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OBaa mokTOpCKa amcepraiyja Oermre peaju3upana Ha YHubep3uter ,CB.
Kupun u Meromuj“, @akynrer 3a nHOOPMATHIKHA HAYKHA W KOMIIjyTEPCKO WH-
xenepcerBo, Ckomje, Penybnuka CeBepna Maxkenonuja. Mojara moruBaruja
e Da3upaHa Ha MPOIOIZKYBABETO HA MOETO HCTPaKyBame BO obiacta: IIpe-
cMeryBame co Bucoku nepdopmancu (HPC), Kako MTO U HAIPABUB HA MOU-
Te TUIJIOMCKM W Marucrepcku te3u. Mojor (pokyc, BO TpBUOT IUKJIYC, Oerre
CTaBeH Ha MCKOPHUCTYBameTo Ha rpaduukoro npouecupawme (GPU) 3a onru-
MH3Hpame Ha aJaropurMor benvan-Popd, m01eKa BO BTOPHOT MHUKJIYC Oerre
CTaBEH HA ONTUMU3UPABETO HA KOJOT 33 MHIYCTPHUCKA IeYKa Ha MOBEKe OC-
woeum cpeauun (CPU).

[IpenMer HA MCTPAXKYBAKHETO HA OBAA JOKTOPCKA JMCEPTAIAja € MEJI0CHA
onTuMu3aNMja HA ajaropurmute 3a mponecupame Ha EKI-curnamm. Ce 3a-
[OYHA KOTa MPBIAT €€ CPETHAB CO MOjOT MEHTOP, MOYUTYBAHUOT MPOdecop
Mapjan T'yries, mpu mro ce corjiacuBMe €O BU3HjaTa Ja IO ONTUMU3UPAME
nukycor Ha obpadborka va EKT, co rexuuku na HPC, Bo 3amena 3a 3rosiemen
JKUBOTEH KBAJUTET Ha 90BemTBOTO. CO MOjaTa MOIHA MOTHBAIN]A U AKTUBHO
y9eCTBO HA MOQjOT MEHTOP BO CEKOj U€KOp, MOCTUTHABME ONTUMU3UPAHE HA
EKT-uporecupamero.

IIpeamer HaA UMCTpaKyBame

CraructTuykuTe MOJATOIM, TOCTABeHU O cTpana Ha CBeTckara 3/paBcTBe-
na opranusauuja (C30/WHO), ro orkpusaar ¢dpenomenor, cropes koj, 6ose-
CTHTE, TOBP3aHU CO CPIEBUOT YIAp, Ce MPUYUNHA 34 PEUNCH €IHA TPETUHA, O,
CMPTHHUTE CJIy4aud BO CBETOT.

Hayuno e mokakaHo Jeka, BO OApeJeHN ciaydau, aHagm3ara Ha EKI'-
CHUTHAJIUTE, BO PEATTHO Bpeme, MOXKe Ja cracu efen )upor. Cemnak, mocrarn-
aute loT perennja ce coogyBaaT co rosieM Ipean3BHUK, T.e. 00OpadOTKATa HA
HOJATOIMTE KOU /10araaT CO Ojipe/ieHa OP3UHA U BO O'POMHM KOJTMYHUHU.

HocrurayBamara Ha HHGOPMATHIKO-KOMYHUKAIIUCKATA TEXHOJIOTHjA BO
PEIIaBameTo HA PA3IUIHATE IPodaeMu € (paKkTop 38 MHUIIMPAIHe HOBH MOK-
Hocru. EHA BakBa WHOBAIWja € aHAIM3ATA W WHTEpIperanujara Ha Enek-
rpokapauorpamor (EKT'), Bo peasnno Bpeme.

OBue cucremu, reHEPAJIHO, ce Da3UpAHU HA HAJMAJIKY deTupu akrepu. [Ip-
BUOT M HAjBAXKHUOT € ManmueHToT Koj ro Hocu EKI'-cenzopot, co mamepa ga
ce cobmpaar EKI'-curnaam Bo peasino Bpeme. Ilomaronnure ce CKeHHpaaT O
EKT -cen3opor u ce mpernecyBaaT Ha OJIMCKUOT MOOUJIEH YPEI, IPEKy Aedutu-
PaH KOMYHHUKAIMCKA MeauyM. MoOHIHHOT ypes, CO COOIBETHU ATLIMKAIINH, €
OZIrOBOpEH 3a mHHUIKjaaHa 06paborka Ha EKI'-curunanor. Ilonaramy, ammmka-
[UUTE Ce MOJIKHU [1a, TW TMPATAT TOJATOINTE 0 MEHTAPOT 338 TPepaboTKa HA
00JIaKOT, IITO TO MPETCTABYBA CJIEIHUOT CETMEHT.

[Tomarorure Kow moaraar co OapeaeHa OP3WHA U BO OTPOMHU KOJIMIMHE CE
obpaboTyBaaT BO 0OJAKOT, CO IEJT Ja Ce UACHTH(PHUKYBAAT TTOTEHIN]jaTHATE



HEPEryJapHOCTH Ha Cpiero. Bo ciyuam Ha merekTupanu mpoOIeMu, COOI-
BeTHHOT cermeHT Ha EKI'-curmamor ce mpaka Ha MeIUIMHCKHOT KaJap, 3a
[IOHATAMOIIHA IIPOLEHA U [I0jacHyBame. AKO THe ja MOTBPIAT IOTEHIUjaHa-
Ta 1I0jaBa HA CPIEB yaap, ce HOBHKyBa Dp3a momorn, HA MECTOTO KaJ/e IITO
ce naora manueHToT. Co 0BOj MPOIEC MOXKE /13, Ce CITPEYN HEOYEKYBAHA CMPT,
0CcOOEHO KOTa HABPEME € PErHCTPUPAH MOYETOKOT HA CPIIEBUOT yIap.

Ilopaau mHTEeH3WBHA OOPAOOTKA HA MOMATOIUTE, CEKBEHIIHjAJHUTE aJjIro-
PUTMH HE Ce JOBOJIHU /14 Ce W3BPIIU OBOj IPOIEC BO PEATHO Bpeme, ocobe-
HO KOTa CepBepoT BO 00JIaK MPOIECHPA WJIjaIHUIU TOJATOYHH CUTHAIN KOU
moaraaT of JaJIeYUHCKUTe HoceuKu censopu 3a EKT.

[IpenMer Ha WCTpaXKyBameTO HA OBAad JOKTOPCKA JMCEPTAINNja Ke Omie
aHA/IM3aTa Ha AJTOPUTMUTE 3a mponecupame Ha EKI'-curmanure, gu3ajHu-
pame MeTO/IONIOTUN 33 ONITUMHU3AIINja ¥ HUBHA UMILIEMEHTAIIN]a CO KOPUCTEHE
Ha HAYMHUTE 33 napaJjenausanuja Bo obsacra ,JIpecmeryBame cO BUCOKH 1€~
dbopmancu (HPC)“.

Omnrrro 3eMeno, anaan3ara Ha EIeKTpOKapIHOrpaMoT ce COCTOU O/ TTOBEKe
da3zu, a HAjIOMUHAHTHUTE W HAJBAXKHUTE CE CJIETHUBE: €IUMUHUDAIHE IITyM,
BejBIeT-TpaHCHOPMAIINja U OTKPUBAHE KAPAKTEPUCTUKH.

Hamara e Bo oBa Te3a e 1a Mpe3eHTHpaMe ONTUMU3UPAHU AJITOPUTMHA
3a ropenasezenuTe (Ha3u, CO KOPUCTEHE HA METOIUTE 33 IAPAJICTHIAN]A.

Obpaznoxxenne Ha pabOTHUTE XUMOTE3U U TE3N

Inasmara xumoTe3a BO JOKTOPCKATA JWCEPTAIMja TJIACH HA CJIETHUOB Ha-
guH: Ymorpebara Ha PA3IUYHATE HAYWHU 33 Mapajenn3amuja BO 0bacTa
JIpecmerysame co Bucoku nepdopmancu’ (HPC) moxke cepuosno na ru 3abp-
3a aITOPUTMUTE 33 IUTUTATHO Tporecupame Ha EKI-curaanure, ciopenberno
CO CEeKBEHIIUjAJTHUTE.

Honosaurento, ru geduHupaMe U CAeIHUTE XUIOTE3U:

e Ilapanenu3zanujara Ha qUrUTATHOTO Hporecupame Ha EKI-curnanure 103-
BOJIYBa, TIPOIECUPAILE BO PEAJTHO Bpeme, Ha OOJAKOT HA TMOMATOIMH, O
WJTjAIHUINA CEH30PY, HCTOBPEMEHO;

e Kopucremero Ha pazaugauTe maaTdOPME 3a MapaIeIu3alnja pe3yITupa
CO ONITHMAJIHO pereHne 3a 00JIaKOT;

e Kopucremero Ha pazjndHuTe MPUCTAHN 33 ONTHMU3UPAHE PE3YITUPA BO
noBeke ebUKACHU AJTOPUTMU;

o Ilapamenuzamnujara Ha AUTHTATHOTO Tporecupame Ha EKT-curnammre pe-
3yJITHPA BO CKaJAOUIHO perreHne 33 00/IaKOT, BO OJHOC HA CEKBEHIIHjaJI-
HUTE peIleHu]a.



Ilenu Ha mCcTpaKyBameTo

Co men 1a ce MOCTUTHAT HEINTE, IEeJOKYITHIOT eKOCHCTEM MOPa, Ia paboTn
BO peasHo Bpeme. [lapaam GakToT JeKa aKTepuTe Ha CHCTEMOT He Ce IBPCTO
noBp3anu Bo komOunaruja exau co apyru (loosely coupled to each other),
paboTemEeToO BO peaHO BpeMe, He 3aBUCH Of AILTHKAIIN]AaTa TYKY O IEJTHOT
eKOCUCTEM.

Kako pesyarar ma mpeau3BAIATE, HATATA IIET € Ja Ce ONTHUMU3NPA, MEeJI0-
kynuanoT nporec Ha EKI'-anann3a, co Kopucreme HAUNHA 3a TapaIeTn3alnja,
BO obnacra ,lIpecmerysame co Bucoku nepdopmancu’ (HPC), co men ma ce
0BOBMOKH paboTeme Bo peasHo speme. [lapanenusanujara Ke ce cIposejie co
KOPHCTEIHE HA CJETHUTE MIAT(OPMU:

1. Maxeler: ITapasenuau npecmerku o dataflow;
2. OpenMP: Ilapanennu npecMeTKr BO IEHTPATHHOT IIPOIECOP;
3. CUDA: [Tapasiesiau mpecMeTKu BO TPAdUIKUOT yPe.

@unanHaTa 1€ e Ja ce CIopeIaT Pe3yATaTuTe W Ja ce JOHece 3aKJIy 90K,
KOj ONTHMHU3UPAH ajJIrOpuTaM Ke rmokazke Hajmobap pesysrar. Ha oBoj nauun
Ke ce OBO3MOXKH Ja ce hOpMUpPa OMTUMATHO PEIeHne 3a 00/1aK, Koe Ke MOXKe
J1a m3paboTyBa MOJATOIN BO PEAsHO BpeMe 33 AeUHUPAHN MAIUEHTH U TOA
Ke Oujie CKaJ1abHUJ/IHO.

MeToan

Omnmrrr MeToau, KOW ce KOPUCTAT BO OBaa Te3a, Ce:

e AHaumsa Ha coBpemennTe Meronu 3a anasiusa Ha EKI-curmaaure Bo pe-
aJIHO BpeMe, KOW Ke ce Tpe3eHTnpaar. Ke ce HApaBh aHaIn3a Ha TPEIHO-
CTHTE U HA HEJOCTATOINTE HA AJTOPUTMHUTE.

e CuHTe3a Ha MapaJeTHATEe AITOPUTMHE 3a 00pPAbOTKA HA MOJATOIUTE, CIIO-
PeJl COBPEMEHUTE METOIOJIOTHH.

e Cnopenba Ha ONTUMUBUPAHUTE AJTOPUTMHU CO JTOCTAIIHUTE CEKBEHIUjaI-
HU AJITOPUTMU.

o EkcnmepumenTHpame HA TPEIJIOKEHUTE AJTOPUTMH HA PA3IAIHU TIJIAT-
dOpMH U TOTATOIH.

e EBanyarumja na pesyararure, co e Ja Ce MOCTUTHE ONTUMAJHO PEIleHue,
BO PEaJIHO BpeEMe.



CoapxxkuHa Ha Te3aTa

Osaa Te3a ce cocrou oz mer gena: 1) Ocuosuu kommentu, 2) Ilapase-
musaimja Ha DSP-dunrpupame, 3) QRS-mereknuja, 4) Ilogobpena QRS-
Jerekimja u kKiacudukanyja u 5) 3aKiiydok.

IIpBuor men ru mpercraByBa ocHoBuTe Ha obpaborkara Ha EKT, mpemmo-
JKEHATa apXUTEKTypa, IiardopMuTre 3a mapajen3alnja U HajCOBPEeMEeHUTe
aaroputMu 3a ontumusanuja Ha EKI. Toj ce cocrom ox 5 rimasu. I'masara 1
ja emabopupa MOTHBAILMjaTa 337 OBaa Te3a. Ilpe3eHTupanu ce CTaTUCTUYKH
MTOJATOIM M BasKHOCTA Ha oOpabdorkara Ha EKI'-curnaanre Bo peasaHo BpeMe.
HUcro raka, magenu ce u ocuopaute Aedpunanimn 3a EKI-curnanure. Bo I'na-
Ba 2 ce /1aBaaT TEOPETCKH JeTa/u 33 00/1aCTa HA JUTUTAIIHOTO IPOIECUPAHE
HA CUIHAJIATE, [ITO € BO OCHOBATA HA OBAA CTY/IH]ja.

CucremckaTa apXUTEKTypa HA MOOMIHATA AIJINKAINja, 3ACHOBAHA, HA Bpe-
Me, Bp3 ocuHoBa Ha EKI-mMemunmHcKHOT HAI30p, € namena Bo [masa 3. O6e3-
OemeHa e aHanmnW3a Ha Oapamara, 3aeIHO CO CIENU(MUKAINUTE 33 TU3ajHOT
Ha TakBaTa amnukammja. Ilorodmo, pazpaborenu ce ciieHapujara 3a padoOT-
HATE IPOIECH, JIEJTOBHUTE Oaparmba, (PyHKIMOHATHUOT ONUC, HePUKTUBHUATE
Oapama u cucremckure momesu. leramure 3a miardopMuTe 33 mapasiesii-
3anmja, KOW Ce KOPUCTAT BO TEKOT HA OBAa T€3a, Ce mpercraBeHu BO [ia-
Ba 4, umeno: OpenMP, CUDA u Maxeler. Koneuno, ['taBara 5 ru nperjieayBa
HAjCOBPEMEHUTE MPUOIU 33 ONTUMHU3AIN]A, TOBP3AHUA CO IPOIECUPAHETO HA
EKTI'-curnanure.

Bropwror mem, Bo 6 moryiaBja, M aHATIW3WPA W JaBA PA3JIUYHU BUIOBU OTI-
TUMHU3AIUN Ha, (PUITPUTE MTO Ce KOPUCTAT MpPeKy mporecupame nHa EKIT.
Bo I'nasa 6, ce kopuctu MacuBHaTa MOK Ha rpaduukure nporecopu (CUDA
6ubsmorekara), co HeJl Ja ce napaJjejid3upa Olepalujara Ha KOHBEP3Uja Ha
DSP-dunrepor. Mcro Taka, najienu ce alropuTaMCKUATE JETATU W PE3YITATH.
ITonaramowny onruMu3anuyu Ha HauBHara Bep3uja Ha CUDA ce mazenu BO
I'mama 7, co men ma ce Hajae onTuMasHO perienne. [taBa 8 mpeTrcraByBa HOB
MEeTOJ CO ONTHMW3WPAIE HA MPOTOKOT HA MOJATOIUTE CO KOPUCTEHETO Ha
wijagauny nporounu janpa (Maxeler-cucremn).

Quarpupamero Ha IIyMOT, 6a3upaH Ha JUTHTATHA BEjIeT-TPAHCHOPMAIIH]a,
e upercraseno Bo ['1aBa 9. [lorouno, cexpenrujaninara Bep3uja HA JUTHTAII-
HATA BejIeT-TpaHcdOopMaIlija, 1To ce KOPUCTH 34 (PUITPUPAHE U 33 eKCTPAK-
I1ja Ha KapaKTEePUCTUKUTE, € mapasesn3npana. ['masa 10, ox apyra crpana,
ce o0uayBa Ja IO ONTUMHU3WUPA, JOCTATHUOT OpPOj jajpa, BO paMKHTE HA Ia-
panennnor Bejier-anropuraMm. llormasjero 11 masa mpersen Ha HoOHEHHTE
pe3yiTaru, MoeJIMHEYHO, 3a CEKOoja CTY/IHja.

Hen 3 moara 3aemno co 4-rara raasa. Onrmrro, ce poKycupa Ha ONTUMU3N-
pameTo Ha aJropuTMuTe 33 oTkpuBame Ha QRS. Onrumannoro dunrpupame
ma DSP 3a QRS-orkpuBame e mageno Bo I'masa 12. Edekror Ha peceMrin-
pame e mpe3sentupan Bo [masa 13.

Bimjanuero wa amminTyanoro ckanupame Bp3 QRS-merekmujara ce pas-
wieayBa Bo [imaBa 14. Imasa 15 ro 3akiy4ysa jesior 3a gerekiujara Ha QRS,



CO TIPE3eHTHUPAIbe Ha JeTaJIuTe 3a JOOMeHUTEe Pe3yITaTh, a UCTO TaKa, MOBP-
3aHO €O paborara 3a orkpuBame Ha QRS.

YerBpTHOT M€ TM NPE3EHTUPA MOJOOPEHUTE AJITOPUTME 33 OTKPUBAME
Ha QRS u muBmara kiracudurkanuja. Ce cocrou ox Tpu noriasja. Exno of
Hajmo0puTe NOCTUTHYBaMma Ha OBaa Te3a e majeno Bo Imasa 16. Imasara 17
MpeTcTaByBa ajropurTaMm 3a kiacudunkamnuja Ha QRS, 6asupan Ha mpasmiara
3a o/IydyBarbe, KOj Dapa eIHOCTABHM OIepaliy, KOM MOXKe /ia paboTar Ha
Mobusiau ypemu. IIpersiesn Ha oBoj mesr e mazen Bo lyaBa 18, co mosp3ana
pabora Ha OoBaa 0OJACT U TOOMEHHUTE MOI00PYBabA.

Komneuno, meTTnoT menm ro JaBa 3aKJIy9YOKOT Ha oOBaa amcepraruja. Ilo-
TouHo, ['1aBa 19 rv 7aBa 3akJydoIUTe U TJIABHUTE PE3YJITATH HA OBAA TE3a.
W nnara pabora e, HCTO TaKa, IPE3€HTUPAHA, T.€. IIITO Ke IIPeTCTaByBa HAIINOT
CJIeJIEH 9€KOP BO OBaa ODJIACT.

I'naBHE pe3ynraru

OBa JO0KTOPCKa AMCepTAIja MPOU3JIEryBa O/l TIOBEKe 00jaBeHU Pe3yITaTh
HA HAIIMOHAJIHA U HA MeryHapo/Hu KOoH(epeHIr u BO ciucanuja. Pokycor
BO HUB €, TIPBEHCTBEHO, Ha mepdopmancure. Cute oBue 00jaBeHU TPYIOBU
00e30eyBaaT TEOPETCKY KAKO W eKCIIEPUMEHTAIHN pe3yiaTaru. [aBauTe pe-
3yJITATU O OBAE MCTPAXKYBaba Ce TAJEHU TTOI0JY.

Dataflow DSP filter for ECG signals

[Mapanenusupan e JICII-dunrepor Koj ciryxKu 13 Ce W3ABOjaT CYIITUHCKHU-
Te KAPAKTEPUCTUKK Ha eJIeKTPOKapAuorpaMckure curunanu [41].

[Iporokor Ha mOJATONUTE € ONTUMHU3UPAH CO KOPUCTEHE HA WJIjaHUIN
dataflow-jagpa. Co kopucremero na Maxeler-cucremure, obenexkanu ce 3Ha-
9ajHO BUCOKM OP3WHU.

CUDA DSP filter for ECG signals
Co kopucreme Ha rpaduuku ypexn, J1CII-dbuarepor e napajgenusupas, T.e.
co 6ubamorekara CUDA [40]. BnaunTenno BucoknTe GP3UHU ce 00esIeKaHN.
Optimizing high-performance CUDA DSP filter for ECG signals
Iperxonuo napanennsupannor JICII-duarep[40], e momonHUTENIHO ONTH-

Mu3HpaH co noeke MeTonu[42]. CriopeeHo O MPETXOAHUOT TPYJ, ONTHMHE-
3armjaTa /1aBa 3HAYAJHA OP3UHU.



