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CYCLIC SUBGROUPOIDS OF AN ABSOLUTELY FREE GROUPOID
Vesna Celakoska Jordanova®

Abstract. Subgroupoids of an absolutely free groupoid F =(F,-) with a
free basis B that are generated by one element (called cyclic
subgroupoids of F ) are considered. It is shown that: two cyclic
subgroupoids of F have common elements if and only if one of them is
contained in the other; F has maximal cyclic subgroupoids and if
|B| > 2, every cyclic subgroupoid is contained in a maximal one; any two
maximal cyclic subgroupoids of F are either disjoint or equal. Also, a
characterization of maximal cyclic subgroupoids of F by means of
primitive elements in Fis given. This statements are also true for an
absolutely free groupoid with one-element basis (with modified
definition of maximal cyclic subgroupoid.

Key words: groupoid, subgroupoid, generating element, cyclic
subgroupoid, free groupoid.

1. PRELIMINARIES
A pair G =(G,-), where G is a nonempty set and -:(X,Y)H> Xy a mapping
from GxG into G, is called a groupoid.

Anelement a€ G is primein G iff' a# Xy, forall X,yeG.

Throughout the paper we denote by F =(F,-) an absolutely free groupoid
(a.f.g.), i.e. free groupoid in the class of all groupoids with a free basis B . Recall that
the following theorem characterizes free groupoids (see [1]; L.1.5).

Theorem. (Bruck) A groupoid F =(F,-) isana.f.g. iff
(i) F isinjective, i.e. (Va,b,c,deF) ab=cd=a=c,b=d.
(ii) The set of primes in F is nonempty and generates F .
(In that case B is the unique free basis of F .) [

As a corollary (see[1]; T.1.4) of Bruck Theorem we have:
Proposition 1.1. Every subgroupoid > Q of an a.f.g. F is free, with free basis the set

of primesin Q . [

b viff" means "if and only if"
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218 V. Celakoska Jordanova

The elements of F will be denoted by t,u,v,w, X, V,... Forany Ve F we define
the length |V| of V and the set of parts P(V) of V in the following way:
bl=1 [tu]=[t|+]u]. (.
P(b)={b}, P(tu)={tu} UP(t)u P(u) (1.2)
forany be B, t,ueF.

We will denote by E =(E,-) an absolutely free groupoid with one-element
basis {e}. The elements of E will be denoted by f,g,h,... and called groupoid
powers ([3]).

If G =(G,) is a groupoid, then each f € E induces a transformation f® on
G (called the interpretation of f in G ) defined by:

() =g,(1),
where @, : E — G is the homomorphism from E into G such that ¢, (e)=X. In
other words

e (X)=x, (fh)x) = f°(x)h®(x) (1.3)
forany f,heE, xeG.
(We will usually write f(X) instead of f®(X), when we work with a fixed
groupoid G, f(t) instead of f"(t) and f(Q) instead of f(Q), in the cases when
G =F or G = E, respectively.)

The following statements are shown in [3].

Proposition 1.2. If f,geE, t,ueF,then
SICIERAR
b) f()=gu) & (t|=|u| v |f|=|g)=>(f =9 & t=u).
o) f()=g(u) & [t|>|u] & @'heE)t=h(u) & g=f(h)).C

We define an other operation o on E by:

fog="1(Q). (1.4)
We obtain an algebra (E,o,-) with two operations, o and -, such that
€ocg=0c€=4Q, (f1f2)°g=(f1°g)(f2°g) (1.5)

forany g, f,,f,€E.

% The notions as subgroupoid, subgroupoid generated by a set A, homomorphism, variety,
...have usual meanings.
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Cyclic subgroupoids of an absolutely free groupoid 219

It is shown in [3] that (E,o,-) is a cancellative monoid.

An element f € E is said to be irreducibile in (E,o,e) iff
fe & (f=goch = g=e or h=¢e) (1.6)

2. SOME PROPERTIES OF CYCLIC SUBGROUPOIDS OF AN A.F.G.

Let G =(G,-) be a groupoidand Ac G.If A={a,,a,,...,a,}, then we denote by
<a1, a,,..., am> the subgroupoid generated by A and call it m -generated subgroupoid

of G (by the analogy with the same notion for the semigroups (see [2], Part 2, IV.2.4).
A subgroupoid C of G is said to be cyclic (or 1-generated) iff there is a € G, such
that C is generated by {a}, i.e.

