- [5] Ungar, A.A. (2001) Beyond the Einstein addition law and its gyroscopic Thomas precession, the theory of gyrogroups and gyrovector spaces, Boston, Kluwer Academic.
- [6] Urbantke, H.K. (2003) Lorentz transformations from reflections, *Foundations of Physics Letters* 16 (2), 111–117.
- [7] van Wyk, C.B. (1986) Lorentz transformastions in terms of initial and final vectors, *Journal of Mathematical Physics* 27 (5) 1306–1314.
- [8] van Wyk, C.B. (1991) The Lorentz operator revisited, Journal of Mathematical Physics 32 (2), 425–430.
- [9] Wigner, E.P. (1939) On unitary representations of the inhomogeneous Lorentz group, *Annals of Mathematics* 40 (1), 149-204.

On free medial semigroups

Vesna Celakoska-Jordanova

Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje Republic of Macedonia

Abstract. Descriptions of free objects in the variety of medial semigroups are obtained.

Key words: medial semigroup, free semigroup, quotient semigroup, V-canonical semigroup.

A semigroup **S** is said to be **medial** if abcd = acbd, for every *a*, *b*, *c*, *d* in *S*. The class of all medial semigroups is a variety of semigroups defined by the identity $xyuv \approx xuyv$. We denote this variety by *Med*. If **S** is a medial semigroup, then the following equalities hold in **S**:

$$px_1x_2x_3q = py_1y_2y_3q$$

for any p, x_1 , x_2 , x_3 , $q \in S$ and any permutation $y_1y_2y_3$ of $x_1x_2x_3$.

A free medial semigroup as a quotient structure of the free semigroup over an alphabet is constructed below. Recall that the free semigroup over a nonempty set A, is the set A^+ of all finite sequences $(a_1, a_2, ..., a_n)$ of elements of A endowed by the operation concatenation of sequences:

 $(a_1,a_2,\ldots,a_n)(b_1,b_2,\ldots,b_m) = (a_1,a_2,\ldots,a_n,b_1,b_2,\ldots,b_m).$

Identifying each sequence of the form (a) with $a \in A$, we have $(a_1, a_2, ..., a_n) = a_1 a_2 ... a_n$. The elements of A are **letters** and elements of A^+ are **words** on A. Two words $u = a_1 a_2 ... a_n$ and $v = b_1 b_2 ... b_n$ are **equal** if and

only if n = m and $a_i = b_i$, for i = 1, 2, ..., n. The number *n* is called the **length** of the word $w = a_1a_2...a_n$ and it is denoted by |w|. For any word *w* we define the **content** cnt(*w*) inductively by:

 $a \in A \Rightarrow \operatorname{cnt}(w) = \{a\}, w = uv \Rightarrow \operatorname{cnt}(uv) = \operatorname{cnt}(u) \cup \operatorname{cnt}(v).$

We introduce the notion of "elementary medial transformation" of a word in A^{\dagger} analogously as for the left commutative groupoids ([1]).

Definition 1. Let $w \in A^+$, $w = a_1a_2...a_n$ where $a_1,a_2,...,a_n \in A$. A **segment** of *w* is called any expression of the form $a_ia_{i+1}...a_{i+j}$, where $i+j \le n$, *i* runs in $\{1,2,...,n\}$ and *j* runs in $\{0,1,...,n-1\}$. **The set of segments** of *w* is denoted by seg(*w*). Thus:

seg(*w*) = { $a_i a_{i+1} \dots a_{i+j}$ | $i+j \le n$, $i \in \{1, 2, \dots, n\}$, $j \in \{0, 1, \dots, n-1\}$ }. **Proposition 1.** If $w = a_1 a_2 \dots a_n$, then $n \le |seg(w)| \le (n(n-1))/2$. \Box

Definition 2. Let $w \in A^+$, $|w| \ge 4$ and txyz be a segment of w. If one occurrence of txyz in w is replaced by tyxz, an element $u \in A^+$ is obtained that is different from w only in the replaced segment txyz by tyxz. In that case we say that an **elementary medial transformation** is performed on w and write $w \rightarrow u$. In the cases when w = a or w = ab or w = abc, where a, $b, c \in A$, we put by definition $w \rightarrow w$. Thus, $w = \alpha txyz\beta \rightarrow \alpha tyxz\beta = u$, where $\alpha, \beta \in A^+$ or, α or β is the empty symbol.