Parallelization of digital wavelet transformation of ecg signals

Bejner-guaTepor € geranHo aHAIM3UPAH ¥ HaPATEJIH3HPAH BO CJICIHUOT
pyx [44]. Pesyararure ykaxysaar jJeka uma 3abp3ysame 10 20 %, cuopen-
OEHO CO CEeKBEHIMjaTHATA BEP3Wja Ha BejIeT-(hUITEPOT.

Optimal parallel wavelet ECG signal processing

[IperxonHo mapaje n3upanuoT BejieT-OUITEP € JOTOJTHUTETHO ONMTUMU-
3upaH co moseke Meronn[43]. Pesynrarure ykaxyBaar 1eka nMa 3a0p3yBarbe.

A cime-critical mobile application based on ECG medical
monitoring

Bo oBoj Tpyn [48], mamiara men e Ja ce HANpABH JETATHA AHAIN3A 34
Oapamara 3a BpeMe-KpUTHYHA MOOWIHA Aamaukanuja Oasmpana wa EKI-
creneme.

Design specification of an ECG mobile application

Heranna cmenudukanmja 3a AM3ajHOT HA BPEME-KPUTHIHATA MOOHIHA
ansmkanuja, 6asupana na EKT-cieneme, e nanpasena Bo oBoj tpy/ [49].

Optimal DSP bandpass filtering for QRS detection

Bo caeguuor tpys [64], Hamara ues e 1a ucTpazkyBaMe Kako Pa3JIMuHUTe
BPEIHOCTH HA (DUITPUTE BJIUjaAT BP3 TOYHOCTA, 1YBCTBUTETHOCTA, U IPEIU3-
mocra Ha QRS-merektopure. HanmpaBenara amanm3a BOIM KOH M3Tpaada HA
edukacern dbunrep, co Maga KOMIjyTepCKa CIOKEHOCT, HAMEHET J1a, Ce KOPH-
cru 3a HocauB EKT'-cen3op, 3ae1HO cO MOOUTHATE yPEIH.

Optimizing the impact of resampling on QRS detection

3asucHocTa Ha nepdopmancor va QRS-nerexmujara va dppexksennujara Ha
3eMambeTO Ha TMPUMEPOINH W, JIOKOJKY € MOXKHO, j1a ce Hajae QRS-merexTop
Iro Ke 6m1e BUCOKOE(DUKACEH IPH PA3IMYHYU CTAIIKY HA 3€Marbe IPUMEPOIy,
e ucTpaxysano Bo [65]. Hammor mpucramn pesyarupa co 3rojemenu nepdop-
MaHCH 3a oTKpuBame Ha QRS Ha opurmHaIHUOT ajaropurTam Ha XaMUJITOH.



Amplitude rescaling influence on QRS detection

Biujanuero Ha aMILIUTYJHOTO CKAIUPaibe BP3 4yBCTBUTEIHOCTA M 1O3H-
THBHATA IIPOrHOCTUYKA CTAllKa Ha XaMUJITOHOBUOT aJrOPUTaM 33 OTKPUBAILE
QRS ncrpaxysan Bo [46]. Bp3 ocHOBa Ha ONTHMHU3AIMATE, ONTUMU3NUPAH €
XaMHIJITOHOBAOT QJITOPHTAM.

Improving the QRS detection for one-channel ECG sensor

Exnno oxn HajmobpuTe JOCTHIHYBamka Ha OBaa Te3a e o0jaByBaHo BO [47], co
DJIaBHA TeJI, 73 C€ ONTUMHU3Mpa XAMWUJITOH ajIlOPUTAMOT 33 OTKPUBAE HA,
QRS na npeuor kanan Ha penukaupana u penpoayupara MUT-BUX EKT
6a3a Ha momaroru. Hamrero pemrenne paboTu momo0po O aJrOPUTMHUTE KOU
paborar cO OpurMHaJIHUTE CurHaJn, cemimpanu Ha 360 Hz.

ITpuMeHIUMBOCT HA pe3yJaTaTUTE

Tpynosure, Kon ce o6jaBeHN BO paAMKHUTE HA OBaa MTOKTOPCKA IHCEPTaIly-
ja, mobuja BayKHU pe3yaTaru. AJIFOPUTMUTE, KOU Ce TapajieIu3upaHu, NMa-
aT MHUPOK CHEKTap Ha TpuMeHauBOCT. lloTennujanmanre ob1acTu Ha HUBHATA
MPUMEHJIUBOCT C€ JIQJIEHU TTOIOIY.

ITomo6penu asropurmu 3a JJCII-dbunrpupame

Paznuanure Bugosu Ha DSP-dunrpu Gune npoydenu, BRIy IyBajKu HUCKO-
[IPOILYCHHU, BUCOKOIPOILYCHE (DUIITPU 38 TPOIyCHuUIM. onoTHITeIHO, TH HCT-
pakyBaBMe aJrOpUTMHUTE 33 PpuITpupaibe, ba3upanu Ha BejIeT-TPpaHCGOPMAIIN]aTa.

OBgaa Te3a 06e30e1u M eKCIePUMEHTAJIHO TH MTOTBPIN HU3aTa OMTUMU3NPa-
uu mpuctanu 3a EK[-npernponecupame. Cropes morpedara o auTepaTrypara,

CEeKOj OJT HUB MOXKe J]a €€ UCKOPUCTH ePUKACHO.

ITomo6penu asropurmu 3a orkpuBame Ha QRS

OBa e esieH 0/1 TTIABHUTE MPUIOHECH HA OBAA aucepranuja. OuruMusnpasme
asropuraM 3a orkpuBambe QRS na Xamunron, 3a eeH KaHai, Koj paboTu BO
125Hz. lerasure 3a HAIMOT METO][ Ce BeKe OOjaBeHHM BO €/IHO CIHCAHWE U
MOYKe JIa ce TIPUMEHAT, OCODEHO BO CPEIMHM 34 KOW Ce TOTpeOHU e(pUKACH!
AJITOPUTMU BO PEATTHO BPEME, KAKO IITO Ce MIPEHOCIUBUTE ceH30pu. Tpyaor e
peBeieH Ha MaKeJOHCKH ja3WK W TOj € TIOMECTEH BO CJeTHaTa TJIaBa.
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Haneunuacku EKT'-MmoHnTOpUHT npeKky obJiak

Hamwure Haoau 3a Bpeme HA OBUE MCTPAXKyBarba BEKe Ce WHTErPUPAHU BO

noprasor 3a ECG-monuropunr, umeno, Bo nopraior ECGAlert, nomapxkan
on ®OHIOT 3a WHOBAIIUM.

Cuucok Ha o0jaBeHUTE TPYIOBU

Bo pamkwnTe Ha OBaa JOKTOpPCKa Te3a, 6ea objaBenn 10 HAyIHH TPYIOBU 1

1 cucanwme co HaKTOp HA BiIKjaHHE HA MeryHApOAHO HHUBO. llemocHara jaucra
Ha OOjaBeHH TPYIOBHU, BO PAMKHUTE Ha OBAaad TE€3a, € JAIeHA TOI0IY:

1.

2.

10.

11.

,Dataflow DSP filter for ECG signals“ in 13th International Conference on
Informatics and Information Technologies, Bitola, Macedonia, 2016.
»CUDA DSP filter for ECG signals“ in 6th International Conference on
Applied Internet and Information Technologies, Bitola, Macedonia, 2016.
,Optimizing high-performance CUDA DSP filter for ECG signals”“ in
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vention on Information and Communication Technology, Electronics and
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»Optimizing the Impact of Resampling on QRS Detection” in 10th ICT
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»2Amplitude Rescaling Influence on QRS Detection in 10th ICT Inno-
vations 2018. Springer, Ohrid, Macedonia.

Llmproving the QRS Detection for One-channel ECG Sensor in journal
of Technology and Healthcare 2019, in press, IOS Press.
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ITonoOpyBame Ha QRS-1eTekTOpOT 32 €HOKAHAJIEH
EKT'-cenzop

Boseg

Hanpenokor na Unreprer (IoT) ru oxpabpu ucrpaxyBadure ga r0 MH-
ren3uBupaar cBojor ¢okyc na Eaekrpokapauorpamckara (EKT') o6paborka,
mocebHO 3a npeHocauBuTe ypeau. OBa moJe ce IperBopu BO HOIYJIapHA TeMa,
3a MCTpayKyBame BO OHOMETNINHCKUOT WHKeHepuHT[27]. Hammor npumapen
doKyc e HACOUEH KOH rpajeme KBagurereH nuaycrpucku QRS-merexkTop 3a
npenocyius EKI'-censop, koj 6u 6wt 3Ha9UTEIHO TTO00aD O/ TOCTOJHUTE IIBP-
cru anropurmu 3a QRS-nerekiuja, Kou He ce TOrOIHE 38 MOOHIHUA YPEIH CO
OIDAHUYEHH PECYPCH.

[Tepdopmancure na QRS-eTeKTOPOT CE eBAIBUPAAT CO IPECMETYBAHE HA
T0a, KOJIKy Buctuickun QRS-nukosu ke 6unar npouajaenu (QRS-cenzubunnt-
er, Qsgp) U KOJKY oi Tue orkpruenu QRS-mukoBu ce peasiHu OTUyKyBarba
(QRS nmo3uruBHA nporHo3upauka cranka, @4 p). Crangapanara 6a3a Ha 110-
JIaTOIK 3a TeCTUparbe ja npercraBysaiine MHCTUTYTOT 3a TexHOIOrHja BO Ma-
cauycerc - Tarabaza 3a apurmuu Bo 6oaununara Bo Ber Uspaen (MITDB)[99],
co 48 epumentupanu 30-munytau EKT-mepema. OpuruHajIHuTEe CUTHAIN CE
npuMepornu co koueep3uja ox 360 Hz u 11 6ura. llenra HA HAIIIETO UCTPAXKY-
Bame ¢ QRS-merekTop 3a curHasm co KOpHUCTEmne Ha (PPEKBEHTHA CTAIKa O
125 Hz u 10-6utna AD-konBepauja.

Enen oxn majuurupanure tpynosu 3a QRS-merekimja 3a masnu ypeau co
orpanuveHn pecypcu e ajroputmor Ha ITan m Tomkuuc[107]. Herorara 1sp-
CTUHA JIeKu BO (HAKTOT JIEKA TOj € JTOBOJHO Op3, 3a ja OuIe MCKOPUCTEH BO
PEeaJTHO BpeMe U MOXKe Ja ce crupasu co Oyunu curnajm. Cenak, mepdopman-
COT Ha OBOj AJICOPUTAM 3aBHCH O OuTHaTa pesosyuuja Bo AJl-KoHsepsuja.
Bo mammor ciy4aj, kora ce xKopucrea egHokananed EKI-cenzop u momaim
cranky Ha PpekBeHun, nepdopMaHcoT He bere 3a0BOJUTENECH, 0COOEHO 3a
curHaju co nomasm ammuTyau. [lopaan oBue pakTopu, Toa He Here 100po
peIrenre 3a Hac.

Hpyra anrepuarusa e Xamunronouor anropuram|[69]. Cropenbeno co as-
ropurmotr Ha [lan u Tomnkumc, TOj € coceMa CIMY€H, HO KOPUCTU MOMHAKBU
duirpu u npasuia. OBa e cTabUIIHO PEIIEHUE, HO CEMaK € HEeJOBOJIHO CIIO-
CODHO 3a CIIpaByBabE CO MAJIN AMILIUTY/I!, UJIH BaAPUjalNK, BO KOHCEKY THBHU
AMIJTUTYIHA HABOA, OCOOEHO KOTa C€ KOPUCTHU MOMaJIa OMTHA PE30JIyIHja BO
A JI-xouBep3uja.

Physionet.org[63] e ceondaren pecypc, Kaje IITO MOXKE Jia Ce HAJIAT U
moBeke ajropurmu 3a nerekiuja va QRS, Briayuysajiu Wavedet, gqrs, wqrs,
u sqrs. Tue npercraByBaaT eIHOCTABHU U OP3U AJTOPUTMU IITO DapaaT MaJ
OpOj pecypcu u moceayBaaT BUCOKA CEH3UOMITHOCT U TIO3UTUBHU TPEIUK THBHA
Bpenunoctu. Cenak, Tue ja HEMAAT KJIaCU(PUKAIM)ATa, KAKO U JOONEHATA, CEH-
3UOUTHOCT, ¥ TO3UTUBHATA MPEJIUTKTUBHA PATA, KOM Ce CMETaaT 3a MOHUCKU
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ox mobapyBadkara Ha KBajauTeren mHAycTpucku QRS-merexkTop 3a emHOKa-
majen npenocen EKT-cemsop.

ITo oBwe wHMNMjaHE HALIODPH, BHUMAHHETO HA HUCTPAYXKYBAUUTE MOCTEIe-
HO €€ HACOYM KOH DPa3BHBAIE MOCOMDUCTUIUPAHU AJITOPUTME 34 JETEKIN]a
Ha QRS, BkIydyBajKu ru MAIMIUHCKOTO YyU€HE W APYTUTE METOIN, KAKO IITO
e omumano Bo Jlen 2 (moBp3ana pabora). Mako HeKOM Of HOBUTE MPHUCTA-
U TIOCTUTHAA TOA00pH nepdOopMaHCcH, THe 00NIHO OapaaT TPECMETINBO UH-
TEH3WBHU AJITOPUTMHU, HECOOJIBETHU 3a NaMeTHUTEe TesedOoHu Kou cobupaar
kouruaynpann EKI' momaronu on mpeHOCInBU CEH30DH.

Bo wmamero ucrpaxkysame 10 momobpyBamMe XaMUJITOHOBUOT aJTOPUTAM
[69], 3a ma MoxkeMe ja ro HampaBuMe noedrKaceH 3a WHIYCTPUCKA TPUMEHA.
[TomobpyBamero Oerie MPUIMIHO JOJT MPOIEC MOPAINA E€KCIIOHEHI[W]jaTHATA
IPHUPOJIA HA HAIIOPOT 3a MOA00pyBaibe Ha aaropuraM. KoKy cre moOTHCKY
1o maprunara o 100 %, TonKy noseke ce 3rojieMyBa HAIOPOT 33 MHOTY Ma-
Jio mopoOpyBame Ha nepdopMancoT. BoBegoBMe HEKOJIKY CTOTHHU IIPABUIIA
3a CIpaByBabe CO WACHTU(UIMPAHUTE TPobieMu BO nereknujara Ha QRS u
HEKOJIKY MJIJAHUIN TECTOBH, 33 [ TH MPUCIOCODAT MapaMeTPUTe U MPAroB-
HUTE BPEJHOCTH 32 UACHTU(DUIIUPAHUTE pelreHrja. Hekon mparoBuu BpeIHO-
cru nobuja 106pu mepdopMaHCcH Ha HEKOU TECTOBH, HO JIOIIH Ha Apyru. Kora
U HUBEJMPABME HEKOU OJI [IapAMETPHUTE, Ce CJAy4Yd HEKOHM OJ IPABUJIATA Ja
HE pabOTAT APYTU CETOBU HA MOJATOIM 33 TECTUPAHE, U TOA HU CTAHA YIITE
[OTOJIEM TPEIN3BUK.

Koneuno, pesynrarnre mokarkaa [IeKa I'M peajM3WpaBMe HAIIUTE IIEJIH.
Hue nocTuraasme moOBHCOKH BPEIHOCTH OJ CUTE APYTU OOjaBEHU PE3YITATH,
HAaKO HUEe PaDOTEBME CO PEYUCH TPUIATH TTOMaJia (DPEKBEHINja HA CEeMILIH-
pame u co nojosuHa of AJI-KomBep3ujaTa Ha OUTHATA PE3OIYIIH]a.

CrpykTypara Ha OBOj TPy € OpTaHW3WpaHA HA, CJIEIHWOB HadwH: BO Jlen
2 ce mgucKyTHWpa 3a moBp3aHaTa pabora BO obsacta HA QRS-merekmmckure
anropurmu a Bo [en 3 ce mpercraByBa 3aJHUHCKATA cTpaHa. AHanu3ara Ha
npobsiemu e npeseHrupana Bo e 4, q07eKa nak, HAIIMOT IIPUCTAIl KOH 10-
nobpysame Ha ajaropurmure, Bo desor 5. Pe3ysrrarure o1 ekciepumenture ce
eBasiBUpanu Bo /len 6 m ciopenienn ce co apyru perenuja. enm 7 e mocseren
HA 3aKJIyYOIWTE W HA UIHATA PA0OTA.

IIperneg na avwepawypawia

Agnropurmure 3a gerexknmja Ha QRS, remepasino, ja ciemar ucrara py-
runa [106], nounyBajku co duirep 3a 06pabOTKA HA AUIUTAIHUTE CUTHAIIM
(OCII/DSP), kojiiro ru enumunupa uymor u baseline wander. Toram usie-
30T ce COBMara €O CET Ha MPAroBh. AJITOPUTMUTE, TJIABHO, C€ PA3INKyBAAT
HA HAYMHOT HA KOj THE I'M KAJKYJUPAAT MPArOBHUTE BPEJIHOCTH W T'H ITPUME-
HyBaaT MPABUJIATA, IITO € CAMO YIIITE €IeH CJI0j MPUMEHET IO MPAaroT.
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Honrure EKT-caumMKku, reHepaHO, ce MpeHaTpynaHu Co myM BO (opma

Ha CYNTHJIHA JIEBHjallMja HA CPUeBHOT puTam. IIoKpaj Toa, KBAIUTETOT HA

CUT'HAJIOT C€ MEHYBa IPU AJTEPHATHUBHYU IIPOMEHHM BO AMILIUTY/ATa HA Opa-

Hot. OCBEH aKO HIyMOT HE Ce eJMMUHUADA, JeTeKTupamero Ha Taksure QRS-
KOMTIIJIEKCH CTaHyBa TIOTENTKO W ja HaMaiyBa TowHocTa[82]. BaxkHo e 1a ce
HaBeJe JIeKa KOj OWJI0 aaropuTaM, AU3ajHUPAH 33 KBAJUTETHA WHIYCTPUCKA
QRS-nerexmnuja Mopa ga Ouie TPUIATOIJINB HA, KOj OUJIO THUIT HA IIIyM.

