CYCLIC SUBGROUPOIDS OF AN ABSOLUTELY FREE GROUPOID

Vesna Celakoska Jordanova¹

Abstract. Subgroupoids of an absolutely free groupoid $F = (F, \cdot)$ with a free basis *B* that are generated by one element (called cyclic subgroupoids of *F*) are considered. It is shown that: two cyclic subgroupoids of *F* have common elements if and only if one of them is contained in the other; *F* has maximal cyclic subgroupoids and if $|B| \ge 2$, every cyclic subgroupoid is contained in a maximal one; any two maximal cyclic subgroupoids of *F* are either disjoint or equal. Also, a characterization of maximal cyclic subgroupoids of *F* by means of primitive elements in *F* is given. This statements are also true for an absolutely free groupoid with one-element basis (with modified definition of maximal cyclic subgroupoid.

Key words: groupoid, subgroupoid, generating element, cyclic subgroupoid, free groupoid.

1. PRELIMINARIES

A pair $G = (G, \cdot)$, where G is a nonempty set and $\cdot: (x, y) \mapsto xy$ a mapping from $G \times G$ into G, is called a *groupoid*.

An element $a \in G$ is prime in **G** iff $a \neq xy$, for all $x, y \in G$.

Throughout the paper we denote by $F = (F, \cdot)$ an absolutely free groupoid (a.f.g.), i.e. free groupoid in the class of all groupoids with a free basis B. Recall that the following theorem characterizes free groupoids (see [1]; L.1.5).

Theorem. (Bruck) A groupoid $F = (F, \cdot)$ is an a.f.g. iff

- (i) **F** is injective, i.e. $(\forall a, b, c, d \in F)$ $ab = cd \Rightarrow a = c, b = d$.
- (ii) The set of primes in ${m F}$ is nonempty and generates ${m F}$.
 - (In that case B is the unique free basis of F .) \Box

As a corollary (see[1]; T.1.4) of Bruck Theorem we have: **Proposition 1.1.** Every subgroupoid ² Q of an a.f.g. F is free, with free basis the set of primes in Q. \Box

¹ "iff" means "if and only if"

The elements of F will be denoted by t, u, v, w, x, y, ... For any $v \in F$ we define the *length* |v| of v and the *set of parts* P(v) of v in the following way:

$$|b|=1, |tu|=|t|+|u|,$$
 (1.1)

$$P(b) = \{b\}, \ P(tu) = \{tu\} \cup P(t) \cup P(u)$$
(1.2)

for any $b \in B$, $t, u \in F$.

We will denote by $E = (E, \cdot)$ an absolutely free groupoid with one-element basis $\{e\}$. The elements of E will be denoted by f, g, h, ... and called *groupoid* powers ([3]).

If $G = (G, \cdot)$ is a groupoid, then each $f \in E$ induces a transformation f^G on G (called the *interpretation* of f in G) defined by:

$$f^{\mathbf{G}}(x) = \varphi_{x}(f),$$

where $\varphi_x: E \to G$ is the homomorphism from E into G such that $\varphi_x(e) = x$. In other words

$$e^{G}(x) = x, \quad (fh)^{G}(x) = f^{G}(x)h^{G}(x)$$
 (1.3)

for any $f, h \in E$, $x \in G$.

(We will usually write f(x) instead of $f^{G}(x)$, when we work with a fixed groupoid G, f(t) instead of $f^{F}(t)$ and f(g) instead of $f^{E}(g)$, in the cases when G = F or G = E, respectively.)

The following statements are shown in [3].

Proposition 1.2. If $f, g \in E$, $t, u \in F$, then

е

a)
$$|f(t)| = |f| \cdot |t|$$
.
b) $f(t) = g(u) \& (|t| = |u| \lor |f| = |g|) \Rightarrow (f = g \& t = u)$.
c) $f(t) = g(u) \& |t| \ge |u| \Leftrightarrow (\exists ! h \in E)(t = h(u) \& g = f(h))$. \Box

We define an other operation \circ on E by: $f \circ g = f(g)$.

We obtain an algebra (E, \circ, \cdot) with two operations, \circ and \cdot , such that

$$\circ g = g \circ e = g, \quad (f_1 f_2) \circ g = (f_1 \circ g)(f_2 \circ g)$$
 (1.5)

for any $g, f_1, f_2 \in E$.

(1.4)

 $^{^{2}}$ The notions as subgroupoid, subgroupoid generated by a set A, homomorphism, variety, ... have usual meanings.

It is shown in [3] that (E, \circ, \cdot) is a cancellative monoid.

