[5] Ungar, A.A. (2001) Beyond the Einstein addition law and its gyroscopic Thomas precession, the theory of gyrogroups and gyrovector spaces, Boston, Kluwer Academic.
[6] Urbantke, H.K. (2003) Lorentz transformations from reflections, Foundations of Physics Letters 16 (2), 111-117.
[7] van Wyk, C.B. (1986) Lorentz transformastions in terms of initial and final vectors, Journal of Mathematical Physics 27 (5) 1306-1314.
[8] van Wyk, C.B. (1991) The Lorentz operator revisited, Journal of Mathematical Physics 32 (2), 425-430.
[9] Wigner, E.P. (1939) On unitary representations of the inhomogeneous Lorentz group, Annals of Mathematics 40 (1), 149-204.

On free medial semigroups

Vesna Celakoska-Jordanova
Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje
Republic of Macedonia

Abstract. Descriptions of free objects in the variety of medial semigroups are obtained.

Key words: medial semigroup, free semigroup, quotient semigroup, Vcanonical semigroup.

A semigroup S is said to be medial if abcd=acbd, for every a, b, c, d in S. The class of all medial semigroups is a variety of semigroups defined by the identity xyuv $\approx x u y v$. We denote this variety by Med. If S is a medial semigroup, then the following equalities hold in \mathbf{S} :

$$
p x_{1} x_{2} x_{3} q=p y_{1} y_{2} y_{3} q
$$

for any $p, x_{1}, x_{2}, x_{3}, q \in S$ and any permutation $y_{1} y_{2} y_{3}$ of $x_{1} x_{2} x_{3}$.
A free medial semigroup as a quotient structure of the free semigroup over an alphabet is constructed below. Recall that the free semigroup over a nonempty set A, is the set A^{+}of all finite sequences $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of elements of A endowed by the operation concatenation of sequences:

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1}, b_{2}, \ldots, b_{m}\right)=\left(a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{m}\right)
$$

Identifying each sequence of the form (a) with $a \in A$, we have $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1} a_{2} \ldots a_{n}$. The elements of A are letters and elements of A^{+} are words on A. Two words $u=a_{1} a_{2} \ldots a_{n}$ and $v=b_{1} b_{2} \ldots b_{n}$ are equal if and
only if $n=m$ and $a_{i}=b_{i}$, for $i=1,2, \ldots, n$. The number n is called the length of the word $w=a_{1} a_{2} \ldots a_{n}$ and it is denoted by $|w|$. For any word w we define the content $\operatorname{cnt}(w)$ inductively by:

$$
a \in A \Rightarrow \operatorname{cnt}(w)=\{a\}, w=u v \Rightarrow \operatorname{cnt}(u v)=\operatorname{cnt}(u) \cup \operatorname{cnt}(v)
$$

We introduce the notion of "elementary medial transformation" of a word in A^{+}analogously as for the left commutative groupoids ([1]).

Definition 1. Let $w \in A^{+}, w=a_{1} a_{2} \ldots a_{n}$ where $a_{1}, a_{2}, \ldots, a_{n} \in A$. A segment of w is called any expression of the form $a_{i} a_{i+1} \ldots a_{i+j}$, where $\quad i+j$ $\leq n, i$ runs in $\{1,2, \ldots, n\}$ and j runs in $\{0,1, \ldots, n-1\}$. The set of segments of w is denoted by $\operatorname{seg}(w)$. Thus:

$$
\operatorname{seg}(w)=\left\{a_{i} a_{i+1} \ldots a_{i+j} \mid i+j \leq n, i \in\{1,2, \ldots, n\}, j \in\{0,1, \ldots, n-1\}\right\}
$$

Proposition 1. If $w=a_{1} a_{2} \ldots a_{n}$, then $n \leq|\operatorname{seg}(w)| \leq(n(n-1)) / 2$.
Definition 2. Let $w \in A^{+},|w| \geq 4$ and $t x y z$ be a segment of w. If one occurrence of txyz in w is replaced by tyxz, an element $u \in A^{+}$is obtained that is different from w only in the replaced segment txyz by tyxz. In that case we say that an elementary medial transformation is performed on w and write $w \rightharpoonup u$. In the cases when $w=a$ or $w=a b$ or $w=a b c$, where a, $b, c \in A$, we put by definition $w \rightharpoonup w$. Thus, $w=\alpha t x y z \beta \rightharpoonup \alpha t y x z \beta=u$, where $\alpha, \beta \in A^{+}$or, α or β is the empty symbol.