IMocrojar nekosnky ucrpaxkysaduku rpynosu[82, 20|, kou naBaar ceorndaren

[persies; Ha MoIyIapauTe MeToau 3a gerekiuja Ha QRS. Bo kparkuor nper-
Jien, objaBeHuTe asropuTMmu 3a oTkpuBame QRS, ce H6asuwpaar Ha ciaemgHUBe
TEeXHUKN:

JTudpepenyujayuja (gepusayuja), Kaje mToO ce MPECMETYBa PA3IuKaTa mMo-
Mer'y CErallTHUTE U MPETXOIHUTE MOCTPH, KAKO HAYUH 33 UACHTU(MUKYBAHE
Ha HAKJIOHOT, & MOTOA TOA Ce CIIOPEyBa CO JAIE€HATA ITPArOBHA BPEIHOCT
BriyuyBajku ru u asropuramor [Tan u Tomukuunc[107], XamuiaronoBuor
anaropuram|[69], uiau upyru penesanruu upucranu [12, 61, 100];

Yucwu JCIH-artopuimu, Kame mTo ce komomampaar ocHosuure JCII-
dbunTpu co pasnudHN KAPAKTEPUCTUKU CO IEJ Ja Ce TMPOU3BEEe TOjaceH
dunrep u 1a ce EMUMUHAPA MIYMOT KAKO U Ja Ce MCHUATPUPA CUTHAJIOT,
Taka IITo IparoT Ke ru ompeenu burosure [10, 28, 55, 58, 104];
ArTopulimu 30 UPELO3HABAIE HA WEMEG, KAaJe IITO IOJATOLMTE HA CHUI-
HAaJIOT Ce UCTU CO MPETXOMHO JebUHUPAHUTE IEMU U C€ OTKpUBA OpaHOBa
dopma BO cIy¥aj HA CJAWIHOCT BO JAI€HATE OTPAHUYIYBAMKHA HA aAMILJIUTY-
Jara ¥ HakjoHure [67, 32, 89, 126, 132];

Hespo wmpesica, nosekecnojuu nepuenropu (MLP), panujanna Gasuuna
dyukuuja (RBF) u Learning Vector Quantization (JIBO), ce kopucrar
33 AJANTHBHO MPEIBUIYBAE HA JIOKANMjATa HA CJICIHHOT mHK [138, 23,
39, 74, 89];

JuTutanna 6ejaetli-wpaHCHOPMaayufe ,Kaae mTo CUTHAIOT € PACIpeIe-
JIEH HA OJIPE/IEHN MEPHU HUBOA, & IMOTOA TMOBTOPHO C€ PEKOMIIOHUPA, IIITO
edpuKacHO To HaMaIyBa myMoT. IToToa ce mpuMeHyBa Iparor, 3a n36uparme
cooasernu nukosu [87], [21], [121], [93], [98];

Tenewickuwie aATOpuUWMY CE KOPUCTAT 33 ONTUMHU3WUPAMe Ha TTOJHHOM-
ckuot (uarep 3a npenporecupame. EK-curuaor ce copemayBa co agar-
TUBHUOT MPAr U MAPAMETPUTE CE€ ONTUMU3UPAHU CO MPUCTAI 33 T€HETCKA
onTuMusanyuja [113];

Cxpuenuows mapkos mogea (HMM), koj ce Kopucru 3a 1pucLOcobyBarbe HA
dyHKIMjaTa HA BEpOjaTHOCT, KOja, BApUpPa CIOPe], CKPUEHUOT MAPKOBCKH
CUHIIUD, TTPX IITO MOTOA MOJEJOT ja TMPEABUIYBa MOMEHTAIHATA COCTOj0A,
koja moxke ma omme QRS-kommiexc. P u T-OpanoBute, ucro taka, Moxe
na ce npecmeraar [33, 16, 35];

Xuadepwi wparchpopmayuja, Kage mwro Xuabepr-rpaHcgopmanyjara Ha
EKT curnanor ce npecmerysa co Fast Fourier-rpancdopmannmja (@OT),
a Toa ce KOPHCTH 3a KaJKyJIupame Ha curHasor [124, 102, 25| n
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o  Dasop wparcpopmayuja, Kage mto cekoj EKI-mpumepok e mperBopeH BO
dakTop 3a NMpaBUIHO yrupaByBame co P u T-Opanosure, Kou, 1o meduHm-
ngja, ce KApaKTepU3UPaaT CO MOHUCKHU AMILTUTYIU 07 R-IUKOT O HUCKA
LEHA HA LIpecMeryBabel, a 110Toa HUB I'u cropeayBa co uparor [92].

QRS-zerexkTopor co BuCOKH 1ephOPMAHCH JUPEKTHO BIMja€ HA H3HOCOT
7 Ha KBAJUTETOT Ha BpemuutTe wHpopmannn 3a EKT. QRS-merekTnpamero e
MHUIjaJeH 9eKkop 3a noHataMoraa EKIT-ananmsa.

OcHOBu

Bo oBoj men , ke ru o0jacHWME €BAJIBAIMCKUTE METPUKHU U K€ OBO3MOXKHME
mperses Ha OpuruHaIHUOT XamuaroHoB QRS-amropuram 3a gereknuja.

Mepeme Ha mepdopMmaHcuTe

[MpumepuTe mWTO ce KOPUCTAT BO HAINATA METOIOJIOTHja 34 TECTUPALE CE
uctu 3a IEC 60601-2-47-cranaapaor 3a mocebuu bapama 3a 6e30eIHOCT, BKITY-
YyBajKd U CymITuHCKUTE 1HepdOpMaHCH Ha aMOYJTAHTHUTE EIeKTPOKAPIAO-
rpadekn cucremn u ANST / AAMI EC57: 2012 3a TecTupame n N3BECTyBaHbe
3a pe3yararure o mepdOPMAHCOT HA CPIEBUOT PUTAM U aJITOPUTMUTE 33 Me-
peme Ha CE-cermentor. OBue cranmapau ja Kopucrar 0a3ara Ha MOIATOIM
3a apurmujara Ha MUT-BUX EKT [99] u Amepukanckara aconujanuja 3a
cpue (AHA)[72].

MITDB compxkwu nonyaacosun EKT'-cunvku 3a 48 aHOHUMHY JIUTIA, & CAMO
44 3anmucu T UCKIYy4yBaaT OHWE KOW COAp:KAT TeMrnobutoBu. OBUE CHUMKH
ce jaBHO JoCTAlHU HA BeO-crpannnara physionet.org [63]. ®pekBenimjara Ha
caumameTo e 360 mpuMepony BO CEKyHIA, IO Kanam, co 11-outHa pe3osyuja.
Naxko cekoja CHUMKA COAPIKHU [1BA KAHAJIU, BO HAJTOJIEMHOT JIE OJI 3aIMCUTE,
ro KOPUCTEBME IPBHUOT KaHa, uiaeHTudukysan kako ML II.

ITokpaj Toa, uue ru cirenume Gapamara cnopen Crammapmor IEC 60601-
2-47: 2012 3a MeIUITMHCKA €JIEKTPUIHA OIpeMa, 0CODeHO Oapamara 3a CyII-
THHCKUTE Mep(OpPMAHCH HA aMOYJIAHTCKUATE €TeKTPOKAPIANOrPA(CKH CHCTe-
mu. Criopes; oBue Gaparma, CeKOj IPeCMeTaH MUK Ce CMeTa 33 OTKPUEH, aKo €
HajMmuOry 150 ms nojgaieky o BUCTHHCKUOT PUTAM.

Herextupanunor QRS ce o3nauysa kako Bucruncku nosutuser (TP), ako
nerektopor QRS majae QRS mobmmcky ox 150 ms oa OHOj TITO € O3HAYEH.
Jlaxken nerarus (FN) e nponymren QRS, unu ako gerekropor QRS nponajae
QRS nangsop o nepumerapor on 150 ms, nmoxeka naxuuor nosutus (FP) e
norpewno gerekrupan QRS (nononnurenno nponajien).

Yecro KOpUCTEHNUTE MEPKH 33 U3BEI0a Ce CEH3UOMJINTETOT U TIO3UTUBHATA,
MpPEeIBUIYBAYKa, CTAIKA, MpecMerana co dhopmymara 0.1.
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DSP Filtering Peak Detection
Phase | Phase Il
LPF | | HPF | | dfi] | | ABS sl AVG | Pealf |, Detection
16Hz 8Hz dt 80ms | . | Detection Rules

Cruka 0.1: XamuaTonoB mpucran Ha gerekiuja va QRS.

TP P TP
" TP+ FN TP+ FP

ITokpaj Toa, 3a ga ce 0ca0001 ONTUMAJIHA BPCAHOCT HA MapaMeTapoT, Hie
OBO3MOXKHMBME MHOT'Y eKCIIEPUMEHTAJIHI TECTOBH, U TO TpecMeTaBMe 6POjoT Ha
BKyIHU rpemiku, co popmyna 0.2, kae urro 36upoT HA IPENIKUTE € O3HAYEH
co FP u FN. Kora rpemkure ce momaJiu, ce MOCTUIHYBaaT 11og0opu nepdop-
MaHCH.

SE (0.1)

Errors =FP+ FN (0.2)

Anaim3za ma XaMIITOHOBUOT aJjiropuram

Codrsepor co orBopen kox va EP Limited 3a gerexmuja #a apurmun ciy-
JKM KaKO OCHOBA 3a oBa ucrpaxkysamwe[70, 69]. Toj uma nesnocna umiuieMenra-
nuja Ha C-KOIOT O anropuTMOT Ha XaMHJITOH, CO TPU PA3JIMIHE JIETEKTOPH
U CO eIHOCTaBHA KIacuUKaIMja Ha OTUYYKYBama. JIBa O IeTeKTOpuTe ce 34
OIIIITa, HAMEHA, IOJeKa TPETHOT € 33 CPEIMHU CO MaJia KOJUYNHA HA MEMO-
puja.

AnropuTMuYHATE IETATE TEOPETCKH e 00e30eMeHN BO HUBHATA OPATHHA-

Ha pabora [69]. Ciuka 0.1 ro npercraByBa KOHIENTYAJIHOTO HUBO HA JIBETE
¢a3u u HA YEKOpUTE, KOU Ce NOCTABEHM HA BUCOKO HUBO U CE€ CIPOBEJIEHH 34
cekoja ox Tue (as3m.

Asrropurmor 3anounysa co uuckornporyced dunrep (LPF) co, cutoff dbpexsen-
nuja ox 16Hz. Iloroa, curaanor ce mpeHecyBa HU3 BHCOKOMIPOIyCeH (uiTep
(HPF) ox 8Hz. [dsara duiarpu umaar edexr na kanasen dunrep (BPF). Ilo-
TOA, HAKJIOHOT HA CAIHAJOT C€ IIPECMETYBa CO METOJA Ha nudepeHnmjamnmja
(%), LIPOCJIEJIEHO CO IpecMerKa Ha ancoiayrHara Bpeanocr (ABS). Iocaen-
uuor 4dekop (AVGQG) ce cocrou oJ npecMeryBarbe Ha LIPOCEYHOTO BPEME O
80 ms.

ITo erumunupame Ha rrymor Bo (asara va JICII-dunrpupamero, aaropu-
TaMOT IPOJIOIKYBa CO (Ga3aTa Ha JETeKIja Ha TINKOT. Beke nma 1Ba nparosm
3a AVG-curnaior, Kiacuguiupaiu Kako:

o Cwowuyer Upat co PUKCUPaHA BPEIHOCT U
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o Junamuuen Upunaiogaus upal (DAT) xoj e mox BiujaHre HA AMILUIUTYIN
O/ HAjHOBUTE TTUKOBH.

OpuruHaJIHUOT ajropuraM ro nocraBysa craruukuor npar (STHR) Bo
Bpennoctr MIN PEAK AMP = 7. Onmro npaBuio e neKa 3a MOHUCKA-
Ta BPEJHOCT HA CTATHYKHOT [par, K€ MMa I[OBEKe IMMKOBU, HO, UCTO TaKa,
Ke ce orkpujar MHOry apredartu. O apyra crpana, TOBUCOKATA CTATHYIKA,
MParoBHa BPEIHOCT JaBa MOMAJIKY NMUKOBH, HO M noMast 6poj apredakTn.

Kora ke ce Haje HOB JIOKaJIeH UK, JUHAMAYHAOT a/TAITHBEH IIpar ce Ipe-
CMETyBa CO 3eMarbe HA CPEJIHHUTE BPEIHOCTU 33 BUCTUHCKUTE MUKOBU, HO W
IyMoT BjeryBa Bo npezisui. CpemgHara BpEIHOCT ce MPecMeTyBa co hopmy-
aara 0.3.

1 X
8

Hexka ce o3madm cpeanara BpPegHOCT 3a PEATHUTE OTIYKYBAIba U IMHKOBU
HaCTAHATH O] TITyM, (mean W nmean, COOABETHO, a MCTO Taka, TH Heka e
[OCTOjaH MYJITUILIAKATOD (CO cranmapana speanoct of 0.3125), a moroa DAT
ce nipecmeTryBa of dhopmymara 0.4.

mean =

(0.3)

DAT = nmean + (gmean — nmean) x TH (0.4)

Kora ke ce merekTupa HOB JIOKAJIEH MAKCUMYyM, CO KaJKyaupame Ha AVG-
BPEIHOCT, ¥ [IBATa Tpara e CIOpeayBaaT CO OBaad BPEIHOCT. AKO BPEIHOCTA,
€ MOBUCOKA OJ CTATHYKHUOT MPAT, TOTAIl C& CMETa 3a MOTEHIIN]aeH UK, HHA-
Ky Toa 6m Ommo apredakr. Toa e kracuduIUpaHo KakKO MUK HACTAHAT O
[IyM, aKO IIPECMETAHATA, BPEJIHOCT € IMOHUCKA O/l JUHAMUYIKHOT HUK U, KAKO
BUCTHUHCKO OTYYKYBAaHE, aKO € TIOBUCOK Ol JUHAMUYIHHUOT aJATITUBEH TIpar.

Cmuka 0.2 rv pUKaXKyBa U JIWHAMUYKHATE U CTATHIKUTE MPArOBU. 3abe-
Jexere Jieka orkpuenure mukoBu Al, A2 ... A7 ce KareropusmpaHu Kako
apredakru (momasu ox craruukuor mnpar), a R1, R2, R3 u R4 kako peas-
uu oryykyBama. N1, N2 u N3 ce cmeraar 3a nukoBm HACTAHATH OJ IIyM,
OuIejKu JIOKAJIHUOT MAKCUMyM Ol CEKOja €THKETa, Ce MOMAJIHM Ol JUHAMUIHO
MIPECMETAHUOT TPAT.

UHgenmudpurayuja Ha upodaemuine

HecoBnarameTro BO aMIIUTYINTE HA TUKOBHATE MOXKE JIa BOBEJE JIOIIa, Ie-
reknuja. UnentudukyBaBme IBa CIydan KOTA TOA CE CIydH:

® HU3a OJ] HUCKHU aMIIUTY/HU IMKOBHU I10 U30JIUPAHA BUCOKA aMILIUTY/Ia HA
11UK;
® II30JIMPAaH HU30K aMILIUTY/IEH MUK M0 HU3a OJf BUCOKA AMIIJINTYIHN TUKOBU.
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———- Static

—————— Dynamic

Energy

time (s)

Cnwmka 0.2: JJerekrupame Ha apredakTH, MMKOBH HACTAHATH O IIIyM W BH-
CTHUHCKY TIMKOBH, BP3 OCHOBA HA BPEHOCTUTE HA CTATUIKATE W TUHAMUIKATE
[PArOBH BO OPUTMHAJIHUOT AJTOPUTAM HA XaMHITOH, NPE3EHTUPAH HA CHUI-
HasnaroT u3Ba 10K o1 MITDB-3anuc 124 (1046 cex.).

ITokpaj Toa, OCBEH MPEIU3HOTO MOCTABYBABE HA [IPArOT U OYEKYBABETO HA
MOHUCKUTE TIep(MOPMAHCH HA, UCEUYEHUTE CUTHAIIN, TH aHAJU3UPABME CErMEH-
TUTE KQJIE IITO AJTOPUTMOT MMOKAKA, TIOMAJIA, CEH3UOMTHOCT U CenuUKAII-
ja, naKo CMrHAJIOT He OMJI MONPEYeH O IIYMOT. 3aKJIY4Y€eHO € JeKa MOHUCKUTE
nepdopmancu Oure J00MeHN 33 KOHKPETHH CIyYand Ha CETMEHTH U IIPOOIeMH,
KOU MOXKE JIa Ce KIACHMDUIIPAAT KAKO:

® MelIaBUHA OJf HUCKU U BUCOKHM AMILIATY/IHU ITMKOBH;
e ejiuMuHalLMja HA apredakTu u
e morperrHa R-nuk-jgoxanmja.

Jlomia ,I[eTeKHI/Ija Ha IMMAKOBU CO HUCKHU aMIININTyIN

Cnwka 0.3 1o MpeTcTaByBa CIyYajoT KOTa MPeTXOIN N30JNPAH MUK CO BHCO-
Ka aMILIATYIA, & CJI€IN HU3a, O HUCKYU aMIIUTyaHu TuKOBU. Ce mpuKayKyBa
cerMmeHT o071 8 cexyHau ox MITDB 3anuc 114, BKiy4yBajKu I'il OpUTHHATHHOT
CUTHAJI W M3JIE3UTE [0 W3BPIINYBAHETO HA CEKOj OJ YeKOopuTe 3a 00paboTKa
BPF, ABS u AVG.

Cumka 0.3 1), ru nueHTuUKYBa CTATUYKUTE U JMHAMUYKUTE [IPAIOBU U 'O
MOKAXKYBA CIYyYajOT KAJIE IMITO OTUYKYBAHATA MEIy IBETe BUCOKU aAMILJIUTY/IN
ce MPUKaXKyBaaT Kako apredaxTu, nako tue rpeda ga oumar suctuacku QRS-
OTYYKYBambAa.

[Ipuuunara 3a Jsomara JeTeKIrja HA HUCKUTE AMIUIATYIHH UKOBH IO
BHCOKM aMIUIUTY/IHH [IUKOBH [IPBEHCTBEHO C€ JOJIKUA HA BUCOKHUOT CTEIIEH Ha
cTaTnaKuoT mpar. Jlypm m ako HeKOj] TMpaBM WCIpPaBKa CO HAMAJyBambe Ha
BPEIHOCTA HA CTATUYKWOT Mpar, 33 Ja ' BKJIYYH OBHE TUKOBU, C& yIITE Ke
nMa pobiteM, 6e3 oryies Ha (PAKTOT JeKa MAKOT Ke Ce TPETHPa KaKO KAHINIAT
u Ke ce MpUMEHM TPOBEPKa HA JAWHAMUYKK mpar. 1Toa e Taka, 3aroa IITo
BHCOKHMOT AMILIATY/IEH UK K€ ja 3rOJEMU JIUHAMUIKATA BPEIHOCT HA IIPAroT
MPEIN3BUKAH Ol TPECMETKATA HA CPEIHATa, BPEIHOCT W TaKa TMHUKOBUTE Ke
oumar kaacuUIMPAHNA KAKO TMTHKOBYA HACTAHATH O[T TIIyM.
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Cruka 0.3: MI3Bamomm o CUTHAJIOT 34 U3BPITYBake HA XaMUJITOHOBUOT AJIT0-
puram Hag MITDB-3ammc 114 (240 cek) a) Opurunanen EKI-curnas; 6) W3-
Jie3 1o Kanajen ¢uirep; B) U3ne3 no audepennuja u npecMeTka Ha anco-
aytau Bpeauocry; r) V3znes no npocekor 3a unrepsas ox 80 ms.

I/IaonnpaHn IIMKOBH IIO CEKBEHIIMM O/l IIMKOBMN CO BHUCOKMHN
aMIINTyau

Bucokure aMmInTyqHE TUKOBY JUPEKTHO BINjaaT HA MPECMETKATA HA, TU-
HamMu9HO amanTuBHUOT mpar. Ce mpecMeryBa TOBTOPHO, CEKOTAIl KOTA WMa
HOB JIOKAQJIEH MAKCHMYM, CO aMILIMTY/a MOBHUCOKA OJf CTATUYKUOT mpar. Bo
OBOj CJTy4aj, HOTEHIIMJAJTHUOT UK W BPEIHOCTUTE MOHUCKU OJf JUHAMUIHUOT
[par, ce CMeTaar 3a [UKOBU HACTAHATH OF IIyM, JAOJEKa APyIHUTEe Ce CMeTa-
ar kKako BuctuHCKH QRS-mmkoBu. OpUTHHAIHUOT AJTOPUTAM TH CKJIAIUPA
MOCJIeHUTE 8 AMIUIUTYINd Ha MUKOT ¥ ja mpecMmeryBa DAT-spemnocra, co
dopmynara 0.4.

MMupokara ananuza na MITDB apxusa 201 mokakyBa MPeMHOTY ITPOMa-
[IyBama, 0CODEHO BO CiIydau Ha abepupaHu MPETKOMODPHU IIPEABPEMEHNU yiIa-
pu (kiacuduuupaHu Kako OTYyKyBatba) KAKO LITO € WIYCTPUPAHO HA CJIU-
ka 0.4. /IBe on OoTYyKyBamaTa, MCTAKHATH KAKO CTAHIADIHU, HE MOXKE Ia
Ooumar omdareru, MOPaaN IMHAMUYHUOT AJANTUBEH MPAr W CPEJIHATA IIpe-
cMeTKa, OuejKu moBeKe 0 HAJHOBUTE OTYYKYyBarmha MMAAT BUCOKA aMILIUTY-
na. Bo oBoj ciry4aj, HUTY CTATUYHMOT HUTY AWHAMUYHHOT AANTUBEH IIPAr
Hema jia paboru. Ilpumepor e obenexkan Ha ciaukara 0.5, co nukoure C' u
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Cruxka 0.4: U3Bagouu o1 CUIHAJIOT 33 U3BPLIYyBambe Ha XaMUJITOHOBHOT aJi-
ropuram Haj MITDB-zanmc 201 (424 cex.) a) Opurunanen EKI-curmai;
6) Uzne3 no kananen dbunrep; B) N3e3 o audepennuja u mpecMeTka Ha
arncoJlyTHU BpeaHocru; r) V3mmes mo npocekor 3a uarepsas ox 80 ms
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Cruka 0.5: CraTudku ¥ AHHAMEYKY IPArOBHE BPEJIHOCTH, JOOUEHN HA U37I€3,
110 1pocekoT 3a urrepsast o1 80 ms na MITDB-3amuc 201 (424 cek.)

