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Biased Random Search in Complex Networks

Lasko Basnarkov1,2,∗ Miroslav Mirchev1, and Ljupco Kocarev1,2

1Faculty of Computer Science and Engineering,
SS. Cyril and Methodius University,

P.O. Box 393, 1000 Skopje, Macedonia
and

2Macedonian Academy of Sciences and Arts, P.O. Box 428, 1000 Skopje, Macedonia
(Dated: June 16, 2020)

We study two types of biased random walk over complex networks, which are based on local
information. In the first approach, the transitions towards neighboring nodes with smaller degrees
are favored. We show analytically that for well connected networks, biasing the random walk
based on inverse of nodes’ degrees leads to a uniform distribution of the visiting frequency, which
arguably helps in speeding up the search. The second approach explores a random walk with a one-
step memory with two-hop paths arrival balancing. We introduce a framework based on absorbing
Markov chains for theoretical calculation of the mean first passage time in random walk with memory
and apply it in the second approach. Numerical simulations indicate that both approaches can reduce
the mean searching time of the target. The one-step memory based method proved to be better for
undirected networks, while the inverse-degree biasing leads to faster search in directed networks.

I. INTRODUCTION

The pursuit for appropriate models of the nontrivial
interconnections between the units of real systems has
led to the emergence of the complex networks theory as
one of the most fruitful fields in modern science. In-
stead of being regular, or purely random [1], the graph
of connections between the items rather frequently pos-
sesses characteristics like the small world property [2] and
power law degree distribution [3]. These topological fea-
tures have strong implications on the dynamics which
might be present in the system. A list of such dynam-
ical processes on complex networks of interacting units
can include synchronization [4], consensus formation [5],
disease spreading [6] and so on.

The random walk is one of the most pervasive con-
cepts in natural sciences which is applied in studies of
diverse phenomena ranging from simple animal strate-
gies for food location [7, 8] to complex human interac-
tions resulting in stock price variations [9], or evolution
of research interests [10]. A recent paper [11] contains
nice review of the topic and long list of references. Large
portion of dynamical processes on complex networks like
the PageRank algorithm [12], various types of searching
[13, 14], or community detection [15] are based on or re-
lated to the random walk. Random searching process
in a complex network is formulated as follows: starting
from an arbitrary node, or source i, sequentially hop from
a node to one randomly chosen neighbor until reaching
some previously defined target node j. The performance
of a searching procedure is measured in terms of the
number of steps needed to get from i to j and the re-
lated quantity is known as first passage time. Due to the
stochastic nature of picking the nodes in the sequence,
sometimes one can be very lucky and rather quickly find
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the target, while in most of the trials the number of steps
would be larger then the number of nodes in the network,
for a typical source-target pair. Therefore, a more infor-
mative quantity is the average number needed to com-
plete the task – the Mean First Passage Time (MFPT) –
obtained by averaging across all possible realizations of
the random choices.

On the other side, there are efficient deterministic
searching algorithms, which rely on information about
the underlying graph structure. In such approaches,
when one has knowledge of the full structure of the graph,
the shortest paths are used, and then one needs smallest
number of steps to reach the target. However, for very
large systems, like the World Wide Web, or in dynamical
environments like mobile sensor networks, keeping and
updating all necessary topological information might be
serious issue. Then one could turn towards strategies
based on local information only. The classical Uniform
Random Walk (URW) needs the smallest amount of in-
formation – only the number of neighbors (the degree
ki) of each node i. Within this approach, the probabili-
ties for choosing among the neighbors of some node i are
taken to be identical and equal to the inverse of its de-
gree p = 1/ki. However, this procedure greatly increases
the time to completion of the task, which is another type
of inconvenience. The searching can be improved when
the local information extends the node degrees. It was
shown that for certain type of small world networks, ran-
dom target can be found rather quickly by using local
information only [16, 17]. Knowledge of the identities
of the direct or maybe more distant neighbors, also en-
hances the searching [18].

There are various attempts for modification of the
URW aimed for speeding up its searching capabilities.
Some of these works provided enhancements while oth-
ers also presented connections with related problems in
other fields. For example, as a counterpart of the path
integrals, the Maximal Entropy Random Walk was in-



2

troduced as a modification of URW which assigns equal
probabilities to all paths with equal length starting from
a certain node [19]. In another approach, the Lévy ran-
dom walk which allows for jumps toward more distant
nodes besides the (first) neighbors, was proven to de-
crease the expected time needed to visit all nodes in
a network [20]. Combination of the local diffusion and
knowledge of the topology has recently been applied for
study of routing of neural signals [21]. Biasing of the
random walk has been shown to be useful in sampling of
complex networks as well [22].

