Зборник на трудови од III конгрес на математичарите на Македонија Струга, Македонија, 29.IX-2.X-2005 Стр. 217-224

Proceedings of III congress of mathematicians of Macedonia Struga, Macedonia, 29.IX-2.X-2005 Pages 217-224

CYCLIC SUBGROUPOIDS OF AN ABSOLUTELY FREE GROUPOID

Vesna Celakoska Jordanova ${ }^{1}$

Abstract

Subgroupoids of an absolutely free groupoid $\boldsymbol{F}=(F, \cdot)$ with a free basis B that are generated by one element (called cyclic subgroupoids of \boldsymbol{F}) are considered. It is shown that: two cyclic subgroupoids of \boldsymbol{F} have common elements if and only if one of them is contained in the other; \boldsymbol{F} has maximal cyclic subgroupoids and if $|B| \geq 2$, every cyclic subgroupoid is contained in a maximal one; any two maximal cyclic subgroupoids of \boldsymbol{F} are either disjoint or equal. Also, a characterization of maximal cyclic subgroupoids of \boldsymbol{F} by means of primitive elements in F is given. This statements are also true for an absolutely free groupoid with one-element basis (with modified definition of maximal cyclic subgroupoid.

Key words: groupoid, subgroupoid, generating element, cyclic subgroupoid, free groupoid.

1. PRELIMINARIES

A pair $\boldsymbol{G}=(G, \cdot)$, where G is a nonempty set and $\cdot:(x, y) \mapsto x y$ a mapping from $G \times G$ into G, is called a groupoid.

An element $a \in G$ is prime in \boldsymbol{G} iff ${ }^{1} a \neq x y$, for all $x, y \in G$.
Throughout the paper we denote by $\boldsymbol{F}=(F, \cdot)$ an absolutely free groupoid (a.f.g.), i.e. free groupoid in the class of all groupoids with a free basis B. Recall that the following theorem characterizes free groupoids (see [1]; L.1.5).
Theorem. (Bruck) A groupoid $\boldsymbol{F}=(F, \cdot)$ is an a.f.g. iff
(i) \boldsymbol{F} is injective, i.e. $(\forall a, b, c, d \in F) \quad a b=c d \Rightarrow a=c, b=d$.
(ii) The set of primes in \boldsymbol{F} is nonempty and generates \boldsymbol{F}.
(In that case B is the unique free basis of \boldsymbol{F}.)
As a corollary (see[1]; T.1.4) of Bruck Theorem we have:
Proposition 1.1. Every subgroupoid ${ }^{2} \boldsymbol{Q}$ of an a.f.g. \boldsymbol{F} is free, with free basis the set of primes in \boldsymbol{Q}.

[^0]The elements of \boldsymbol{F} will be denoted by t, u, v, w, x, y, \ldots For any $v \in F$ we define the length $|v|$ of v and the set of parts $P(v)$ of v in the following way:

$$
\begin{gather*}
|b|=1, \quad|t u|=|t|+|u| \tag{1.1}\\
P(b)=\{b\}, \quad P(t u)=\{t u\} \cup P(t) \cup P(u) \tag{1.2}
\end{gather*}
$$

for any $b \in B, t, u \in F$.

We will denote by $\boldsymbol{E}=(E, \cdot)$ an absolutely free groupoid with one-element basis $\{e\}$. The elements of E will be denoted by f, g, h, \ldots and called groupoid powers ([3]).