We can "go back" from u to w performing the elementary medial transformation $u=\alpha t y x z \beta \rightharpoondown \alpha t x y z \beta=w$ in the same place. We call this transformation an inverse return from u to w. Thus, $w \rightharpoonup u \rightharpoondown w$.

Note that an elementary medial transformation of an arbitrary word w does not lead to a transformation on A^{+}, because the "image" of w is not uniquely determined. For instance, the word $w=a b c d e$, where a, b, c, d, $e \in A$, with one elementary medial transformation can be transformed in acbde, but also in $w=a b d c e$.

Definition 3. Define a relation \sim on A^{+}by:

$$
w \sim u \Leftrightarrow\left(\exists w_{0}, w_{1}, \ldots, w_{k} \in A^{+}\right) w=w_{0} \rightharpoonup w_{1} \rightharpoonup \ldots \rightharpoonup \mathrm{w}_{\mathrm{k}-1} \rightharpoonup \mathrm{w}_{\mathrm{k}}=u .
$$

Proposition 2. $w \sim u$, where $w=a_{1} a_{2} \ldots a_{n}, u=b_{1} b_{2} \ldots b_{m}$ if and only if $n=$ $m, a_{1}=b_{1}, a_{n}=b_{n}$ and $b_{2} \ldots b_{n-1}$ is a permutation of $a_{2} \ldots a_{n-1}$.

Proof. If $w \sim u$, then $|w|=|u|, \operatorname{cnt}(w)=\operatorname{cnt}(u)$, left and right ends of w and u are equal and the appearance of any $a \in A$ in w is equal to the appearance of a in u. Therefore, $n=m, a_{1}=b_{1}, a_{n}=b_{n}$ and $b_{2} \ldots b_{m-1}$ is a permutation of $a_{2} \ldots a_{n-1}$. Conversely, for $n=1, n=2$ and $n=3, w \sim u$ is trivially fulfilled. Suppose that $w \sim u$, for $n \leq k$ and $k \geq 4$. If $n=k+1$, then
$m=k+1, a_{1}=b_{1}, a_{k+1}=b_{k+1}$ and so $u=a_{1} b_{2} \ldots b_{k} a_{k+1}$. By the inductive supposition we obtain that $b_{2} \ldots b_{k} \sim a_{2} \ldots a_{k}$, and thus $a_{1} a_{2} \ldots a_{k+1} \sim$ $a_{1} b_{2} \ldots b_{k} a_{k+1}$, i.e. $w \sim u$.

Directly from the definition of \sim it follows that \sim is an equivalence relation. If $w \sim u$ and $v \in A^{+}$, then $w v \sim u v$ and $v w \sim v u$, i.e. \sim is a congruence relation in A^{+}.

Define an operation \cdot on $A^{+} / \sim=\left\{w^{\sim} \mid w \in A^{+}\right\}$by:

$$
w^{\sim}, u^{\sim} \in A^{+} / \sim \Rightarrow w^{\sim} \cdot u^{\sim}=(w u)^{\sim} .
$$

It is clear that $\left(A^{+} / \sim, \cdot\right)$ is a semigroup. Further on we write A^{+} / \sim instead of $\left(A^{+} / \sim, \cdot\right)$. Since $w_{1}{ }^{2} \cdot w_{2}{ }^{2} \cdot w_{3}{ }^{\sim} \cdot w_{4}{ }^{\sim}=\left(w_{1} w_{2}\right)^{\sim} \cdot\left(w_{3} w_{4}\right)^{\sim}=$
 any $W_{1}{ }^{\sim}, w_{2}{ }^{\sim}, w_{3}{ }^{\sim}, w_{4} \tilde{} \in A^{+} / \sim$, the semigroup $\left(A^{+} / \sim, \cdot\right)$ is medial. Note that $a^{\sim}=\{a\}$, for any $a \in A$.