D, kou tpeba na ce kiacuduiupaar kako QRS-nmkoBu, HO THE ce OTKpUEHU
Kako apredakTu, OuaejKu HUBHATA BPEIHOCT € TIOMAJI Off CTATHIKUOT Tpar.
Kiacudukanuja Ha apredakTu

JuHAMUYIKHOT aganTtabuyieH mpar uAeHTU(UKYBA MTHUKOBH HACTAHATH O
IIyM ¥ peaJinu NMukoBHu. Mako, BO moBeKe caydan, JUHAMWYIKHOT MTPUCIOCOD-
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JINB TIpar pearupa COOJBETHO, C& YIITE MOCTOjaT CAydad KaJje ITO MHUKOT
HACTAHAT OJI IIIyM € TOTPEITHO MPECMETaH W MPUKAKAH € KAKO BUCTHHCKH.
Touna knacudpukanmja Ha apredakTUTE € O MPUMAPHA BAKHOCT 3a KBaJIHU-
reren unpycrpucku QRS aerekrop.

3rojeMyBameTo Ha CTATUYKHMOT TPar, JUPEKTHO IO HAMAaJIyBa OpojoT HA
apredakrure. Cemak, 0Ba, APACTUYHO ' 3rOJEMYBA MPOMYIIITEHUTE OTIYKY-
Bama. OBa, UCTO Taka, BayKd U 33 JUHAMUYKH MPUCIOCOOIUBOT mMpar. 3a JIa
ce Haj/le ONTUMYMOT HA CTATHYKWUTE M HA JUHAMUYIKUTE MTUKOBHU, Tpeba Ja ce
H6apa KOMIIPOMUC IITO Ke JOCTUI'HE BUCOKH BPEJHOCTU U HA COH3UOUIUTOT, U
MO3WTUBHA MTPEIBU/IYBAYKA, CTAITKA.

Enen npumep e uiycrpupan Ha cauka.0.5, Kaje MmO TUKOBUTE O3HAYEHU
kako A, C, D, E u G, ce aucku ammyuTyaau nukosu. Q1 Apyra cTpaHa, KO-
BuTe o3navdenu kako B, F ce apredakru. Co cranmapIHHOT mpar, TUKOBUTE
A u E ce cmeraar 3a kanaugaru 3a QRS, moneka ocranarure ce cMmeraar 3a
apredakTu. 3a 0BOj KOHKPETEH CJIydaj, CO HAMAIYBABE HA CTATHYHUOT IIPAr
1o 3, ke ce ondarar cuTe BUCTUHCKHU MUKOBHU, HO apredakunor muk F ke ce
cmera kako muk. O Apyra cTpaHa, 33IpKyBambeTO HA CTATUYHUOT Tpar Ha 4,
camo Ke ro jgerektupa G Kako MUK, a JIPYrUTe MTUKOBU MOBTOPHO K& OCTAHAT
apredaKTH.

Ilpecmerka Ha JiokanujaTa Ha R-timkor

Enen ox npobiemuTre BO M3BPIMYBAKHETO HA OPUTHHAJIHUOT aJTOPUTAM HA,
XaMuiiToH e npaBuHOTO OTKpuBame Ha QRS-tmkor. Cnukara 0.6 ro miy-
CTpUpa TaKOB CIyUaj, KaJe TTO JIOKAJIHUTE MAKCUMyMU ce 0DeieyKanu co A,
B, C, D u E. Ymre enen nmuk ce mojaByBa HA M3JI€30T O KAHAJIHUOT (-
Tep, co o3Haka F, kako mro e npukaxkano ua caukara 0.6 6). Biuckocra na
osunavenure ukopu B, C u F, npenu3suka aBa JOKaIHM NWKOBH, HA WU3Je3
o MPoCceKoT 3a maTepBas o1 80 ms, o3nadenu Kako B u C, na ciukara 0.6
¢). Kora craruukuor upar ce upumenysa Ha [IPOCEHYHOTO BPEME BO TEKOT HA
unarepsa ox 80 ms, mukoBure C, F u D ce merektmpaar kako apredakTi,
momeka A, B u E; ce unenrudukyBaaT Kako MOTEHIM]aTHI TUKOBU. Buiejku
JIWHAMAYKAOT MPAr € MOHU30K O CTATUYHUOT, OBUE OTYyKYBamha Ce KJIACHU-
durmpaaT Kako peasiHi.

3abesiezkere T0 IOCTOJAHOTO JOIHEke Kaj (DUIATEPOT, KO Ce 0/[3eMa 01 JIO-
KalnjaTa HA HAjBUCOKUTE BPEIHOCTH (KAKO MITO € TTPUKAYKAHO HA TIPOCEUHUOT
curnasien usjes). Mako npaBuiaHo 10 oipeayBa nperxoganor QRS-muk A, u
caeganor QRS-muk E, cemak mpaBm rpermmka BO OfpenyBameTO HA MUKOT B.

OpuruHaTHHOT aJiropuTaM Ha XaMUJITOH ja JeTeKTupa Jokarujara Ha R-
nukosure, Tue ga 6maar Bo toukure AC, BC, u EC, nako uMaar pasamdHn
peasan mukosan jgokammu AR, BE u ER.

Anropurmor Ha XaMUJITOH OTKPUBA MUK OA3UPaH HA TPETXONHO MPECMe-
raHo 3ajonnyBame[70]. Mako duarpure co3maBaar GUKCHO 3aJ0IHYBAbE,
aBTOPOT UCTAKHYBA [I€KA OJJI0KYBAHETO HA [ETEKIIN]aTa MOXKE JIECHO /13 Ba-
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Crnuka 0.6: W3Bamonu on CHTHAJOT W J€TEKIHja HA R-MHUK BO TEKOT HA
MITDB-3amuc 201 (426.4 cek): a) Opurnnanen EKI-curnan u sokaman mu-
kosu A, B, C, D u E; 6) 351e3 no kanasen duirep; 8B) Uzies no nudepenuja
U [pecMerKa Ha alcoJlyTHU BpeanocTy; ) 13s1e3 10 upocekor 3a uHTEpBa
ox 80 ms.

pupa ox 395 ms 10 1 cek, BO 3aBUCHOCT OJ, CPIIEBUOT PUTAM W MPABUJIOTO 34,
nereknujara. BaskHO € 1a ce HANOMEHe JIeKa MEeTOJOT Ha HA33IHO mobapy-
Bab€ MOXKE 13, TPEIM3BUKA (PUKCUPAHO OIJIaraibe, aKO aJrOPpUTMOT 32 HA3A/I-
HO mpebapyBame He 3abeekyu HUKAKBU JOKamHu nmukou. OTTyKa, MOKeMe
713 3aKJIy9IUMe JIeKa OPUTHHAJTHUOT aJIrOpHTaM Ha XaMHUJITOH ja 0be30eayBa
Hajmobpara MOXKHA To3uIrja Ha R-mkoT, mako Toa He 3HAYM [IeKa Taa € ce-
korari touna. OBoj mpobjieM MOXKe 0CODEHO 13 BJIMjae HA 3TOJEMYBAHETO HA
BKynuuot 6poj FP.

OBoj KoHKpeTeH ciiy4aj e 3abenexan Bo peuncu cure MITDB-3anucu. Na-
KO Pa3/IMKaTa He e TOJIKY NoJjieMa, [OCTOjaT CJIydan KaJie IITO Pa3IuKaTa Mery
peasHaTa U OTKPHEHATA, JIOKAIMja, € IOrojieMa.

ITogod pysarbe Ha arTOPUTULMOUL

3rosiemMmyBameTo Ha mepdopMancoT Ha aJITOPUTMOT € JUPEKTHO TTOBP3aHO
CO TOCTaBYBAHETO HA TPATOBUTE M CO AJITOPUTAMCKOTO TOA00DYBAIHE.
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Ho,zloﬁpyBaH,e Ha ,I[eTeKI_[I/IjaTa Ha HUCKO aMIIVIMTyJHUTe IINMKOBU

Herannara ananusa nokaxkysa Jeka dekopor (ABS), uzspiien npes mpo-
CEeYHOTO BPEMe, HEMA J[a MOKe /14 C€ CIIPABH CO JIOLINTE Pe3yJITaTh BO OTKPU-
BAaIETO HA HUCKOAMILIUTYAHUTE MUKOBH. OBA € 0COOEHO BAYKHO BO CIIyYaUTE
KOT'a CUTHAJIOT MPECTABYBA MEMIABHHA O/ €JHO BUCOKO aMILIUTYIHO OTIYKY-
Bambe, a TOTOA € TMPOCJIEIEH CO HEKOJIKY OTYYKYBamha CO HUCKU aMILIATYIH.
Hue ja nckopuctuBme naejara npercrapena Bo aaropuram Ha Ilam Tomnkmmc
[107] 3a KBaJApUparbe HA CUI'HAJIOT, HAMECTO [IPECMETYBAE HA AIICOJLY THATA
BPEIHOCT.

Cruka 0.7 mpercraByBa CIydaj BO KOj KOMOWHAIMjaTa, O KBAIPUPAHUOT
U ONTUMWU3UPAHUOT CTATWYKH TPAr Ke ja moao0pu JeTEeKInjaTa Ha HUCKUATE
eneprercku nukoBu. ITukosure o3nadenu kako A, C, E, F, H u I ce Bucrun-
cku R-ttukosu, mogaeka B u D ce apredaxtu. QOpuruHaauor ajaropuram, Koj
KODUCTH IIPECMETKA Ha AIlICOJIyTHATA BPEIHOCT U IPOCEKOT 3a€/IHO CO CTa-
TUYKHWOT TIpar, He € BO cocTojba ma ru kiaacudunupa F u I kako BucTHHCKH
nukoBu. Cemak, KBaJIPUPAHUOT W MPOCEYHUOT CHUTHAJ, BO KOMOWHAIMja CO
HOBHOT (IIOMAJI) CTATUYKH MIPAr, MOXKE [a JETeKTUPA JEKA [OCTOM JOBOJIHO
eHepruja 3a moreHryjasen nuk. [IpocekoT HA KBaJAPUPAHUOT CUTHAJI, UCTO
Taka, ru o3HadyBa B m D kako moreHnujasHu muUKOBU. Bpojor HAa TakBUTE
MUKOBY MOXKE 714 Ce HAMAJIM CO IMHAMUYKHUOT MPAT, WJIN CO BOBEIYBAETO HA
MpaBUjIaTa 3a JAeTekimja Ha apredaxtu. Cenak, mocrojar Hecakauu epeKTH,
0Cc0OEHO BO MPECMETYBABETO HA JUHAMAYKHAOT AJANTHBEH IPAr.

OBoj mpar ce 3rojieMyBa CO 3roJIEMyBABETO HA AMILTHTYIATA U CO TOA €€
OTEXKHYBA IIPUCIOCOOYBAMHETO KOH HEHA/IEJHUTE IPOMEHH BO aMILIATYIUTE.

OBaa omepanmja ce oIHECYBA KAKO BarKEH 3aCHJIYBad, OCOOEHO aKO € TOa
MPOCJIEIEHO CO TIPECMETKA, CO Mpocek Ha maTepBaj o4 80 ms. OBa mokaxkyBa
JIeKa OBOj HAYWH 34 CIPABYBambEe CO UAeHTU(MUKYBAHUTE MPOOIEMH € TIOI00ap.
Cenak, oBa He € JIOBOJHO, OUIEjKU OBOj aJlrOpUTaM He MOXKE J[a Ce U3BPIILYyBa
CO CTATWYK{ IIPArOBHU BPEIHOCTH U NOTPEOHA MY € JIWHAMUYKA [IPECMETKA
CO IIOMOII HA JIPYI'U IIPABUIIA.

Hue cripoBeoBMe HEKOJIKY TECTOBHU 33 €KCIEPUMEHTHUPAE CO MPATrOBHU-
te Bpexuoctu STHR ox 2 mo 50, 3a ma ce mpoHAjae OnTHMAajIHA MPArOBHA
BPEIHOCT, TIPU TITO OPOjOT HA rPemKuTe € MuauMases. Jlesuor men ox ciu-
KaTa 12 ja npercraByBa JIayKHATA JIETEKIHM]ja 3a CIIPOBEJIEHUOT €KCIIEPUMEHT.
IIepdopmancor Ha ajaropuTMOT MMOCTENEHO CE HAMAJIYBA KAKO IITO MPAroT
ce 3roJleMyBa, HajMHOTY Topaau BucokuTe pegroctu Ha FP. Hajaobpu mep-
dopmancu ce nodbusaar 3a STHR = 2. 3abene:xxaBme mamasen 6poj ua FN, ox
Ka/Ie IITO ce A00M mejara 3a T0a, KaKo Ja ce nobujar momodbpu nepdopMaHcu
ako ro Hamasmme 6pojor Ha FP co apyru meroan.
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Cmuka 0.7: M3agoum on cuUrHaiot 3a M3BPIIYyBambe HA AJCOPATAM HAa/l
MITDB-3amuc 201 (424 cek.): a) Opurunnanen EKT-curnamn; 6) Wsmnes mo
HpOCeKOT 3a uHTepBajl 04 80 MsS CO KOPUCTEHE HA OPUI'MHAJHUOT AJTOPHU-
ram Ha XamuaTon; B) V3/1e3 mo KBaApaTeH mpocek 3a uaTepsas o 80 ms co
ONITUMU3HUPAH CTATHUYKHU IIpar.

ITomo6pyBame Ha mpecMeTyBamkeTO Ha JoKanujara Ha R-nukort

Bunejku anropurmMor XaMuITOH caMO IPUOIUKHO IO JIOMUPA MTUKOT, €/1eH
Ha4YWH 12 ce Hamaam Opojor ma FP, mTo ce ciaydysa mopamau ymopHOcTa 3a
YTBP/yBambe coojBerHa Jokanuja Ha R-nuk, e na ce 6apa BUCTHHCKUOT UK
BO Onmm3unHa. Miejara e ga ce Hajae HAJTOTOMHUOT JIOKAJIEH MAKCUMYM, CO aHa~
JIN3a, HA U3JI€30T IITO € €JIMMUHUPAH OJf IITYMOT IO (DUITPUPAHE CO KAHATIEH
duarep.

OpuruHaJHEOT AJTOpUTAM HA XaMUJITOH Ke TO OJpeau Hajrobpara mpu-
OsinkHA TOYKA 3a JioKanujara Ha R-nmkor. OBa e noderHa Todka 3a npeba-
pyBambe Ha JIOKAJTHUOT MAKCHMyM, BO OICer, co Hajaeru Searchl, ms jeBo u
SearchR ms mecno o mpubnumkuara R-muk jokammja. OTKako Ke ce Hajae
JIOKQJIHUOT MAKCUMyM HA W3JI€30T HA MPOMYCHUOT OIICEr, MPOA0JIKyBaMe 1,
ro Gapame JOKATHHOT MAKCHMyM HA BHCTHHCKHOT CHTHAJ, HAKO OICEroT 3a
npebapyBame Ke Ouje smvuTupan Ha 48 ms.

Crnuka 0.8 rw wiycTprupa OCHOBHWTE YEKOPHW HA OBOj AJTOPUTAM 34 IMO-
nobpyBarmke BO TpUMepOT mpukakaH Ha cianka 0.6. CoonpeTHuTe cermMeHnTn 3a,
npebapyBame Ce O3HAYEHN HA OPUTMHAIHUOT curHaa. OpurnHaaanor Xamu-
JITOHOB AJTOPUTAM IO OTKPHBA, JOKATHHOT K B, 1 HAmHMOT anropuTam 3a
noo6pyBame orkpusa gexa B¢ e sucrunckara noxamumja. Coznanosme yi-
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Crnuka 0.8: IlpaBumua mpecmerka Ha R-mukoeHara Jsiokaruja zna MITDB-
sarmcor 201 (426.4 cex.): a) Ilpecmerana R-muk oxanuja BC u nnreppasy 3a
npebapyBarbe Hajl u3J1e30T Ha KanajeH dpuiarep; 6) [Ipecmeranara R-nukosra
nokanuja BRC ma mocouennor curnai.
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Cnnka 0.9: JIaxkHU JeTeKnnn 3a moJo0pyBare Ha MpecMeTKaTa Ha JIOKAIIN-
jara #a R-mukor.

T€ e/IeH €KCTIEPUMEHT 34 JIOIMPAHe Ha ONTUMAJTHUTE BpeaHOCTH 33 Searchl u
SearchR. JlaxkuuTe meTekIuu Ha BPEIHOCTUTE HA MPATOBUTE CE€ HAIPTAHU HA
MOBPITHHCKUOT TPpa(UKOH, MPUKAYKAH HA, CIMKATa 9, 33 PA3JIMIHU BPETHOCTH
3a SearchL u SearchR, kopucrejku ja crarnakara nmparosra spegnoct, STHR
= 4. Hajnobpu pesyararu ce mobusaar kora Searchl, = 160 ms u SearchR =
120 ms.
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Co3natoBME yIIiTe e/1eH eKCIIEPUMEHT 34 JIONUPAHE HA ONTUMAJTHUTE BPEJI-
nocru 3a SearchL u SearchR. JlaxxHu nerekuuu 3a BpeIHOCTHTE HA IPArOBUTE
Ce UCHPTYBaaT Ha IIOBPLIMHCKUOT IpadpMKOH NpUKaxkaH Ha ciaukara 0.9, 3a
paznuunu BpeaHoctu Ha Searchl u SearchR, co kopucreme Ha crarndka npa-
roeua Bpeanoct STHR = 4. Hajnobpu pesyararu ce mobuBaar kora SearchL
= 160 ms u SearchR = 120 ms.

HO,Z[OprBaH)e Ha rZ[eTeKI_II/IjaTa Ha HUCKOAMIVINTYJHUTE IINKOBU
Kou cJjieJaT II0 CEKBEHIIUM O/ BUCOKO aMIIJIMTYJHUTE IMINKOBU

e dyukuuu, o3navenu kaxko mean(dopmyna 0.3) u thresh (dbopmy-
ja. 0.4) urpaaT KJy4Ha yJjaora BO OpUTMHAJIHUOT AJrOPUTAM 38 JAEeTeKInja Ha
QRS.

Hue upeuiozkusme npomena 8o mean dbyHKIujara, Co UeJ Aa IO OJIECHUME
edeKTOT Ha BUCOKO AMILIUTYIEH KOMILJIEKC, TPOCIEIEH CO 3HAUUTETHO TTOHHU-
30K KOMILTIeKC. HaMmecTo mpecMeryBame HA mean BPETHOCTA, OfI MOCJIEIHUTE
8 IMKOBW, HAIUOT AJITOPUTAM CMETa CAMO HA MTOJOBHHA O] OBAd BPEIHOCT,
KOra NMKOBHATA aMILIUTyaa e noucoka on aunamuukuor npar (DTHR) u
0/l TOYHATA BPEJHOCT BO CUTE JPYI'M BPEMUIbA, KAKO IITO € OIPEIEIEHO CO
dopmynara 0.5. OBa ro crmpedyBa JUHEAPHOTO 3TOJEMYBAHE HA TPAroT, 0CO-
0OEHO 3a CHUTHAJIN CO BHCOKA AMILIMTYIA, W IO PENIaBa WICHTU(OUKYBAHUOT
Ipo0JIeM.

ZS X,, if X, < DTHR.
n=1 Xn

——, otherwise.

mean = 2 (0.5)

8

ITokpaj Toa, ro cmenuBme MeromnoT thresh. IlperxomHo, mpecMeTaHnoT Ipar
ce mHOXkU co KoHcTantara T'H = 0.3125. Bunejku ce Kopuctu KBaIpaTHHOT
pexkum, ja axKypupaBMe KOHCTAHTATA 33 MHOXKEHE CO HEj3MHUOT KBAPAT,
omuocHo T'H = T'H. Taka, nHoBara npecmerka Ha DAT e onpenena co dpopmy-
gara 0.6. VI 1BeTe MHTEPBEHIINY OBO3MOKYBAAT JETEKITNja HA TAKBUTE OTUY-
KyBarba.

DAT = nmean + (gmean — nmean) * T H> (0.6)

Iobap nepdopMaHC ce TOCTUTHYBA, BO ABATA CIyYau CO:

Husza Ol HUCKU aMTIJIUTYIHU MUKOBU 110 N30JIMPAH BUCOKOAMTIJINTYIEH MUK
I/I30.HI/IpaH HUCKO aMIJIMTYJEH MUK, MO HU3a OJ BUCOKH aMIIJINTYAHU TIHN-
KOBH.

