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Abstract—Many spreading processes of information and dis-
eases take place over complex networks that are composed of
multiple interconnection layers. The relationship between net-
work structure, nodes’ activity and spreading dynamics impose
a threshold above which an epidemic endures. The network
structure of individual layers can take different forms, such as
scale-free or random, which significantly impacts the epidemic
threshold. Similarly, the nodes’ inter-layer transition dynamics
largely influences the threshold as well. In this study we consider
an inter-layer dynamics following: a Markov process, and a
memory based activity creating inter-event times with a heavy-
tail distribution, which are typically observed in human behavior.
It is shown that by introducing a layer of inactivity the epidemic
threshold can be closely predicted with our previously derived
expression for multiplex networks.

I. INTRODUCTION

Epidemic spreading in complex networks is a widely studied
topic [1], [2] with diverse faces in different disciplines, such
as virus and information spreading [3], [4] and competitive
acceptance of ideas and influences. Different approaches exist
for studying these processes, such as the heterogeneous mean-
field approach [5], or the more detailed microscopic approach
representing nodes individually [6], and both allow us to
express a certain threshold characterizing the epidemic onset.

The underlying network structure can be complex and it
can often involve multiple layers of connectivity [7]. Epidemic
spreading has been studied in multiplex networks with various
approaches [8]–[15] that we have described in [16], as well as
many others reviewed in [17]. In [16] we demonstrated how
epidemic spreading can be modeled in multiplex networks,
where the nodes’ move across layers according to a random
walk, while the spreading was represented as a susceptible-
infected-susceptible (SIS) process. We also derived a threshold
for the critical value of the infection rate below which an
epidemic dies out, based on the derivation for single layer
networks in [6].

Many of the spreading models assume that the activity
patterns follow a Poisson process, which yields exponential
inter-event times. However, it has been observed that the
human behavior very often have activity patterns with inter-
event times following a heavy-tail distribution, which can con-
siderably influence the spreading dynamics [18]–[20]. There
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are different theories [21] of the reasons behind these patterns
and various approaches how they can be simulated, like [22].

In this paper, we expand our analyses from [16] by showing
that the epidemic threshold derived for Markov dynamics
approximately holds for inter-layer dynamics with heavy-tailed
inter-event times distribution. For generating such activity pat-
terns we use a memory based approach [22] providing binary
activity patterns and adapt it to multiplex networks. Moreover,
we demonstrate that the spreading properties with this type of
dynamics could be approximated with an appropriate Markov
process, which makes the model applicable for more accurate
predictions when fitted to real data.

The paper is organized as follows. In Section II we de-
scribe and characterize two processes depicting the inter-layer
dynamics, a standard Markov process and a memory based
approach. The spreading dynamics is represented and analyzed
in Section III, including an examination of the epidemic
threshold, while in Section IV we provide some conclusions.

II. INTERLAYER NODES’ DYNAMICS
IN MULTIPLEX NETWORKS

We define a multiplex network as N nodes interconnected
in D different layers. The connectivity at each layer d can be
represented by an adjacency matrix Ad, where the elements
adij = 1 indicate that nodes i and j are connected at layer
d, and adij = 0 otherwise. Each node at each step can be
present only in one layer and its state is represented by a
vector vi(t) =

[
vdi (t)

]
1×D having a single 1 at the position

representing the current layer and 0 at all other positions. We
also introduce an OFF layer where the nodes are completely
disconnected, which represents a type of inactivity. For the
transition among the layers we consider two random processes:
a Markov process defined with a constant transition matrix,
and a process based on a memory of the past M time steps.
In the following two subsections we present these processes
and their main properties and differences.

A. Markov process dynamics

In a Markov process the inter-layer transitions of each node
are represented by a time-invariant stochastic state-transition
matrix Li = [lijk]D×D with lijk representing the probability
that node i will move from layer j to layer k at each step, while
the elements on the main diagonal lijj are the probabilities that



the node will remain in layer j. We can then define a time
dependent transition probability vector for each node i as

wi(t+ 1) = vi(t)Li, (1)

and
vi(t+ 1) = MultiRealize[wi(t+ 1)], (2)

where MultiRealize[·] is a function making a random realiza-
tion of the probabilities.

By definition a Markov process has no memory effects and
the inter-layer transitions are based solely on the previous
state. If the Markov process starts from vi(0), the expected
value of the status vector at time t can be expressed as

E(vi(t)) = πTi , t→∞ (3)

where πTi is the left eigenvector of the largest eigenvalue of
Li. For more details the reader can consult [16].