In this work we study two simple algorithms built upon
the intuition that searching in a network would be faster
if the nodes have nearly equal chance to be visited by the
random walker. They are based on local information and
short memory and result in reduction of the search time
as compared to that of the URW. In the first approach the
probability of choosing a node is inversely proportional
to its degree, while in the second algorithm the aim is
to make the probabilities of visiting of the second neigh-
bors nearly equal. Thus, they could be placed somewhere
between the memory and computationally intensive op-
timal algorithms from one side and less demanding, but
slow ones at the opposite. The potential of searching im-
provement of both algorithms is studied with numerical
simulations. We provide some arguments that by the first
algorithm, which is degree-based biased RW, the search-
ing is approaching to the optimal one, when each node
has many neighbors. Numerical simulations show that
when the last condition is not satisfied, biasing does not
improve the searching. This approach is successful even
for directed networks when biasing is based on recipro-
cals of the indegrees. To the best of our knowledge, a
study about searching improvement in directed networks
does not exist. Furthermore, we provide theoretical basis
for studying searching with random walk with memory
of certain length. It is applied in the second algorithm in
this work to derive analytical expression for the MFPT.
The potential application of these strategies would be in
searching in networks with a dynamic or not completely
known structure, such as wireless sensor networks [23]
and unstructured peer-to-peer networks [24], or in some
other very large systems where a full knowledge of the
network structure can not be obtained to allow a short-
est path algorithms application.

The remainder of the text is organized as follows. In
Section II we present theoretical analysis of the first ap-
proach of biasing of the random walk that is based on in-
verse degree. In the following Section III we introduce the
framework for studying search with random walk with
memory and apply it on the second algorithm. The nu-
merical results are provided in Section IV. The paper
finishes with the conclusions.

II. MEMORYLESS SEARCH IN COMPLEX
NETWORKS

Random walk on complex networks where the transi-
tion probability does not depend on the past represents a
Markov chain. The studies of Markov chains have longer
history than those of complex networks and one can con-
veniently use results known for the former while studying
the properties of the latter. Here we have opted first to
present a derivation of an exact expression of the MFPT
between a pair of nodes in a network, based on generating
functions [7], which was successfully applied for random
walk on lattice. Then, it will be appended with explana-
tion how MFPTs between all pairs of nodes within a net-
work can be calculated simultaneously [25], by method
borrowed from the Markov chains theory.

Consider general (not necessarily uniform) random
walk on strongly connected directed or connected undi-
rected network, which means that each node can be

reached by any other node. Denote by p
(n)
i,j the prob-

ability that random walker which started from node i
is located at node j after n steps. The random walk is

initialised with the starting probabilities p
(0)
i,i = 1 and

p
(0)
i,j = 0 for i 6= j. Assuming the same starting node i,

let the probability that the random walker will be at lo-

cation j for the first time after n steps be f
(n)
i,j . These two

probabilities are related with the following relationship

p
(n)
i,j =

n∑
m=0

f
(m)
i,j p

(n−m)
j,j , (1)

which simply considers all possible scenarios for reaching
the node j for the first time at some earlier moment m
and then returning to the same node within the remain-
ing n−m steps. To account for the situation when i = j
one can augment the last relationship and obtain

p
(n)
i,j = δi,jδn,0 +

n∑
m=0

f
(m)
i,j p

(n−m)
j,j , (2)

by using the Kronecker symbol δi,j .

It is sometimes more convenient to handle a sequence
by using generating function

F (s) =

∞∑
n=0

f (n)sn, (3)

which is power series with the terms of the sequence f (n)

taken as coefficients. In order to ensure convergence for
sequences with finite terms, the variable s is restricted to
s < 1. The respective generating functions of the visiting,

or node occupation probability p
(n)
i,j and the probability
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of first arrival f
(n)
i,j are

Pi,j(s) =

∞∑
n=0

p
(n)
i,j s

n,

Fi,j(s) =

∞∑
n=0

f
(n)
i,j s

n. (4)

One can multiply the equation (2) by sn and then sum
up over all moments n. Then at left hand side of such
sum will appear the generating function of the occupation
probability, while at right product of it and that of the
first arrival probability and a Kronecker delta

Pi,j(s) = δi,j + Pj,j(s)Fi,j(s). (5)

One can see that the generating function of the first ar-
rival probability can be calculated as

Fi,j(s) =
Pi,j(s)− δi,j
Pj,j(s)

. (6)

By using the probabilities of first arrival at moments n
one can express the MFPT between the nodes i and j as

mi,j =

∞∑
n=0

nf
(n)
i,j . (7)

From the definition of the generating function of the first
arrival probability (4), one can notice that the MFPT can
be determined from it as well by using the relationship

mi,j = lim
s→1−

dFi,j(s)

ds
. (8)

We note that the usage of limit is needed, because for

some sequences which do not converge to zero, like p
(n)
i,j ,

the generating function is not defined for s = 1.
For strongly connected directed networks, as well as

connected undirected networks, when the number of
steps goes to infinity, n → ∞, the node visiting prob-
ability converges to the stationary one, regardless of the
starting node i [11]

lim
n→∞

p
(n)
i,j = wj . (9)

Then one can introduce the sequence of relaxation of oc-
cupation probability towards the stationary value

r
(n)
i,j = p

(n)
i,j − wj . (10)

Using the generating function of the stationary probabil-
ity

∞∑
n=0

wjs
n =

wj
1− s

, (11)

one can express the generating function of the occupation
probability as

Pi,j(s) = Ri,j(s) +
wj

1− s
, (12)

where the Ri,j(s) is the generating function of the relax-
ation of visiting probability

Ri,j(s) =

∞∑
n=0

(
p
(n)
i,j − wj

)
sn. (13)

Finally, one can substitute the generating functions
Pi,j(s) and Pj,j(s) by using the relationship (12) and ob-
tain