Cmuka 0.10 ja maycrpupa uaejara Ha TOI00pyBame 3a MPE3EHTUPAHUOT
npumep Ha caukarta 0.3, Kage MTO HA3aTa 0T HUCKO aMILUTUTYIHU MMHKOBH €
MOCJIe/IeHa O/ HU3a MUKOBU CO BUCOKA AMILIUTY/AA, IMTO K€ T0 3T0JeMU JIH-
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Cnuka 0.10: Edekr Ha tuHAMUYKE TIPar 3a OTKPUBAE HA MUKOBHU IO MPOCEK
Ha KBajparHu Bpemunoctu Haj mHTepBasa ox 80 ms mag MITDB-zamuc 114
(240 cexk).
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Cruxka 0.11: EdekT Ha quHAMUYKE Mpar 33 OTKPUBAFHE HA TUKOBHU TIO MPOCEK
Ha KBajpaTHu BpemHocTn Hamd wHTepBaa ox 80 ms mam MITDB-3zamuc 201
(424 cek.).

HAMHUYHHOT IIpar JI0 Taa BPEIHOCT JI0 KAJIITO CUTE IOCJIEIOBATEIHU HUCKO
AMILJIUTYJIHY IIMKOBU C€ O3HAYEHM KAKO IIMKOBM HACTAHATU OJI IILyM.

Crnmkara TO MOKaXKyBa M3JIE30T MO MPOCEKOT 33 mHTepBasa on 80 ms, pe-
aqM3UpaH Ha KBaJApaTHU (He arCOJyTHU) BPEJHOCTH 3a€HO CO CTATUYHU U
JUHAMHAYIKY IPAroBu. 3a0esiexkere 1eKa OTKPUEHNTE TTOTEHIINjATHN THKOBA 1
HUBHUTE alCOJyTHU BPEIHOCTH, MPUKaxKaHu Ha ciaukata 0.3, ce momam o
OPUIMHAJIHATA JUHAMUYKA [IPArOBHA BPEJIHOCT.

EdekTor Ha npuMenara Ha HOBHOT HAYWH 33 MPECMETKA HA, IUHAMUYIHUOT
mpar Moxke 7a ce 3abenexku u Ha ciamka (.11, co mpercraByBame Ha WU30JIU-
paHUTE HACKOAMIIJIUTYIHU TUKOBH, IO HU3a O/ BUCOKO AMILJIUTY/IHU THKOBH.
Ha noBmoT MuHMMAJIEH TIpar, JeTeKTUpaHu ce 17 MOKHI MUKOBH, JOJIEKa MaK
OPUTMHAJHUOT AJITOPUTAM CO CTAHIAP/AEH JUHAMUYKH IIpAr HE € BO MOXKHOCT
za ru npukazke nukopure o3uadenu kako C, D u G. HoBo ounrumusupasHuor
mpar e BO cOCToj6a Ja T TMPUKAYKe TOYHO cuTe 15 MUKOBHU, 8 UCTO TAKa, Ja TH
kiaacudumupa B u F kako nukoBu HacTaHaTh O MIyM.

Hue cmpoBemoBMe MHOrY eKCIIEpUMEHTH, 3a [a ja JeTePMUHHPAME OIITH-
vusupanara spegsoct 3a DTHR nparosuara Bpennoct. TecroBure BKIy4y-
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Cruxka 0.12: JlaxkHy JeTeKkuuy Ha [IPUCTAIM Ha OINTUMU3ALM)a HA ITMKOBUTE
CO HUCKA aMILTUTY/A (JIEBO); CEKBEHIINY HA TTMKOBY CO BUCOKA AMILIUTYAA (BO
cpeMHaTa), BIKjaHue HA PAaTa HA CPIEB puTaM (IECHO).

Baa TecTHpame Ha nmparopuuTe BpegHoctu oma 100 mo 400. Cpenmmor mem of,
caukara 0.12 mpercraByBa JaykHa JE€TEKIN]a KaKO (DYHKIIN]a O MPArOBHUTE
Bpenuoctu. Ilparoaure Bpennoctu okosry 200 ce HAjAOOpUTE KAHIUIATH 3

HajepuKacHATE TTIePPOPMAHCH.
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Cumka 0.13: Herounu perexkuuu Ha upucraiu 3a onrumusanuja A0 (ieBo),
A1 (cpenunara) n A2 (necro).

IlomoGpyBame Ha eMMHMHaANMjaTa Ha apTedaKkTUTe

Bo dunamamor yekop, BoBemyBame HOBa daza Ha Kiacuduranmja. Lleara
HA OBA BOBEYBAHE € JIa Ce OJPeJIN I MPECMETAHOTO OTUYYKYBAE TPecTa-
ByBa peajieH uin apredakT. Tpr BaKHE MPABUIA 33 Oy IyBabe YKAXKyBaaT
Jay nukor e apredakr. AKO HUEJHO O/ OBUE LIPABUJIA HE € 3a/I0BOJIEHO, OT-
YYKYBamhETO C€ CMETa 38 BUCTUHCKU TIHK.

Opn mpenmvuHapHATa aHaAIN3a, 3a0emexyBaMe IeKa apredakTuTe reHe-
PAJIHO CJIeJAT MO BUCTHMHCKUTE OTYYKYBAMa W C€ TOCTABEHU HA JAJCUUHA,
momasia oz 320 ms . Broporo Baxkno mpamame e jgeka apredakToT Odur-
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Cruka 0.14: VI3Bamomnu HA CUTHAJIOT W W3JIE3U MO KBAJAPATEH MPOCEK 33, MH-
repBas o 80 ms 3a u3BpIIyBamke Ha HamuoT ajaroputam Hag MITDB: a)
curHAT ¥ T) u3Je3 3a apredaxt Tun A0 Bo 3amucu 103 (1304,4 cek); 6) cur-
Has ¥ 1) u3ne3 3a apredakr ox Al Tun 3amuc 124 (413,3 cek); B) curaan u
) u3ne3 3a A2 Tun apredakr 3a 3anuc 101 (132,2 cex).

Tabena 0.1: Jlucra Ha mapaMerpu 3a MpaBUIA 3a JETEKINja HA apTehaKTH.

IlapameTap Onuc
C Current Detected Peak
P Previous Detected Beat
CH Current Peak Time Average Height
PH Previous Beat Time Average Height
RR Current beat to peak interval in ms
TAx Time in ms optimizing Az, = € {0,1,2}
THRAz |Parameter optimizing Az, x € {1,2}
MSzzx |xxx ms interval

JIETHO MMa TTOMAJIa, €HEepPrhja KOra Ke Ce CIIOPEau CO MPETXOJIHO OTKPHUEHOTO
oTuyKyBame. OpUrnHAJIHUOT aJIrOpUTaM Ha XaMUJITOH TM €JIUMUHUDA, apTe-
dakrure Ha Hanmednna nomana ox 195 ms. Hamwure pesynrarn mokakyBaar
JIeKa 0Baa BPEIHOCT MOXKE MCTO TaKa, /13 Omme ontumusupana. Bo tabesna 0.1
Ce OIMINYBAAT HEKOU [1apAMeTPH KOU Ce€ KOPHCTAT BO HALIUTE IPHUCTAIU 33
onTumu3anuja. Hue ru BoBeOBME CJIeTHIBE ONMTUMU3NPAYKY TTPABIIIA 38 €JTU-
MUHAIHja HA apTedarTuTe:
C e Apredaxr, ako:

A0: RR <TA0= MS250
Al: RR<TAl1=MS260& PH/CH > THRA1
A2: RR<TA2=MS320& PH/CH >=THRA2

Ha cnmkara 0.14 ce mpe3eHTHpaHW IPUMEpPH 34 PA3INYHU TUITOBU JETEK-
tupanu apredakTu. nenTuduKyBaHNTe CETMEHTH TIOKAXKYBAAT AEKa TeTeK-
TUpAHUTE NUKOBU ce apredakTu, OuIejKu HUBHATA EHEPIHja € MOBUCOKA O]
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CTATUIHUTA, U OJT JUHAMUYIHATE MPATOBH, HO CETaK 33I0BOJIyBa, €HO O TTpa-
Bumara AO, A1l u A2. Bo cuporuBHO, aKO HHEIHO O OBHE MPABUIA HE €
3aJI0BOJIEHO, TOTAIl OTKPUEHOTO oTuyKyBame C He e apredakr.
Pesynrarure on ekcrepumeHTor co Kopucreme Ha AQ ONTUMU3AIUCKUAOT
MIPUCTATI, Ce MTPUKAXKAH! BO JIeBUOT men of ciauka 0.13. [IparoBuara BpegHOCT
om TAO = MS250 = 250 ms JaBa BeTyBauKu DPE3YJITATH KAKO PE3YJITAT HA
HajHUCKOTO HWBO Ha JayKHW Jerekimu. Bo cpeaummanor men Ha cauka 0.13
ce JIeMOHCTPUPA BIUjAHUETO HA MPATOBHUTE BpeIHOCTH BP3 mpucrtamor Al.
X-ockaTa ru O3HAYyBa BpPeIHOCTHTE Kom ce MHOXKAT co 100 momeka mak oI-
ruMusnpanara speanoct 80, 3a THRA1, oxrosapa wa 80 / 100 = 0.8 .
Hecunor men ox cawmkara (.13 mokaKyBa KaKO IPArOBHUOT ITapaMeTap
BJIMjae Ha e(PUKACHOCTA HA METOJOT 3a onTuMusanyja A2. X-ockara 03HAUYBa
BPeIHOCTH MTO ce MHOXKAT co 100 u onTuMu3upanara Bpegaoct 250 oarosapa

na 250 / 100 = 2. 5 3a THRA2.

Buinjanue Ha crankara Ha OTYyKyBamaTa Bp3 apredakTure

Hamure ekcrriepuMmenTr MOKaXKaa IeKa CTAIKaTa Ha OTIyKyBaibe BIIMjae Ha
unrepsajure 80 A0-A2 onrumuzanuckure upucranu. Heka RRq.g nu 6une
MpOCeYHATa BPEIHOCT Ha, TocjaemgruTe nHTepBaan oa R mo R, momeka maxk,
fs Heka Ouzme dpekBeHIMjaTa HA 3eMame MpUMepOoIn. loramr , crankara Ha
oruykyBama BPM ce Mepu co OT4yKyBama BO MHHYTA, criope] (popmMysiaTa
0.7.

60 60/,
(RRavg/fs)  RRaug

3a na ce HampaBu KiaacuuIAjaTa JAJIA NAKOT € apTedakT, OCTaBUBME
rpu Bpemencku Koucrautu T A0 = 250 ms, T A1 = 260 ms u T A2 = 320 ms.
O06uuHO, NMKOBUTE Ha JajieduHa 1oMaJa ox 250 ms ce cMeraar 3a IUMKOBU
(kopecmoHupa, CO paTa Ha CPIEB PUTaM IITO € ToBucoka o7, 240 BPM). Bro-
PHOT W TPETHOT IMpar, COOJBETHO, TPOBEPYBAAT AU THKOT € Ha JAJCUNHA,
nomasia oz, 260 ms (oarosapa Ha 230 BPM) unu ox 320 ms (mro oxrosapa
na 188 BPM).

Cenak, HalIaTa aHAIU3a MMOKAXKA JEKA IIPEBPEMEHUTE OTYYKYBatba MO-
JKe Ce TojaBaT MOOJUCKY OJ OBHE BPEIHOCTH. 3aTOa BOBEIOBME (DAKTOP HA
CKaJIupame Ha MPETXOJHOTO MOI00PYyBakhe U TH UCKOPUCTUBME BPEMEHCKUTE
mparosu, mpecMmeranu co dopmynara 0.8, kKou ce MHOXKAT CO (PAKTOPOT HA
ckanmupate BPM BASE u BPM Ha cpueBuoT TaxT.

BPM =

(0.7)

BPM_BASE
BPM

Hecuuor nen ox caukara (.12 nokaxKysa Kako GakTOPOT HA CKAIUPAHE
BPM BASFE sanjae na nepdopmancnre. X-ocKkaTa TH MOKaXKyBa BPEIHO-
ctute Ha ckasmpadkuor dhakrop BPM BASE Bo oncer ox 40 mo 130, co

RR <TAx x € {0,1,2} (0.8)
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Tabesia 0.2: Cnopenba na nepdpopMaHcuTe Ha AArOPUTMHA €O Oa3ara Ha oA~
Torm 3a aputMmujara Ha MUT-BUX.

MIT-BIH Arrhythmia database all 48 records | "¢ paced records

(44)
Algorithm (I]‘tISZ) TP | FP| FN E?:: Qse | Q+p E?: Qse| Q+pr
Our Work 1251109382 [ 110 | 112| 222(99.90]99.90| 194|99.91| 99.90
Ghaffari [62] 360 109327 [ 129 101| 230[99.91|99.88| N/A| N/A| N/A
Bahouraa|[21] 250 | 109625 | 133 | 174| 307|99.83|99.88 | 303|99.82| 99.88
Elgendi [53] 360 | 109775 | 82| 247| 329(99.78|99.92| 322|99.76 | 99.92

Martinez [92] | 360|109111| 35| 317| 352(99.71|99.97| N/A| N/A| N/A
J.Martinez [93] | 360109208 | 153 | 220| 373|99.80|99.86 | N/A| N/A| N/A

Cvikl [37] 2501109294 |200| 200 | 400|99.82|99.82| 373|99.81| 99.82
Chiarugi [29] 360109228 | 210 | 266 | 476(99.76|99.81| 443|99.75| 99.81
J.Lee [85] N/A|109146 | 137 | 335 472(99.69|99.87| 459|99.68 | 99.87

Zidemal [139] 360 | 109101 | 193 | 393 | 586(99.64|99.82| 540|99.64| 99.83
Hamilton [69] 360 | 108927 | 248 | 340 | 588|99.69|99.77 | 569|99.68 | 99.76

Choi [30] 360 | 109118 | 218 | 376 | 594|99.66 [ 99.80 | 561 [99.65| 99.79
GQRS [63] 360 | 109196 | 302| 298| 600|99.73|99.72| 562 |99.72| 99.72
Christov [31] | 360 |109615 |386 | 288 | 674 (99.74|99.65| 670(99.72| 99.62
Arzeno [20] 360 | 109099 | 405 | 354 | 759|99.68|99.63| N/JA| NJA| N/A

Tompkins[107] | 200109532 |507 | 277 | 784(99.75(99.54| 771(99.73| 99.50
Paoletti [109] 360 | 109430 | 565 | 379 | 944|99.65|99.49 | 924|99.64 | 99.45
Poli [113] 120 | 109522 | 545 | 441 | 986]99.60|99.51 | NJA| N/A| N/A
Elgendi [52] 360 | 109397 | 97 |1715(1812|98.31|99.92| 1798 |98.33 | 99.91

MHKPEMEeHT 2, a y-0ocKaTa e 6pojor Ha rpemkn. Hue 3abenekaBme n1eKa Bpe-
Hocra Ha BPM _BASE = 90 ru MUHUMH3UPA TPEIIKUTE.
We observe that a value of BPM BASE = 90 minimizes the errors.

Esassauuja u guckycuja

Crennara KOMOMHAIIM]a HA TApaMeTPH M MMOCTUTHYBA HAjT0OPUTE CEBKYTI-
HU TIepHOPMAHCH.

STHR = 2, SearchL = 152 ms, SearchR = 56 ms, DT HR = 200, TA0 =
250 ms, TA1 = 260 ms, TA2 = 320 ms, THRA1 = 0.8, THRA2 = 2.5, u
BPM BASE = 90.

Tabena 0.2 maBa upersies, Ha JOOMEHUTE PE3YJITATA U HOKAXKYBA JEKa Ha-
IITAOT AJITOPUTAM TTOCTUTHAJ TMOA00PO KOMOMHUPAHU BPETHOCTH HA CEH3MOM-
JINTET W TTO3UTUBHA, NMPEINKATHBHA CTAIKA.

Mozke 1a ce mojaBaT HEKOJIKY MPOOJIEMU TIPH CIOPEIYBAHETO Ha KOj OO0
meros Ha nerekiyja #Ha QRS co npyru objaBeHu TPYIOBH, KAKO HA MPUMEP:

e Hewma u3BOpen ko mpezBu/ieH 3a MPOBEPKA HA APYTH [PUCTAIIN;
e Hewma nndopmariuu 3a n03uTUBHATA IPEABU/YBAYKA CTAIIKA; UJIA
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e Hewma wadopmarmu 3a 6POjOT HA T'PEIIKHA.

[Tpu ananusupame Ha mepdopmancuTe, camMmo MaJ 6poj TPYIOBH JaBaAT WH-
dopmaIy 3a TOCTUTHATATE MO3UTHBHY TTPEIBUIYBAYKU CTAIKHK U THE O0MY-
HO Ce CTpeMaT Jia MOCTUIHAT MOBUCOKU BpeaHocT Ha cenzubuaurer. Cenak,
MHOI'Y € JIECHO JI4 C€ IOCTUIHE [TOBUCOKA BPEIHOCT HA CEH3UOUIUTET U IPET-
CTaByBame Ha TIOBEKETO OJ PE3YATATHUTE TITO CAKATE 14 MM BKJIYYNTE BO Ba-
[THOT AJITOPUTAM, CO PEJIAKCUPAIhe Ha OrPAHUYYBamHaTa, Ha MAPAMETPUTE 33,
ONTUMU3AIKja, HO, BO HCTO BPEME, OBa K€ TIPOM3BE/I€ MHOIITBO JOMOJTHUTETHO
reHepupaHu MUKOBU Kou He mpercraByBaar QRS-mmk. 3aroa e MHOrY BaK-
HO /I3 U aJIpecupaMe U CEeH3UOMJIUTETOT W MO3UTHBHOTO HPEIBHUIyBabe 34
eBaJIBaIMja HA TIePGOPMAHCUTE.

OBa 3Haum JeKa HE MOCTOW METOJ 33 NWPEKTHA Criopenda. 3a CIpaByBambe
€O 0BOj TIpO0JIEM, TO aHAJU3UPABME OPOjOT HA IPEMIKK KAKO MEPKA Ha M3BEI0a
(kako mmTo e omnpemesieHo oy rpemkure Bo dbopmyna 0.2). Nako oBaa mepka
Ha m3BenbOa MOXKE /I3 ce MOCTUTHE cOo mpecMmerka Ha cymara Ha FP m FN,
UCTO Taka MOXKe Jia ce 1pecmera npeky xapmonudua cpeguna (HM) na QRS-
CEeH3UOMINTETOT U TIO3UTUBHA TPEINKATUBHA, cTanka o1, ¢opmysa 0.9.

1 1
Errors =Total QRS * | — + —— — 2 (0.9)

Qse  Q+p
Hue ja uckopucrusme dopmyna 0.10, 3a ma ja oneHume oBaa pesaiu-
ja. Ilokpaj Toa, Hme mpermocTaByBaMe JeKa OpojoT Ha JIOIOJHUTEHO Ie-
TeKTUpaHU (JIAKHO HETATUBHM) MAKOBU € MHOTY TIOMaJl O OPOjOT Ha Tpa-

BuIHO Jerektupanu nukosu QRS, omrocno TP >> FN, mTo mA0BeayBa 0
Total QRS ~ TP.

1 N 1 TP+FN+TP+FP
Qs Q4p TP TP
+FP+FN

TP

=2 (0.10)

Bea mponajaenu rojiem Opoj HECOTVIACYBamba MPU AHAJIM3IUPAIHGE HA CPO/I-
Hute ucrpaxkysama. Tabesara 1 og [107] mokaxkysa jneka 6pojoT Ha IDEIIKY
e 782, naxo toj e 784. IIpecmerkara Ha BKyIHHTE OTYyKyBama € HajHe3abe-
aexurenna. Ha upumep, TP + FN e norosem ox TB Bo [52]. JIu objasysa
nea Tpyzna [84] u [85], obe3benysajku coomperro 109486 m 109481 BKymHO
oTYyKyBama. [lopanermunor nma ymre 6 JOMOJIHUTEIHU OTUYYKYBarba, KOW
ce on mokymentute 118, 201, 205, 220, 221 u 233, momeka BTOPUOT nMa 1
JIOTIOJTHUTEJTHO OTYYKyBame Ha 3anuc 114.

OrkpuBMe JIeKa pa3jiddHU ABTOPH KOPUCTEse pasjiddeH Opoj Ol JeTeK-
THpaHUTE MUKOBU. Tue Tpeba /1a ro KOPUCTAT BKYMHUOT OPOj JIETEeKTUPAHU
OTYYKYBamba, OuIejKu BKYMTHUOT OPOj MMKOBU BKJIYIyBa UCTO HETAKTUIHN OT-
qyKyBamba, HA IPUMED, JOKAINK KaJ e IITO MOCTON MPOMEHA Ha, puTamor. Toa
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€ TPUYUHATA, 30IITO HUE TO KOPUCTUME BKYIMHUOT OpOj 3a0€/IeKaHu OTIYKY-
Bamba B0 MUT-BUX Apurmuja-6a3zara ua nomaroru 109494.