An element
$$f \in E$$
 is said to be *irreducibile* in (E, \circ, e) iff
 $f \neq e \quad \& \quad (f = g \circ h \implies g = e \text{ or } h = e)$ (1.6)

2. SOME PROPERTIES OF CYCLIC SUBGROUPOIDS OF AN A.F.G.

Let $G = (G, \cdot)$ be a groupoid and $A \subseteq G$. If $A = \{a_1, a_2, ..., a_m\}$, then we denote by $\langle a_1, a_2, ..., a_m \rangle$ the subgroupoid generated by A and call it *m*-generated subgroupoid of G (by the analogy with the same notion for the semigroups (see [2], Part 2, IV.2.4).

A subgroupoid C of G is said to be *cyclic* (or 1-*generated*) iff there is $a \in G$, such that C is generated by $\{a\}$, i.e.

$$(\exists a \in G) \quad C = \langle a \rangle.$$

(In that case we say that a is a generating element (or a generator) of C.)

Cyclic subgroupoids of G can be characterized in the following way (see [4], Prop.1.2.).

Proposition 2.1. If $G = (G, \cdot)$ is a groupoid, then

$$(\forall a \in G) \quad \langle a \rangle = \{ f^G(a) : f \in E \}.$$

Proof. We will show that the set $C = \{f^G(a) : f \in E\}$ is a subgroupoid of G and if H is a subgroupoid of G such that $\{a\} \subseteq H$, then $C \subseteq H$, i.e. C is the intersection of all subgroupoids of G that contain the element a.

Let $b, c \in C$. Then there are $g, h \in E$, such that $b = g^{G}(a)$, $c = h^{G}(a)$ and $bc = g^{G}(a)h^{G}(a) = f^{G}(a) \in C$, where f = gh. Thus, C is a subgroupoid of G.

Let H be a subgroupoid of G such that $a \in H$. By (1.3), $e^G(a) = a$, so $e^G(a) \in H$. Suppose that $g^G(a) \in H$, for any $g \in E$, such that $|g| \leq k$. Let $f \in E$ be such that |f| = k+1. Then $f = f_1f_2$, where $|f_1|, |f_2| \leq k$, and so $f_1^G(a), f_2^G(a) \in H$. As H is a subgroupoid, $f^G(a) = f_1^G(a)f_2^G(a) \in H$, i.e. $\{f^G(a): f \in E\} \subseteq H$. Therefore, C is the intersection of all subgroupoids of G that contain the element a. \Box

The next results concern the cyclic subgroupoids of an a.f.g. F. According to Prop.2.1, the subgroupoid of F generated by an element $t \in F$, i.e. a cyclic subgroupoid of F, can be presented as

$$\langle t \rangle = \{ f(t) \colon f \in E \} \,. \tag{2.1}$$

It is clear that the only prime element in the subgroupoid $\langle t \rangle$ is t. Therefore, as an immediate consequence of Prop.1.1 we have:

Proposition 2.2. For any $t \in F$, the subgroupoid $\langle t \rangle$ of F is free with the free basis $\{t\}$. \Box

Proposition 2.3. Let F be an a.f.g. with a free basis B. a) F is cyclic iff |B| = 1.

b) Let $t \in F$ and $Q = \langle t \rangle$. If $|B| \ge 2$, then $Q \subset F$. If |B| = 1 and $t \notin B$, then $Q \subset F$.

Proof. a) If F is cyclic, then $F = \langle t \rangle$ for some $t \in F$. By Prop.2.2, $\{t\}$ is the free basis of $\langle t \rangle$, so $\{t\} = B$, i.e. |B| = 1. Conversely, if |B| = 1, for example $B = \{b\}$, then $F = \langle b \rangle$ (since B is a generating set for F), i.e. F is cyclic.

b) If $t \in F$, $|B| \ge 2$ and $Q = \langle t \rangle$, then it is not possible Q = F, because Q(Prop.1.1) has one-element free basis and F has a basis with more than one elements. If |B| = 1 and $t \notin B = \{a\}$, then $a \notin \langle t \rangle = Q$, so $Q \neq F$. So, in both cases, Q is a proper subgroupoid of F. \Box

A cyclic subgroupoid of a given groupoid G may have more than one different generators. For example, the groupoid $(\mathbb{Z}_{12},+)$ has a cyclic subgroupoid $H = \{0,3,6,9\}$, such that $\langle 3 \rangle = H = \langle 9 \rangle$.

However, for the cyclic subgroupoids of an a.f.g. F the following proposition holds.