Fi,j(s) =
Ri,j(s) +

wj

1−s − δi,j
Rj,j(s) +

wj

1−s
. (14)

If one calculates the first derivative of the last expression
with respect to s, and finds its value at the limit s→ 1−,
the MFPT will be given as

mi,j =
Rj,j −Ri,j

wj
, (15)

where we have used the sums

Ri,j =

∞∑
n=0

(
p
(n)
i,j − wj

)
. (16)

The derivation of the same expression (15) for lattices,
with the generating functions formalism can be found in
[7], while for complex networks it was obtained previously
in [26, 27] by using Laplace transform. The mean return
time can be obtained by taking i = j in equation (6),
and then repeating the procedure of taking derivative by
s and then the limit s→ 1−, which will result in

mi,i =
1

wj
. (17)

The last result is easy to understand since the station-
ary probability corresponds to the visiting frequency of
perpetual random walk, which in turn is inversely pro-
portional to the mean period of return. These results are
well known for the MFPT in random walks on complex
networks for more than a decade, and for latices even
more.

Direct calculation of the MFPT from (15) needs a
method for calculation of the infinite sums (16) for each
source-target pair. We will present a more convenient
method for calculation of all MFPTs in a network, which
can be found for example in [25]. To start with, observe
first that powers of the transition matrix of the random
walk on the network Pn contain information for node oc-
cupation probabilities. More precisely, the probability of
the walker to be at state j when it started from i after n

steps, p
(n)
i,j , is the respective term of the n-th power Pn.

The stationary probabilities wj constitute the stationary
row vector which is left eigenvector of the transition ma-
trix w = wP, that corresponds to the largest eigenvalue.
One can construct a matrix W with all rows identical to
this vector, which possesses two properties summarized
as follows

(WP)n = Wn = W. (18)
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The first property (WP)n = Wn is due to the definition
of the rows of the matrix W as eigenvectors of P. The
second property means that the matrix of the stationary
distribution is idempotent, Wn = W. To realize that,
one should see first that in the product W2, the i, j-th
entry is the scalar product of w with column vector with
all elements equal to wj . This scalar product, due to the
normalization

∑
wi = 1 has value wj . This reasoning

holds for all pairs i and j, which proves that W is idem-
potent. One can notice that the n-th term in the sum
Ri,j (16) is the respective element of the difference of ma-
trices Pn−W. In order to obtain a way to account for all
possible terms n, one could use the following relationship
[25]

(P−W)n =

n∑
i=0

(−1)i
(
n

i

)
Pn−iWi

= Pn +

[
n∑
i=0

(−1)i
(
n

i

)]
W, (19)

which can be shown by using the properties (18). If one
further makes binomial expansion of (1 − 1)n, it will be
obtained that the sum in the square brackets in the last
expression equals -1. Then one has

Pn −W = (P−W)n. (20)

Now, the sum of relaxation of node occupation probabil-
ities between the nodes i as source and j as target (16)
can be obtained as the respective term from the infinite
sum of matrices which represents the fundamental matrix

Z = I + (P−W) + (P−W)2 + . . . (21)

The fundamental matrix Z as power series could be ex-
pressed in more compact form as

Z = (I−P + W)−1. (22)

The last relationship is result of the fact that
limn→∞Pn = W. Thus, the fundamental matrix can be
used to calculate the MFPTs between all pairs of nodes.
The complexity involved is due to the calculation of ma-
trix inverse. To summarize, the MFPT from initial node
i, to the target j through the elements of the fundamental
matrix zi,j is

mi,j =
zj,j − zi,j

wj
. (23)

As it is defined the MFPT is a property of the network
parameterized by two nodes – the starting one i and the
final j. A related property of one node only is obtained
by averaging all MFPTs starting from all other nodes
and targeting it

gi =
1

N

N∑
j=1

mj,i. (24)

In the literature it was called Global Mean First Pas-
sage Time – GMFPT [28]. This property can be also
seen as a kind of centrality measure of nodes in a com-
plex network. By going one step further, one can average
across GMFPTs for all nodes and get a property of the
whole network which was introduced as Graph MFPT
(GrMFPT) [29].

A. Inverse degree biasing in undirected networks

Although the MFPT between any two nodes (23) in a
network is associated with the elements of the fundamen-
tal matrix (22) through simple relationship, the elements
of the latter depend on the whole network structure in
a nontrivial way. Thus, it cannot be easily deduced how
any intervention in local navigation rules can improve
the searching time. One can notice however, that the de-
nominator in (23) represents the stationary distribution
of visits by the walker, on which it is easier to influence as
we will see. In many natural and artificial networks the
majority of nodes have few neighbors, while small num-
ber of nodes are much better connected. Thus, increasing
the visiting frequency of the less connected nodes would
decrease the MFPT towards them and consequently de-
crease the average GrMFPT. Clearly, any bias of the ran-
dom walk aiming at increasing the denominator, could
modify the numerator as well, but one could hope that
the improvement by increasing the visiting frequency has
dominant effect on the MFPT. By using ensemble aver-
age of networks, in an earlier work [27], it was obtained
that biasing random walk by taking transition probabil-
ity toward a neighbor to be proportional to the inverse if
its degree, results in uniform visiting frequency. Also, ex-
tensive numerical studies of a more general setting, when
the transition probability to a node is proportional to the
power of its degree kαj , the best performance for searching
in uncorrelated networks was obtained for α = −1 [29].
Inspired by these results, we aim to study the conditions
when the stationary distribution can be made uniform by
considering single network. Moreover, as will be seen, the
same approach can be applied for directed networks as
well. Also, such distribution of visiting frequency is ac-
companied with improved searching as compared to the
URW.