If $\boldsymbol{G}=(G, \cdot)$ is a groupoid, then each $f \in E$ induces a transformation $f^{\boldsymbol{G}}$ on \boldsymbol{G} (called the interpretation of f in \boldsymbol{G}) defined by:

$$
f^{G}(x)=\varphi_{x}(f)
$$

where $\varphi_{x}: E \rightarrow G$ is the homomorphism from \boldsymbol{E} into \boldsymbol{G} such that $\varphi_{x}(e)=x$. In other words

$$
\begin{equation*}
e^{G}(x)=x, \quad(f h)^{G}(x)=f^{G}(x) h^{G}(x) \tag{1.3}
\end{equation*}
$$

for any $f, h \in E, x \in G$.
(We will usually write $f(x)$ instead of $f^{G}(x)$, when we work with a fixed groupoid $\boldsymbol{G}, f(t)$ instead of $f^{F}(t)$ and $f(g)$ instead of $f^{E}(g)$, in the cases when $\boldsymbol{G}=\boldsymbol{F}$ or $\boldsymbol{G}=\boldsymbol{E}$, respectively.)

The following statements are shown in [3].
Proposition 1.2. If $f, g \in E, t, u \in F$, then
a) $|f(t)|=|f| \cdot|t|$.
b) $f(t)=g(u) \&(|t|=|u| \vee|f|=|g|) \Rightarrow(f=g \& t=u)$.
c) $f(t)=g(u) \&|t| \geq|u| \Leftrightarrow(\exists!h \in E)(t=h(u) \& g=f(h))$.

We define an other operation \circ on \boldsymbol{E} by:

$$
\begin{equation*}
f \circ g=f(g) \tag{1.4}
\end{equation*}
$$

We obtain an algebra (E, \circ, \cdot) with two operations, \circ and \cdot, such that

$$
\begin{equation*}
e \circ g=g \circ e=g, \quad\left(f_{1} f_{2}\right) \circ g=\left(f_{1} \circ g\right)\left(f_{2} \circ g\right) \tag{1.5}
\end{equation*}
$$

for any $g, f_{1}, f_{2} \in E$.

[^1]It is shown in [3] that $(E, 0, \cdot)$ is a cancellative monoid.
An element $f \in E$ is said to be irreducibile in (E, \circ, e) iff

$$
\begin{equation*}
f \neq e \quad \& \quad(f=g \circ h \Rightarrow g=e \text { or } h=e) \tag{1.6}
\end{equation*}
$$

2. SOME PROPERTIES OF CYCLIC SUBGROUPOIDS OF AN A.F.G.

Let $\boldsymbol{G}=(G, \cdot)$ be a groupoid and $A \subseteq G$. If $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$, then we denote by $\left\langle a_{1}, a_{2}, \ldots, a_{m}\right\rangle$ the subgroupoid generated by A and call it m-generated subgroupoid of \boldsymbol{G} (by the analogy with the same notion for the semigroups (see [2], Part 2, IV.2.4).

A subgroupoid \boldsymbol{C} of \boldsymbol{G} is said to be cyclic (or 1-generated) iff there is $a \in G$, such that \boldsymbol{C} is generated by $\{a\}$, i.e.

$$
(\exists a \in G) \quad C=\langle a\rangle .
$$

(In that case we say that a is a generating element (or a generator) of \boldsymbol{C}.)
Cyclic subgroupoids of \boldsymbol{G} can be characterized in the following way (see [4], Prop.1.2.).

Proposition 2.1. If $\boldsymbol{G}=(G, \cdot)$ is a groupoid, then

$$
(\forall a \in G) \quad\langle a\rangle=\left\{f^{G}(a): f \in E\right\} .
$$

Proof. We will show that the set $C=\left\{f^{G}(a): f \in E\right\}$ is a subgroupoid of \boldsymbol{G} and if \boldsymbol{H} is a subgroupoid of \boldsymbol{G} such that $\{a\} \subseteq H$, then $C \subseteq H$, i.e. \boldsymbol{C} is the intersection of all subgroupoids of \boldsymbol{G} that contain the element a.

Let $b, c \in C$. Then there are $g, h \in E$, such that $b=g^{G}(a), c=h^{G}(a)$ and $b c=g^{G}(a) h^{G}(a)=f^{G}(a) \in C$, where $f=g h$. Thus, \boldsymbol{C} is a subgroupoid of \boldsymbol{G}.

