
The 10th Conference for Informatics and Information Technology (CIIT 2013)

©2013 Faculty of Computer Science and Engineering

VHDL IP CORES ONTOLOGY

Vladimir Zdraveski Dimitar Trajanov

Faculty of Computer Science and Engineering

Skopje, Macedonia

ABSTRACT

Recently, the hardware description languages (HDL) are part

of the most of hardware design processes and the HDL

components are the main intellectual property (IP) of the

producers of IC's. The large companies have internal

databases and moreover whole code sub-versioning

repositories, but however the easiness of code reuse is still

quite low and there is almost no intelligence in the storage

systems. Contributing to the improvement of the hardware

design process, essentially based on the reuse of previously

written cores, and utilizing the Semantic Web technologies,

we propose a basic ontology for semantic annotation of

VHDL components, that also contains the most frequently

used component types and their "is-part-of"-dependencies,

providing a knowledge base for classification and automated

composition of predefined IP cores.

I. INTRODUCTION

The novel technologies of the Semantic Web offer completely

different approach to the data storage and retrieval.

The Semantic Web is defined as an extension of the World

Wide Web that enables people to share content beyond the

boundaries of applications and websites. It has been described

in rather different ways, but the main idea is to publish on the

Internet not only the pure text data, but also its semantic

annotation, i.e. relations describing the semantics stored in the

data [1].

The Semantic web technologies offer many tools for easy

automatic or automated data annotation with its semantic in-

domain relations and relations with other centralized data sets

or knowledge bases. Prior to the use of the semantic tools in

any scope of work, a semantic ontology should be defined for

the specific scope. An ontology is a formal specification of a

shared conceptualization [2].

 The interconnection among data published in different

domains is the main idea of the Linked Data initiative [3],

which is also growing rapidly. It provides a good base for

integration of the data existing on the Internet. Generally,

Linked Data tries to connect/annotate the data that was

published on the Internet, but not previously linked. More

precisely, Wikipedia defines Linked Data as a term used to

describe a recommended best practice for exposing, sharing,

and connecting pieces of data, information, and knowledge on

the Semantic Web using URIs and RDF [4].

 Automatic semantic annotation of a pyre text data is

relatively complex and although there are advanced tools

doing it in a sufficient level of success, it is still difficult to

rely on the tools only. On the other hand, it is more easy and

reliable to do a semantic annotation of a structured or partially

structured data, that is resulting with a very low error rate and

non-ambiguous semantic annotation.

A good example of structured data type are the hardware

description languages (HDLs). Hardware description

languages importance on the everyday system on chip

development seems to raise all the time. Few years ago the

HDL was used only in the development process, for testing,

simulating and emulating the new generations of processors

and integrated circuits before the million-series were burned

out. But today, it is not weird to find some PLD or FPGA on

a production system, as a peripheral adapter or a

mathematical co-processor to the main controller. Thus, the

end target of the HDL is not only the pre-production testing,

but to implement a new or existing functionality on an

existing working PCB, that extremely explores the scope of

work and future needs and goals.

 The main problem seems to be that the VHDL code and

projects are published as a pure text-file data and also the

search engines index them in the same way. Since the VHDL

files has a predefined structure by themselves, we propose

automatic ontology based annotation. The process will require

no further input by the end users, but will cause a step

forward in the HDL code search engines improvement [5].

II. RELATED WORK

Although it is described as a novel technology, the Semantic

Web exists quite a long time ago and many advanced and

very useful tools are designed during the past. The Semantic

Web core components consist of a Semantic Web statement, a

Uniform Resource Identifier (URI), Semantic Web languages,

an ontology, and instance data. Figure 1 illustrates the main

components surrounded by the tools [6].

Figure 1 - Major Semantic Web Components

240

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 9th Conference for Informatics and Information Technology (CIIT 2012)

Besides the basic ones, very important and specific are

the Reasoners, that add inference to your semantic data.

Inference creates logical additions that offer classification and

realization. While rules engines support inference typically

beyond what can be deduced from description logic.

There are also different types of semantic systems. They

can be classified, by the size of their data set, as a large scale,

a medium scale or a small scale semantic systems. In terms of

its architecture, semantic systems were mostly designed as a

domain specific, which are intra-organizational systems,

limited to the data of a company or organization [7][8]. But,

today following the Linked Data initiative and taking the

advantage of the available semantic data on the Internet, a

more general, service oriented applications are built, that use

not only their domain-specific data, but rather all the semantic

data available world-wide.