Inverse degree biasing of the random walk which we
consider is given by taking transition probability of a
node i to its neighbor j to be inversely proportional
to its degree pij ∼ 1/kj . The normalization condition∑
j∈Ni

pij = 1 where Ni is the set of neighbors of node
i, will result in transition probability

pij =
1/kj∑
l∈Ni

1/kl
. (25)

Define node-centric, local average of the reciprocal of
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degrees of the neighbors as

〈1/k〉i =
1

ki

∑
l∈Ni

1/kl, (26)

where the subscript i in the average denotes that it is
calculated only over the set of the neighbors of the node i.
Then the normalization sum in Eq. (25) can be expressed
through the local average as∑

l∈Ni

1/kl = ki 〈1/k〉i . (27)

Now, consider networks where most of the nodes are well
connected, which technically means ki � 1. Then, for
uncorrelated networks, or those where the degree of any
node is independent on the degrees of its neighbors, the
local average can be approximated with the network av-
erage

〈1/k〉i ≈ 〈1/k〉 =
1

N

N∑
j=1

1/kj (28)

Then, the normalization sum appearing in the denomi-
nator in (25) can be conveniently expressed through the
network average as∑

l∈Ni

1/kl ≈ ki 〈1/k〉 . (29)

With this approximation the stationary distribution sat-
isfies the set of equations

wj =
∑
i∈Nj

1/kj
ki 〈1/k〉

wi =
1/kj
〈1/k〉

∑
i∈Nj

wi
ki
. (30)

By using the approximation (29) one can verify that 1/N
is the solution of the implicit equations appearing in (30).

Thus, we have shown that inverse degree biasing of
the RW, for networks with good connectivity leads to
approximately constant invariant density of visiting fre-
quency. As we will verify numerically later on, this re-
sults in searching in complex networks that is nearly op-
timal with GrMFPT approaching to N – the number of
nodes in the network. We note that, inverse degree bias-
ing is preferable choice for fastest random search for every
complex network where all nodes have with big enough
degree. Although in narrower context, it extends the
previous findings [27], where ensemble averaging leads to
the same result. Also, as will be shown later, for less con-
nected networks the stationary distribution significantly
deviates from the uniform, which furthermore supports
our analysis. In such situation, this observation is ac-
companied with worsening of the search as compared to
the uniform case.

It seems that the limit of searching propensity of any
undirected connected network is G ≥ N . However, there
is deterministic strategy that is twice faster and which

holds for graphs that have a Hamiltonian cycle. It is a
path passing though all nodes and visiting each node only
once. We emphasize here that determination whether a
graph has a Hamiltonian cycle is not a trivial task and
was proven to be an NP-complete problem [30]. In that
case the MFPT from the source to the target will equal
the number of nodes in between them along the cycle,
and for uniformly chosen starting and target node, one
can easily show that GMFPT and GrMFPT will be N/2.

B. Inverse degree biasing in directed networks

The same approximations for the invariant density can
be applied for directed networks as well, but with addi-
tional condition. First, note that by following the in-
tuition that improvement of GrMFPT can be obtained
by equalizing the chances of visiting the nodes, one
should try by assigning higher probabilities to nodes with
smaller indegree. Thus, the transition probability of the
biased random walker would be taken as

pij =
1/kinj∑

l∈N out
i

1/kinl
, (31)

where N out
i denotes the set of neighbors of the node i to-

ward which it points to. Furthermore, for networks with
good connectivity, one can make similar approximation∑

l∈N out
i

1/kinl ≈ kouti 〈1/k〉in , (32)

where 〈1/k〉in denotes network average of the reciprocal
of indegrees

〈1/k〉in =
1

N

N∑
j=1

1/kinj . (33)

The last approximation is obtained with the same rea-
soning as the one for the undirected networks [refer to
Eqs. (28] and (29)). The stationary distribution satisfies
equation similar to that for the undirected networks

wj =
∑
i∈N in

j

1/kinj

kouti 〈1/k〉in
wi =

1/kinj

〈1/k〉in
∑
i∈N in

j

wi
kouti

. (34)

If one assumes that the invariant density is constant wi =
1/N , then from Eq. (34) one would have

1

N
≈

1/kinj

N 〈1/k〉in
∑
i∈N in

j

1

kouti

. (35)

Now, for networks where the direction of the links is in-
dependent on the degree of nodes, the averages of recip-
rocals of indegrees and outdegrees would be nearly the
same

〈1/k〉in ≈ 〈1/k〉out . (36)
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For networks where most of the nodes have many in-
coming and outgoing links, one can make the following
approximation∑

i∈N in
j

1

kouti

≈ kinj 〈1/k〉
out ≈ kinj 〈1/k〉

in
. (37)

Plugging the last approximation in the stationary density
equation (35), one will see that it is identity. We should
mention that although network averages of the recipro-
cals of in- and outdegrees are nearly equal, the biasing
inverse to the outdegrees does not result in a stationary
distribution approaching to uniform one. The reason for
that is the fact that the sum of inverse of degrees (37)
is always proportional to the indegree of the node j be-
cause it accounts for neighbors pointing to the node j.
By repeating the analysis in this section, and using bi-
asing with inverse of outdegrees, one can verify that the
stationary density condition like (35) is not satisfied.