Let \boldsymbol{H} be a subgroupoid of \boldsymbol{G} such that $a \in H$. By (1.3), $e^{G}(a)=a$, so $e^{G}(a) \in H$. Suppose that $g^{G}(a) \in H$, for any $g \in E$, such that $|g| \leq k$. Let $f \in E$ be such that $|f|=k+1$. Then $f=f_{1} f_{2}$, where $\left|f_{1}\right|,\left|f_{2}\right| \leq k$, and so $f_{1}^{G}(a), f_{2}{ }^{G}(a) \in H$. As \boldsymbol{H} is a subgroupoid, $f^{G}(a)=f_{1}^{G}(a) f_{2}^{G}(a) \in H$, i.e. $\left\{f^{G}(a): f \in E\right\} \subseteq H$. Therefore, \boldsymbol{C} is the intersection of all subgroupoids of \boldsymbol{G} that contain the element a.

The next results concern the cyclic subgroupoids of an a.f.g. \boldsymbol{F}. According to Prop.2.1, the subgroupoid of \boldsymbol{F} generated by an element $t \in F$, i.e. a cyclic subgroupoid of \boldsymbol{F}, can be presented as

$$
\begin{equation*}
\langle t\rangle=\{f(t): f \in E\} . \tag{2.1}
\end{equation*}
$$

It is clear that the only prime element in the subgroupoid $\langle t\rangle$ is t. Therefore, as an immediate consequence of Prop.1.1 we have:

Proposition 2.2. For any $t \in F$, the subgroupoid $\langle t\rangle$ of \boldsymbol{F} is free with the free basis $\{t\}$.
Proposition 2.3. Let \boldsymbol{F} be an a.f.g. with a free basis B.
a) \boldsymbol{F} is cyclic iff $|B|=1$.
b) Let $t \in F$ and $\boldsymbol{Q}=\langle t\rangle$. If $|B| \geq 2$, then $Q \subset F$. If $|B|=1$ and $t \notin B$, then $Q \subset F$.
Proof. a) If \boldsymbol{F} is cyclic, then $F=\langle t\rangle$ for some $t \in F$. By Prop.2.2, $\{t\}$ is the free basis of $\langle t\rangle$, so $\{t\}=B$, i.e. $|B|=1$. Conversely, if $|B|=1$, for example $B=\{b\}$, then $F=\langle b\rangle$ (since B is a generating set for \boldsymbol{F}), i.e. \boldsymbol{F} is cyclic.
b) If $t \in F,|B| \geq 2$ and $\boldsymbol{Q}=\langle t\rangle$, then it is not possible $Q=F$, because \boldsymbol{Q} (Prop.1.1) has one-element free basis and \boldsymbol{F} has a basis with more than one elements. If $|B|=1$ and $t \notin B=\{a\}$, then $a \notin\langle t\rangle=Q$, so $Q \neq F$. So, in both cases, \boldsymbol{Q} is a proper subgroupoid of \boldsymbol{F}.

A cyclic subgroupoid of a given groupoid \boldsymbol{G} may have more than one different generators. For example, the groupoid $\left(\mathbb{Z}_{12},+\right)$ has a cyclic subgroupoid $H=\{0,3,6,9\}$, such that $\langle 3\rangle=H=\langle 9\rangle$.

However, for the cyclic subgroupoids of an a.f.g. F the following proposition holds.

Proposition 2.4. Every cyclic subgroupoid of an a.f.g. \boldsymbol{F} has one and only one generator, i.e.

$$
(\forall t, u \in F)(\langle t\rangle=\langle u\rangle \Leftrightarrow t=u) .
$$

Proof. Let \boldsymbol{H} be a cyclic subgroupoid of \boldsymbol{F} such that $\boldsymbol{H}=\langle t\rangle$ and $\boldsymbol{H}=\langle u\rangle$. $\langle t\rangle=\langle u\rangle$ implies that $t \in\langle u\rangle$ and $u \in\langle t\rangle$, so $t=f(u)$ and $u=g(t)$, for some $f, g \in E$. Then $|t|=|f| \cdot|u|$ and $|u|=|g| \cdot|t|$, so $|t|=|f| \cdot|g| \cdot|t|$, which implies that $|f|=|g|=1$, i.e. $f=g=e$. Therefore, $t=f(u)=e(u)=u$.

