
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/282187752

Cooperation among Non-identical Oscillators Connected in Different

Topologies

Conference Paper  in  Advances in Intelligent Systems and Computing · January 2015

DOI: 10.1007/978-3-319-09879-1_27

CITATIONS

0
READS

75

3 authors:

Some of the authors of this publication are also working on these related projects:

Дигитализация на българската икономика View project

Simulation and optimal control of nanoscale motors View project

Miroslav Mirchev

Ss. Cyril and Methodius University in Skopje

37 PUBLICATIONS   172 CITATIONS   

SEE PROFILE

Lasko Basnarkov

Ss. Cyril and Methodius University in Skopje

56 PUBLICATIONS   318 CITATIONS   

SEE PROFILE

Ljupco Kocarev

Macedonian Academy of Sciences and Arts

411 PUBLICATIONS   14,646 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Lasko Basnarkov on 01 October 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/282187752_Cooperation_among_Non-identical_Oscillators_Connected_in_Different_Topologies?enrichId=rgreq-72f3360b84db1200daaa62bf9a3ad27b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjE4Nzc1MjtBUzoyNzk2ODgxNTgxNzExNDBAMTQ0MzY5NDI2MjAyNQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/282187752_Cooperation_among_Non-identical_Oscillators_Connected_in_Different_Topologies?enrichId=rgreq-72f3360b84db1200daaa62bf9a3ad27b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjE4Nzc1MjtBUzoyNzk2ODgxNTgxNzExNDBAMTQ0MzY5NDI2MjAyNQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Digitalizacia-na-blgarskata-ikonomika?enrichId=rgreq-72f3360b84db1200daaa62bf9a3ad27b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjE4Nzc1MjtBUzoyNzk2ODgxNTgxNzExNDBAMTQ0MzY5NDI2MjAyNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Simulation-and-optimal-control-of-nanoscale-motors?enrichId=rgreq-72f3360b84db1200daaa62bf9a3ad27b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjE4Nzc1MjtBUzoyNzk2ODgxNTgxNzExNDBAMTQ0MzY5NDI2MjAyNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-72f3360b84db1200daaa62bf9a3ad27b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjE4Nzc1MjtBUzoyNzk2ODgxNTgxNzExNDBAMTQ0MzY5NDI2MjAyNQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Miroslav-Mirchev-2?enrichId=rgreq-72f3360b84db1200daaa62bf9a3ad27b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjE4Nzc1MjtBUzoyNzk2ODgxNTgxNzExNDBAMTQ0MzY5NDI2MjAyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Miroslav-Mirchev-2?enrichId=rgreq-72f3360b84db1200daaa62bf9a3ad27b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjE4Nzc1MjtBUzoyNzk2ODgxNTgxNzExNDBAMTQ0MzY5NDI2MjAyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-72f3360b84db1200daaa62bf9a3ad27b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjE4Nzc1MjtBUzoyNzk2ODgxNTgxNzExNDBAMTQ0MzY5NDI2MjAyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Miroslav-Mirchev-2?enrichId=rgreq-72f3360b84db1200daaa62bf9a3ad27b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjE4Nzc1MjtBUzoyNzk2ODgxNTgxNzExNDBAMTQ0MzY5NDI2MjAyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lasko-Basnarkov?enrichId=rgreq-72f3360b84db1200daaa62bf9a3ad27b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjE4Nzc1MjtBUzoyNzk2ODgxNTgxNzExNDBAMTQ0MzY5NDI2MjAyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lasko-Basnarkov?enrichId=rgreq-72f3360b84db1200daaa62bf9a3ad27b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjE4Nzc1MjtBUzoyNzk2ODgxNTgxNzExNDBAMTQ0MzY5NDI2MjAyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-72f3360b84db1200daaa62bf9a3ad27b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjE4Nzc1MjtBUzoyNzk2ODgxNTgxNzExNDBAMTQ0MzY5NDI2MjAyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lasko-Basnarkov?enrichId=rgreq-72f3360b84db1200daaa62bf9a3ad27b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjE4Nzc1MjtBUzoyNzk2ODgxNTgxNzExNDBAMTQ0MzY5NDI2MjAyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ljupco-Kocarev?enrichId=rgreq-72f3360b84db1200daaa62bf9a3ad27b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjE4Nzc1MjtBUzoyNzk2ODgxNTgxNzExNDBAMTQ0MzY5NDI2MjAyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ljupco-Kocarev?enrichId=rgreq-72f3360b84db1200daaa62bf9a3ad27b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjE4Nzc1MjtBUzoyNzk2ODgxNTgxNzExNDBAMTQ0MzY5NDI2MjAyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Macedonian_Academy_of_Sciences_and_Arts?enrichId=rgreq-72f3360b84db1200daaa62bf9a3ad27b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjE4Nzc1MjtBUzoyNzk2ODgxNTgxNzExNDBAMTQ0MzY5NDI2MjAyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ljupco-Kocarev?enrichId=rgreq-72f3360b84db1200daaa62bf9a3ad27b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjE4Nzc1MjtBUzoyNzk2ODgxNTgxNzExNDBAMTQ0MzY5NDI2MjAyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lasko-Basnarkov?enrichId=rgreq-72f3360b84db1200daaa62bf9a3ad27b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjE4Nzc1MjtBUzoyNzk2ODgxNTgxNzExNDBAMTQ0MzY5NDI2MjAyNQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Cooperation among non-identical oscillators
connected in different topologies