III. SEARCH IN COMPLEX NETWORKS WITH
MEMORY OF ONE STEP

When the transition probabilities towards the neigh-
bors are conditioned on the nodes visited in the past,
then the random walk is not Markov chain. However,
if the random process has a memory of finite length, or
finite history length, it can be conveniently expressed by
appropriate Markov chain. We will present here the case
when the memory has length one, but it can be general-
ized to longer periods in a similar manner. Let the walker
at certain step has moved from node r to its neighbor s.
When the random walk has a memory of one step, the
probability of proceeding towards some neighbor t from
s, depends only on the previously visited node r, but not
on the preceding ones

p(t|s, r, u1, u2, . . . ) = p(t|s, r), (38)

where u1, u2, . . . is the sequence of nodes visited before r.
Then one can make a Markov chain consisting of states
which are pairs of neighboring nodes. To make the con-
nection between the random walk and the related Markov
chain more intuitive, denote with rs the state in the
Markov chain when the random walker has visited node r
immediately before s. The transition probabilities in the
chain from state rs to st are thus prs,st = p(t|s, r), which
can be organized in the respective transition probability
matrix P. Generalization of the procedure for making
Markov chain for random walk with longer memory is
straightforward, but one should keep in mind that the
size of the corresponding matrix will rise exponentially.

The starting step of random walk with memory is not
specified by this kind of walk. One particular initial-
ization of the walk which starts from some node i is to
choose randomly one of its neighbors and then continue
with the memory-based algorithm. Finding the target j
in the network corresponds to reaching any of the states

denoted with sj in the Markov chain, where s is any
neighbor of the node j [31]. Thus, the MFPT from node
i to j would be related to the mean times to absorption
(MTA) of random walk in absorbing Markov chain that
started in any state ir, where the absorbing states are sj.
Before deriving that relationship, we will first present
some well known results about the MTA in absorbing
Markov chains. [25]. For such purpose, one should first
determine the transition matrix of the absorbing Markov
chain. It depends on the target j, and thus we will de-
note it with Pj Since the random walk should stop at
any absorbing state, the probability of leaving it is zero.
Also, the transitions between other states are the same as
in the ordinary chain. Thus the absorbing chain matrix
Pj differs from the general matrix P only in the rows
corresponding to the first index sj, which in the absorb-
ing matrix have values psj,rt = δsj,rt. It is convenient
to write the transition matrix of the absorbing Markov
chain related to the target node j in the form

Pj =

∣∣∣∣Qj Rj

0j Ij

∣∣∣∣ , (39)

In the last equation Qj is a matrix corresponding to the
transient states which correspond to all pairs of neigh-
boring nodes rs in the network, where neither r nor s is
the target node j. The submatrix Rj corresponds to the
rows with transient states rs as before while the columns
sj consist of all absorbing states, which lead to the target
j. We remind that the transition probabilities in these
two matrices are the same as the respective ones in the
original chain. Lastly, the zero matrix 0j and the identity
matrix Ij denote that from the absorbing states sj the
random walk can not move further and remains in the
same state. To simplify the notation, we will omit the
index j, and use Greek letters α and β to identify states
instead of using pairs of neighboring network nodes.

The MTA equals the average number of steps while
the walker is in the transient states. Similarly to the
analysis of the MFPT of memoryless walk, the powers of

the transient submatrix Qn contain the probabilities q
(n)
αβ

of the walker which started at state α to be at β after n
steps. We introduce a binary random indicator variable

I
(n)
β , which has value 1, if the walker is present at state

β, and 0 if it is absent. Its expected value E(I
(n)
β ) equals

the probability q
(n)
αβ . The expected number of steps when

the walker is present at β in the first n iterations is

E(I
(0)
β + I

(1)
β + · · ·+ I

(n)
β ) = q

(0)
αβ + q

(1)
αβ + · · ·+ q

(n)
αβ . (40)

The expected number of visits of the state β, for an in-
finite walk is obtained by simply letting n → ∞. One
can introduce a fundamental matrix for this absorbing
Markov chain as the infinite sum

Y = I + Q + Q2 + · · · . (41)

It contains the expected number of steps of perpetual
random walk starting from state α (the row) which is
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present at node β (the column). The mean time to ab-
sorption of random walk which started at state α equals
the mean number of steps in which the walker is in any
transient state β, or the sum

µα,β =
∑
β

yα,β , (42)

where yα,β are the elements of the fundamental matrix of
the absorbing chain Y. More compact expression can be
obtained by using the vector consisting of all mean times
to absorption µ from any starting state α, by using the
matrix equation

µ = Yc, (43)

where c is a column vector with all elements equal to one.
Because any random walk finishes in the absorbing state
with a probability one, the powers of the matrix Q(n)

become vanishingly small as n → ∞. Accordingly, the
infinite sum of matrices converges and the fundamental
matrix can be represented as

Y = (I−Q)
−1
. (44)

Similarly to calculation of MFPTs in random walk with-
out memory, the MTA can be obtained from the tran-
sition matrix by using matrix inverse only. We remind
that because the whole analysis was performed by choos-
ing particular node j as target, we can explicitly use the
respective index in the equation for determination of the
mean time to absorption

µj = Yjcj . (45)

As we will see below, µj contains sufficient information
for calculation of MFPTs from all nodes to a particular
target j, which are not its neighbors.