Note that

$$
\begin{equation*}
(\forall t, u \in F)(\langle t\rangle \subseteq\langle u\rangle \Leftrightarrow t \in\langle u\rangle) \tag{2.2}
\end{equation*}
$$

is also true. Namely, it is clear that: $\langle t\rangle \subseteq\langle u\rangle \Rightarrow t \in\langle u\rangle$. Conversely, if $t \in\langle u\rangle$, then $t=g(u)$ for some $g \in E$. Therefore,
$\langle t\rangle=\{f(t): f \in E\}=\{f(g(u)): f \in E\}=$
$=\{(f \circ g)(u): f \in E\} \subseteq\{h(u): h \in E\}=\langle u\rangle$.
Theorem 2.1. Any two cyclic subgroupoids of \boldsymbol{F} are either disjoint or one of them is contained in the other, i.e.

$$
(\forall t, u \in F)[\langle t\rangle \cap\langle u\rangle \neq \varnothing \Leftrightarrow\langle t\rangle \subseteq\langle u\rangle \vee\langle u\rangle \subseteq\langle t\rangle] .
$$

Proof. Let $\langle t\rangle \cap\langle u\rangle \neq \varnothing$. Then, there is $x \in F$ such that $x \in\langle t\rangle$ and $x \in\langle u\rangle$, i.e. $f(t)=x=g(u)$, for some $f, g \in E$. If $|f|=|g|$, then $|t|=|u|$. By Prop.1.2 b), it follows that $f=g, t=u$, i.e. $\langle t\rangle=\langle u\rangle$. If $|f|<|g|$, then $|t|>|u|$ and by Prop.1.2 c), we obtain that $t=h(u)$, for some $h \in E \backslash\{e\}$, i.e. $t \in\langle u\rangle$. As (2.2) holds, it follows that $\langle t\rangle \subseteq\langle u\rangle$. If $|f|>|g|$, then, by analogy, $\langle u\rangle \subseteq\langle t\rangle$. The converse is obvious.

Note that Theorem 2.1 is not true if \boldsymbol{F} is not an a.f.g. For example, in ($\mathbb{N},+$), where \mathbb{N} is the set of positive integers, $12 \in\langle 4\rangle \cap\langle 6\rangle$. However, none of the subgroupoids $\langle 4\rangle$ and $\langle 6\rangle$ are contained in each other.

3. MAXIMAL CYCLIC SUBGROUPOIDS OF AN A.F.G.

Let \boldsymbol{F} be an a.f.g. with a free basis $B,|B| \geq 2$. A cyclic subgroupoid \boldsymbol{M} of \boldsymbol{F} is said to be maximal in the class of all cyclic subgroupoids of \boldsymbol{F} iff \boldsymbol{M} is not a proper subgroupoid of a cyclic subgroupoid of \boldsymbol{F}.

Theorem 3.1. Let \boldsymbol{F} be an a.f.g. with $|B| \geq 2$.
a) \boldsymbol{F} has maximal cyclic subgroupoids.
b) Every cyclic subgroupoid of \boldsymbol{F} is contained in a maximal cyclic one.