Miroslav Mirchev1, Lasko Basnarkov1 and Ljupco Kocarev1,2,3

1 Facuty of Computer Science and Engineering, Ss. Cyril and Methodius University,
1000 Skopje, Macedonia

{miroslav.mirchev,lasko.basnarkov}@finki.ukim.mk
2 Macedonian Academy of Sciences and Arts, 1000 Skopje, Macedonia;

3 BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093 USA
lkocarev@ucsd.edu

Abstract. Various forms of oscillatory networks exist in our surround-
ing from neural cells to laser arrays. In many of these networks the nodes
can go through a transient process of interaction and start oscillating in
synchrony. Each of these nodes is characterized by its internal dynamics
and changes its state accordingly. Using several forms of interactions, we
numerically examine how the network dynamics is affected by network
topology and potential random disturbances.

Keywords: Complex networks. Oscillators. Synchronization

1 Introduction

Our environment is full of various networks of entities exhibiting periodic os-
cillations, like interconnected neural and heart cells in biology, wireless sensor
networks, laser arrays and electronic oscillators in engineering, and so on. The
nodes in these networks interact and after some time can agree to oscillate syn-
chronously as studied in [1] and [2]. The synchronization could be desirable as
in sensor networks and laser arrays, or undesirable as in epilepsy seizures in the
brain. In all these networks, the nodes are characterized by states and if the net-
work interactions result in all the nodes reaching the same state, it is said that
the network is completely synchronized. On the other hand, in case of networks
with weak interactions the nodes can agree on an equal frequency of oscillation
without exact match of their individual states (amplitude values). This type of
networks have been widely studied in the literature and many models for repre-
sentation are known with the most famous example being the Kuramoto model
[3] given as

θ̇i = ωi +
γ

N

N∑
j=1

sin(θj − θi), (1)

where θi is the phase of oscillation of each node of a population of N nodes,
ωi is the node’s internal oscillating frequency, with which it would oscillate if



isolated, and γ is a general coupling strength typically larger then zero. Despite
the differences in the internal frequencies a synchronous mode of oscillation is
possible in this kind of networks.

In a previous paper [4] we have studied cooperation in networks of non-
identical oscillators, particularly the case of non-identical interactions. In that
paper convergence criteria toward frequency synchronization were provided for a
specific type of nonnegative and symmetrical interactions. Moreover, the behav-
ior of other types of systems were also examined, like asymmetric connections,
external fields and frustration due to random disturbances. In this paper we fur-
ther study these type of networks, particularly focusing on the effects of random
disturbances with different forms of coupling functions and the effects of network
topology on the dynamical behavior. All these issues have been part of a wider
study of complex networks with imperfections in [5].

The paper continues with Section 2 where we introduce the notation of net-
works of non-identical oscillators. We numerically study the phenomenon of fre-
quency synchronization, focusing in Section 3 on the effects of random distur-
bances and examining in Section 4 the network topology effects, while Section 5
provides some conclusions.

2 Networks of non-identical oscillating nodes

We consider networks composed of N oscillating nodes whose dynamics can be
represented by

ẋi = ωi + γ

N∑
j=1

aijfij(xj − xi), (2)

where as in the Kuramoto model the phases lay on a unit circle S1 (xi ∈ S1) and
xi ∈ [0, 2π), the natural frequencies are ωi ∈ R and γ is a general coupling
strength, while A = [aij ], (aij ≥ 0, aii = 0, aij = aji, ∀i, j) is an adjacency
matrix representing the network’s topology. The coupling functions fij are taken
to be 2π-periodic and fij(0) = 0, ∀i, j.