(FaeG) C :<a>.
(In that case we say that a is a generating element (or a generator) of C .)

Cyclic subgroupoids of G can be characterized in the following way (see [4],
Prop.1.2.).

Proposition 2.1. If G =(G,) is a groupoid, then

(VvaeG) (a)={f°(@):f eE}.
Proof. We will show that the set C ={f®(a): f € E} is a subgroupoid of G and if
H is a subgroupoid of G such that {a}  H,then C < H ,i.e. C is the intersection

of all subgroupoids of G that contain the element a.
Let b,ceC. Then there are g,heE, such that b=g®(a), c=h®(a) and

bc=g®(@)h®(a)= f°(@)eC, where f =gh. Thus, C is a subgroupoid of G .

Let H be a subgroupoid of G such that ae H. By (1.3), €®(a)=a, so
e®(a) e H . Suppose that g°(a) e H , for any g € E, such that | g |S k.Let f eE
be such that |f|=k+1. Then f="ff,, where |f|,|f,/<k, and so
f¢@),f,°@eH. As H is a subgroupoid, f¢(a)="fc@)f,°@eH, ie.
{f®(): f e E} = H . Therefore, C is the intersection of all subgroupoids of G that
contain the element a. []

The next results concern the cyclic subgroupoids of an a.f.g. F . According to
Prop.2.1, the subgroupoid of F generated by an eclement teF, ie. a cyclic
subgroupoid of F , can be presented as

(ty={f(t): f eE}. 2.1)
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220 V. Celakoska Jordanova

It is clear that the only prime element in the subgroupoid <t> is t. Therefore,

as an immediate consequence of Prop.1.1 we have:

Proposition 2.2. For any t € F , the subgroupoid <t> of F is free with the free basis
{t}.o
Proposition 2.3. Let F be an a.f.g. with a free basis B .

a) F iscycliciff |B|=1.

b) Let te F and Q:<t>. If |B|22, then Qc F . If |B|:l and t¢ B, then
QcF.
Proof. a) If F is cyclic, then F = <t> for some t € F . By Prop.2.2, {t} is the free
basis of <t>, so {t}=B, ie. | B | =1. Conversely, if | B | =1, for example B ={b},
then F = <b> (since B is a generating set for F ), i.e. F is cyclic.

b)If teF, | B|22 and Q =<t>, then it is not possible Q =F, because Q

(Prop.1.1) has one-element free basis and F has a basis with more than one elements.
If | B|:1 and t ¢ B={a}, then ae<t>:Q, so Q#F . So, in both cases, Q isa

proper subgroupoid of F . [

A cyclic subgroupoid of a given groupoid G may have more than one different
generators. For example, the groupoid (Z,,,+) has a cyclic subgroupoid

H= {09 33 6, 9} , such that <3> =H = <9> .
However, for the cyclic subgroupoids of an a.f.g. F the following proposition
holds.

Proposition 2.4. Every cyclic subgroupoid of an a.f.g. F has one and only one
generator, i.e.

(VtueF) ({t)=(u) < t=u).
Proof. Let H be a cyclic subgroupoid of F such that H :<t> and H :<u>.
<t>:<u> implies that te<u> and U e<t>, so t="f() and u=g(t), for some

f,geE. Then [t|=|f|-|u| and |u|=|g|-|t|, so |t|=|f|-|g]||t|, which
impliesthat| f |:|g|=1,i.e. f =g =e. Therefore, t= f(U)=e(u)=u.C
Note that
(VtueF) ({t)c(u) < te(u)) (2.2)
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Cyclic subgroupoids of an absolutely free groupoid 221

is also true. Namely, it is clear that: <t> C <u> = te <u> Conversely, if t e <u> ,
then t=g(), for some gekE. Therefore,

{ty={ft): f eE}={f(g(u)): f eE}=
={(fog)u): f eE} = {h(u):heE}=(u).