Proof. a) Let $b \in B$. Then the cyclic subgroupoid $\langle b\rangle$ is a maximal one. (Namely, if $\langle b\rangle \subset\langle t\rangle$, for some $t \in F$, then $b \in\langle t\rangle$ and $b \neq t$. Thus $b=f(t)$, for some $f \in E \backslash\{e\}$, but this contradicts the fact that b is prime in \boldsymbol{F}.)
b) Let $t_{0} \in F$. If $\left\langle t_{0}\right\rangle$ is not a maximal subgroupoid, then there is a cyclic subgroupoid $\left\langle t_{1}\right\rangle$, such that $\left\langle t_{0}\right\rangle \subset\left\langle t_{1}\right\rangle$. If $\left\langle t_{1}\right\rangle$ is not maximal one, then there is a cyclic subgroupoid $\left\langle t_{2}\right\rangle$, such that $\left\langle t_{1}\right\rangle \subset\left\langle t_{2}\right\rangle$ e.t.c.:

$$
\left\langle t_{0}\right\rangle \subset\left\langle t_{1}\right\rangle \subset\left\langle t_{2}\right\rangle \subset \ldots \subset\left\langle t_{k}\right\rangle .
$$

Suppose that the sequence $\left\langle t_{0}\right\rangle,\left\langle t_{1}\right\rangle,\left\langle t_{2}\right\rangle, \ldots,\left\langle t_{k}\right\rangle, \ldots$ is infinite, i.e. there is no maximal cyclic subgroupoid that contains $\left\langle t_{0}\right\rangle$. By (2.2) and (2.1), we obtain that $t_{0}=f_{1}\left(t_{1}\right), t_{1}=f_{2}\left(t_{2}\right), \ldots, t_{k-1}=f_{k}\left(t_{k}\right), \ldots$ where $f_{i} \neq e$, i.e. $\left|f_{i}\right| \geq 2$, for every $i \geq 0$. As $\left|t_{0}\right|=\left|f_{1}\right| \cdot\left|t_{1}\right|, \ldots$ (Prop.1.2 a)), it follows that $\left|t_{0}\right|>\left|t_{1}\right|>\left|t_{2}\right|>\ldots$ However, $\left|t_{0}\right|$ is a finite number, so the descending sequence of positive integers $\left|t_{0}\right|,\left|t_{1}\right|,\left|t_{2}\right|, \ldots$ must "stop", i.e. there is a $k \geq 0$, such that $\left|t_{k}\right|=\left|t_{k+1}\right|$. Using the fact that $t_{k}=f_{k}\left(t_{k+1}\right)$, it follows that $t_{k}=t_{k+1}$, and that contradicts the supposition that $\left\langle t_{k}\right\rangle \subset\left\langle t_{k+1}\right\rangle$, for any $k \geq 0$.

Let \boldsymbol{G} be a groupoid. An element $c \in G$ is said to be primitive in \boldsymbol{G} iff

$$
(\forall a \in G)(\forall f \in E \backslash\{e\}) \quad c \neq \dot{f}(a) .
$$

An element $c \in G$ is said to be non-primitive in \boldsymbol{G} iff

$$
(\exists a \in G)(\exists f \in E \backslash\{e\}) \quad c=f(a) .
$$

As an immediate consequence of the definition of primitive element in \boldsymbol{G}, when $\boldsymbol{G}=\boldsymbol{F}$, we obtain the following

Proposition 3.1. The following conditions are equivalent:
a) v is primitive in \boldsymbol{F};
b) $(\forall u \in F)(\forall f \in E)(v=f(u) \Rightarrow f=e)$;
c) $(\forall u \in F)(\forall f \in E)(v=f(u) \Rightarrow v=u)$.

Lema 3.1. For any non-primitive element v in \boldsymbol{F} there is a uniquely determined primitive element $u \in F$ and uniquely determined $f \in E \backslash\{e\}$ such that $v=f(u)$.

In that case we say that u is a base of v (and denote it by $\underline{v}=u$) and f is a power of v.