We can "go back" from u to w performing the elementary medial transformation $u = \alpha tyxz\beta \rightarrow \alpha txyz\beta = w$ in the same place. We call this transformation an *inverse return* from u to w. Thus, $w \rightarrow u \rightarrow w$.

Note that an elementary medial transformation of an arbitrary word w does not lead to a transformation on A^+ , because the "image" of w is not uniquely determined. For instance, the word w = abcde, where a, b, c, d, $e \in A$, with one elementary medial transformation can be transformed in *acbde*, but also in w = abdce.

Definition 3. Define a relation \sim on A^+ by:

 $w \sim u \Leftrightarrow (\exists w_0, w_1, \dots, w_k \in A^+) w = w_0 \rightharpoonup w_1 \rightharpoonup \dots \rightharpoonup w_{k-1} \rightharpoonup w_k = u.$

Proposition 2. $w \sim u$, where $w = a_1 a_2 \dots a_n$, $u = b_1 b_2 \dots b_m$ if and only if n = m, $a_1 = b_1$, $a_n = b_n$ and $b_2 \dots b_{n-1}$ is a permutation of $a_2 \dots a_{n-1}$.

Proof. If $w \sim u$, then |w|=|u|, cnt(w) = cnt(u), left and right ends of w and u are equal and the appearance of any $a \in A$ in w is equal to the appearance of a in u. Therefore, n = m, $a_1 = b_1$, $a_n = b_n$ and $b_2...b_{m-1}$ is a permutation of $a_2...a_{n-1}$. Conversely, for n = 1, n = 2 and n = 3, $w \sim u$ is trivially fulfilled. Suppose that $w \sim u$, for $n \le k$ and $k \ge 4$. If n = k + 1, then

m = k+1, $a_1 = b_1$, $a_{k+1} = b_{k+1}$ and so $u = a_1b_2...b_ka_{k+1}$. By the inductive supposition we obtain that $b_2...b_k \sim a_2...a_k$, and thus $a_1a_2...a_{k+1} \rightarrow a_1b_2...b_ka_{k+1}$, i.e. $w \sim u$. \Box

Directly from the definition of ~ it follows that ~ is an equivalence relation. If $w \sim u$ and $v \in A^+$, then $wv \sim uv$ and $vw \sim vu$, i.e. ~ is a congruence relation in A^+ .

Define an operation
$$\cdot$$
 on $A^+ / \sim = \{ w^{\sim} | w \in A^+ \}$ by:

$$W^{\sim}, U^{\sim} \in A^+ / \sim \Rightarrow W^{\sim} \cdot U^{\sim} = (WU)^{\sim}.$$

It is clear that $(A^+/\sim, \cdot)$ is a semigroup. Further on we write A^+/\sim instead of $(A^+/\sim, \cdot)$. Since $W_1^{-} \cdot W_2^{-} \cdot W_3^{-} \cdot W_4^{-} = (W_1W_2)^{-} \cdot (W_3W_4)^{-} =$ $(W_1W_2W_3W_4)^{-} = (W_1W_3W_2W_4)^{-} = (W_1W_3)^{-} \cdot (W_2W_4)^{-} = W_1^{-} \cdot W_3^{-} \cdot W_2^{-} \cdot W_4^{-}$, for any W_1^{-} , W_2^{-} , W_3^{-} , $W_4^{-} \in A^+/\sim$, the semigroup $(A^+/\sim, \cdot)$ is medial. Note that $a^{-} = \{a\}$, for any $a \in A$.

If $w^{\sim} \in A^+/\sim$, then $w^{\sim} = (a_1a_2...a_n)^{\sim} = a_1^{\sim} \cdot a_2^{\sim} \cdot ... \cdot a_n^{\sim}$. Thus, w^{\sim} is presented as a product of elements of A/\sim and therefore A/\sim is a generating set for A^+/\sim . Moreover, A/\sim is a set of prime elements in A^+/\sim . Namely, if $a^{\sim} \in A/\sim$, then $a^{\sim} \neq w^{\sim}u^{\sim}$, for any $w^{\sim}, u^{\sim} \in A^+/\sim$, since *a* is not a product of elements of A^+ . There are no other prime elements in A^+/\sim except those of A/\sim . Namely, if $w^{\sim} \in (A^+/\sim) \setminus (A/\sim)$, then $w^{\sim} \notin (A/\sim)$, i.e. $w \notin A$. Thus, there are $u, v \in A^+$ such that w = uv. In that case, $w^{\sim} = (uv)^{\sim} = u^{\sim} \cdot v^{\sim}$, i.e. w^{\sim} is not prime in A^+/\sim .