In Fig. 1a we show the inter-event times distribution Pτ
for the first two layers of a single node i moving across four
layers following a Markov process with a transition matrix

Li =


0.5 1/6 1/6 1/6
0.5 0.3 0.1 0.1
0.5 0.1 0.3 0.1
0.5 0.1 0.1 0.3

 , (4)

which gives an expected value of the status vector for this
process πTi = (1/2, 1/6, 1/6, 1/6). An inter-event time is a
period between two node appearances in the same layer. We
have performed T = 108 transition steps and as it can be seen
the inter-event times distribution is exponential and drops more
rapidly for layers with higher expectation probability. We can
choose an appropriate Li according to some observed data
and represent various patterns of nodes’ activities, like a node
transitioning to certain levels with a higher probability than to
others. Similarly, in Fig. 1b we show the average distribution
Pτ for an entire network of N = 500 nodes with the same
πTi run over T = 104 steps.

B. Memory based dynamics

In order to achieve heavy-tail distributed inter-event times
we adapt the procedure proposed in [22] to multiplex net-
works. Each node at each moment can be only in one of the
D layers and it has an age based memory of the layers it has
visited in the past M time steps. We denote by cdi (t) how
many time steps from the past M , node i has been in layer d
as cdi (t) =

∑M
m=1 v

d
i (t−m). Then the probability that a node

will visit layer d at the next step is

wdi (t) =
cdi (t) + bd

M +
∑D
d=1 bd

, (5)

where we have introduced boost parameters bd > 0,∀d. The
boosts bd ensure that none of the probabilities wdi (t) converges
toward zero, hence, the systems does not have an absorbing
state. The next states are then drawn according to Eq. 2.

In Fig. 1c we show the inter-event time distribution Pτ for
the first two layers of a single node i moving across four layers
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Fig. 1. The distribution Pτ of the inter-event times τ for the first two out of
four layers, where blue is for Layer 1, and red for Layer 2: a) a dynamics of
a single node following a Markov process with expected values of the status
vector πTi = (1/2, 1/6, 1/6, 1/6) run over T = 108 steps; b) an average
Markov dynamics for a network of N = 500 nodes with the same πTi run
over T = 104 steps; c) a memory based dynamics of a single node with
b = (1, 1/3, 1/3, 1/3) and M = 1000, run over T = 108 steps; and d) an
average memory based dynamics of a network of N = 500 nodes with the
same b and M = 100, run over T = 104 steps. In all cases the inter-event
times distribution of the other two layers is same as for Layer 2.

in a memory based process with M = 1000 run over T = 108

steps. The boosts are set to b = (1, 1/3, 1/3, 1/3), while an
initial memory is drawn with a probability vector b/2. Alter-
natively, instead of an initial memory of size M = 1000, we
can start with M = 0, or even initially drawn M = 100, and
then increment it stepwise up to M = 1000. In any case the
number of steps T should be large enough compared to M for
the heavy-tail distribution to be observed. In Fig. 1d we show
the average distribution Pτ for an entire network of N = 500
nodes with the same b and M = 100 run over T = 104 steps.
A small discontinuity appears at τ = M in both Fig. 1c and
Fig. 1d. If the process is run long enough the distribution of
the layer presence is mainly determined by the relative values
of the boosts and partially by the initial memory. Therefore,
we draw the initial memory according to the boosts, hence,
in this case we will have E(vi(t)) = (1/2, 1/6, 1/6, 1/6) as
t→∞.

The previous expression for wdi (t) does not allow an explicit
representation of the inter-layer transition dependence between
layers. Therefore, we could modify Eq. 5 to

wdi (t) =
bd +

∑D
j=1 c

j
i (t)ujd

M +
∑D
d=1 bd

, (6)

where the matrix elements ujd are from a matrix Ui of a
similar form as Li, which allows a more flexible fit to observed
data or perceived inter-layer dependencies, however, in this
paper we focus only on using Eq. 5.