Theorem 2.1. Any two cyclic subgroupoids of F are either disjoint or one of them is
contained in the other, i.e.

(VtueF) [(H)n(u)2@ < ()= (u)v(u)=(t)].
Proof. Let <t>m<u>¢®. Then, there is Xe€ F such that Xe<t> and Xe<u>,
ie. f(t)=x=g(Uu), for some f,ge E.If | f |:| g |, then |t|=|u|. By Prop.1.2
b), it follows that f =g, t=u, ie(t)=(u). If | f |<|g
Prop.1.2 ¢), we obtain that t = h(u), for some he E\{e},ie. te <u> As (2.2) holds,
it follows that <t>g<u>. If | f |>| g

obvious. [
Note that Theorem 2.1 is not true if F is not an a.f.g. For example, in (N,+),

, then |t|>|u| and by

, then, by analogy, <u> C <t> The converse is

where N is the set of positive integers, 12€<4>m<6>. However, none of the

subgroupoids <4> and <6> are contained in each other.

3. MAXIMAL CYCLIC SUBGROUPOIDS OF AN A.F.G.

Let F be an a.f.g. with a free basis B,

B|Z2.Acyclic subgroupoid M of F is

said to be maximal in the class of all cyclic subgroupoids of F iff M is not a proper
subgroupoid of a cyclic subgroupoid of F .

Theorem 3.1. Let F be an afg. with |B|>2.

a) F has maximal cyclic subgroupoids.
b) Every cyclic subgroupoid of F is contained in a maximal cyclic one.

Proof. a) Let b € B. Then the cyclic subgroupoid <b> is a maximal one. (Namely, if

<b>c<t>, for some teF, then be<t> and b#t. Thus b= f(t), for some
f € E\{e}, but this contradicts the fact that b is prime in F .)

b)Let t, e F.If <t0> is not a maximal subgroupoid, then there is a cyclic subgroupoid
<1’1>, such that <t0> - <t,> CIf <t1> is not maximal one, then there is a cyclic
subgroupoid <t2> , such that <t1> - <t2> et.c.

<t0>c<t1>c<t2>c...c<tk>.
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[R2 V. Celakoska Jordanova

Suppose that the sequence <0> < > < - < >, is infinite, i.e. there is no
maximal cyclic subgroupoid that contains <t0> By (2.2) and (2.1), we obtain that
t,="ft), t =), ..., t_ =f(t).... where f =e,ie |f |22, for every
i |»--. (Prop.1.2 a)), it follows that |t0|>|t1|>|t2|>...

5 |,... must "stop", i.e. there is a K >0, such that |t |—|tk+1| Using the

fact that t, = f,(t,,,), it follows that t, =t,,,, and that contradicts the supposition that
<tk> C <tk+1>, forany kK >0. O

Let G be a groupoid. An element C € G is said to be primitive in G iff
(VaeG)Vf eE\{e}) c=f(a).

An element C € G is said to be non-primitive in G iff
(JaeG)(3f eE\{e}) c=f(a).

As an immediate consequence of the definition of primitive element in G, when
G = F , we obtain the following

Proposition 3.1. The following conditions are equivalent:
a) V is primitive in F ;
b) (VueF)VfeE) (v=f(uy=f=e);
c) (VueF)VvfeE) (v=f(uy=v=u).O

Lema 3.1. For any non-primitive element v in F there is a uniquely determined
primitive element u € F and uniquely determined f € E\{e} such that v= f(u).

In that case we say that U is a base of V (and denote itby V=U)and f isa power
of v.

Proof. Existence. If V is a non-primitive element in F , then there are Ue F and
f e E\{e} such that v= f(u). If U is primitive in F, then the statement is shown.