The MFPT between two nodes is by definition
weighted sum of the lengths l of all paths Pi,j that start
at the initial node i and finish at the target j and which
visit j only at the last step

mi,j =
∑
Pi,j

l (Pi,j) p (Pi,j) , (46)

where p(Pi,j) is the probability of occurrence of the path
Pi,j . Let us first consider the case when the target is not
neighbor of the source. The sum in the last expression
can be organized by summing over all paths that have
the neighbor s of the starting node after the first step,
and then summing over all such neighbors s

mi,j =
∑
s∈Ni

pis
∑
Ps,j

[1 + l(Ps,j)] p(Ps,j), (47)

where pis denotes the probability to jump from i to s
in the first step. Since all the paths that we consider
eventually reach the target j, the normalization condition
of the probability reads∑

Ps,j

p(Ps,j) = 1. (48)

One can also note that the MFTP from the neighbor s to
the target j by pursuing the memory-based random walk
equals the MTA from the starting state is in the Markov
chain, which is the respective term from the MTA vector
µj

µis,j =
∑
Ps,j

l(Ps,j)p(Ps,j). (49)

When the neighbor in the first step is chosen uniformly
one has pis = 1/di. Then one can express the MFPT
from the node i to j through the MTAs obtained by the
Markov model for the memory-based random walk as

mi,j = 1 +
1

di

∑
s∈Ni

µs,j . (50)

We can now consider the case when the target j is
neighbor of i. This target could be reached in one step
with probability pij = 1/di, by pursuing the shortest
path, while for the mean number of steps through all
other paths one can apply the same reasoning as above.
We note that in the sum running in the neighborhood of
the initial node i, the target j should be omitted. Then
by using the normalization condition (48), one can obtain
that∑
s∈Ni
s6=j

pis
∑
Ps,j

[1 + l(Ps,j)] p(Ps,j) =
di − 1

di
+

1

di

∑
s∈Ni
s6=j

µs,j .

(51)
Adding the contribution of the direct path to the last
expression one will obtain similar result as (50)

mi,j = 1 +
1

di

∑
s∈Ni
s6=j

µs,j (52)

By using the trivial value µj,j = 0, one can see that the
same expression (50) can be used for any target, regard-
less whether it is neighbor to the starting node, or not.

In the previous section, the biasing of RW by tak-
ing transition probabilities proportional to the inverse
of node degrees aims at increasing the visiting chances
to the less connected nodes. This approach is based only
on the nearest neighborhood properties – the degrees of
the neighbors which are one hop away. Another strategy
could be created by trying to make the probabilities to
reach the second neighbors as similar as possible.

One intuitive way to make such preference is as follows.
Assume that at the previous step the walker was at node
r, from where it has jumped to the node s, and in the
next step it should visit some node t from the set of
neighbors of s. Denote the number of all two-hop paths
from node r to t with brt. The matrix B with elements
brt is the square of the adjacency matrix A, B = A2.
Then the probability to visit node t after being at nodes
r and s in the previous two steps, corresponds to the
transition probability from state rs to st in the related
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Markov chain. One choice for favoring the less accessible
second neighbors is the following

prs,st =
1
brt∑

u∈Ns

1
bru

, (53)

where the sum in the denominator is used for normaliza-
tion of the probabilities. This formula assigns a larger
weight to nodes t which have less alternative paths to be
reached from node r, i.e. those with smaller brt. In this
way, the probability to visit a node of that kind from r
in two steps will be increased, and become closer to that
of nodes which are accessible from r in two steps through
more alternative paths. Since for undirected networks ev-
ery node is a second neighbor to itself, there is a chance
to return to the same node r. However, brr = kr and the
probability prs,sr is the lowest within all prs,st and the
immediate returning is disfavored.

We note that the related Markov model of random
walk with memory could be successfully applied for de-
termination of the stationary distribution of the visiting
frequency as well. First one needs to calculate the sta-
tionary distribution of the states of the Markov chain
v, which is obtained from the stationarity condition
vP = v. It contains the probabilities vrs of the random
walk with memory being at state rs. Then the station-
ary distribution of frequency of visits of the node s, by
random walk with memory of one step, would be the sum
of all vrs, or vst, within the neighborhood of the node s.

IV. NUMERICAL RESULTS

In this section we provide some results obtained with
the analytical expressions and numerical simulations with
the two biased random walks and compare them with
the uniform random walk. First, we conduct a thorough
analysis using generic network models, such as random,
scale-free and small world networks. Then, we apply the
approaches on two real networks: the Internet at au-
tonomous systems level (undirected), and a reduced set
of Wikipedia pages (directed).