Proof. Existence. If v is a non-primitive element in \boldsymbol{F}, then there are $u \in F$ and $f \in E \backslash\{e\}$ such that $v=f(u)$. If u is primitive in \boldsymbol{F}, then the statement is shown. Suppose that u is a non-primitive element in \boldsymbol{F}. By Prop.1.2 a), it follows that $|v|=|f(u)|=|f| \cdot|u|$. Since $|f| \geq 2$, we have $|v|>|u|$. From the definition of non-primitive element, it follows directly that there are $u_{1} \in F$ and $f_{1} \in E \backslash\{e\}$, such that $u=f_{1}\left(u_{1}\right)$, so $v=f\left(f_{1}\left(u_{1}\right)\right)=\left(f \circ f_{1}\right)\left(u_{1}\right)$. Continuing this procedure, we obtain a descending sequence $\left(\left|u_{i}\right|\right)$ of positive integers. This sequence must end, i.e. there are $u_{n} \in F$ and $f_{n} \in E \backslash\{e\}$, such that $v=\left(f \circ f_{1} \circ f_{2} \circ \ldots \circ f_{n}\right)\left(u_{n}\right)$ and u_{n} is a primitive element in \boldsymbol{F}.

Uniqueness. Let $v \in F$ and suppose that $v=f(u)=g(t)$, where u and t are primitive in \boldsymbol{F}. Clearly, $|t|=|u|$ (because in the opposite case, there would be $h \in E$ such that $t=h(u)$ (or $u=h(t)$), and t (or u) would not be primitive). By Prop.1.2 it follows that $u=t$ and $f=g$.

The following theorem characterizes maximal cyclic subgroupoids of \boldsymbol{F}.
Theorem 3.2. The subgroupoid $\langle t\rangle$ of \boldsymbol{F} (with $|B| \geq 2$) is maximal one iff t is a primitive element in \boldsymbol{F}.
Proof. Let $\langle t\rangle$ be a maximal subgroupoid of \boldsymbol{F}. Suppose that t is not a primitive element in \boldsymbol{F}. Then, by Lemma 3.1, $t=f(u)$, for some $u \in F$ and $f \in E \backslash\{e\}$, so we obtain that $\langle t\rangle \subset\langle u\rangle$, i.e. $\langle t\rangle$ is not maximal. Thus t is a primitive element in \boldsymbol{F}. Conversely, let t be a primitive element in \boldsymbol{F} and suppose that $\langle t\rangle$ is not a maximal subgroupoid of \boldsymbol{F}. Then, there is an element $u \in F$, such that $\langle t\rangle \subset\langle u\rangle$. Therefore $t=f(u)$, for some $u \in F$ and $f \in E \backslash\{e\}$, i.e. t is not a primitive element in \boldsymbol{F}.

As a consequence of Theorem 3.2 and Lemma 3.1 we obtain the following
Proposition 3.2. Let \boldsymbol{F} be an a.f.g. with $|B| \geq 2$. The following conditions are equivalent:
a) t is a primitive element in \boldsymbol{F};
b) $(\forall u \in F)(\forall f \in E)(t=f(u) \Rightarrow t=u)$;
c) $(\forall u \in F)(\forall f \in E)(t=f(u) \Rightarrow f=e)$;
d) $\langle t\rangle$ is a maximal cyclic subgroupoid of \boldsymbol{F}.

Theorem 3.3. If $\langle u\rangle$ and $\langle v\rangle$ are maximal cyclic subgroupoids of an a.f.g. \boldsymbol{F} (with $|B| \geq 2$), then either $\langle u\rangle \cap\langle v\rangle=\varnothing$ or $\langle u\rangle=\langle v\rangle$.
Proof. Let $\langle t\rangle \cap\langle u\rangle \neq \varnothing$. Then, by Theorem 2.1, it follows that $\langle u\rangle \subseteq\langle v\rangle$ (or $\langle v\rangle \subseteq\langle u\rangle$). It is not possible to be $\langle u\rangle \subset\langle v\rangle$ (or $\langle v\rangle \subset\langle u\rangle$) because this would contradict the supposition that the subgroupoids $\langle u\rangle$ and $\langle v\rangle$ are maximal. Therefore $\langle u\rangle=\langle v\rangle$.