On the side of the HDL code sharing and reuse has been

done many attempts to design a novel approaches. Some of

them has focused on a parameterized, generic components

definition [9], others to code verification [10]. There are

systems that use a set of rules and grammars in order to

enable automated hardware design [11][12][13] and the most

challenging topic nowadays seems to be the integration

between the HDL, mostly SystemC, and a higher

programming language, such as C or C++ [14][15][16].

 The quality and achieved results of the mentioned tools

and projects must not be neglected, but the biggest problem

seems to be the further input required by the users, which is

always an obstacle. What we propose is to use the structured

format of the HDL languages and build the semantic

annotation description, based on the ontology, without extra

user input.

III. VHDL ONTOLOGY

A. General

Our OWL ontology [17][18] contains the basic VHDL

constructs [11], such as port input/output types and data

types, but also contains the properties required to represent

the VHDL Entity as a logical block.

 Although we would present this ontology from a VHDL

perspective, the concept can be used for classification of any

type of hardware units, chips, etc. There are specifications

about VHDL components and many classes that enable quite

original and intuitive classification of different, commonly

used VHDL components, written by different authors.

Furthermore, there are some predicates and relations that

could be used to specify the hierarchy in the RDF description.

 The VHDL ontology was designed using the Protégé

editor [19], shown in Figure 2. The ontology is used to

classify and annotate all of the VHDL components in order to

store the details of the users’ source code into the system.

Further information about the ontology use cases could be

found in [20].

Figure 2: Entities

B. The "hasPart" sub-tree

 Besides the basic VHDL constructs representation, the

ontology defines types of components, starting with the basic

logic gate and ending with more complex FSM and controller.

The complexity levels enable easier type determination,

which would be more difficult without them, since the

structure must be treated as a graph.

 Components are connected with property annotations,

forming a complex, non-binary tree, a dag, representing the

"hasPart"-dependencies among components Figure 3.

241

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 9th Conference for Informatics and Information Technology (CIIT 2012)

Figure 3: Annotations - "hasPart"

 Actually the structure is a graph, due to the loops, but

since we defined levels of complexity, it can be treated like a

more complex tree structure, often called a dag, Figure 4. If a

classification module of a search engine manages to generate

a set of predicted component types (not exactly one), the

component type could be also derived from the dag, applying

some of the well-known algorithms for lowest common

ancestor (LCA) in a tree/graph. Actually there are more

specific algorithms which first translate the dag structure into

a tree and then find the LCA or LSA (lowest single common

ancestor) of a given set of nodes [21].

Figure 4: The "hasPart"-dag

C. Nested component - property

One of the main paradigms in the hardware design is the layer

abstraction, thus the more complex components are

implemented by instancing many simple ones inside them. It

often happens to start searching for a simple component and

end up with writing it on yourself, generating many

components of the same type, inside your company's

repository or even on your local machine. Our ontology

makes possible to share them only by instancing them, which

is a strait consequence of the ability to search and find them

among the annotated source code. On the other hand, these

nested components are always important in order to

determinate the type of the component or other component

characteristics. This the main idea of this part of the

ontology is to be able to annotate the nested component of a

main core, find them in the repository, retrieve their types and

finally determine the component type of the main core.

D. Annotation example

Using the ontology we can generate appropriate RDF code to

describe the HDL components. As we shortly mentioned

above, the ontology covers the component interface and the

component type semantic annotation. Furthermore, a port

semantic type may be defined, thus classifying a port as data,

control and etc.

Figure 5: Simple AND_GATE annotation

 A simple example of the RDF generated for a basic

component is shown in Figure 5. What we propose as a final

concept is an embedded RDF inside the HDL code, similar to

the embedded RDF inside HTML, well known as a main idea

of the Semantic Web. As shown in Figure 5, the semantic

description (RDF) will be inside the source HDL file and

242

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 9th Conference for Informatics and Information Technology (CIIT 2012)

search engines will be able to analyze its semantics, instead of

doing some statistical key-word based text comparison and

matching.

 Since the process of semantic annotation can be done

completely automatically, all the embedded RDF could be

added in the client-side editors, just after the HDL code is

ready to share or publish. Even more, it can be generated

during the code generation process, hidden for the end user.

Having this feature, the end user does not have extra

input/work, but the search engines could be designed in a

completely different manner, than the common ones,

searching for semantic match instead of key-word match.

This kind of search engine is also a stable base for an

automated system composition and further system design

automation tools.

IV. FUTURE WORK

 The ontology is a part of our more complex system for

automatic semantic annotation, classification and automated

composition of VHDL IP cores. The system semantics is

based on the ontology and the main task is to extend it with

other HDL's, such as Verilog, System Verilog, SystemC and

etc. Besides, the "hasPart" annotations should be improved

and the set of entities has to be extended in order to cover all

the component types appearing nowadays.