Tabena 0.2, ucro Taka MOKa)KyBa JeKa HCTPaXKyBaduTe, KOu ce (pOKyCHu-
paar Ha anropurmuTe 3a nerekiuja na QRS, HajuecTo uMmaar TenpeHnuja 1a
U KOPWCTAT OPUTMHAJIHUTE (DPEKBEHIINU 33 3€Maibhe MPUMEPOIN U PE30JIy-
nujara Ha pedepentna EKI'-6a3a na momaronu. BrkiydyBamero Ha ajroput-
Mot Ha 125 Hz 3navu neka peuncu 3 maTw MOMAJIKY TOJATOIM Ce XpaHa Ha
QRS-ierekTopoT, Taka MITO BpEMUbATA HA U3BPIILYBakbe C€ HAMATYBAAT CO-
oxnserno. Vcro Taka, npucnocoOyBamara MIToO T MPEJJIOKUBME, [U 3r0JIEMUja
nepdopMaHCUTe Ha, METPUKUTE, TIITO BO IEJI0CT maBa monobap QRS-merekTop
HaMeHeT 3a MaJl, peHocanB, eanokanaaeH EKI-cenzop.

3axaywor

BoBenoBme HekosKy MeTomu 3a momobOpyBame Ha QRS-oTkpuBamero BO
ajaropuTMuTe, baszupann Ha audepeniujanuja. lako Hammor npucram e mae-
MOHCTPHUPAH BP3 OCHOBA Ha AJropuT™MOT 3a Jereknuja aa QRS va XamuiaToH,
TOj, MOXKE JIa Ce MMILIEMEHTUPA BO APyru ajaropurmu. Pesysirarure nokaxy-
BAaAT CynepuopeH mepdOpMaHC HAJ APYrUTe 00jaBeHN Pe3yJITaTH.

[MomobpyBamara Gea edbukacHo Brpaaenu Bo nHaycTpuckunoT QRS-1erexTop,
3a npenocaus EKI-mMoruTOp, Kame mro (ppekBeHnujara mTo ce 3eMa KaKo
npumepok u3necysaiie 125 Hz, co 10-6utna pe3onynuja aa AD-KOHBEPTOPOT.
[MocraByBameTo HA BPEIHOCTUTE HA TIPATOT MOXKE Ja ja 3rojemu nepgopman-
cara, HO Tpeba Ja ce pPa3BUjaT HOBM HAYMHMU, 34 113 C€ TEHEPUPAAT MMPArOBH,
KaKO Ha TPUMep:

e KOJIKY TIPETXOIHN yIaph MOYKe JIa Ce aHAJIM3NPAAT, 3a /14 Ce TIPOIEHN CPe/I-
HaTa BPEJIHOCT,

e Kou THMKOBH Ke Ounar kinacudunupann kKako QRS-oruykysama, 6unejku
THE Ce MHOT'Y CJIMYHHU 110 dopMaTa u

® BJIMjAHUETO HA PATATA HA CPUEBUOT pUTAM BP3 Kiiacudukalujara Ha ap-
TedakTUTe.

3a oBaa 1€ BOBEJIOBME HEKOJIKY HOBHU MpaBUsa 3a 1) mpecMeTka Ha mpa-
rot 3a moao6po kiaacudunupame na nukosure Ha QRS, 2) enmuvunanuja wa
apredakrure cinunu Ha QRS u 3) enumunanuja Ha apredakTuTe BP3 0CHOBA
HA PaTaTa HA CPIEBUOT PUTAM.

Ilopaau peckanupame, cnabure EKI'-KOHTaKTH U IIyMOT IPEIN3BUKAH OJT
MYCKyInTe, 62 OTUYyKyBama He MOXKe Ja ce JeTEeKTHPaaT CO aHaan3a Ha Tp-
Buor EKT'-kanan, 6e3 ananu3a Ha BropumoT Kanaja. OBa JaBa 3rojieMyBambe
Ha nepdopmancara Ha QRS-cemsubunnocta Ha 99,96%, M HAIMOT AITOPH-
tam pocruraysa 99,90% QRS-censmbmnmuoct, co 99,90% nosuTusHA CTanmka
Ha OPeIUKTHBHOCT KOra cuTe 3amuch ce aHammsupann Bo MITDB u 99,91%
QRS-cersubminocr 3a 44 3anucu 6e3 MHTEH3UBHU YIAPH.
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lenepasizo, objaBeHnTE TPYIOBHU 33 AJITOPUTMHUTE 33, AeTekiuja Ha QRS e
U HyJAT HAUBHUTE U3BOPHU KOJOBHU, & CAMO HEKOW OJl HUB C€ TIOTBPIEHHU CO
pedepentau 6a3u Ha noxaromu Ha EKI, kako mro e MUT-BUX ApurMmuja-
6azara Ha nomarounu. [ToBeke of ajropurmuTe maBaaT KpPaToK OIUC HA MPa-
mama 0e3 JeTaln 33 UMIJIEMEHTAIIN]aTa, MOCOYYBAJKM CAMO HA TEOPETCKUTE
npamara. OBa € mpuYrHaTa, 30IITO HE MOXKE IUPEKTHO JIa Ce CIIOpenaT pe-
3yararure. PazjamaauTe npucranu, reHepasHO, He TOCTUTHYBAAT PE3Y/ITaATH
KAKO OHWe, TIOCTUTHATH BO PEATHATA UMILJIEMEHTAIH]A.

OBa ucrpaxKyBame MOXKe J1a TU OJIECHH MOXKHUTE AJITOPUTMU 33 JETEKIIN]a
Ha QRS, 3a pekoncrpykmnmja u pecemmiuparme Ha pedepentan EKIT-6a3u
Ha, TOJATOIN, BO 3aMeHa 3a momobpm mepdopmarcu. Hammre mpomaorama
MOKaXKyBaaT JIeKa MpUCHocobeHara Bep3uja Ha XaMUJITOHOBHOT AJITOPUTAM
3a nerekija Ha QRS maBa momo6pu pesynraru co 125Hz mogaroru 3a pedncu
TPUIIATH [OKPATKO BPEME HA U3BPIILYBabe.

Hamara monaramomna pabora Ke O6uge BO HACOKA HA KJIACH(DHUKAIINA]A HA
rpemkuTe BO mereknujara Ha QRS, cé momeka me ycmeeme 1a ru eIMMUHEPA-
Me, KaKO U 33 CO IIeJT J1a Ce MOJEINPa 3aBUCHOCTA HA (ppEKBEHIMjaTa u OUT-
HaTa pe3onyimja. JomoaHnTenHo, IoKpaj HAIKOT AJITOPATAM 3a IeTEKIH]ja,
[IaHupaMe Ja co3jaaeme Kpaaurered uupycrpucku QRS-kracudukarop, co
MOBUCOKHU I1€POPMAHCH.

Ckorje, Epsun Jomasew
mapt 2019
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Preface

The PhD research was realized at the Ss. Cyril and Methodius University, Faculty of
Information Sciences and Computer Engineering in Skopje, North Macedonia. My
motivation is based on continueing my journey on High Performance Computing
area as I did on my B.Sc and M.Sc theses. My focus on the former was utilizing
Graphical Processing Unit (GPU) to optimize Bellman—Ford algorithm, whereas
on the latter was to optimize an Industrial Furnace Simulation code on multi core
environments (CPU).

This PhD research is deeply focussed on the end-to-end optimization of digital
processing of ECG signals. It all started when I first met with my supervisor, i.e
respected professor Marjan Gusev, where we agreed on the vision to optimize the
cycle of ECG processing with HPC techniques in return for an increased life quality
of humankind. With my full of motivation and my supervisor’s active involvement
in every step we achived to optimize ECG processing.

Background

Recent advances in Information and Communication, have stimulated lots of pos-
sibilities. One such innovation is, when cloud processing center gathers streams of
continuous data from wearable ECG sensors. Electrocardiogram (ECG) is a stream
of electric impulses generated by the beating heart muscle. They are detected by
electrodes placed on human skin, by measuring the electric potential that reaches
the skin surface [111]. ECG stream holds cardiovascular condition of the patient
and is represented by P, QRS and T waves.

Interpretation of an ECG stream is essential for a better quality of life. Interpre-
tation along with signal analysis is achieved by Digital Signal Processing (DSP)
[17, 123]. Nevertheless, ECG signals are exposed to noise that stem from several
sources, varying from environment (electrical switching power, radio waves or other
related sources) to the internal noises generated by the human breathing physical
movement or similar sources.

vii
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Precise interpretation and analysis of the ECG signal can be achieved by elimi-
nating the noise. Essential data preprocessing phase is conducted by the DSP filters.
Hereinafter, the main ECG features can be detected and analyzed for further de-
termination of the complex heart condition. Processing of the signal is based on
detecting hidden information and the subtle deviation of the heart rhythm to alter-
nating changes of the wave amplitude [8].

Lugovaya [88] had focussed on revealing the efficiency of an ECG signal for
identification, when compared to the three efficient biometric methods, i.e identifi-
cation based on fingerprints, iris or retina, and face. Her experimental results showed
that the rate of correct identification was 96%, which gave an insight for consider-
ing ECG signal as a new biometric characteristic. What is more important, she was
successful in showing the persistence of an individual’s ECG characteristics over
time (slow and gradual variations on ECG signal). This in turn makes it possible
to detect subtle deviations of the heart rhythm and alternating changes of the wave
amplitude.

Methodologies for processing and analyzing ECG signal consist of at least three
stages: data pre-processing, feature space reduction and feature extraction [88].

ECG signals usually are contaminated by noise. They can stem from several
sources, varying from the environment (electrical switching power or other related
sources) or the internal noises generated by the human breathing physical move-
ment. The preprocessing phase is responsbible for eliminating this noise, in order
to make further analysis possible. There are several operators to eliminate noise.
Digital Signal Processing (DSP) filters are essential in eliminating the noise and ex-
tracting the essential characteristic signal. In addition to them, the discrete version
of Wavelet Transform has also the capability to remove the noise.

In the next stage, the main aim is to cancel the baseline wandering. It is basically
a low-frequency component in the ECG system. This stems from offset voltages in
the electrodes, respiration, and body movement. There are methods to eliminate this,
whereas the mostly used one is the Discrete Wavelet Transform (DWT) algorithm.

In order to initialize the process of analysis and interpretation of the ECG signal,
these features should be correctly detected. Several algorithms are capable, such as
Nearest Mean Classifier (NMC), Weighted NMC, Linear Discriminant Analysis and
others.

In the literature, there are several methods proposed to optimize the above stages
of ECG processing. This research aims at presenting and further optimizing the
general efforts on the process of ECG signal processing.

Problem Description and Objectives

In some specific cases real time processing of the ECG signal can save lives. How-
ever, this phases the big data challenge where data comes with a certain velocity and
huge quantities. A server needs to receive these streams from a lot of sensors and
needs to star various digital signal processing techniques initiating huge processing
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demands. Due to intensive data processing, sequential algorithms are insufficient to
run in real-time, especially when a cloud data server processes thousands of data
streams coming from remote wearable ECG sensors.

In order real-time analysis to be done processing needs to be fast. Sequential
algorithms are insufficient of real time processing of ECG signals. Several solutions
have been proposed in order to optimize the processing. The goal of this thesis is to
optimize the process of ECG signal processing.

The main research questions of this thesis are:

e Does parallelizing of Digital Processing of ECG signals enable real-time pro-
cessing especially when data comes with a certain velocity and huge quantities?

o Will using different platforms for parallelization result in optimal cloud based
solution?

e Will using different approaches for optimization result in more efficient algo-
rithms?

o Is parallel Digital Processing of ECG signals a scalable solution compared to the
sequential solutions?

Scope and Aim

The thesis scope is to develop and optimize algorithms that will detect heart anoma-
lies in real-time, with the aim to increase life quality of patients. Thus the algorithms
should have a very high corectness rate while being very efficient.

In this manner, we aim to fully optimize the overal process of ECG analysis, by
using High Performance Computing techniques. This thesis utilizes Maxeler, CUDA
and OpenMP technologies, for providing an optimum and scalable algorithm that
run can on cloud.

Methods

General methods that are used in this thesis can be summarized as:

Analysis of the bottlenecks of algorithms

Synthesis of applicable intelligent solutions to overcome bottlenecks
Comparison of optimized algorithms with available sequential algorithms
Experiment the proposed algorithms on various platforms and dataset
Evaluation of results in order to achieve an optimal solution in real time

The benchmarks used in our testing methodology are the same used in the IEC
60601-2-47 standard for particular requirements for the safety, including an es-
sential performance of ambulatory electrocardiographic systems, and ANSI/AAMI
EC57:2012 for Testing and Reporting Performance Results of Cardiac Rhythm and
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ST Segment Measurement Algorithms. These standards use the MIT-BIH ECG ar-
rhythmia database [99], and the American Heart Association’s (AHA database) [72].

Content of the Thesis

This thesis consists of five parts: 1) Basic Concepts, 2) Parallelization of DSP Fil-
tering, 3) QRS Detection, 4) ECG Feature Extraction, and 5) Concluding Remarks.

Part I presents the basics of ECG processing, proposed architecture, parallelisa-
tion platforms and the state-of-the-art ECG optimization algorithms. It consists of 5
chapters. Chapter 1 provides the motivation behind this thesis. It gives recent statis-
tics, and describes the importance of real-time ECG processing. Basic definitions
of ECG Signal representation are also provided. Chapter 2 gives theoretical details
on the Digital Signal Processing area, which is the basis of this study. Details about
Low-Pass, High-Pass and Band-Pass filter are provided. Three important stages of
ECG processing is described in detail.

System architecture of a time-critical mobile application based on ECG medical
monitoring is provided in Chapter 3. Requirement analysis together with Design
specifications of such an application is provided. Specifically, workflow scenarios,
business requirements, functinonal description, nonfunctinal requirements and sys-
tem models are elaborated. Details about the parallelisation platforms used through-
out this thesis are presented in Chapter 4, namely the OpenMP, CUDA and Maxeler.
Finally, Chapter 5 briefly overviews ECG signal processing and mHealth related
state-of-the-art optimization approaches.

The next Part II in 6 chapters analyzes and provides different type of optimiza-
tions to the DSP filters used throuhout ECG processing. Chapter 6 utilizes massive
power of GPUs by using CUDA library, with the aim to parallelize DSP filter con-
volution operation. Algorithmical details and results are also provided. Further op-
timizations to the naive CUDA version is provided in Chapter 7, with a goal to find
an optimized solution. Shared and constant memories of GPU are utilized, as well
as loop unrolling and precision methods are also investigated. Chapter 8 presents a
novel method by using Dataflow engines for parallelizing DSP filters.

DWT based noise filtering is presented in Chapter 9. Specifically, the sequential
version of DWT used for filtering and feature extraction is parallelized. Eventhough
DWT has high dependency between data, faster codes are reported. Chapter 10 on
the other hand tries to optimize the available number of cores that can execute a
node, within the parallel DWT algorithm. Finally, Chapter 11 gives an overview of
obtained results, separatelly for each study. General related work on DSP filters is
also provided.

Part III comes along with total of 4 chapters. General focus is on optimizing
QRS detection algorithms. Optimal DSP bandpass filterring for QRS detection is
provided in Chapter 12. FIR, IIR and Wavelet based filters are investigated, with
the intention to find the optimal values of the central frequency, bandwith and -3 db
cutoff frequencies of the filter. Impact of resampling is investigated in Chapter 13.
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Experimental research is used to measure the performance of different samping rates
and find optimal values.

Ampitude rescaling influence on QRS detection is considered in Chapter 14. Op-
timized versions of Hamilton’s QRS detection algorithm is provided, where lower
sample rates and amplitues are used to improve the original algorithm. Chapter 15
concludes the QRS detection part by presenting details about obtained results, and
also related work on QRS detection.

Part IV provides improved algorithms for QRS detection and classification phase.
It consists of three chapters. One of the best achievements of this thesis is provided
in Chapter 16. Details about the improved version of Hamilton’s QRS detection
algorithm is presented. On the other hand, Chapter 17 presents a pipelined QRS
classification algorithm based on decision rules, requiring simple operations, which
can run on mobile devices. An overview of this part is given in Chapter 18, with
related work on this area and the obtained improvements.

Finally, Part V provides the conclusion of this thesis. Specifically, Chapter 19
provides the conclusions and main results of this thesis. Future work is also pro-
vided, which would be our next steps on this area.

Main Results

This PhD thesis research comes with lots of published results on national and
international-wide conferences and journals. General focus of them is primarily on
the performance. All of these published papers provide theoretical as well as exper-
imental results. Main outcomes of these researchs are provided below.

Dataflow DSP filter for ECG signals

Parallelization of the sequential DSP filter for processing of heart signals on GPU
cores is addressed in [41]. Dataflow Computing is a completely different paradigm
of computing than conventional CPUs, where instructions are parallelized across
the available space, rather than time. It is a revolutionary way for High Performance
Computing (HPC) solutions. Data streams are optimized by utilizing thousands of
dataflow cores, providing order of magnitude speedups. We consider using Maxeler
Systems for dataflow computing. The performance of the parallelized code will be
compared to that of the sequential code. Our analysis shows speedups linear to the
kernel size of the filter.

CUDA DSP filter for ECG signals

Utilizing massive power of GPU cores to parallelize the sequential DSP filter for
processing of heart signals was considered in [40]. We set a hypothesis that a GPU
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version is much faster than the CPU version. In this paper we have provided several
experiments to test the validity of this hypothesis and to compare the performance
of the parallelized GPU code with the sequential code. Assuming that the hypoth-
esis is valid, we would also like to find what is the optimal size of the threads per
block to obtain the maximum speedup. Our analysis shows that parallelized GPU
code achieves linear speedups and is much more efficient than the classical single
processor sequential processing.

Optimizing high-performance CUDA DSP filter for ECG signals

Optimization of our previous work on GPU parallelism[40] of DSP filters was
adressed in [42]. The goal is to find an optimized solution that speed ups the parallel
CUDA solution. The hypothesis set in this paper is to confirm whether the utilization
of shared and constant memories on GPU can yield faster execution times on ECG
signal filtering. To test the hypothesis we measured the execution times of naive
GPU solution over the optimized solution. We were also interested in determining
whether loop unrolling and precision has an effect on the speedup.

Results obtained by executing optimized algorithms show they are identical for
each of the filter types. From the obtained results, we can conclude that proper usage
of shared and constant memory has a positive impact on the performance. Our anal-
ysis showed that their combined effect yield 2.4 times faster executions compared
to the previous code. We can, therefore, conclude that the hypothesis is confirmed.
Considering loop unrolling speeds up the code by 1-5%. Moreover, we tested the
decreased precision effect on the performance and got nearly 1.5 faster code when
on 1000 filter length. We observed that the element version is not effective when
ported on GPU. It is important to note that each of the proposed optimization tech-
niques adds up to the combined speedup. We observed that the best-combined effect
had a speedup of 6.

Parallelization of digital wavelet transformation of ecg signals

The advances in electronics and ICT industry for biomedical use have initiated a lot
of new possibilities. However, these [oT solutions face the big data challenge where
data comes with a certain velocity and huge quantities. In this paper[44], we analyze
a situation where wearable ECG sensors stream continuous data to the servers. A
server needs to receive these streams from a lot of sensors and needs to star var-
ious digital signal processing techniques initiating huge processing demands. Our
focus in this paper is on optimizing the sequential Wavelet Transform filter. Due
to the highly dependent structure of the transformation procedure we propose sev-
eral optimization techniques for efficient parallelization. We set a hypothesis that
optimizing the DWT initialization and processing part can yield a faster code. We
have provided several experiments to test the validity of this hypothesis by using
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OpenMP for parallelization. Our analysis shows that proposed techniques can opti-
mize the sequential version of the code.

Optimal Parallel Wavelet ECG Signal Processing

Real time detection of heart abnormalities can prevent serious health problems. This
requires real time processing of ECG data by a corresponding web service. Consid-
ering the case of wearable devices to collect ECG data, the signal is actually contam-
inated by noise. Noise can seriously change the ECG signal and occur in the form
of a baseline drift representing various physical movements and breathing. Unless
it is removed, correct analysis on ECG data is impossible. Being characterized by
very low frequencies, its elimination can not be efficiently realized by simple DSP
filters, such as Finite Response Filters (FIR) or Infinite Response Filters (IIR).

