriate (corresponding) set S. When

the message M is longer, then for obtaining the same rate
R, the number of blocks in the redundant message must be
larger and codeword is longer than for shorter messages.
So, for longer codeword we have larger packet-error prob-
ability. We check this result experimentally.

In [5], we gave experimental results, for different pat-
terns of redundancy, for code (72,288) with rate R=1/4
for binary symmetric channel. For comparison we have
made experiments with same quasigroup, key and rate
for code (144,576) with twice longer messages. We
compare the best results for two codes. For the code
(72,288) the best results are obtained for the pattern:
110011001000000011001000100000001100110010000000

110010001000000000000000,

and for (144,576) for the pattern:

110011001000000011001000100000001100110010000000

110010001000000000001100110010000000110010001000

000011001100100000001100100010000000000000000000.

In the experiments we use key k = 0123456789 and the
quasigroup given in [5]. The obtained results for PER
and BER for different values of bit-error probability p of
binary symmetric channel and Bmax = 4 are presented in
Table 1 and Table 2 .

Table 1: Experimental results for packet-error
probability

p RCBQ(72,288) RCBQ(144,576)
0.03 0.00171 0.00343
0.04 0.00594 0.01200
0.05 0.01594 0.03200
0.06 0.03594 0.06800
0.07 0.06656 0.13200
0.08 0.11313 0.22114
0.09 0.18875 0.32571

Table 2: Experimental results for bit-error probability

p RCBQ(72,288) RCBQ(144,576)
0.03 0.00089 0.00228
0.04 0.00343 0.00750
0.05 0.00928 0.01746
0.06 0.02239 0.04121
0.07 0.04065 0.08373
0.08 0.06485 0.14621
0.09 0.11357 0.21843

From the results in Table 1 and Table 2 we can con-
clude that the packet-error probability and bit-error prob-
ability for the longer codewords are approximately twice
larger than for the shorter codewords. In Table 3 the

 !"

9th Conference for Informatics and Information Technology (CIIT 2012)

Table 3: Probabilities of more-candidate-errors and
null-errors

RCBQ(72,288) RCBQ(144,576)
p pnull pmore pnull pmore

0.03 0.00114 0.00057 0.00343 0
0.04 0.00531 0.00063 0.01200 0
0.05 0.01469 0.00125 0.03143 0.00057
0.06 0.03594 0 0.06800 0
0.07 0.06500 0.00156 0.13200 0
0.08 0.11250 0.00063 0.22114 0
0.09 0.18688 0.00188 0.32571 0

probabilities pmore of more-candidate-errors and proba-
bilities pnull of null-errors for these two codes are given
(pmore + pnull = PER).

From the results presented in Table 3, we can see
that we have more unsuccessful decoding of type more-
candidate-errors in the process of decoding for the code
(72,288). While, in the experiments for the code
(144,576), except for p = 0.05, these errors do not occur.
The reason for this is smaller number of redundant zero
nibbles for the code (72,288). Actually, we do not have
enough redundant zero blocks in the end of the redundant
message L needed for putting off the incorrect blocks from
the sets S in the last iterations of the decoding process.

On the other side, the number of unsuccessful decoding
with null-error, which is provided in theoretical probabil-
ity, is approximately two time smaller for the code with
twice shorter codewords.

These differences in the number of unsuccessful decoded
messages, especially in the number of more-candidates-
errors, are greater if we take much shorter codewords, for
example, the code (40,160). For these short codes the
number of more-candidate-errors is very large due to the
small number of redundant zero blocks in the patterns.

Considering these results, we have to note that the
larger number of zeros that appear in the pattern of the
code (144,576) results with almost no more-candidate-
errors. We discuss in Subsection B of Section III how to
reduce the null-errors of the code (144,576). After mak-
ing the new experiments with reduced null-errors, we are
going to get a quite new results of the code (144,576).

The above results also rise an open problem. Namely, if
we suppose that we have a complete random process, the
redundant zero nibbles will be guest with a probability
g = 1/16. Then, since a (144,576) code have 108 redun-
dant zero nibbles, almost always only null-errors appears,
although the decoding process is quite far to be random.
On the other side, by Theorem 2, the packet-error proba-
bility of the code (144,576) is q = 1− (1−qB)

36. Now, the
mentioned problem can be stated as follows: Find a for-

mula that will connect the packet-error probability and the

probability of guessing the redundant zeros. The solving of
this problem is hard since the two mentioned probabilities
are not independent, and it is not clear, at least in this
stage, how their dependencies appear.