The effectiveness of the biasing procedures were stud-
ied by calculations of the Graph MFPT and the invariant
density from the transition matrix, by using the theoret-
ical expressions. Furthermore, numerical simulations of
the random walks were performed to verify the results.
Since the theoretical expressions involve an inverse ma-
trix operation, the latter presents the major constraint in
the calculations. For the random walk with memory, the
number of states in the related Markov chain equals the
number of links, which limits the size of networks that
we could study. Therefore, we have opted to perform the
analyses of the MFPT and the invariant density for net-
works with N = 100 nodes. We have varied the average
node degree, by changing the native model parameters,
to see how the connectivity affects the search. For both
the analytical and the numerical results, we averaged over

10 network instances for every parameter setting for each
network type. Moreover, in the numerical simulations we
have performed 100 repetitions of the search among all
node pairs, for each scenario.

We studied purely random graphs, scale-free and
small-world networks as the most typical kinds of net-
works. For generating such graphs we used algorithms
from the NetworkX library in Python which allow con-
struction of the three graph types with given parameter
values [32]. The random graphs are complex networks
created according to the Erdős-Rényi model where every
pair of nodes i and j is connected with some predefined
probability p, which appears as a parameter of the graph
together with the number of nodes N [1]. If the proba-
bility p is large enough then the obtained graph would
very likely be connected – there will be a path between
each pair of nodes. The small world networks were built
following the Watts-Strogatz model [2]. It starts with
a regular ring lattice network with N nodes each con-
nected with n neighbors, and then randomly rewires the
links with some probability p. The scale free networks
were generated using the Barabási-Albert model which
sequentially builds the network by adding nodes one by
one [3]. The network builds upon a seed of m0 nodes
without edges, and every newly added node forms m links
with the existing network [33]. Preferential attachment
is employed as the probability to connect to an existing
node is taken to be proportional to its degree.

In Figure 1a we compare the obtained GrMFPTs for
the uniform random walk, the biased random walk with a
transition probability proportional to the inverse degree
and the memory based one over scale-free networks. The
horizontal axis represents the average degree 〈k〉 which
is approximately 2m, where m ∈ [2, 10]. The seed net-
work is composed of m0 = m nodes without edges. As
we previously mentioned, the results were obtained by
averaging of 10 networks with certain m. First, we can
observe that the numerical (N) and the theoretical (T)
results are very close, which confirms the accuracy of
the analytical expressions. It can be noticed that when
the average node degree is large enough, the two biasing
alternatives provide smaller GrMFPT than the uniform
random walk, which also approaches the optimal valueN .
When the majority of the nodes have few neighbors (four
or six in this case), the inverse degree biasing worsens the
searching in the network. We think that this is probably
due to the much higher preference of the weakly con-
nected nodes and consequently decreasing the chances of
exploring new areas in the network by avoiding the hubs.
The one-step memory approach is better than the other
two since it involves memory and biasing which intents
to equalize the chances of visiting the second neighbors
of a given node. One can notice that all curves decrease
asymptotically towards the value corresponding to the
number of nodes, which arguably is the minimal possible
value for the GrMFPT.

The biasing brings search improvement for the purely
random Erdős-Rényi graphs also, as it is shown in Fig-
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FIG. 1: GrMFPT in (a) BA, (b) ER, and (c) WS
networks of N = 100 nodes with different average node
degree 〈k〉 for the three cases: uniform (red line/circle),
inverse degree (blue line/square) and one-step memory
(green line/triangle). The lines are theoretical values

(T) and the markers numerical estimates (N).

ure 1b. We generated 10 network instances with N = 100
nodes for different average node degree 〈k〉 by varying the

link existence probability p ∈ [0.04, 0.2]. As it can be seen
the inverse degree biasing gives lower average GrMFPT
than the uniform random walk, except for 〈k〉 = 4 where
they are about the same, while the one-step memory out-
performs them both. Again the numerical results are in
accordance with the theoretical ones.

In Figure 1c we show how the biasing affects the ran-
dom walk in Watts-Strogatz networks, where the rewiring
probability is p = 0.2. Unlike for the other network types
under study, the inverse degree biasing does not improve
the GrMFPT. This is probably due to the smaller de-
gree variability in this kind of networks. On the other
hand, the one-step memory approach still reduces the
GrMFPT, as it was the case for the other network types.
The theoretical expressions are once again confirmed by
the numerical simulations.

We also made numerical experiments to see whether
the reason behind the search improvement is the flatten-
ing of the stationary distribution of the visiting frequency
by a perpetual random walker. A convenient quantity for
estimating the deviation of one distribution from another
is the Kullback-Leibler (KL) divergence [34]. In the case
when one has two discrete distributions P (i) and Q(i), it
is defined as

DKL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
. (54)

One can notice from the definition that this is asymmet-
ric quantity, DKL(P ||Q) 6= DKL(Q||P ), and within the
definition provided above, P has the role of the prior, or
the distribution with which we compare. In our case it is
the constant P (i) = 1/N . This divergence vanishes when
the two distributions coincide. In Figure 2a is shown the
KL divergence between the constant density and those for
the uniform, inverse degree and one-step memory random
walks in BA networks. As can be noticed, both biasing
procedures result in invariant density that is closer to
the flat one, than the uniform approach does. Also, the
larger the average degree is, the approximation of the
invariant density with the uniform one is more correct,
as the theoretical analysis in previous sections suggests.
However, even though for networks with smaller aver-
age degree the biasing makes the distribution closer to
the uniform, searching is slower than for the URW. This
shows that the leveling of the visiting frequency is not
sufficient for optimizing the search.