Wavelet Transformation is a promising technique to eliminate the noise with very
low frequencies, and its digital version (DWT) is capable of efficient removing the
ECG baseline drift. In this paper[43], we set a research question to investigate the
dependence between the nodes in the DWT implementation (and therefore to their
corresponding threads) and the available number of cores that can execute the code.
This analysis leads to valuable conclusions that will allow construction of even bet-
ter optimizations. Results indicate that proper allocation of cores can yield faster
code.

A Time-Critical Mobile Application based on ECG Medical Monitoring

Recent statistics indicate that at least one in every three deaths in the world occurs
due to a heart attack. Scientific studies show that certain types of such attacks can be
detected before their occurrence. This makes the real-time processing of wearable
ECG sensors and smartphones an extremely important topic. Delivering healthcare
solutions for a mobile platform is an emerging field and a lot of research and de-
velopment projects have started for this purpose. The concept of mHealth involves
the use of provided technologies and the telecommunication infrastructure to de-
liver healthcare solutions. In the case when a mobile device acts as a data collector
and performs the initial processing, possible disorders can be predicted at an earlier
stage. This paper [48] contributes to the mobile healthcare solutions area by pro-
viding a requirement analysis of possible implementations of time-critical mHealth
solutions.

Design specification of an ECG mobile application
Latest developments on IoT, stimulated new innovations. Electronic health solutions

are among trending opportunities. Statistics indicate that cardiovascular diseases are
the primary cause of deaths globally. Our knowledge of this type of diseases shows
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that specific types of heart attacks can be prevented. Real-time acquisition and pro-
cessing using wearable biosensors enable the detection of cardiac symptoms at an
early stage. The concept of mHealth is defined as the combination of current state
of the technology and the telecommunications infrastructure, in order to provide
healthcare services. This paper[49] contributes to such solutions by provisioning
generic design specifications of an ECG mobile application.

Optimal DSP bandpass filtering for QRS detection

An electrocardiogram refers to the process of recording the electrical activity of the
heart over a certain time interval. ECG signal holds vital information for the current
health condition of the patient. Detection of cardiac disorders is based on detection
of sudden deviations from the mean line. Detection of heartbeat functions is based
on extracting ECG characteristic features, especially the R-peak. Although in this
paper, we address a general approach, we focus on using wearable ECG sensors and
developing an efficient QRS detector to determine the heartbeat function. The real
problem in detection and ECG signal analysis is processing the noise contaminated
ECG signal and the way one can reduce the feature space to extract the relevant
features. In this paper [64], we set a research question to investigate how the filter
affects the accuracy, sensitivity and precision values on QRS detectors. We report
our findings on optimal filter design with a central frequency of 8.33 Hz and -3db
cutoff frequencies at 4 Hz and 20 Hz. The analysis is towards the construction of
an efficient filter with small computing complexity intended to be used for wearable
ECG sensors.

Optimizing the Impact of Resampling on QRS Detection

QRS detection is an essential activity performed on the electrocardiogram signal
for finding heartbeat features. Even though there is already a lot of literature on
QRS detection, we set a research question to find the dependence of QRS detection
performance on the sampling frequency, and, if possible, to find a QRS detector that
will be highly efficient at different sampling rates.

Our synthesis technique aims to find the optimal value of the threshold parame-
ters that define if the detected peak is artifact, noise or real QRS peak. In addition,
in this paper [65] we conducted experimental research to find the dependence and
estimate the optimal threshold values for the best QRS detection performance.

Our approach results with increased QRS detection performance on the original
sampling frequency by improving the original Hamilton algorithm.

We tested with the MIT-BIH Arrhythmia database. Lastly, QRS detection sensi-
tivity and positive predictive rate are used to evaluate the performance of the algo-
rithm.
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Amplitude Rescaling Influence on QRS Detection

When we record the electrical activity of the heart we generate a signal called
an electrocardiogram. Within the electrocardiogram, the information that explains
the heart’s health is based on the detection of QRS complexes. The focus of this
paper[46] is on a wearable ECG sensor that uses a low sampling frequency and bit
resolution while it converts the analog signal to digital data. The overall goal is to see
if an efficient industrial QRS detector can be developed within these constraints. In
particular, we set a research question to investigate how amplitude rescaling affects
sensitivity and positive predictive rate of the Hamilton algorithm for QRS detection
and improved it by optimizing it based on amplitude ranges.

We used the MIT-BIH Arrhythmia ECG database to evaluate performance. The
original recordings are sampled with a sampling frequency of 360 Hz with a 11-bit
resolution over a 10 mV range. Our experiments include testing rescaled signals on a
sampling frequency of 360 Hz using different maximum amplitudes. We found that
rescaling impacts performance and that the optimization parameters need to tuned
to obtain the expected performance. However, the performance decreases when the
maximum amplitude is lower than 9 bits.

Improving the QRS Detection for One-channel ECG Sensor

We analyzed several QRS detection algorithms in order to build a quality industrial
beat detector, intended for a small, wearable, one channel electrocardiogram sensor
with a sampling rate of 125 Hz, and analog-to-digital conversion of 10 bits. The
research[47] was a lengthy process that included building several hundred rules to
cope with the QRS detection problems and finding an optimal threshold value for
several parameters. We obtained 99.90% QRS sensitivity and 99.90% QRS positive
predictive rate measured on the first channel of rescaled and resampled MIT-BIH
Arrhythmia ECG database. Even more so, our solution works better than the algo-
rithms for the original signals with a sampling rate of 360 Hz and analog-to-digital
conversion of 11 bits.

Applicability of the Results

Papers that are published within the research for this PhD thesis have obtained im-
portant results. Below we provide potential areas of their applicability.

Algorithms that are parallelized have broad range of applicability. An enormous
research and analysis has been done in order to specify algoithmic parts that can
be parallelized, and to show the effects of given calculations. OpenMP, CUDA and
Maxeler based approaches were reviewed.
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Improved ECG Data Pre-Processing

Different types of DSP filters are studied, including Low-pass, High-pass, Band-
pass filters. Additionally, we also explored wavelet based filtering algorithms,
namely the Digital Wavelet Transformation algorithms.

This thesis provided and experimentally verified a range of optimized approaches
for ECG data pre-prepocessing. According to the need of literature, all of them can
be utilized efficiently.

Improved QRS Detection

This is one of the main contribution of this thesis. We optimized Hamilton’s QRS
detection algorithm for one channel wearable Sensor, operating in 125Hz. Our pro-
posed method produces even better results on rescaled and resampled data, when
compared to the original daa of MIT-BIH Arrhythmia ECG database. The details
of our method is already published in a journal, and can be applicable especially in
environments requiring real-time efficient algorithms such as wearable sensors.

Cloud Based Remote ECG Monitoring

Our findings during this PhD research are already integrated to the Cloud Based
Remote ECG Monitoring portal ECGAlert, supported by the Macedonian Fund for
Innovations.

Review of the Published Work within this PhD Thesis

Within this PhD thesis, 10 scientific papers and 1 journal with impact factor have
been published on international scope.

Optimization of DSP filters on OpenMP, CUDA and Maxeler platforms are
adressed in [41, 40, 42]. Results indicate that superliniar speedups are possible es-
pecially when combining OpenMP and CUDA related approaches.

Parallelisation of Digital Wavelet Transformaton of ECG signals is considered in
[44], where proposed techniques optimize the sequential code. On the other hand,
an optimal Parallel wavelet ECG signal processing is provided in [43]. Our findings
indicate that proper allocation of cores can yield faster executions.

Requirement analysis of a possible time-critical mobile healthcare solution is
elaborated in [48], whereas generic design specifications of an ECG Mobile appli-
cation are provided in [49]

We have conducted several studies to optimize QRS detection algorithms. We
started with investigating the filter effect on accuracy, sensitivity and precision
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values[64], where we report optimal filter design with a central frequency of 8.33
Hz and -3db cutoff frequencies at 4 Hz and 20 Hz.

Next approach was to optimize the thresholding parameters of the original
Hamilton algorithm for detecting a real QRS[65]. Obtained results showed that we
achieved increased QRS detection compared to the original algorithm. We were also
interested on the effect of amplitude rescaling on QRS detection [46], with an ob-
servation that rescaling affecting the performance.

Our best achievement was to Improve the QRS detection for one-channel ECG
sensor [47]. We obtained 99.90% QRS sensitivity and 99.90% QRS positive predic-
tive rate measured on the first channel of rescaled and resampled MIT-BIH Arrhyth-
mia ECG database. Our solution runs with a sampling rate of 125Hz, and produces
better results compared to the original signals with a sampling rate of 360Hz.

Complete list of published papers within this thesis is given below:

1. “Dataflow DSP filter for ECG signals” in 13th International Conference on In-
formatics and Information Technologies, Bitola, Macedonia, 2016.

2. “CUDA DSP filter for ECG signals,” in 6th International Conference on Applied
Internet and Information Technologies, Bitola, Macedonia, 2016.

3. “Optimizing high-performance CUDA DSP filter for ECG signals,” in 27th
DAAAM International Symposium, Mostar, Bosnia and Herzegovina: DAAAM
International Vienna, 2016.

4. “Parallelization of digital wavelet transformation of ecg signals,” in MIPRO,
2017 Proceedings of the 40th Jubilee International Convention. Opatija, Croa-
tia, IEEE, 2017.

5. “Optimal Parallel Wavelet ECG Signal Processing” in 14th International Confer-
ence on Informatics and Information Technologies, Mavrova, Macedonia, April
2017.

6. ”A Time-Critical Mobile Application based on ECG Medical Monitoring” in 8th
Balkan Conference in Informatics, 20-23 September 2017, Skopje.

7. ”Design specification of an ECG mobile application” in Telecommunication Fo-
rum (TELFOR), 2017 25th 2017 Nov 21 (pp. 1-4). IEEE.

8. ”Optimal DSP bandpass filtering for QRS detection.” in 2018 41st International
Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO). IEEE, 2018.

9. ”Optimizing the Impact of Resampling on QRS Detection.” in 10th ICT Innova-
tions 2018. Springer, Ohrid, Macedonia.

10. ”Amplitude Rescaling Influence on QRS Detection” in 10th ICT Innovations
2018. Springer, Ohrid, Macedonia.

11. “Improving the QRS Detection for One-channel ECG Sensor” in journal of Tech-
nology and Healthcare 2019, in press, IOS Press.

Skopje, Ervin Domazet
March 2019
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Basic Concepts






Chapter 1
Introduction

The content of this Chapter was published at the 13th International Conference on
Informatics and Information Technologies [41], 2016, Sth Balkan Conference in
Informatics [48] and 25th Telecommunication Forum (TELFOR) [49], 2017, and
the Journal of Technology and Healthcare [47], 2019.

Recently, statistics provided by the World Health Organization(WHO) on heart
diseases [60], had revealed the phenomenon that different types of heart attack is
the cause of nearly one third of deaths in the World.

From the other side, researchers have proven that detection of heart disorders can
occur before their existence [83]. Motivated by this type of statistics and the research
results, a lot of projects have started to develop real time processing of ECG data
and increase the level of medical care and life expectancy.

The Internet of Things (IoT) represents a trending concept of connecting things
rather than computers [95]. Mobile Health (mHealth) is an emerging technology
where mobile devices are used for medical monitoring. Many innovative solutions
are competing on the market for achieving effective ways of mobile medical moni-
toring.

1.1 Motivation

Advances in the Internet of Things (IoT) field have encouraged researchers to in-
tensify their focus on Electrocardiogram (ECG) processing, especially for wearable
devices. This field has become a popular research topic in biomedical engineering
[27]. Electrocardiogram (ECG) is a stream of electric impulses generated by the
beating heart muscle. They are detected by electrodes placed on human skin, by
measuring the electric potential that reaches the skin surface [111].

Interpretation of an ECG stream is essential for a better quality of life. Interpre-
tation along with signal analysis is achieved by Digital Signal Processing (DSP)
[17, 123]. Nevertheless, ECG signals are exposed to noise that stem from several
sources, varying from environment (electrical switching power, radio waves or other
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related sources) to the internal noises generated by the human breathing physical
movement or similar sources.

Precise interpretation and analysis of the ECG signal can be achieved by elimi-
nating the noise. Essential data preprocessing phase is conducted by the DSP filters.
Hereinafter, the main ECG features can be detected and analyzed for further de-
termination of the complex heart condition. Processing of the signal is based on
detecting hidden information and the subtle deviation of the heart rhythm to alter-
nating changes of the wave amplitude [8].

Lugovaya [88] had focussed on revealing the efficiency of an ECG signal for
identification, when compared to the three efficient biometric methods, i.e identifi-
cation based on fingerprints, iris or retina, and face. Her experimental results showed
that the rate of correct identification was 96%, which gave an insight for consider-
ing ECG signal as a new biometric characteristic. What is more important, she was
successful in showing the persistence of an individual’s ECG characteristics over
time (slow and gradual variations on ECG signal). This in turn makes it possible
to detect subtle deviations of the heart rhythm and alternating changes of the wave
amplitude.

Potential heart risks can be detected before some time making the real-time pro-
cessing a critical task. This, in turn, can save lives [88]. Sequential algorithms are
insufficient of processing ECG signals real time, especially in the case of a data cen-
ter intended for real-time processing and analyzing thousands of connected wearable
ECG sensors. Our motivation is, therefore, to optimize the high-performance solu-
tion for signal processing.

In the case when wearable ECG biosensor collects and transmits data to the mo-
bile device, ECG data can initially be processed on the mobile devices. In this man-
ner certain types of heart-related disorders can be detected in an early stage. This
can save lives and reduce the overall mortality rate [88].

1.2 ECG Signal Representation

ECG stream holds cardiovascular condition of the patient. Figure 1.1 reveals general
representation ECG signal with its representative P, QRS and T waves. Algorithms
for detecting ECG disorders are based on correctly detecting these features. In each
of these algorithms, the fundamental step is to detect the R peak as the initial step
of the QRS detection.

Fig. 1.1: General Representation of ECG Signal.



Chapter 2
Ecg Signal Processing

The content of this Chapter was published at the 13th and 14th International Con-
ference on Informatics and Information Technologies [41, 43], 2016-2017.

Digital Signal Processing (DSP) area has introduced a powerful set of tools to
deal with digital signals, and some of them can be successfully applied to the analy-
sis of ECG signals. Being one of the most important tools of the DSP area, filtering
can be used for noise elimination and further on for extraction of signal features.
Thus, main features of ECG can be detected and extracted from the hidden informa-
tion, such as alternating changes of the wave amplitude and subtle deviation of the
heart rhythm.

2.1 Digital Signal Processing

DSP is the act of manipulating signals with intention varying from filtering, mea-
suring to producing or compressing analog signals. As the power of computers rad-
ically increased during the last decades, so does the power of the DSP [123]. DSP
had made a tremendous impact on science and engineering, by providing method-
ologies to deal with the most powerful technologies.

DSP had revolutionized many fields in science and engineering. There are many
industrial sectors benefiting from the advancements on the DSP field such as Medi-
cal, Military, Space and Telephone. Electrocardiogram analysis, diagnostic imaging,
voice and data compression, radars, secure communication, telephone signal filter-
ing are among the range of revolutionized fields.

ECG signal filtering is applied with the intention to remove the noise that stem
from several sources. The commonly used method in DSP filtering is the convolu-
tion, as one of the most important techniques of signal processing. It is defined as
a mathematical operation that combines the input stream and the impulse response
in order to generate a new output stream. In case of a filter, the impulse response is
known as a filter kernel.
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Each value of the output stream in digital signal convolution is represented as the
sum of input stream multiplied by set of weight coefficients, which define the im-
pulse response. The impulse response is the signal that results when a delta function
(unit impulse) is the input in the DSP filter.

Denote by f(i) the weight (filter kernel) coefficients in the range i € {—co, 40}
if it is an infinite response filter. We will use finite response filters and the weight
coefficients A(i) in the range i € {0,...,M — 1}, where M is the filter length. Let the
input stream consists of elements x(i) and the output stream of elements y(i), for
i=0,.... The convolution, as a mathematical operation can be expressed by (2.1).

M—1
y(i) =Y h(j)x(i—j) (2.1)
j=0

During this research, we have used the three classic filters to eliminate the noise:
Low-Pass, High-Pass and Band-Pass filters.

2.1.1 Low-Pass Filter

Low-pass filters are designed to thoroughly weaken all the frequencies above the
cutoff frequency, known as a stopband, while passing all frequencies below the
passband [123]. These filters are composed of stream of data items. All samples of
the output stream are in fact a weighted average of the input with the adjacent points
of low pass filter. A simple low-pass filter is presented in Figure 2.1.

Amplitude (dB)

Frequency (Hz)

Fig. 2.1: Frequency response of a simple Low-pass filter.

2.1.2 High-Pass Filter

A high-pass filter has opposite characteristics of the low-pass filter. The effect of the
filter is to weaken the frequencies below the cutoff frequency whereas passing all
frequencies above the cutoff frequency.
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As in the case of Lowpass filter, the output is generated with a weighted average

of the adjacent input stream. The response characteristics of a simple high-pass filter
is presented in Figure 2.2.

Amplitude (dB)

fc Frequency (Hz)

Fig. 2.2: Frequency response of a simple High-pass filter.

2.1.3 Band-Pass Filter

A band-pass filter is a composition of the high-pass and low-pass filters. This type
of filter passes certain ranges of frequencies and rejects the frequencies of the re-

maining region. The frequency response of a simple band-pass filter is shown in
Figure 2.3.

.- top Pass Stop

Amplitude (dB)

Band = Band Band

fL fu Frequency (Hz)

Fig. 2.3: Frequency response of a simple Band-pass filter.

2.1.4 Visual Interpretation of Filter outputs

Figure 2.4 represents a segment of an ECG signal with several QRS complexes,

filtered with a low pass filter of 30Hz, high pass filter of 0.5Hz and a band pass filter
between 0.5Hz and 30Hz.
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—— ECG Signal —— Low Pass High Pass —— BandPass

0.8

04

-04

Fig. 2.4: A segment of an ECG signal with several QRS complexes, filtered with a
low, a high and band pass filter.

2.2 ECG signal Processing

Methodologies for processing and analyzing ECG signal consist of three stages:
data pre-processing, feature space reduction and feature extraction [88]. Figure 2.5
shows the general method for processing and analyzing ECG signals [88].

oW e Eilter Principal Cur!'lpﬁne Hearest_lllean
Analysis Classifier

High Pass Filter Wavelet Trans. Weighted NMC

Band Pass Fiiter

Fig. 2.5: Methodology for ECG signal processing.

Linear Discriminant
Analysis

DSP filters are generally used in the data pre-processing phase. Low pass filters
are usually used to eliminate the noise with high frequencies, such as the electrical
switching and radio waves. High pass filters eliminate the noise initiated by physical
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movement and breathing, mainly interpreted as baseline drift elimination. Bandpass
filters, as a combination of high pass and low pass filters are considered as effective
DSP tools for noise elimination. Although, DSP filters eliminate the noise to a cer-
tain extent, they provide a relatively clear signal, which can be further processed for
feature extraction.

In the feature space reduction phase, the signal is analyzed by detecting the peaks
of QRS complexes and locating the peaks of individual P and T waves. A QRS
complex is used as the starting point for further analysis, and, therefore, it’s exact
detection is of a high importance [97]. For example, a Wavelet transformation can
be used for baseline drift elimination in this stage. In the final phase, QRS features
are extracted, and the ECG signal precisely characterized.

The quality of extracted features, is directly dependent on the correct rate of
eliminated baseline drift. Thus, focusing on this step is vital.

Digital filtering is essential for both the first two steps of the ECG signal process-
ing. Wavelet Transformation is an efficient method used in both the elimination of
baseline drift and QRS complex extraction.






Chapter 3
System Architecture

The content of this Chapter was published at the 8th Balkan Conference in Infor-
matics [48] and 25th Telecommunication Forum (TELFOR) [49], 2017.

The general architecture of an IoT solution for a time-critical monitoring on mo-
bile devices is based on the following four actors and segments.The first actor is the
patient who wears an ECG sensor responsible for collection of real time ECG data.
The patient’s mobile device is another segment of the same actor. ECG data scanned
by the ECG sensor is transmitted to the close by mobile device via personal area net-
work communication. The mobile device is responsible for receiving and applying
the initial processing on the signal. This device is used to upload the received ECG
signal to the ECG Cloud Processing Centre, as another segment.

The ECG signal is further processed in the cloud, and any potential heart condi-
tions are identified. If heart-related problems are detected then risk alerts are sent to
the medical staff for further assessment and clarification. If they confirm a potential
occurrence of a heart attack, then an emergency ambulance is being called with the
coordinates of the patient. This process can prevent sudden deaths, especially when
the onset of a heart attack is registered on time.

The life cycle of this high level architecture of the time-critical mobile applica-
tion is illustrated in Fig. 3.1.