Proposition 2.4. Every cyclic subgroupoid of an a.f.g. F has one and only one generator, i.e.

$$(\forall t, u \in F) \ (\langle t \rangle = \langle u \rangle \iff t = u)$$

Proof. Let H be a cyclic subgroupoid of F such that $H = \langle t \rangle$ and $H = \langle u \rangle$. $\langle t \rangle = \langle u \rangle$ implies that $t \in \langle u \rangle$ and $u \in \langle t \rangle$, so t = f(u) and u = g(t), for some $f, g \in E$. Then $|t| = |f| \cdot |u|$ and $|u| = |g| \cdot |t|$, so $|t| = |f| \cdot |g| \cdot |t|$, which implies that |f| = |g| = 1, i.e. f = g = e. Therefore, t = f(u) = e(u) = u.

Note that

$$(\forall t, u \in F) \ (\langle t \rangle \subseteq \langle u \rangle \Leftrightarrow t \in \langle u \rangle)$$

$$(2.2)$$

is also true. Namely, it is clear that: $\langle t \rangle \subseteq \langle u \rangle \Rightarrow t \in \langle u \rangle$. Conversely, if $t \in \langle u \rangle$, then t = g(u), for some $g \in E$. Therefore, $\langle t \rangle = \{f(t) : f \in E\} = \{f(g(u)) : f \in E\} =$ $= \{(f \circ g)(u) : f \in E\} \subseteq \{h(u) : h \in E\} = \langle u \rangle$.

Theorem 2.1. Any two cyclic subgroupoids of F are either disjoint or one of them is contained in the other, i.e.

$$(\forall t, u \in F) \ [\langle t \rangle \cap \langle u \rangle \neq \emptyset \Leftrightarrow \langle t \rangle \subseteq \langle u \rangle \lor \langle u \rangle \subseteq \langle t \rangle].$$

Proof. Let $\langle t \rangle \cap \langle u \rangle \neq \emptyset$. Then, there is $x \in F$ such that $x \in \langle t \rangle$ and $x \in \langle u \rangle$, i.e. f(t) = x = g(u), for some $f, g \in E$. If |f| = |g|, then |t| = |u|. By Prop.1.2 b), it follows that f = g, t = u, i.e. $\langle t \rangle = \langle u \rangle$. If |f| < |g|, then |t| > |u| and by Prop.1.2 c), we obtain that t = h(u), for some $h \in E \setminus \{e\}$, i.e. $t \in \langle u \rangle$. As (2.2) holds, it follows that $\langle t \rangle \subseteq \langle u \rangle$. If |f| > |g|, then, by analogy, $\langle u \rangle \subseteq \langle t \rangle$. The converse is obvious. \Box

Note that Theorem 2.1 is not true if F is not an a.f.g. For example, in $(\mathbb{N}, +)$, where \mathbb{N} is the set of positive integers, $12 \in \langle 4 \rangle \cap \langle 6 \rangle$. However, none of the subgroupoids $\langle 4 \rangle$ and $\langle 6 \rangle$ are contained in each other.

3. MAXIMAL CYCLIC SUBGROUPOIDS OF AN A.F.G.

Let F be an a.f.g. with a free basis B, $|B| \ge 2$. A cyclic subgroupoid M of F is said to be *maximal* in the class of all cyclic subgroupoids of F iff M is not a proper subgroupoid of a cyclic subgroupoid of F.

Theorem 3.1. Let F be an a.f.g. with $|B| \ge 2$.

a) **F** has maximal cyclic subgroupoids.

b) Every cyclic subgroupoid of F is contained in a maximal cyclic one.

Proof. a) Let $b \in B$. Then the cyclic subgroupoid $\langle b \rangle$ is a maximal one. (Namely, if $\langle b \rangle \subset \langle t \rangle$, for some $t \in F$, then $b \in \langle t \rangle$ and $b \neq t$. Thus b = f(t), for some $f \in E \setminus \{e\}$, but this contradicts the fact that b is prime in F.)

b) Let $t_0 \in F$. If $\langle t_0 \rangle$ is not a maximal subgroupoid, then there is a cyclic subgroupoid $\langle t_1 \rangle$, such that $\langle t_0 \rangle \subset \langle t_1 \rangle$. If $\langle t_1 \rangle$ is not maximal one, then there is a cyclic subgroupoid $\langle t_2 \rangle$, such that $\langle t_1 \rangle \subset \langle t_2 \rangle$ e.t.c.:

$$\langle t_0 \rangle \subset \langle t_1 \rangle \subset \langle t_2 \rangle \subset ... \subset \langle t_k \rangle.$$

