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A semigroup S is said to be medial if abcd = acbd, for every a, b, c, d in 

S. The class of all medial semigroups is a variety of semigroups defined by 
the identity xyuv ≈ xuyv. We denote this variety by Med. If S is a medial 
semigroup, then the following equalities hold in S:  

px1x2x3q = py1y2y3q, 
for any p, x1, x2, x3, q ∈ S and any permutation y1y2y3 of  x1x2x3. 
A free medial semigroup as a quotient structure of the free semigroup 

over an alphabet is constructed below. Recall that the free semigroup over 
a nonempty set A, is the set A+ of all finite sequences (a1,a2,…,an) of 
elements of A endowed by the operation concatenation of sequences: 

(a1,a2,…,an)(b1,b2,…,bm) = (a1,a2,…,an,b1,b2,…,bm). 
Identifying each sequence of the form (a) with a ∈ A, we have 

(a1,a2,…,an) = a1a2…an. The elements of A are letters and elements of A+ 
are words on A. Two words u = a1a2…an and v = b1b2…bn are equal if and 



Faculty of Mathematics & Natural Science – FMNS 2011 

22 
 

only if n = m  and ai = bi, for  i =1,2,…,n. The number n is called the length 
of the word w = a1a2…an and it is denoted by |w|. For any word w we define 
the content cnt(w) inductively by: 

a ∈ A ⇒ cnt(w) = {a},  w = uv ⇒ cnt(uv) = cnt(u) ∪ cnt(v). 
We introduce the notion of "elementary medial transformation" of a 

word in A+ analogously as for the left commutative groupoids ([1]). 

Definition 1. Let w ∈ A+, w = a1a2…an where a1,a2,…,an ∈ A. A 
segment of w is called any expression of the form aiai+1…ai+j, where       i+j 
≤ n, i  runs in {1,2,…, n} and j runs in {0,1,…, n − 1}. The set of segments 
of w is denoted by seg(w). Thus: 

seg(w) = {aiai+1…ai+j | i+j ≤ n, i∈{1,2,…, n}, j∈{0,1,…, n − 1}}. 
Proposition 1. If w = a1a2…an, then n ≤ |seg(w)| ≤ (n(n−1))/2.  

Definition 2. Let w ∈ A+, |w| ≥ 4 and txyz be a segment of w. If one 
occurrence of txyz  in w is replaced by tyxz, an element u A+∈  is obtained 
that is different from w only in the replaced segment txyz by tyxz. In that 
case we say that an elementary medial transformation is performed on w 
and write w  u. In the cases when w = a or w = ab or    w = abc, where a, 
b, c ∈ A, we put by definition w  w. Thus, w = αtxyzβ  αtyxzβ = u, where 
α, β ∈ A+ or, α  or β  is the empty symbol. 

We can "go back" from u to w performing the elementary medial 
transformation u = αtyxzβ αtxyzβ = w  in the same place. We call this 
transformation an inverse return from u  to w. Thus, w  u  w. 

Note that an elementary medial transformation of an arbitrary word w  
does not lead to a transformation on A+, because the "image" of w  is not 
uniquely determined. For instance, the word w = abcde, where a, b, c, d, 
e∈A, with one elementary medial transformation can be transformed in 
acbde, but also in w = abdce. 

Definition 3. Define a relation ~ on A+ by:  
w ~ u  ⇔ (∃w0, w1,…,wk ∈ A+) w = w0  w1  … wk−1  wk = u. 

Proposition 2. w ~ u, where w = a1a2…an, u = b1b2…bm if and only if n = 

m, a1= b1, an = bn  and b2…bn−1 is a permutation of a2…an−1. 

Proof. If w ~ u, then |w|=|u|, cnt(w) = cnt(u), left and right ends of w and 
u are equal and the appearance of any a ∈ A in w is equal to the 
appearance of a  in  u. Therefore, n = m, a1 = b1, an = bn  and b2…bm−1 is a 
permutation of a2…an−1. Conversely, for n = 1, n = 2 and n = 3, w ~ u is 
trivially fulfilled. Suppose that w ~ u, for n ≤ k and 4k ≥ . If 1n k= + , then 
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m = k+1, a1 = b1, ak+1 = bk+1 and so u = a1b2…bkak+1. By the inductive 
supposition we obtain that b2…bk ~ a2…ak, and thus a1a2…ak+1  
a1b2…bkak+1, i.e. w ~ u.  

Directly from the definition of ~ it follows that ~ is an equivalence 
relation. If w ~ u and v ∈ A+, then wv ~ uv and vw ~ vu, i.e. ~ is a 
congruence relation in A+. 