Similarly, Figure 2b shows the KL divergence between
the flat density and the uniform and both biasing ap-
proaches in ER networks. Once again, the biasing yields
a density that is closer to the constant one than the uni-
form random walk, which is probably the reason for the
lower GrMFPT obtained in Figure 1b. On the other
hand, in WS networks (see Figure 2c) the inverse degree
biasing gives a density which is closer to a constant than
the uniform random walk, while the one-step memory ap-
proach does not, even though it proved fastest in Figure
1c.
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FIG. 2: Kullback-Leibler divergence of the invariant
density of uniform (red), inverse degree (blue), and
one-step memory (green) random walks from the
uniform density in (a) BA, (b) ER, and (c) WS

networks with N = 100 nodes for different average node
degrees.

We also tested the searching improvement in directed
networks and in Figure 3a are shown the GrMFPTs for
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(b) Kullback-Leibler divergence

FIG. 3: Random walks in directed ER networks with
different average degree 〈k〉: (a) Comparison of the

GrMFPT for uniform (red circles), inverse degree (blue
squares) and one-stop memory (green triangles); and

(b) Kullback-Leibler divergence of the invariant density
from a uniform density for three approaches: uniform

(red circles), inverse indegree biased (blue squares) and
one-step memory (green triangles).

directed ER networks by uniform, inverse indegree and
one-step memory random walks. We can see that the one-
step memory provides better results than the uniform
random walk, but the inverse indegree approach outper-
forms them both significantly, which was not the case in
undirected networks. Biasing based on inverse outdegree
performs slower than the uniform random walk (results
are not shown).

The flattening of the invariant density is an ingredient
which helps in search improvement in directed networks
as well. We have verified that, as expected, for well con-
nected networks when biasing of random walk is based on
inverse of indegrees, the invariant density is closer to the
constant, than that of a URW. In Figure 3b are shown
the KL divergence of the URW on directed ER networks
with the two biasing alternatives: one based on inverse
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of indegrees, and another on the one-step memory. The
results are in concordance with the theoretical analysis
presented in Section II B.

We have also tried the searching performance of the
two approaches in two real world networks. The first
network is a snapshot of the Internet topology at au-
tonomous systems level obtained from BGP logs on
2.1.2000, which is an undirected graph consisting of 6474
nodes and 13233 links [35]. Its average node degree is
〈k〉 ≈ 4. The second network is an extracted set of
Wikipedia pages [36, 37]. The graph is directed and con-
sists of 4592 nodes and 119882 links, from which we take
the largest strongly connected component that has 4051
nodes and 119000 links. The average indegree and out-
degree of the largest component are 〈kin〉 = 〈kout〉 ≈ 29.
These networks are larger and it is much more difficult to
calculate the GrMFTP theoretically, so in Table I we pro-
vide only the results obtained by numerical simulations.
The results for the Internet network are obtained by av-
eraging over 106 randomly selected source-target pairs
out of 6474× 6473 possible pairs, while for the extract of
the Wikipedia network the averaging is performed with
1.5 · 105 node pairs, out of 4051× 4050 possible pairs as
the simulations take much longer due to the larger num-
ber of steps required to reach the targets. One can note
that for the undirected case the inverse degree worsens
the search of the URW, because majority of nodes are not
well connected as the theory asks, while it shows great
reduction of the MFPT for the directed network. The
memory-based strategy performs well in both scenarios.
These results confirm our previous findings for paradig-
matic network models that the inverse degree biasing is
better for directed networks, while the memory-based ap-
proach outperforms the others for undirected ones.

TABLE I: GrMFPT for two real networks with uniform,
inverse degree and one step-memory random walks.

Network Uniform Inverse degree One-step memory
Internet(AS) 1.93 · 104 1.78 · 105 1.80 · 104

Wikipedia(extr.) 3.01 · 107 1.09 · 104 8.15 · 105

V. CONCLUSIONS

In this work we studied the potential for improvement
of searching in complex networks by applying biasing of

the random walk. We have examined two approaches
that avoid the hubs by making the transition proba-
bilities proportional to the inverse of the degree of the
nodes, or by accounting for the two-hop-paths between
the nodes. It was obtained that for very large and well
connected networks, the inverse-degree biasing procedure
is approaching the optimal searching. This is character-
ized by average number of steps needed to find the target
node that is slightly larger than the number of nodes in
the network. The optimal achievement is due to the flat-
tening towards the constant of the invariant density of
visits of the nodes by an infinite random walker. The one-
stop memory approach has shown searching improvement
as well, and although being more complex, it is promising
since it shows better performance than the uniform ran-
dom walk even for networks where the majority of nodes
have a small degree.

For theoretical analysis of the random walk with mem-
ory of one step was introduced an appropriate absorb-
ing Markov chain model. This model enables obtaining
closed form expressions of the MFPT between nodes in
the complex network. This approach could be straight-
forwardly applied for random walk with longer memory
as well. The technique with absorbing Markov chain can
be also applied for random searching of target when each
node knows the identity of its neighbors. In this case
the absorbing states would be all neighbors of the target.
Finally, we have shown that the inverse degree biasing
based on indegree, leads to nearly optimal random search
in directed networks as well, which is even better than
the memory-based one.
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