Suppose that the sequence $\langle t_0 \rangle, \langle t_1 \rangle, \langle t_2 \rangle, ..., \langle t_k \rangle, ...$ is infinite, i.e. there is no maximal cyclic subgroupoid that contains $\langle t_0 \rangle$. By (2.2) and (2.1), we obtain that $t_0 = f_1(t_1), t_1 = f_2(t_2), ..., t_{k-1} = f_k(t_k), ...$ where $f_i \neq e$, i.e. $|f_i| \geq 2$, for every $i \geq 0$. As $|t_0| = |f_1| \cdot |t_1|$,... (Prop.1.2 a)), it follows that $|t_0| > |t_1| > |t_2| > ...$ However, $|t_0|$ is a finite number, so the descending sequence of positive integers $|t_0|, |t_1|, |t_2|, ...$ must "stop", i.e. there is a $k \geq 0$, such that $|t_k| = |t_{k+1}|$. Using the fact that $t_k = f_k(t_{k+1})$, it follows that $t_k = t_{k+1}$, and that contradicts the supposition that $\langle t_k \rangle \subset \langle t_{k+1} \rangle$, for any $k \geq 0$.

Let G be a groupoid. An element $c \in G$ is said to be *primitive* in G iff $(\forall a \in G)(\forall f \in E \setminus \{e\}) \quad c \neq f(a)$. An element $c \in G$ is said to be *non-primitive* in G iff $(\exists a \in G)(\exists f \in E \setminus \{e\}) \quad c = f(a)$.

As an immediate consequence of the definition of primitive element in G, when G = F, we obtain the following

Proposition 3.1. The following conditions are equivalent:

a) v is primitive in F; b) $(\forall u \in F)(\forall f \in E) \ (v = f(u) \Rightarrow f = e);$ c) $(\forall u \in F)(\forall f \in E) \ (v = f(u) \Rightarrow v = u).$

Lema 3.1. For any non-primitive element v in F there is a uniquely determined primitive element $u \in F$ and uniquely determined $f \in E \setminus \{e\}$ such that v = f(u).

In that case we say that u is a *base* of v (and denote it by $\underline{v} = u$) and f is a *power* of v.

Proof. Existence. If v is a non-primitive element in F, then there are $u \in F$ and $f \in E \setminus \{e\}$ such that v = f(u). If u is primitive in F, then the statement is shown. Suppose that u is a non-primitive element in F. By Prop.1.2 a), it follows that $|v| = |f(u)| = |f| \cdot |u|$. Since $|f| \ge 2$, we have |v| > |u|. From the definition of non-primitive element, it follows directly that there are $u_1 \in F$ and $f_1 \in E \setminus \{e\}$, such that $u = f_1(u_1)$, so $v = f(f_1(u_1)) = (f \circ f_1)(u_1)$. Continuing this procedure, we obtain a descending sequence $(|u_i|)$ of positive integers. This sequence must end, i.e. there are $u_n \in F$ and $f_n \in E \setminus \{e\}$, such that $v = (f \circ f_1 \circ f_2 \circ ... \circ f_n)(u_n)$ and u_n is a primitive element in F.

Uniqueness. Let $v \in F$ and suppose that v = f(u) = g(t), where u and t are primitive in F. Clearly, |t| = |u| (because in the opposite case, there would be $h \in E$ such that t = h(u) (or u = h(t)), and t (or u) would not be primitive). By Prop.1.2 it follows that u = t and f = g. \Box

The following theorem characterizes maximal cyclic subgroupoids of F.

Theorem 3.2. The subgroupoid $\langle t \rangle$ of F (with $|B| \ge 2$) is maximal one iff t is a primitive element in F.

Proof. Let $\langle t \rangle$ be a maximal subgroupoid of F. Suppose that t is not a primitive element in F. Then, by Lemma 3.1, t = f(u), for some $u \in F$ and $f \in E \setminus \{e\}$, so we obtain that $\langle t \rangle \subset \langle u \rangle$, i.e. $\langle t \rangle$ is not maximal. Thus t is a primitive element in F. Conversely, let t be a primitive element in F and suppose that $\langle t \rangle \subset \langle u \rangle$. Therefore t = f(u), for some $u \in F$ and $f \in E \setminus \{e\}$, i.e. t is not a primitive element in F. \Box

As a consequence of Theorem 3.2 and Lemma 3.1 we obtain the following

Proposition 3.2. Let F be an a.f.g. with $|B| \ge 2$. The following conditions are equivalent:

- a) t is a primitive element in F;
- b) $(\forall u \in F)(\forall f \in E) (t = f(u) \Longrightarrow t = u);$
- c) $(\forall u \in F)(\forall f \in E) \ (t = f(u) \Longrightarrow f = e);$
- d) $\langle t \rangle$ is a maximal cyclic subgroupoid of F . \Box

Theorem 3.3. If $\langle u \rangle$ and $\langle v \rangle$ are maximal cyclic subgroupoids of an a.f.g. F (with $|B| \ge 2$), then either $\langle u \rangle \cap \langle v \rangle = \emptyset$ or $\langle u \rangle = \langle v \rangle$.