If $w^{\sim} \in A^{+} / \sim$, then $w^{\sim}=\left(a_{1} a_{2} \ldots a_{n}\right)^{\sim}=a_{1}^{\sim} \cdot a_{2}^{\sim} \cdot \ldots \cdot a_{n}^{\sim}$. Thus, w^{\sim} is presented as a product of elements of A / \sim and therefore A / \sim is a generating set for A^{+} / \sim. Moreover, A / \sim is a set of prime elements in A^{+} / \sim. Namely, if $a^{\sim} \in A / \sim$, then $a^{\sim} \neq w^{\sim} u^{\sim}$, for any $w^{\sim}, u^{\sim} \in A^{+} / \sim$, since a is not a product of elements of A^{+}. There are no other prime elements in A^{+} / \sim except those of A / \sim. Namely, if $w^{\sim} \in\left(A^{+} / \sim\right) \backslash(A / \sim)$, then $w^{\sim} \notin(A / \sim)$, i.e. $w \notin A$. Thus, there are $u, v \in A^{+}$such that $w=u v$. In that case, $w^{\sim}=(u v)^{\sim}=u^{\sim} \cdot v^{\sim}$, i.e. w^{\sim} is not prime in A^{+} / \sim.
A^{+} / \sim has the universal mapping property for Med over A / \sim, i.e. if $\boldsymbol{S} \in$ Med and $\lambda: A / \sim \rightarrow S$, then there is a homomorphism ψ from A^{+} / \sim into S that is an extension of λ. Define the mapping $\psi: A^{+} / \sim \rightarrow S$ by $\psi\left(w^{\sim}\right)=\varphi(w)$, where φ is the homomorphism from \boldsymbol{A}^{+}in \boldsymbol{S} that is an extension of λ.

The mapping ψ is well defined, that follows by the implication $w \sim u \Rightarrow \varphi(w)=\varphi(u)$. Namely, let $w \sim u$, i.e. $w_{0}, w_{1}, \ldots, w_{k} \in A^{+}$are such that $w=w_{0} \rightharpoonup w_{1} \rightharpoonup \ldots w_{k-1} \rightharpoonup w_{k}=u$ and let $w_{i}=\alpha t x y z \beta$, where $\alpha, \beta \in A^{+}$or, α or β is the empty symbol. Since φ is a homomorphism it follows that:

$$
\begin{aligned}
& \varphi\left(w_{i}\right)=\varphi(\alpha \operatorname{txyz} \beta)=\varphi(\alpha) \varphi(t) \varphi(x) \varphi(y) \varphi(z) \varphi(\beta)=[S \in M e d]= \\
& =\varphi(\alpha) \varphi(t) \varphi(y) \varphi(x) \varphi(z) \varphi(\beta)=\varphi(\alpha \operatorname{tyxz} \beta)=\varphi\left(w_{i+1}\right)
\end{aligned}
$$

for $i \in\{0, \ldots, k-1\}$. Hence, $\varphi(w)=\varphi\left(w_{0}\right)=\varphi\left(w_{1}\right)=\ldots=\varphi\left(w_{k}\right)=\varphi(u)$. The mapping ψ is a homomorphism from A^{+} / \sim into S, since

$$
\psi\left(w^{\sim} \cdot u^{\sim}\right)=\psi\left((w u)^{\sim}\right)=\varphi(w u)=\varphi(w) \varphi(u)=\psi\left(w^{\sim}\right) \psi\left(u^{\sim}\right) .
$$

By the above discussion we obtain that the following theorem holds.
Theorem 1. The quotient semigroup $\left(A^{+} / \sim, \cdot\right)$ is a free medial semigroup over A^{+} / \sim.