Suppose that U is a non-primitive element in F . By Prop.1.2 a), it follows that
|V|:| f(u)|:| f ||u| Since | f |22, we have |v|>|u|. From the definition of
non-primitive element, it follows directly that there are U, € F and f, € E\{e}, such
that u= f,(u,), so v=f(f (u))=(fo f)U,). Continuing this procedure, we obtain
a descending sequence (| u, |) of positive integers. This sequence must end, i.e. there
are U €F and f eE\{e}, such that v=(fofof,o..of)u,) and u, is a

primitive element in F .
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Cyclic subgroupoids of an absolutely free groupoid 223

Uniqueness. Let Ve F and suppose that v= f(u)=g(t), where U and t are

t|:|u| (because in the opposite case, there would be

h e E such that t=h(u) (or u=h(t)), and t (or U) would not be primitive). By
Prop.1.2 it follows that U=t and f =g .[

primitive in F . Clearly,

The following theorem characterizes maximal cyclic subgroupoids of F .

Theorem 3.2. The subgroupoid (t) of F (with | B|>2) is maximal one iff t is a

primitive element in F .
Proof. Let <t> be a maximal subgroupoid of F . Suppose that t is not a primitive

element in F . Then, by Lemma 3.1, t = f(u), for some Ue F and f € E\{e}, so

we obtain that <t> C <u> , 1.e. <t> is not maximal. Thus 1t is a primitive element in F .
Conversely, let t be a primitive element in F and suppose that <t> is not a maximal

subgroupoid of F . Then, there is an element U € F, such that <t> c <u> Therefore

t="f(),forsome UecF and f € E\{e},i.e. t isnota primitive elementin F .[]
As a consequence of Theorem 3.2 and Lemma 3.1 we obtain the following

Proposition 3.2. Let F be an a.f.g. with |B|22. The following conditions are

equivalent:
a) 1 is aprimitive element in F ;
b) (WVueF)VfeE) (t=f(uy=t=u);
¢c) (VueF)VfeE) t=f(uy=f=e);

d) <t> is a maximal cyclic subgroupoid of F . [

Theorem 3.3. If (u) and (v) are maximal cyclic subgroupoids of an af.g. F (with
| B|>2), then either (u)(v) =@ or (u)=(v).

Proof. Let <t>m<u>¢®. Then, by Theorem 2.1, it follows that <u>g<v> (or
<V> - <u>). It is not possible to be <u> C <V> (or <V>C <u>) because this would
contradict the supposition that the subgroupoids <u> and <V> are maximal. Therefore

(uy=(v).o

As a consequence of Theorem 3.3 we obtain that different maximal cyclic
subgroupoids of F are disjoint, i.e. the class of maximal cyclic subgroupoids of F
consists of (pairwise) disjoint subgroupoids.
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[R4 V. Celakoska Jordanova

Bellow E =(E,-) denotes an a.f.g. with one-element basis {€} . Clearly, the results

of Section 2 are true in the case F =E and we will repeat some of them in the
following proposition.

Proposition 3.3. The following statements are true in E forany f,g,heE.
a) (f)c(g)  (3theE) f=h(g);

Y (g) & (@heE\{e}) f=h(g);

)(9)#@ = (f)=(g) v {g)=(f);

)=(9) & f=g;

e) is the largest cyclic subgroupoid of E and <e>: E.O

b) (f
o (f
d) (f
9

Now we will modify the definition of a maximal cyclic subgroupoid for E .
A cyclic subgroupoid M of E is said to be maximal in the class of all cyclic
subgroupoids of E iff there is no proper cyclic subgroupoid of E that contains M .

Proposition 3.4. The subgroupoid <f> is a proper maximal cyclic subgroupoid of E
iff f isirreducibile element in the monoid (E,o,¢€).

Proof. Let < f > be a proper maximal cyclic subgroupoid of E. If f is not
irreducible, ie. f=h(g)=hog, (h#e,g=#e), then (for example)
< f > c <g> c E . This contradicts the supposed of maximality of < f > )

Conversely, let f be irreducibile and let <f>g <g> By Prop.3.3 a), there is a

unique he E, such that f =h(g)=hog. The choice of f implies that h=e¢, so
f=g,ie. <f>=<g>. Therefore, there is no cyclic subgroupoid <g> of E, such
that< f > C <g>, ie. < f > is a proper maximal cyclic subgroupoid of E . [
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