As a consequence of Theorem 3.3 we obtain that different maximal cyclic subgroupoids of \boldsymbol{F} are disjoint, i.e. the class of maximal cyclic subgroupoids of \boldsymbol{F} consists of (pairwise) disjoint subgroupoids.

Bellow $\boldsymbol{E}=(E, \cdot)$ denotes an a.f.g. with one-element basis $\{e\}$. Clearly, the results of Section 2 are true in the case $\boldsymbol{F}=\boldsymbol{E}$ and we will repeat some of them in the following proposition.

Proposition 3.3. The following statements are true in \boldsymbol{E} for any $f, g, h \in E$.
a) $\langle f\rangle \subseteq\langle g\rangle \Leftrightarrow(\exists!h \in E) f=h(g)$;
b) $\langle f\rangle \subset\langle g\rangle \Leftrightarrow(\exists!h \in E \backslash\{e\}) f=h(g)$;
c) $\langle f\rangle \cap\langle g\rangle \neq \varnothing \Leftrightarrow\langle f\rangle \subseteq\langle g\rangle \vee\langle g\rangle \subseteq\langle f\rangle$;
d) $\langle f\rangle=\langle g\rangle \Leftrightarrow f=g$;
e) $\langle e\rangle$ is the largest cyclic subgroupoid of E and $\langle e\rangle=E$.

Now we will modify the definition of a maximal cyclic subgroupoid for \boldsymbol{E}.
A cyclic subgroupoid \boldsymbol{M} of \boldsymbol{E} is said to be maximal in the class of all cyclic subgroupoids of \boldsymbol{E} iff there is no proper cyclic subgroupoid of \boldsymbol{E} that contains \boldsymbol{M}.

Proposition 3.4. The subgroupoid $\langle f\rangle$ is a proper maximal cyclic subgroupoid of \boldsymbol{E} iff f is irreducibile element in the monoid (E, \circ, e).
Proof. Let $\langle f\rangle$ be a proper maximal cyclic subgroupoid of \boldsymbol{E}. If f is not irreducible, i.e. $\quad f=h(g)=h \circ g, \quad(h \neq e, g \neq e), \quad$ then (for example) $\langle f\rangle \subset\langle g\rangle \subset E$. This contradicts the supposed of maximality of $\langle f\rangle$.

Conversely, let f be irreducibile and let $\langle f\rangle \subseteq\langle g\rangle$. By Prop.3.3 a), there is a unique $h \in E$, such that $f=h(g)=h \circ g$. The choice of f implies that $h=e$, so $f=g$, i.e. $\langle f\rangle=\langle g\rangle$. Therefore, there is no cyclic subgroupoid $\langle g\rangle$ of \boldsymbol{E}, such that $\langle f\rangle \subset\langle g\rangle$, i.e. $\langle f\rangle$ is a proper maximal cyclic subgroupoid of \boldsymbol{E}.

REFERENCES

[1] R.H.Bruck, A Survey of Binary Systems, Springer-Verlag 1958
[2] В.А.Артамонов, В.Н.Салиј, Л.А.Скорняков, Л.Н.Шеврин,
Е.Г.Шульгејфер, Общая алг̄ебра, Москва, 1991
[3] G. Čupona, N. Celakoski, S. Ilic̈, Groupoid powers, Matemat. bilten, 25 (LI) 2001, 5-12
[4] G. Čupona, N. Celakoski, S. Iliċ, On monoassociative groupoids, Matem. bilten 26 (LII) 2002, $5-16$
${ }^{1}$ Faculty of Natural Sciences and Mathematics, Skopje
Institute of Mathematics,
P.O. Box 162, 1000, Skopje, Macedonia vesnacj@iunona.pmf.ukim.edu.mk

[^0]: 1 "iff" means "if and only if"

[^1]: ${ }^{2}$ The notions as subgroupoid, subgroupoid generated by a set A, homomorphism, variety, ...have usual meanings.