Below we give a canonical description of a free medial semigroup.
Definition 4. Let V be a variety of semigroups. A semigroup $R=(R, *)$ is said to be canonical in V, i.e. V-canonical, over A if the following conditions are satisfied:
($\left.\mathrm{c}_{0}\right) A \subseteq R \subseteq A^{+}$and $w \in R \Rightarrow \operatorname{seg}(w) \subseteq R$;
$\left(c_{1}\right) w u \in R \Rightarrow w * u=w u$;
$\left(\mathrm{c}_{2}\right) R$ is a free semigroup in V over A.
Definition 5. Let the alphabet A be linearly ordered by \leq. A word $a_{1} a_{2} \ldots a_{n} \in A^{+}$is said to be monotonic, i.e. it has a natural order if and only if $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$.

As a candidate for the carrier of a free medial semigroup we choose the subset R of A^{+}defined in the following way:
(i) $A \cup A^{2} \cup A^{3} \subseteq R$;
(ii) $\left(\forall w=a_{1} \ldots a_{n} \in A^{+}, n \geq 4\right)\left(w \in R \Rightarrow a_{2} \ldots a_{n-1}\right.$ is monotonic).

By the definition of R and by induction on length of a word, one can obtain that the condition $\left(\mathrm{c}_{0}\right)$ is fulfilled. Note that among all the words of letters $a_{1}, a_{2}, \ldots, a_{n}$, only one is monotonic, i.e. only one has the natural order. We denote by $\left(a_{1} a_{2} \ldots a_{n}\right)^{\prime}$ the permutation of $a_{1}, a_{2}, \ldots, a_{n}$ that gives their natural order.

Define an operation $*$ on R by:

$$
w=a_{1} a_{2} \ldots a_{n}, u=b_{1} b_{2} \ldots b_{m} \in R \Rightarrow w * u=a_{1}\left(a_{2} \ldots a_{n} b_{1} \ldots b_{m-1}\right)^{\prime} b_{m}
$$

Theorem 2. $R=(R, *)$ is a Med-canonical semigroup over A.
Proof. The permutation $\left(a_{2} \ldots a_{n} b_{1} \ldots b_{m-1}\right)^{\prime}$ gives the natural order of the elements $a_{2}, \ldots, a_{n}, b_{1}, \ldots, b_{m-1}$ and therefore $w * u$ is a uniquely determined word in \boldsymbol{R}, i.e. * is a well-defined operation. Since $w * u=w u$, the condition (c_{1}) is fulfilled.

Let $w_{1}=a_{1} a_{2} \ldots a_{n}, w_{2}=b_{1} b_{2} \ldots b_{m}, w_{3}=c_{1} c_{2} \ldots c_{k}, w_{4}=d_{1} d_{2} \ldots d_{p}$. Verifying the condition (c_{2}), we obtain:

$$
\begin{array}{r}
\left(w_{1} * w_{2}\right) * w_{3}=a_{1}\left(a_{2} \ldots a_{n} b_{1} b_{2} \ldots b_{m-1}\right)^{\prime} b_{m} * c_{1} c_{2} \ldots c_{k}= \\
=a_{1}\left(a_{2} \ldots a_{n} b_{1} \ldots b_{m-1} b_{m} c_{1} \ldots c_{k-1}\right)^{\prime} c_{k}= \\
a_{1} \ldots a_{n} * b_{1}\left(b_{2} \ldots b_{m-1} b_{m} c_{1} \ldots c_{k-1}\right)^{\prime} c_{k}=
\end{array}
$$

$=w_{1} *\left(w_{2} * w_{3}\right)$. Therefore, $\boldsymbol{R}=(R, *)$ is a semigroup.
$\boldsymbol{R}=(R, *)$ is medial. Namely,