One measure of network coherence is how close are the phases and to evaluate
and visualize this type of network coherence an order parameter [3] can be used

reiΨ =
1

N

N∑
j=1

eixj , (3)

where larger values mean larger coherence (r ∈ [0, 1]), while Ψ is the average
phase of the population.

Another type of coherence is the network’s synchrony and we use the follow-
ing error function to evaluate it

eΩ(t) =

√√√√ 1

N

N∑
i=1

(ẋi(t)−Ω)2, (4)



which indicates how the oscillators’ velocities are approaching the mean natural
frequency Ω = (1/N)

∑
i ωi. Sometimes the analysis require < eΩ >, the time

average of eΩ(t), which is calculated with excluded transient dynamics.
In our analysis we consider networks with random uniformly distributed ini-

tial phases and random natural frequencies following a triangular distribution in
the range [ωmin, ωmax] = [−0.5, 0.5] with a probabilistic density function’s peak
at ω0 = 0.

Typically the coupling functions are taken to be sinusoidal, as in the Ku-
ramoto model [3]

fij(xj − xi) = sin(xj − xi). (5)

However, other types of coupling functions should also be analyzed as in
reality the interactions are not exactly sinusoidal [6]. One simple case are linear
coupling functions that are periodically repeated in the following way

fij(xj − xi) = (xj − xi − 2πk), for − π + 2kπ < xj − xi < π + 2kπ, (6)

for k = 0,±1,±2, . . .. Another case that we study are periodically repeated cubic
coupling function of the form

fij(xj − xi) = (xj − xi − 2πk)3, for − π + 2kπ < xj − xi < π + 2kπ, (7)

for k = 0,±1,±2, . . ..
In our study we numerically simulate networks consisting of N = 100 oscillat-

ing nodes. In Section 3 we use fully connected networks where aij = 1,∀i, j, i 6= j
and aii = 0,∀i, while in Section 4 we examine the effects of the network topol-
ogy so not all adjacency elements have a value of one. The numerical integration
of the equations of motion of the oscillators is performed using a fourth-order
Runge-Kutta method with a fixed step ∆t = 0.001.

3 Random disturbances effects

In reality the interactions among the nodes are prone to some environmental
or internal random disturbances also called frustrations. In our paper [4] it was
analytically and numerically shown that besides these frustrations, sinusoidally
coupled oscillators can eventually agree on a common oscillation frequency, as
previously observed in [7].

The random disturbances can be introduced by including elements φij ∈
(−π/2, π/2), φij ∈ R, ∀i, j [8], thus the nodes dynamics takes the form

ẋi = ωi + γ

N∑
j=1

aijfij(xj − xi + φij). (8)

As discussed in [4], if φji = −φij and φii = 0 for all interactions, the oscillators
can achieve frequency synchronization as the synchronized state is stable.

In this section we provide numerical results of the dynamics of systems of
the form defined by (8) and their idealistic counter pairs as given by (2). The



network is taken to be fully connected in order to separate the disturbances
effects from the topology effects that are considered in the following section.
The general coupling strength is chosen to be γ = 0.01, which is big enough to
allow network synchronization but not too large.

The first four sub-figures of Fig. 1 visualize the time evolution of the oscilla-
tors’ phases in several different coupled networks. A polar coordinate system is
used where the time flow is shown on the radial coordinate and the phases are on
the angular coordinate. Thus, from the center of the circle toward the periphery
the time t increases from 0 to 200 and the phase evolution of each oscillator is
represented with a single continuous line. Fig. 1a shows the phase evolution in a
linearly coupled network without frustration, where although the phases are not
exactly matched (r = 0.9811) synchronization is achieved and the phases evolve
at an equal rate. On the other hand, in Fig. 1b the linear interactions in the
network are frustrated, which introduces a larger phase dispersion (r = 0.9298),
though still allowing frequency synchronization among the oscillators. We also
consider cubic coupling functions, first without frustration in Fig. 1c. This cubic
coupling introduces clustered syncrhony that makes the order parameter low
r = 0.122, as also observed previously in [4]. The introduction of the random
disturbances in the cubic coupling in Fig. 1d prevents the network clustering
and increases the coherence (r = 0.9318), while still allowing the oscillators to
rotate their phases at an equal rate.