III. SIS OVER MULTIPLEX NETWORKS

The SIS model defines two node states, i.e. when a node
is in a susceptible state (S) it is healthy and upon contact
with infected nodes from the same layer (d) in the current
time (t) it can get infected (I). At the beginning there is a
finite number of nodes in state I , while all other nodes are in
state S. Thus, we can represent the state of a node by a vector
si(t) = [sSi (t) sIi (t)], ∀i ∈ {1, ..., N}, having 1 for the current
state and 0 for the other state. With pi(t) = [pSi (t) pIi (t)]
we denote the probabilities that a node is susceptible or
infected at time t. Therefore, we can represent the reactive-
based epidemic SIS spreading process, i.e. there are as many
stochastic contagions per unit time as there are neighbors to a
node [23]–[25], for each node i in a multiplex network with
the difference equations

pSi (t+ 1) = sSi (t)(1− qi(t)) + sIi (t)η(1− qi(t)), (7)

pIi (t+ 1) = sSi (t)qi(t) + sIi ((1− η) + ηqi(t)), (8)

where qi(t) is a probability that node i gets infected at t,

qi(t) = 1−
N∏
j=1

[
1−

D∑
d=1

βadjis
I
j (t)v

d
j (t)vdi (t)

]
, (9)

and
si(t+ 1) = MultiRealize [pi(t+ 1)] . (10)

In (7): sSi (t)(1 − qi(t)) is the probability that a node was
susceptible and does not get infected; while sIi (t)η(1− qi(t))
is a probability that a node was infected, got cured with a
rate η, 0 ≤ η ≤ 1, and did not get another infection. In (8):
sSi (t)qi(t) is a probability that a node was susceptible and
became infected; and sIi (t) is the probability that the node
was infected and it was not cured 1 − η, or it got cured and
reinfected again ηqi(t). Obviously the probability that a node
will be infected qi(t) depends on its current layer, as expressed
by (9), where β is an infection rate, 0 ≤ β ≤ 1, and

odji(t) = vdj (t)vdi (t) (11)

is the probability that both nodes i and j are at layer d.
The system, defined by (1), (2) and (7)-(10) is a SIS

stochastic representation over multiplex networks, which we
use in our numerical simulations. On the other hand, in
[16] we showed its deterministic representation using similar
difference equations and we provided deeper analytical studies
for the epidemic threshold. In the analysis of the epidemic
dynamics in [16] we assumed that the Markov processes have
already reached the stationary points, as they are independent
of the spreading process. Thus, in the stationary state for the
deterministic equations, (11) transforms into

od∗ji = πdj π
d
i ,∀i, j, (12)

which in the stochastic representation is an expected value that
nodes i and j will both be at layer d as t→∞.

For the deterministic representation in [16] we proved that
for any multiplex network with a given η, we can express a
critical infection rate βc, and if β > βc eventually we will

have a certain number of infected nodes, while for β < βc,
the infection will disappear. The critical infection rate βc is

βc =
η

ΛB
max

, (13)

where ΛB
max is the biggest eigenvalue of a matrix

B = [bij ]N×N =

[
D∑
l=1

adjio
d∗
ji

]
(14)

that is symmetric (B = BT ) if all Ad are symmetric.
When all nodes’ dynamics develop according to the same

Li, the matrix B can be decomposed and we can rewrite (14)
as βc = η/(ππTΛΣ

max), where ΛΣ
max is the largest eigenvalue

of a matrix Σ =
∑D
d=1 Ad, which is a sum of all adjacency

matrices of the individual layers.
Here we study the epidemic SIS process over multiplex

networks using only stochastic simulations. We examine the
epidemic threshold on two different classes of multiplex net-
works, where the interlayer nodes’ dynamics is either Markov
or memory based with M = 100. The multiplex network
classes are made either of Poisson random graphs, using the
Erdős-Rényi (ER) model (see Fig. 2), or the heavy tailed
random graphs, using the Barabási-Albert (BA) model (see
Fig. 3). Similarly, for the interlayer nodes’ dynamics we
use both Markov and memory based dynamics, described in
Section II. For each multiplex network class (ER or BA) we
consider three different networks, i.e. Network I, II and III.
Each of the individual layers is composed of N = 500 nodes
and around E = 1500 links. The simulations are run over
T = 104 steps and the parameters of the two inter-layer
transition processes are chosen such that the average amount
of time that nodes spend in each layer is about the same in the
two processes. All parameters, such as the transition matrix L
and boosts b, are assumed equal for all nodes for simplicity
of the presentation.