$$
\begin{aligned}
& w_{1} * w_{2} * w_{3} * w_{4}=a_{1} a_{2} \ldots a_{n} b_{1} b_{2} \ldots b_{m} c_{1} c_{2} \ldots c_{k} d_{1} d_{2} \ldots d_{p-1} d_{p}= \\
& =a_{1}\left(a_{2} \ldots a_{n} b_{1} b_{2} \ldots b_{m} c_{1} c_{2} \ldots c_{k} d_{1} d_{2} \ldots d_{p-1}\right)^{\prime} d_{p}= \\
& =a_{1}\left(a_{2} \ldots a_{n} c_{1} c_{2} \ldots c_{k} b_{1} b_{2} \ldots b_{m} d_{1} d_{2} \ldots d_{p-1}\right)^{\prime} d_{p}= \\
& =a_{1} a_{2} \ldots a_{n} c_{1} c_{2} \ldots c_{k} b_{1} b_{2} \ldots b_{m} d_{1} d_{2} \ldots d_{p-1} d_{p}=w_{1} * w_{3} * w_{2} * w_{4}
\end{aligned}
$$

If $w=a_{1} a_{2} \ldots a_{n} \in R$, then $w=a_{1} * a_{2} * \ldots * a_{n}$ and thus, A is a generating set for \boldsymbol{R}. Moreover, A is the set of prime elements in \boldsymbol{R}. Namely, if $a \in A$, then $a \neq w * u$, for any $w, u \in R$, i.e. every element of A is prime in \boldsymbol{R}. If $w=a_{1} a_{2} \ldots a_{n} \in R \backslash A$, then $n \geq 2$ and $a_{1} a_{2} \ldots a_{n}=a_{1} * a_{2} * \ldots * a_{n}$, which means that w is a product in \boldsymbol{R}. There are no other prime elements in \boldsymbol{R} except those in A.
\boldsymbol{R} has the universal mapping property for Med over A, i.e. if $S \in \operatorname{Med}$ and $\lambda: A \rightarrow S$ is a mapping, then there is a homomorphism ψ from R into \boldsymbol{S} such that ψ is an extension of λ. Define the mapping ψ from \boldsymbol{R} into \boldsymbol{S} by $\psi(w)=\varphi(w)$, for any $w \in R$, where φ is the homomorphism from A^{+} in S that is an extension of λ. It is sufficient to show that $\psi(w * u)=$ $\varphi(w) \varphi(u)$, for any $w=a_{1} a_{2} \ldots a_{n}, u=b_{1} b_{2} \ldots b_{m}$ in \boldsymbol{R}. Namely,

$$
\begin{aligned}
& \psi(w * u)=\varphi\left(a_{1}\left(a_{2} \ldots a_{n} b_{1} b_{2} \ldots b_{m-1}\right)^{\prime} b_{m}\right)=\varphi\left(a_{1} c_{2} \ldots c_{n} c_{n+1} \ldots c_{n+m-1} b_{m}\right)= \\
& =\varphi\left(a_{1}\right) \varphi\left(c_{2}\right) \ldots \varphi\left(c_{n}\right) \varphi\left(c_{n+1}\right) \ldots \varphi\left(c_{n+m-1}\right) \varphi\left(b_{m}\right)= \\
& =[S \in M e d]=\varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \ldots \varphi\left(a_{n}\right) \varphi\left(b_{1}\right) \ldots \varphi\left(b_{m-1}\right) \varphi\left(b_{m}\right)= \\
& =\varphi\left(a_{1} \ldots a_{n}\right) \varphi\left(b_{1} \ldots b_{m}\right)=\varphi(w) \varphi(u) .
\end{aligned}
$$

The conditions $\left(\mathrm{c}_{0}\right),\left(\mathrm{c}_{1}\right)$ and $\left(\mathrm{c}_{2}\right)$ are satisfied. Hence, $\boldsymbol{R}=(R, *)$ is a Med-canonical semigroup over A.

REFERENCES

[1] Celakoska-Jordanova V., Janeva B. (2009) Free left commutative groupoids, Annual Review of the European University, Skopje, Republic of Macedonia, 687 - 694.
[2] Markovski S., Sokolova A., Goracinova-Ilieva L. (2001) Approaches to the Problem of Constructing Free Algebras, Proc. Sixth Int. Conf. On Discrete Math 2001, Bansko Bulgaria, 109 117.
[3] McKenzie R. N., McNulty G. F., Taylor W. F. (1987) Algebras, Latices, Varieties, Wadsworth \& Brooks/Cole.