 A^+ /~ has the universal mapping property for *Med* over A/~, i.e. if $S \in Med$ and $\lambda : A$ /~ $\rightarrow S$, then there is a homomorphism ψ from A^+ /~ into S that is an extension of λ . Define the mapping $\psi : A^+$ /~ $\rightarrow S$ by $\psi(W^-) = \varphi(W)$, where φ is the homomorphism from A^+ in S that is an extension of λ .

The mapping ψ is well defined, that follows by the implication $w \sim u \Rightarrow \varphi(w) = \varphi(u)$. Namely, let $w \sim u$, i.e. $w_0, w_1, \dots, w_k \in A^+$ are such that $w = w_0 \rightarrow w_1 \rightarrow \dots \rightarrow w_{k-1} \rightarrow w_k = u$ and let $w_i = \alpha txyz\beta$, where $\alpha, \beta \in A^+$ or, α or β is the empty symbol. Since φ is a homomorphism it follows that:

$$\varphi(w_i) = \varphi(\alpha txyz \beta) = \varphi(\alpha)\varphi(t)\varphi(x)\varphi(y)\varphi(z)\varphi(\beta) = [S \in Med] = \\ = \varphi(\alpha)\varphi(t)\varphi(y)\varphi(x)\varphi(z)\varphi(\beta) = \varphi(\alpha tyxz \beta) = \varphi(w_{i+1}),$$

23

for $i \in \{0, ..., k-1\}$. Hence, $\varphi(w) = \varphi(w_0) = \varphi(w_1) = ... = \varphi(w_k) = \varphi(u)$. The mapping ψ is a homomorphism from A^+/\sim into **S**, since

 $\psi(W^{\sim} \cdot U^{\sim}) = \psi((WU)^{\sim}) = \varphi(WU) = \varphi(W)\varphi(U) = \psi(W^{\sim})\psi(U^{\sim}).$

By the above discussion we obtain that the following theorem holds.

Theorem 1. The quotient semigroup $(A^+/\sim, \cdot)$ is a free medial semigroup over A^+/\sim . \Box

Below we give a canonical description of a free medial semigroup.

Definition 4. Let *V* be a variety of semigroups. A semigroup $\mathbf{R} = (\mathbf{R}, *)$ is said to be **canonical** in *V*, i.e. *V*-**canonical**, over *A* if the following conditions are satisfied:

(c₀) $A \subseteq R \subseteq A^+$ and $w \in R \Rightarrow \operatorname{seg}(w) \subseteq R$;

(c₁) $WU \in R \Longrightarrow W * U = WU$;

(c₂) \boldsymbol{R} is a free semigroup in V over A.

Definition 5. Let the alphabet A be linearly ordered by \leq . A word $a_1a_2...a_n \in A^+$ is said to be *monotonic*, i.e. it has *a natural order* if and only if $a_1 \leq a_2 \leq ... \leq a_n$.

As a candidate for the carrier of a free medial semigroup we choose the subset *R* of A^+ defined in the following way:

(i)
$$A \cup A^2 \cup A^3 \subseteq R$$
;

(ii) $(\forall w = a_1 \dots a_n \in A^+, n \ge 4) (w \in R \Longrightarrow a_2 \dots a_{n-1} \text{ is monotonic}).$

By the definition of *R* and by induction on length of a word, one can obtain that the condition (c_0) is fulfilled. Note that among all the words of letters $a_1, a_2, ..., a_n$, only one is monotonic, i.e. only one has the natural order. We denote by $(a_1a_2...a_n)'$ the permutation of $a_1, a_2, ..., a_n$ that gives their natural order.

Define an operation * on R by:

 $W = a_1 a_2 \dots a_n, \ U = b_1 b_2 \dots b_m \in R \implies W * U = a_1 (a_2 \dots a_n b_1 \dots b_{m-1})' b_m$

Theorem 2. R = (R, *) is a *Med* -canonical semigroup over *A*. \Box

Proof. The permutation $(a_2...a_nb_1...b_{m-1})'$ gives the natural order of the elements $a_2,...,a_n,b_1,...,b_{m-1}$ and therefore w * u is a uniquely determined word in **R**, i.e. * is a well-defined operation. Since w * u = wu, the condition (c₁) is fulfilled.