III. Some new ideas for improving decoding

process

A. The decoding speed

As it is almost always the case, the speed of the decoding
process is one of the biggest problem for these random
codes based on quasigroups as well. Depending on the
patterns, the decoding process is slow in some iterations
since the number of elements in the sets S is very large. In
fact, if we distribute the redundant zeros more uniformly,
the sets S are not going to be very large, but then many
more-candidate-errors will appear. So, we need to put
more redundant zeros at the end of the patterns. In fact,
finding good equilibrium for placing the redundant zeros
is an open problem and by experiments several enough
satisfactory patterns are discovered.

In order to improve the decoding speed, we have ex-
perimented with another idea for decoding. Namely, in-
stead of using a (72,288) code, we have used together two
(72,144) codes, that decode a same message of length 72
bits. Then, for the obtained sets S(1) and S(2) we have
made its intersection S = S(1)∩S(2) in each iteration step.
Note that the code rate in this case is again 1/4, since we
produce two codewords of length 144 bits.

We have analyzed the number of elements in S, when
we have two processes of decoding for different param-
eters. First we apply the coding algorithm on the same
redundant message twice with different key or quasigroups
and we obtain twice longer codeword (obtained as concate-
nation of two codewords). The codeword is transmitted
through a binary symmetric channel. The outgoing mes-
sage is divided in two messages with equal lengths and we
decode them parallel with the corresponding parameters.
After each iteration we take an intersection of the two sets
S(1) and S(2) obtained in both decoding processes. In the
next iteration the both processes use the obtained inter-
section S. The preliminary experiments show that this
modification significantly reduces the number of elements
in the sets S. The problem here is that for obtaining code
with rate 1/4 we need pattern for rate 1/2, but it is hard to
make good pattern for this rate. In the initial experiments,
with this modified algorithm, we obtained similar values
for PER and BER as for (72,288) code. What is very
promising for this modified algorithm is that we have big
improvement in the speed of the decoding process, which
is in average more than four times faster.

B. Reducing the null-errors

In the case when null-errors appear, i.e., when the set
S is empty, we are going to resolve this problem by back-
tracking. Namely, if in the i-th iteration we obtain S = ∅,
it means that in some previous step j < i we have lost
the right word that had to be processed. This happened
because Bmax is too small. So, we have to go back to
the (i−1)-th or (i−2)-th step and there to work with in-
creased value of Bmax, i.e., we take Bmax+1 or Bmax+2.
The experiments of this kind are under preparation and
we expect improving of the PER and BER.

216

9th Conference for Informatics and Information Technology (CIIT 2012)

Anyhow, we expect the decoding speed to be increased,
but not significantly.

C. Reducing the more-candidate-errors

Another idea that we consider for elimination the un-
successful decoding with more-candidate-error is the fol-
lowing one. From the experiments we can see that when
the decoding process ends with more elements in the last
set S, almost always in this set is the correct message.
So, in these cases we can randomly select a message from
the set S in the last iteration and it can be taken as the
decoded message. If the selected message is the correct
then the bit-error is 0, so the BER will also be reduced.
In the experiments we have made with this modification
we got that in around half of the cases, when the last set
S contained more than one element, the correct message
is selected.

References

[1] V. Bakeva, V. Dimitrova, Some probabilistic properties of
quasigroup processed strings useful in cryptanalysis, M.Gushev,
P.Mitreski (Eds.): ICT-Innovations 2010, Springer (2010) 61 –
70

[2] D. Gligoroski, S. Markovski, Lj. Kocarev, Totally asyn-
chronous stream ciphers + redundancy = cryptcoding, S. Aissi,
H.R. Arabnia (Eds.): Proc. Internat. Confer. Security and man-
agement, SAM 2007, Las Vegas, CSREA Press (2007) 446 – 451

[3] D. Gligoroski, S. Markovski, Lj. Kocarev, Error-correcting
codes based on quasigroups, Proc. 16th Intern. Confer. Computer
Communications and Networks (2007), 165 – 172

[4] S. Markovski, D. Gligoroski, V. Bakeva, Quasigroup string
processing: Part 1, Maced. Acad. of Sci. and Arts, Sec. Math.
Tech. Scien. XX 1-2 (1999) 13 – 28

[5] A. Popovska-Mitrovikj, S. Markovski, V.
Bakeva,Performances of error-correcting codes based on
quasigroups, D.Davcev, J.M.Gomez (Eds.): ICT-Innovations
2009, Springer (2009), 377 – 389

 !"