In Fig. 1e is shown how the synchronization error eΩ reduces for the different
types of coupling functions. As expected, the error reduces more rapidly with
cubic coupling than with linear coupling, while the random disturbances though
still allowing synchronization significantly slow down the convergence rate. The
evolution of the order parameter r is shown in Fig. 1f and similar conclusions can
be drawn as from the previous sub-figures. With linear coupling the frustration
reduces the coherence, while with cubic coupling the coherence is increased in the
presence of random disturbances due to the avoided clustering. The convergence
rate of the order parameter is not as influenced as the synchronization error.
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Fig. 1: Phase evolution in t ∈ [0, 200] in a fully connected network with
γ = 0.01 and (a) fij = (xj − xi); (b) frustrated fij = ((xj − xi) + φij); (c)
fij = (xj − xi)3 and (d) frustrated fij = ((xj − xi) + φij)

3; (e) synchronization
error eΩ and (f) coherence r.



4 Topological effects

In the networks studied in the previous section the oscillators were fully con-
nected, however, in reality network interactions follow certain patterns that form
the network topology. In this section, we study network dynamics in random net-
works generated using the Erdös-Rényi (ER) model [9] and scale-free networks
generated using the Barabási-Albert (BA) model [10]. In all cases a care should
be taken that the generated network is connected, i.e. there is a path among all
node pairs, as otherwise synchronization is not achievable. Some analyses of the
topology effects on the synchronization properties in a Kuramoto model with
scale-free topology with standard sinusoidal couplings were done in [11, 12], and
[13], using numerical simulations and different analytical approaches. However,
a consensus have not been reached for the critical coupling gain at which syn-
chronization occurs as also noted in [14]. In [15] and [16] both scale-free (BA)
networks and random (ER) networks are examined in which the oscillator’s nat-
ural frequencies are correlated to their degree of connectivity. In our study we
do not assume any correlation among the degrees of the nodes and their internal
frequencies.

The model for random network generation developed by Erdös and Rényi
(ER) creates a graph G(N, p) consisting of N nodes, where each of the possible
links among the nodes exist with a probability p. For lower values of p this model
can produce disconnected network parts, hence, if we need a connected network
the connectivity should be checked and if the network is not connected the whole
procedure could be repeated. Here we generate networks of N = 100 oscillators
with link probability p = 0.1, which results in a network of about 500 links.

The Barabási-Albert model can be used for creating scale-free networks. The
model requires an initial seed network to which gradually new nodes are added
with LN connections per node. This procedure, also known as preferential attach-
ment, resembles a well known phenomenon where ”the rich get richer”, present
for example in genetic networks, the World Wide Web, the Internet, social net-
works, etc. To assure that the networks with different topologies are comparable,
the number of nodes and links is kept the same, so gradually to the seed network
new nodes with LN = 5 connections are added until we reach N = 100 nodes
and 500 links.

Example networks with these topologies are given in Fig. 2. The comparison
of the results in Fig. 3 show that in this case ER networks synchronize more
easily than BA networks, because for both linear and sinusoidal coupling syn-
chronization occur for lower values of γ. The coherence r is similar for both types
of networks, and with the increase of the coupling strength r rises just slightly
quicker in ER networks. It can be noticed by looking at the coherence r that
for linear coupling clustering occurred in the random network for some values
of γ, while in the scale-free network a step-wise increase was observed at some
points due to the hierarchical structure. Similar results were reported in [16] for
sinusoidally coupled networks in which node’s degrees and natural frequencies
are correlated.



Fig. 2: Two example network topologies where the nodes with higher degree are
colored darker and placed more centrally: (top) random network – Erdös and
Rényi and (bottom) scale-free network – Barabási-Albert. Visualization is done
in Gephi using the Fruchterman–Reingold algorithm.
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Fig. 3: The coherence r and the synchronization error eΩ in networks of N = 100
nodes and 500 links generated using: (top two) the ER model, and (bottom two)
the BA model for different coupling functions.



5 Conclusion

This paper provides additional examination of the process of cooperation in
networks of non-identical oscillators through several forms of interaction. Par-
ticularly, the focus is on the effects of possible random disturbances and the
network topology on the network dynamics. Possible achievement of frequency
synchronization was confirmed for linear and cubic coupling functions, in ad-
dition to the known results with the standard sinusoidal function. The study
of the topology effects showed that frequency synchronization can be achieved
more easily in random networks than in scale-free networks, although, typically
complete synchronization happens more easily in scale-free networks.
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