Let us first consider Network I that consists of three layers,
where each layer is either ER or BA network (depending on
the network class) and there is no OFF layer (results are repre-
sented with black color in Figs. 2 and 3). The Markov process
uses L with ljj = 0.6,∀j and ljk = 0.2,∀j 6= k, resulting in
πT = (1/3, 1/3, 1/3) in Eq. 3, whereas b = (2/3, 2/3, 2/3)
for the boosts in the memory based dynamics in Eq. 5. Net-
work II is a multiplex network consisting of four layers, where
the first layer is an OFF layer and the remaining three layers
are either ER or BA networks (depending on the network
class). Both inter-layer nodes’ dynamics types do not favorize
any of the four layers in the network (results are represented
with red color in Figs. 2 and 3). We use L with ljj = 1/2,∀j
and ljk = 1/6,∀j 6= k, resulting in πT = (1/4, 1/4, 1/4, 1/4),
whereas for the memory based dynamics the boosts are equal
for all four layers b = (1/2, 1/2, 1/2, 1/2). Network III is
similar to the second network, and the only difference is that
the interlayer dynamics favors the OFF layer, meaning that half
of the time the nodes are not active (results are represented
with blue color in Figs. 2 and 3). In this case the Markov
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Fig. 2. Number of infected nodes in the ER multiplex network class, for
Networks I, II and III, and different infection rates β (N = 500, η = 0.5).

process uses the transition matrix given by Eq. 4, which results
in πT = (1/2, 1/6, 1/6, 1/6), whereas for the memory based
dynamics the boost for the OFF layer is three times larger,
b = (1, 1/3, 1/3, 1/3).

The results both in Fig. 2 and Fig. 3 show that as we increase
the probability that a node is in the OFF layer βc increases, as
expected. Moreover, the epidemic thresholds obtained with the
simulations in most cases are quite close to the theoretically
obtained βc with Eq. 13, which are represented with dashed
vertical lines. However, we must note that a discrepancy occurs
in Network III from the ER class both for Markov and memory
based interlayer nodes’ dynamics (compare the blue circles
and crosses with the blue vertical dashed line in Fig. 2). In this
case the theoretical value is βc = 0.95, while the simulations
show that the epidemic endures even for lower values of β,
particularly with memory based dynamics. This phenomenon
will be further analyzed in our future work, but such discrep-
ancies have been also observed in other works. We can also
conclude that there is a good match between the Markov based
and memory based interlayer nodes’ dynamics, compare the
circles and the crosses in both Fig. 2 and Fig. 3, again except
in Network III from the ER class. Thus, the simulation results
show that the theoretical threshold approximately holds for
inter-layer dynamics that includes processes with heavy-tailed
inter-event times distribution, particularly for the SF class.

Finally, in Fig. 4 we show the epidemic dynamics over
a four layer multiplex network, where as a first layer we
have an OFF layer (the adjacency matrix is a zero matrix),
the second layer is a BA network, the third layer is an
ER network, whereas the fourth layer is a random network
with small-world properties, built using the Watts-Strogatz
(WS) model [26]. The results show that when the interlayer
nodes’ transitions are more biased toward the BA network
(Network IV), the threshold is lower compared to the case
when all layers, except the OFF layer, have equal probability
(Network III). In Network IV the Markov process results in
πT = (0.5, 0.3, 0.1, 0.1) by using L with all rows equal to πT ,
while the memory process uses boosts b = (1, 0.6, 0.2, 0.2).
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Fig. 3. Number of infected nodes in the BA multiplex network class, for
Networks I, II and III, and different infection rates β (N = 500, η = 0.5).
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Fig. 4. Number of infected nodes in the OFF-BA-ER-WS multiplex network,
for Networks III and IV, and different infection rates β (N = 500, η = 0.5).

IV. CONCLUSION

We studied the SIS process in multiplex networks with dif-
ferent topologies, where one of the layers represents infective
inactivity, and two different inter-layer nodes’ dynamics. First,
we compared the properties of the two types of transition pro-
cesses and demonstrated that the memory based dynamics can
be used to generate transitions across layers with heavy-tailed
inter-event times. The parameters of the Markov dynamics
can be fitted according to the properties of the more realistic
memory based dynamics to achieve the same amount of layer
presence, which could be also done with some measured data.

The analysis of the epidemic threshold showed that the
analytical solution derived from the deterministic representa-
tion of the processes is approximately close to the numerical
results obtained with the stochastic realizations. However, in
certain random networks with weak connectivity and large
amount of inactivity, where the critical infectious rate is high,
the numerical results show that the epidemic can endure
even for lower infection rates than the analytical threshold.
Moreover, in these cases the memory based activity facilitated
the spreading even more than the Markov dynamics.
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Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, and M. Zanin, “The
structure and dynamics of multilayer networks,” Physics Reports, vol.
544, no. 1, pp. 1–122, 2014.
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