Let $w_1 = a_1 a_2 ... a_n$, $w_2 = b_1 b_2 ... b_m$, $w_3 = c_1 c_2 ... c_k$, $w_4 = d_1 d_2 ... d_p$. Verifying the condition (c₂), we obtain: $(w_1 * w_2) * w_3 = a_1 (a_2 ... a_n b_1 b_2 ... b_{m-1})' b_m * c_1 c_2 ... c_k =$ $= a_1 (a_2 ... a_n b_1 ... b_{m-1} b_m c_1 ... c_{k-1})' c_k =$ $a_1 ... a_n * b_1 (b_2 ... b_{m-1} b_m c_1 ... c_{k-1})' c_k =$ $= w_1 * (w_2 * w_3)$. Therefore, $\mathbf{R} = (\mathbf{R}, *)$ is a semigroup. $\mathbf{R} = (\mathbf{R}, *)$ is medial. Namely, $w_1 * w_2 * w_3 * w_4 = a_1 a_2 ... a_n b_1 b_2 ... b_m c_1 c_2 ... c_k d_1 d_2 ... d_{p-1} d_p =$ $= a_1 (a_2 ... a_n b_1 b_2 ... b_m c_1 d_2 ... d_{p-1})' d_p =$ $= a_1 (a_2 ... a_n c_1 c_2 ... c_k b_1 b_2 ... b_m d_1 d_2 ... d_{p-1} d_p = w_1 * w_3 * w_2 * w_4$

If $w = a_1a_2...a_n \in R$, then $w = a_1 * a_2 * ... * a_n$ and thus, *A* is a generating set for **R**. Moreover, *A* is the set of prime elements in **R**. Namely, if $a \in A$, then $a \neq w * u$, for any $w, u \in R$, i.e. every element of *A* is prime in **R**. If $w = a_1a_2...a_n \in R \setminus A$, then $n \ge 2$ and $a_1a_2...a_n = a_1 * a_2 * ... * a_n$, which means that *w* is a product in **R**. There are no other prime elements in **R** except those in *A*.

R has the universal mapping property for *Med* over *A*, i.e. if $S \in Med$ and $\lambda : A \to S$ is a mapping, then there is a homomorphism ψ from **R** into **S** such that ψ is an extension of λ . Define the mapping ψ from **R** into **S** by $\psi(w) = \varphi(w)$, for any $w \in \mathbf{R}$, where φ is the homomorphism from A^+ in **S** that is an extension of λ . It is sufficient to show that $\psi(w * u) = \varphi(w)\varphi(u)$, for any $w = a_1a_2...a_n$, $u = b_1b_2...b_m$ in **R**. Namely,

$$\begin{split} \psi(w * u) &= \varphi(a_1(a_2...a_nb_1b_2...b_{m-1})'b_m) = \varphi(a_1c_2...c_nc_{n+1}...c_{n+m-1}b_m) = \\ &= \varphi(a_1)\varphi(c_2)...\varphi(c_n)\varphi(c_{n+1})...\varphi(c_{n+m-1})\varphi(b_m) = \\ &= [S \in Med] = \varphi(a_1)\varphi(a_2)...\varphi(a_n)\varphi(b_1)...\varphi(b_{m-1})\varphi(b_m) = \\ &= \varphi(a_1...a_n)\varphi(b_1...b_m) = \varphi(w)\varphi(u). \end{split}$$

The conditions (c₀), (c₁) and (c₂) are satisfied. Hence, $\mathbf{R} = (\mathbf{R}, *)$ is a *Med* -canonical semigroup over *A*. \Box

REFERENCES

- [1] Celakoska-Jordanova V., Janeva B. (2009) Free left commutative groupoids, Annual Review of the European University, Skopje, Republic of Macedonia, 687 694.
- [2] Markovski S., Sokolova A., Goracinova-Ilieva L. (2001) Approaches to the Problem of Constructing Free Algebras, Proc. Sixth Int. Conf. On Discrete Math 2001, Bansko Bulgaria, 109 – 117.
- [3] McKenzie R. N., McNulty G. F., Taylor W. F. (1987) *Algebras, Latices, Varieties*, Wadsworth & Brooks/Cole.