Define an operation ⋅  on ~/ ~ { | }A w w A+ += ∈   by: 
~ ~ ~ ~ ~, / ~  ( )w u A w u wu+∈ ⇒ ⋅ = . 

It is clear that ( / ~, )A+ ⋅  is a semigroup. Further on we write / ~A+  
instead of ( / ~, )A+ ⋅ . Since ~ ~ ~ ~ ~ ~

1 2 3 4 1 2 3 4( ) ( )w w w w w w w w⋅ ⋅ ⋅ = ⋅ =  
~ ~ ~ ~ ~ ~ ~ ~

1 2 3 4 1 3 2 4 1 3 2 4 1 3 2 4( ) ( ) ( ) ( )w w w w w w w w w w w w w w w w= = ⋅ = ⋅ ⋅ ⋅ , for 

any ~
1w , ~

2w , ~
3w , ~

4w /A+∈ ~, the semigroup ( / ~, )A+ ⋅  is medial. Note 

that ~ { }a a= , for any a A∈ .  
If ~ / ~w A+∈ , then ~ ~ ~ ~ ~

1 2 1 2( ... ) ...n nw a a a a a a= = ⋅ ⋅ ⋅ . Thus, ~w  is 
presented as a product of elements of / ~A  and therefore / ~A  is a 
generating set for / ~A+ . Moreover, / ~A  is a set of prime elements in 

/ ~A+ . Namely, if ~ / ~a A∈ , then ~ ~ ~a w u≠ , for any ~ ~, / ~w u A+∈ , 
since a  is not a product of elements of A+ . There are no other prime 
elements in / ~A+  except those of / ~A . Namely, if ~ ( / ~) \ ( / ~)w A A+∈ , 
then ~ ( / ~)w A∉ , i.e. w A∉ . Thus, there are ,u v A+∈  such that w uv= . 
In that case, ~ ~ ~ ~( )w uv u v= = ⋅ , i.e. ~w is not prime in / ~A+ . 

/A+ ~ has the universal mapping property for Med  over / ~A , i.e. if 
S Med∈  and : / ~A Sλ → , then there is a homomorphism ψ  from / ~A+  
into S that is an extension of λ . Define the mapping : / ~A Sψ + →  by 

~( ) ( )w wψ ϕ= , where ϕ  is the homomorphism from A+  in S that is an 
extension of λ .  

The mapping ψ  is well defined, that follows by the implication 
~ ( ) ( )w u w uϕ ϕ⇒ = . Namely, let w ~ u, i.e. w0, w1,…,wk ∈ A+  are such 

that w = w0  w1  … wk−1  wk = u and let iw txyzα β= , where 

, Aα β +∈  or, α  or β  is the empty symbol. Since ϕ  is a homomorphism it 
follows that: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ]iw txyz t x y z S Medϕ ϕ α β ϕ α ϕ ϕ ϕ ϕ ϕ β= = = ∈ =  

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )it y x z tyxz wϕ α ϕ ϕ ϕ ϕ ϕ β ϕ α β ϕ += = = , 
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for {0,..., 1}i k∈ − . Hence, 0 1( ) ( ) ( ) ... ( ) ( )kw w w w uϕ ϕ ϕ ϕ ϕ= = = = = . 

The mapping  ψ  is a homomorphism from / ~A+  into S, since  
~ ~ ~ ~ ~( ) (( ) ) ( ) ( ) ( ) ( ) ( )w u wu wu w u w uψ ψ ϕ ϕ ϕ ψ ψ⋅ = = = = . 

By the above discussion we obtain that the following theorem holds. 

Theorem 1. The quotient semigroup ( / ~, )A+ ⋅  is a free medial 
semigroup over / ~A+ .  

Below we give a canonical description of a free medial semigroup. 

Definition 4. Let V be a variety of semigroups. A semigroup R ( , )R= ∗  
is said to be canonical in V, i.e. V-canonical, over A if the following 
conditions are satisfied: 

(c0) A R A+⊆ ⊆  and seg( )w R w R∈ ⇒ ⊆ ; 
(c1) wu R w u wu∈ ⇒ ∗ = ; 
(c2) R is a free semigroup in V over A . 
 
Definition 5. Let the alphabet A  be linearly ordered by ≤. A word 

a1a2…an ∈ A+ is said to be monotonic, i.e. it has a natural order if and 
only if a1 ≤ a2 ≤ … ≤ an. 