Proof. Let $\langle t \rangle \cap \langle u \rangle \neq \emptyset$. Then, by Theorem 2.1, it follows that $\langle u \rangle \subseteq \langle v \rangle$ (or $\langle v \rangle \subseteq \langle u \rangle$). It is not possible to be $\langle u \rangle \subset \langle v \rangle$ (or $\langle v \rangle \subset \langle u \rangle$) because this would contradict the supposition that the subgroupoids $\langle u \rangle$ and $\langle v \rangle$ are maximal. Therefore $\langle u \rangle = \langle v \rangle$. \Box

As a consequence of Theorem 3.3 we obtain that different maximal cyclic subgroupoids of F are disjoint, i.e. the class of maximal cyclic subgroupoids of F consists of (pairwise) disjoint subgroupoids.

Bellow $E = (E, \cdot)$ denotes an a.f.g. with one-element basis $\{e\}$. Clearly, the results of Section 2 are true in the case F = E and we will repeat some of them in the following proposition.

Proposition 3.3. The following statements are true in E for any $f, g, h \in E$.

- a) $\langle f \rangle \subseteq \langle g \rangle \Leftrightarrow (\exists ! h \in E) \ f = h(g);$ b) $\langle f \rangle \subset \langle g \rangle \Leftrightarrow (\exists ! h \in E \setminus \{e\}) \ f = h(g);$ c) $\langle f \rangle \cap \langle g \rangle \neq \emptyset \Leftrightarrow \langle f \rangle \subseteq \langle g \rangle \lor \langle g \rangle \subseteq \langle f \rangle;$ d) $\langle f \rangle = \langle g \rangle \Leftrightarrow f = g;$
- e) $\langle e \rangle$ is the largest cyclic subgroupoid of E and $\langle e \rangle = E$. \Box

Now we will modify the definition of a maximal cyclic subgroupoid for E.

A cyclic subgroupoid M of E is said to be *maximal* in the class of all cyclic subgroupoids of E iff there is no proper cyclic subgroupoid of E that contains M.

Proposition 3.4. The subgroupoid $\langle f \rangle$ is a proper maximal cyclic subgroupoid of E iff f is irreducibile element in the monoid (E, \circ, e) .

Proof. Let $\langle f \rangle$ be a proper maximal cyclic subgroupoid of E. If f is not irreducible, i.e. $f = h(g) = h \circ g$, $(h \neq e, g \neq e)$, then (for example) $\langle f \rangle \subset \langle g \rangle \subset E$. This contradicts the supposed of maximality of $\langle f \rangle$.

Conversely, let f be irreducibile and let $\langle f \rangle \subseteq \langle g \rangle$. By Prop.3.3 a), there is a unique $h \in E$, such that $f = h(g) = h \circ g$. The choice of f implies that h = e, so f = g, i.e. $\langle f \rangle = \langle g \rangle$. Therefore, there is no cyclic subgroupoid $\langle g \rangle$ of E, such that $\langle f \rangle \subset \langle g \rangle$, i.e. $\langle f \rangle$ is a proper maximal cyclic subgroupoid of E. \Box

REFERENCES

- [1] R.H.Bruck, A Survey of Binary Systems, Springer-Verlag 1958
- [2] В.А.Артамонов, В.Н.Салиј, Л.А.Скорняков, Л.Н.Шеврин,
- Е.Г.Шульгејфер, Общая алгебра, Москва, 1991
- [3] G. Čupona, N. Celakoski, S. Ilić, Groupoid powers, Matemat. bilten, 25 (LI) 2001, 5-12
- [4] G. Čupona, N. Celakoski, S. Ilić, On monoassociative groupoids, Matem. bilten 26 (LII) 2002, 5-16

¹Faculty of Natural Sciences and Mathematics, Skopje Institute of Mathematics, P.O. Box 162, 1000, Skopje, Macedonia

vesnacj@iunona.pmf.ukim.edu.mk