 The other issue is to define, inside the ontology,

configurations for the most frequently used SoC's and enable

the user to chose configuration and wait for a computer to

find all the required components, compatible among each

other, and finish his new design in a very short time. In such

manner, the designers will concentrate on their new modules

and get all others automatically by the intelligent system. This

concept could be also extended to the design process [22].

 In order to participate in the Linked data initiative, some

test data sets based on the ontology should be also published

in order to enable other programmers to test and evaluate their

systems and afterwards extend their knowledge bases with

our ontology, leading it to the higher levels of connectivity,

among the other linked data.

ACKNOWLEDGEMENT

The work in this paper was partially financed by the Faculty

of Computer Science and Engineering, at the Ss. Cyril and

Methodius University in Skopje.

REFERENCES

[1] The Semantic Web initiative - http://semanticweb.org

[2] Ontology - http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

[3] The Linked Data initiative - http://linkeddata.org/

[4] Resource Description Framework - http://www.w3.org/RDF/

[5] Tim Berners-Lee and Nigel Shadbolt: "There’s gold to be mined from
all our data.". The Times. 31st December, 2011.

[6] J. Hebeler, M. Fisher, R. Blace and A. Perez-Lopez, "Semantic Web

programming", Wiley Publishing, Inc., Indianapolis, Indiana,
pp. 11-17 , 2009

[7] Chirita, P.-A., Costache, S., Nejdl, W. and Paiu, R. (2006) “Beagle++:
Semantically enhanced searching and ranking on the desktop”, ESWC

2006, LNCS 4011, pp 348-362.

[8] Zhang, L., Yu, Y., Zhou, J., Lin, Ch. and Yang, Y. (2005) “An
enhanced model for searching in semantic portals”, In WWW 2005, pp

453-462, 2005.

[9] Holger Lange and Andreas Koch, "Hardware/Software-Codesign by
Automatic Embedding of Complex IP Cores", Field Programmable

Logic and Application, 14th International Conference , FPL 2004,

Leuven, Belgium, September 2004.

[10] Sandeep K. Shukla, Frederic Doucet, and Rajesh K. Gupta, "Structured
Component Composition Frameworks for Embedded System Design",

HiPC '02 Proceedings of the 9th International Conference on High

Performance Computin, UK, pp. 663-678, 2002.

[11] VHDL, http://www.vhdl.org/

[12] D. Mathaikutty and S. Shukla, "SoC Design Space Exploration through

Automated IP Selection from SystemC IP Library", In proceedings of
IEEE International SOC Conference, September 2006.

[13] F. Doucet and S. Shukla and M. Otsuka and R. Gupta. "BALBOA:A

Component Based Design Environment for SystemModels", IEEE
Transactions on Computer Aided Design, pp. 1597 – 1612, December

2003.

[14] Y. Xiong and E. Lee. "An extensible type system for component-based

design." In Proceedings of the 6th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pp. 20–

37, March 2000.

[15] D. Mathaikutty and S. Shukla. "Mining Metadata for Composability of

IPs from SystemC IP Library", In proceedings of Forum on

specification and Design Languages, September 2006.

[16] M. Baleani, A. Ferrari, A. L. Sangiovanni-Vincentelli, and C. Turchetti.
"Hw/sw codesign of an engine management system", In DATE 2000,

pages 232–237, Paris, France, March 2000.

[17] OWL, Web Ontology Language, http://www.w3.org/TR/owl-features/,
2010

[18] Custom Ontology for VHDL annotation, http://hdlipcores.mk/vhdl.owl .

[19] Protégé – semantic data editor, RDF, OWL…, Stanford Center

for Biomedical Informatics Research,

http://protege.stanford.edu/, 2010.

[20] V. Zdraveski, M. Jovanovik, R. Stojanov and D. Trajanov.

"HDL IP Cores Search Engine based on Semantic Web

Technologies", ICT Innovations 2010 Communications in Computer

and Information Science Volume 83, 2011, pp 306-315, Orhid,
Macedonia, September 2010.

[21] J. Fischer and D. H. Huson. "New Common Ancestor Problems

in Trees and Directed Acyclic Graphs", Information Processing

Letters archive Volume 110 Issue 8-9, pp. 331-335,

Netherlands, April, 2010.

[22] H. Hu, Dayou Liu and Xiaoyong Du, "Semi-automatic Hardware
Design using Ontologies", Control, Automation, Robotics and Vision

Conference, 2004. ICARCV 2004 8th, vol. 2, pp. 792 - 797, December
2004.

243

The 10th Conference for Informatics and Information Technology (CIIT 2013)