As a candidate for the carrier of a free medial semigroup we choose 
the subset R of A+ defined in the following way: 

(i) 2 3A A A R∪ ∪ ⊆ ;  
(ii) 1 2 1( ... , 4)( ...  is monotonic)n nw a a A n w R a a+

−∀ = ∈ ≥ ∈ ⇒ . 

By the definition of R and by induction on length of a word, one can 
obtain that the condition (c0) is fulfilled.  Note that among all the words of 
letters 1 2, ,..., na a a , only one is monotonic, i.e. only one has the natural 
order. We denote by 1 2( ... ) 'na a a  the permutation of 1 2, ,..., na a a  that gives 
their natural order.  

Define an operation ∗  on R  by: 
    1 2 1 2 1 2 1 1... , ... ( ... ... )'n m n m mw a a a u b b b R w u a a a b b b−= = ∈ ⇒ ∗ = . 

Theorem 2. R ( , )R= ∗  is a Med -canonical semigroup over A.  
Proof. The permutation 2 1 1( ... ... ) 'n ma a b b −  gives the natural order of the 

elements 2 1 1,..., , ,...,n ma a b b −  and therefore w u∗  is a uniquely determined 
word in R, i.e. ∗  is a well-defined operation. Since w u wu∗ = , the 
condition (c1) is fulfilled.  
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Let 1 1 2... nw a a a= , 2 1 2... mw b b b= , 3 1 2... kw c c c= , 4 1 2... pw d d d= .  
Verifying the condition (c2), we obtain: 

1 2 3 1 2 1 2 1 1 2( ) ( ... ... ) ' ...n m m kw w w a a a b b b b c c c−∗ ∗ = ∗ =  

1 2 1 1 1 1( ... ... ... )'n m m k ka a a b b b c c c− −= =

1 1 2 1 1 1... ( ... ... )'n m m k ka a b b b b c c c− −∗ =  
   1 2 3( )w w w= ∗ ∗ . Therefore, R ( , )R= ∗  is a semigroup. 
R ( , )R= ∗  is medial. Namely, 

1 2 3 4 1 2 1 2 1 2 1 2 1... ... ... ...n m k p pw w w w a a a b b b c c c d d d d−∗ ∗ ∗ = =  

1 2 1 2 1 2 1 2 1( ... ... ... ... ) 'n m k p pa a a b b b c c c d d d d−= =  

1 2 1 2 1 2 1 2 1( ... ... ... ... ) 'n k m p pa a a c c c b b b d d d d−= =  

1 2 1 2 1 2 1 2 1 1 3 2 4... ... ... ...n k m p pa a a c c c b b b d d d d w w w w−= = ∗ ∗ ∗  

If 1 2... nw a a a R= ∈ , then 1 2 ... nw a a a= ∗ ∗ ∗  and thus, A is a genera-
ting set for R. Moreover, A is the set of prime elements in R. Namely, if 
a A∈ , then a w u≠ ∗ , for any ,w u R∈ , i.e. every element of A is prime in 
R. If 1 2... \nw a a a R A= ∈ , then 2n ≥  and 1 2 1 2... ...n na a a a a a= ∗ ∗ ∗ , 
which means that w is a product in R. There are no other prime elements in 
R except those in A.  

R has the universal mapping property for Med  over A, i.e. if S Med∈  
and : A Sλ →  is a mapping, then there is a homomorphism ψ  from R into 
S such that ψ  is an extension of λ . Define the mapping ψ  from R into S 
by ( ) ( )w wψ ϕ= , for any w R∈ , where ϕ  is the homomorphism from A+  
in S that is an extension of λ . It is sufficient to show that ( )w uψ ∗ =  

( ) ( )w uϕ ϕ , for any 1 2... nw a a a= , 1 2... mu b b b=  in R. Namely, 

1 2 1 2 1 1 2 1 1( ) ( ( ... ... )' ) ( ... ... )n m m n n n m mw u a a a b b b b a c c c c bψ ϕ ϕ− + + −∗ = = =  

1 2 1 1( ) ( )... ( ) ( )... ( ) ( )n n n m ma c c c c bϕ ϕ ϕ ϕ ϕ ϕ+ + −= =  

1 2 1 1[ ] ( ) ( )... ( ) ( )... ( ) ( )n m mS Med a a a b b bϕ ϕ ϕ ϕ ϕ ϕ−= ∈ = =  

1 1( ... ) ( ... ) ( ) ( ).n ma a b b w uϕ ϕ ϕ ϕ= =  
The conditions (c0), (c1) and (c2) are satisfied. Hence,  R ( , )R= ∗  is a 

Med -canonical semigroup over A.  
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