In this paper, we focus on the requirement analysis and design specification of
the mobile application. Next sections provide details about the workflow diagrams
and the business requirements.

3.1 Workflow Scenarios

The mHealth solution can be used in three different solutions. These can be listed
as:

e Real time visualization and monitoring: The main aim would be to receive the
ECG signal and to visualize it. This is to be used for healthy patients. Unless the

11
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ECG Cloud Processing
Center

Fig. 3.1: High level architecture of the solution.

Event Alert Mechanism is used, the cloud will not be informed. Once the cloud
is informed, an analysis will be performed on the region of interest. results will
be analyzed by the medical staff and the cardiac patient informed.

e Collect data for a certain period: This scenario has the capability of the preced-
ing one with additional functionalities. This is to be used for cardiac patients who
have occasional complaints. It has the ability to collect data for a certain period,
such as one week or so. The solution can be treated as an ECG Holter system.
When the period completes, the mobile application must transmit the scanned
data to the cloud efficiently. This will start the post processing and enable a plat-
form to detect and anlyze abnormalities by the medical staff.

e Continuous ECG Monitoring: This has the capability of the preceding ones with
all of the functional requirements. This should be used on patients with a certain
level of heart disease. The measured ECG signal will be periodically transmitted
to the cloud. The cloud server processes the signals and alerts the medical staff.

3.2 Business Requirements

Business requirements generally provide a better understanding of the business ob-
jective of the product. In the case of a mobile healthcare solution, the key actors are



3.2 Business Requirements 13

cardiac patient, medical staff, health service providers and the the solution provider.
Each actor has different business requirements, defined as follows.

3.2.1 Cardiac Patient

The beneficiaries of the clardiac patient is the solution having medical advices from
an end-to-end functioning solution that will keep them in a good health status. The
value of this is priceless, as it has the capability of detecting possible heart problems
in early stages.

3.2.2 Medical Staff

The medical staff must have the opportunity to contribute to the solution by pro-
vision of medical devices. A web application needs to be hosted on the cloud to
review ECG reports, and overview the alerts to make final decisions. The timing of
the medical staff to deliver response is valuable, where they can enroll to the project
part-time. Thus, the solution must be efficient in each aspect. There are two aspects
on which the medical staff can benefit. The primary one is it increases the reputy
of them. By making analysis of the ECG scans on the alerts, they can also make
additional income.

3.2.3 Health Service Provider

When the review analysis of the medical staff addresses a serious health problem,
the cardiac patient must be responsible by the health service providers. The require-
ments of the system is to inform them and take care of their health. Medical staff
also belongs to the health service provider and their response is essential. The readi-
ness of the health providers increase, while they focus more on the health of the
patients.

3.2.4 The Solution Provider

The solution provider assures value added services for means of interoperability of
actors. They must continuously maintain each step, with the aim to enable a secure
platform to host the overall solution. They will increase the awareness of people and
decrease the health costs of the Government. For doing so they will have financial
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benefits. This will certainly help them to cover up their operational expenses and
continue their research.

3.3 Functional Description

Requirements are considered as operational constraints any product must satisfy. It
is a general term that can range from a high-level abstraction to detailed functional
specifications [115, 94]. In this section, the focus is on the requirement elicitation
of the mobile application part.

Mobile application intended to operate as m-Health solution must satisfy the
following functional requirements [110, 68]:

3.3.1 Acquisition of ECG signal

ECG holds significant information regarding cardiovascular condition. When a car-
diac patient wears the ECG biosensor, it is activated and starts to scan the heart
signals. The scanned ECG signals are then transmitted to the mobile device.

The mobile application within the m-Health solution must receive the signal pro-
vided by the ECG biosensor. In order to accomplish that, there should be a func-
tionality to connect (likewise disconnect) to the sensor. When the connection is es-
tablished, the mobile application should receive the encoded ECG signal network
data packets. These packets have a header and data payload. The mobile application
should be able to decode the packets, and put them to the processing queue.

The mobile application should also have a procedure for periodically checking
the connection to the sensor. This is a common issue where the connection between
devices can be lost due to several problems, such as the insufficient battery, the long
distance and Bluetooth signal interference.

3.3.2 Data preprocessing

Raw ECG signal received from the biosensor is occupied with different types of
noise. Radio waves, electrical switching power, internal noise generated by human
breathing are physical movement are some of the noise sources.

Digital Signal Processing is based on filters in order to cope with the enviromen-
tal noise, where low and high pass filters can effectively be used. Fig. 3.2a shows a
segment of ECG signal occupied with noise, whereas the Fig. 3.2b shows the signal
with the eliminated noise.
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Fig. 3.2: Segment of an ECG signal and its representation with removed baseline

drift and high frequency noise

Any further determination of the complex heart condition must be possible after
the baseline drift and the high frequency noise is eliminated. The mobile application

must implement an efficient filter

to save battery resources.
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3.3.3 Detecting of heart-related abnormalities

The algorithms to process and make decisions on the heart condition based on the
ECG signal require a high processing power. The processing power of mobile de-
vices is insufficient of real-time ECG processing, thus a more comprehensive anal-
ysis should run on the cloud ECG processing centre.

However, the mobile application must extract basic features from the ECG by
algorithms that do not require a high processing power, especially those for detec-
tion of obvious heart rate abnormalities. In these cases, the mobile application must
mark the region of interest and send an alert to inform the cloud centre immediately.

3.3.4 Visualization and monitoring

The mobile application must visualize the current ECG signal and enable monitor-
ing for the patient. The requirement is to show only the filtered signal. A history
of abnormal activities, and a certain depth of last ECG activities should be saved
locally. The visualizer module should also be able to reveal them.

3.3.5 Event tracking

As mentioned previously, the mobile device is not capable of running complex al-
gorithms for making decision on the heart condition based on the ECG signal. How-
ever, sometimes the cardiac patient may not feel well. The mobile application must
provide means of manual marking of an event and act as a kind of panic button.
The process must alert the cloud solution and send an ECG segment of the request
moment. These marking points will be important for post processing algorithm. In
order to prevent any misuse, there must be a limit on the usage of this functionality.

3.3.6 Local storage of ECG data

A functionality for local storage is compulsory. Manual alerts, abnormalities and the
preprocessed data must be saved locally. The preprocessed data should be appended
to a single file unless the connection is lost.

This module must ensure that there is enough space in the mobile device. In case
a threshold is exceeded, old files without detected abnormalities should be deleted.
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3.3.7 Transmission to the Cloud server

This is the final and most important functionality of the mHealth application. In
order to communicate to the main application, a separate daemon process must be
implemented in the background and deal with all transmission issues.

It should have several functionalities. One of them is to connect to cloud server
API for transmission of files. User should also be able to specify the synchronization
period.

Occasionally, files for transmission can be large due to continuous monitoring.
The daemon must be able to split ECG files into smaller segments. The limit should
also be customizable. Files should be transmitted on available WIFI connection.
There should be an option for transferring on available mobile connection.

When the files are uploaded, they can be deleted as a default option. User should
be able to modify this. In any case, when an alarming threshold is reached, all of
the transferred files must be deleted. A list of all transmitted and queued files should
also be shown.

This study has defined the minimum viable functionalities of any mHealth solu-
tion. However, other modules can also be added.

3.4 Nonfunctional requirements

Nonfunctional requirements are not directly related to functionality. They in fact,
describe user-level requirements. There is a broad range of non functional require-
ments. The mHealth solution must consider the following:

3.4.1 Usability

It must be kept in mind that elderly people will dominate the usage of the applica-
tion. Thus, the interface must be easy to learn and remember. This would decrease
the rate of a need for consulting the manual.

3.4.2 User-friendliness

The application must be user-friendly. It should give the feeling of its purpose. Its
design should be responsive, in order to run properly in each type of resolution.
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3.4.3 User Experience

The mHealth solution must provide a high level of user experience. The solution
to this is by enabling users to achieve their objectives while using the product. It is
highly likely that elderly patients will be willing to use the product, thus a starting
point is to collect more details about their expectations.

3.4.4 Interoperability

In the context of I0T, interoperability is the ability to exchange information between
so called things. The mHealth solution roughly exchanges data between the ECG
biosensor and the ECG cloud processing centre. Thus the interfaces, communication
syntax, the information flow and the security protocols must be clearly defined. An
important point is that the solution must be loosely coupled to other segments.

Interoperability is the key feature of IoT concept, enabling different devices to
connect easily. This is the key factor that have stimulated the advent of cloud-based
mHealth solutions.

The interoperability can be addressed on several layers and provide independence
of sensors, mobile device platform or cloud. For example, the mobile application
must be platform independent and should run at least on Android OS, IOS and Win-
dows Phone. In each of the platforms the design must be equivalent (or compatible
as much as possible) and same functionalities should be provided.

3.4.5 Reliability

Reliability is sometimes referred as availability, which is a measure of the percent-
age of time the application works correctly. In the mHealth application, this can be
measured by the time the percentage of time the functional requirements run cor-
rectly.

The state of art approach is to have a reliability of 99.99 percent, which means
given a 365-day year, in total it can fail to properly function in 52.56 minutes in one
year.

3.4.6 Performance

The performance criteria for the application is to perform the above-mentioned func-
tional requirements in real-time. In case the device is not capable to perform the
operations, the application must automatically be able to alert.
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When focussed on time-critical domain, the requirements must be exactly defined
in order to detect, alert and react on a given heart condition.

Performance of this solution must be one of the priorities. Sometimes millisec-
onds can prevent further damage of the health of the patient. However, it is impor-
tant to know that performance in IoT solutions does not solely depend on one node.
This leads to the fact that each of the components on the health ecosystem must be
optimized.

3.4.7 Platform Compatibility

The application must be available for the market dominant mobile operating sys-
tems, i.e Android OS, IOS and Windows Phone.

3.4.8 Energy Efficiency

In order to process the functional requirements, application consumes device’s en-
ergy. Algorithms and procedures must be optimized. Especially the Bluetooth con-
nection listener, and the daemon process must run efficiently. In this manner its
overhead to the battery decreases and ensures long battery life.

3.4.9 Data Protection and Security

This is one of the most important nonfunctional requirements. ECG data is sensitive
and must be kept private. The mobile device must ensure that any third party ap-
plications does not have access to the files. Additionally, the daemon process must
encrypt files before transmitting the ECG files.

Health data is sensitive, and can easily be misused, especially following the
health-related data protection laws and legislation. Securing must start from the
transmission of ECG signals by the ECG biosensor, and continue up to the deliv-
ery of application data to the medical staff. One should keep in mind that each part
of the cloud solution should be kept on a high security level. In this way patients
trustiness level can be increased.

3.4.10 Fault Tolerance

Systems are prone to errors, where each of them has a certain level of ability to con-
tinue operations on failures. This is defined as Fault tolerance. In modern systems,
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Fig. 3.3: The use case diagram of the mHealth solution.

the applications have procedures to automatically overcome errors. Possible cases
of failures of the mHealth solutions must be well-defined, and the system must be
able to catch them. The application will maintain a specified level of performance
even if faults happen.

3.4.11 Disaster Recovery

The capability of any system to restore to the previous well-known point in cases
of incidences or disasters, is defined as the disaster recovery. All of the potential
disaster cases must be examined. Prior to this, a disaster recovery procedure doc-
ument must be prepared, and a team for immediate intervention must be kept on
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Fig. 3.4: Convenient landing page mock-up design for mHealth application.

hold. As new features are integrated, it is essential that the recovery procedure be
kept up-to-date.

3.5 System models

The System Modeling concept is used for a better understanding of the functionality

of the system with visual models. These are essential in terms of better communi-
cation, visualization and verification.
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3.5.1 Use case model

Figure 3.3 presents three different use cases which are based on the provided work-
flow scenarios. There are two actors, the Cardiac Patient and the Medical Staff. The
observation is that subsequent scenarios include the use cases of the preceding one.

3.5.2 User Interface

Red oriented colors should be selected when designing mock-ups for the mobile
application. This would give the feeling of a heart to the user. Simplistic designs
should be preferred, with the aim of public usage. Although being a design decision
and not binding, Figure 3.4 presents a convenient landing page mock-up design.
Current ECG is visualized, and apparent parameters are summarized.

3.5.3 Verification and Validation

Verification and validation are required for checking whether a product meets the
defined requirements and the specifications. Verification is the terminology to con-
firm that the software conforms to its specification, whereas validation focusses on
whether the software does the requirements that are previously defined.

In their work Speidel and Sridharan [125] have inferred that conventional verifi-
cation and validation methods are not sufficient to overcome the challenges exposed
by todays mobile devices. They also mention that mHealth concept is in a prema-
ture phase, and has difficulties in finding the right method for software verification
and validation. Their provided solution is based on the crowd-testing methodology,
which they believe can effectively be used in the area of medical monitoring.

This has in fact stimulated researchers to focus on it. Particularly in our case,
a separate study must be made to compare the conventional and state-of-the art
methodologies to find the most suitable verification and validation technology, and
select the best strategy.



Chapter 4
Parallelisation Platforms

This chapter will provide detailed information about the paralellisation and opti-
mization platforms used throughout the thesis.

4.1 Shared Memory Multiprocessor (OpenMP)

In shared memory architectures(Figure 4.1), shared memory locations can be ac-
cessible by all the processors. OpenMP is a shared memory programming li-
brary, developed and defined by a group of major computer hardware and soft-
ware vendors[105]. OpenMP provides a portable, scalable model for shared memory
parallel applications. OpenMP API provides set of compiler directives to support
shared memory parallelism, by supporting C/C++ and Fortran on a wide variety of
architectures[50].

Shared Memory

Fig. 4.1: Shared memory architecture [50].

The main aim behind this choice is primarily to minimize the complexity by
adding parallel structures. Additionally, it supports incremental parallelism with the
ability to parallelize bottlenecks of the application part by part, without changing the

23
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data structures, incrementally locating the loops that have long running times and
then parallelizing them [105]. Moreover, since all threads share a common address
space, we expect a decrease in the overhead required by the introduced parallelism.

4.2 Graphical Processing Unit (GPU-CUDA)

CUDA, or Compute Unified Device Architecture, is NVIDIA’s technology which
ensures a significant increase in software performance by using the GPU power
[51, 112]. The difference between a CPU and GPU is to compare how they process
tasks.

CPU consists of a few cores optimized for sequential serial processing, while the
GPU has a massively parallel architecture consisting of thousands of smaller, more
efficient cores designed for handling multiple tasks simultaneously [3], presented in
Figure 4.2.

Overhead of using GPU instead of CPU, is that the orchestration should be done
by CPU. This in turn is an overhead, which is generaly alleviated in programs re-
quiring huge computations which do not have data dependencies.

Control Core Core EI B
Core Core - —
= os

CPU GPU

Fig. 4.2: CPU versus GPU-Accelerated processing architecture [2].

4.3 Manycore architectures (Maxeler dataflow)

Manycore architectures are specialized multi-core processors. They can contain
thousands of simple and independent cores. These type of architectures can result
in higher degree of parallelism.

Maxeler Dataflow [4] provides a very powerful device for this type of compu-
tation. It is a completely different computing paradigm compared to the traditional
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CPUs. Here, the instructions are parallelized across the available space, rather than
time. This is illustrated in Figure 4.3. In each tick, next state of data is passed to
dataflow engines. This way, superlinear speedups are possible.
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Fig. 4.3: Dataflow processing architecture [4].






Chapter 5

State of the Art of ECG Optimization
Algorithms

The content of this Chapter was published at the 14th International Conference on
Informatics and Information Technologies [43], 2017, International Conference on
Telecommunications [46], 2018, 8th Balkan Conference in Informatics [48], 2017
and 25th Telecommunication Forum (TELFOR) [49], 2017.

5.1 ECG signal processing

Kohler et al. [82] give an overview of existing QRS detection methods. Li et.al [87],
Bahoura [21], Shambi [121] and Martinez [93] have reported successful implemen-
tations of DWT-based QRS detectors.

Pan and Tompkins, [107], have presented a real time algorithm for ECG QRS
detection. Their algorithm considers the slope, amplitude and with information, and
adaptively adjusts to the thresholds and parameters. It uses integer arithmetic in
order to operate without requiring much computation power. There are no execution
times presented, though their analysis is concentrated in the quality, where their
correctness rate 99.3 percent.

An efficient implementation of DWT’s in Field Programmable Gate Array de-
vices [120]. They have optimised the power consumption and throughput. Addi-
tionally, a three level DWT algorithm with 4 Daubechies length filter is presented.

Several studies in literature addressed the delineation concept of ECG signal.
Alfaouri and Daqrouq [14] present algorithms which produces better quality output,
however no consideration is made for the performance.

Among the most cited DSP based filtering approaches is Afonso’s algorthm [10].
His study is based on using filter banks, and the reported results at a 360Hz sam-
pling rate suggest that these types of algorithms can run very fast with promising
performances.

Gusev et al. [67] have proposed a pattern matching algorithm in order to match
the QRS pattern with default patterns.

27
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An increasing amount of papers address Neural networks. Xue et.al [138] have
presented such an approach with excellent performance. QRS detection is based on
an Artificial Neural Network (ANN). An adaptive whitening filter is used to filter
low frequencies. Whereas the QRS complex is detected with a linear matched filter,
which compares the output against the high frequency signal input. high frequency
signals are compared against.

Poli et.al [113] presents a solution for calculating a threshold based on genetic
algorithms. QRS complexes are detected with a linear and nonlinear polynomial
filter, with an applied adaptive local maxima threshold. Parameters are optimized
via genertic algorithms and, are successful in decreasing detection errors.

Martinez [92], has proposed a phasor-transform based algorithm for eliminating
baseline drift, on a 360Hz sampling frequency. This algorithm converts each sample
into a phasor and correctly identifies feature points.

Ajdaraga and Gusev [13] have analyzed how the sampling frequency and res-
olution impacts ECG signals and their QRS detection. They report that even the
rescaled signals obtain good performance when fine tuning the threshold parame-
ters.

5.2 ECG mHealth Solutions

Transformation of healthcare services to solutions for mobile devices is a trending
topic.It is a similar trend compared to the concept of [oT, since it enables means of
securely sharing information between devices.

In the literature, there are studies concerned with the requirement elicitation for
the time-critical mHealth solutions. The requirement analysis in this paper follows
the concepts of the Medical Cloud architecture proposed by Tasic et. al. [131].

In their work, Gusev et. al. [68] have focussed on challenges on implementation
of a mobile telemedicine application. They have analyzed the issue of Low Power
Bluetooth connections, number precision, the transmission, the architecture, design
decisions and optimizations.

AbuKhousa et.al. [7] have also focussed on the challenges of mHealth solutions.
They have particularly investigated the rising healthcare delivery costs, sharing of
information, and the shortage of medical staff. They also give insight about the
issues of trust, privacy, security and some technical issues.

A recent research has been done by Patel et. al [110], addressing the issue of
developing efficient algorithms. They have concentrated on developing efficient al-
gorithms for detection of arrhythmia with low computational power. These type of
algorithms are suitable for mobile devices, and can be used in the initial detection
of heart abnormalities.

An Android based mHealth solution is also proposed by Leutheuser et.al [86].
They proposed using three-level hierarchical classification system in order to in-
stantaneously discover any probable problems.
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One of the functional requirements was to perform a preprocessing on the noisy
ECG signal. In today’s mobile technology, devices have multi-core architectures
and GPU’s. In case they are used efficiently, the process for early detection can be
facilitated. Our previous work addresses this issue [42]. By using NVIDIA GPU’s
we have achieved faster codes with a scalability depending on the number of used
cores.

The proof-of-concept study is proposed by Rolim et.al [116] also. Their solution
is based on automation of the process for healthcare solution by using wearable
sensors and mobile devices. Even though being an old dated, the issues raised by
of Martin et. al [91] still exist. They have also proposed high-performance and low
power DSP prototype.

The mHealth application must run as a real-time application. Any time critical
application has strict rules it must follow. Stonebraker et.al. [128] has provided an
outline of eight important requirements that a real-time stream processing applica-
tion should met.

The scalability of a cloud environment hosting services for ECG signal analysis
is presented in [108]. This study is important since it provides the challenges that
end-user applications are facing.

The data managed in a cloud solution for Personal Health Records (PHR) is
highly sensitive. Patient’s private life can be threatened in the case of cyber attacks.
That’s why the study of Kaletsch et.al [79] is very important, which investigates the
privacy issues. Banica and Stefan [22] have also focussed on the security layer of a
cloud-based e-Health service.

Security and privacy issue of e-Health cloud architectures is also considered in
the study of Ikuomola and Arowolo [75]. They have proposed a Secured e-Health
System, whilst the security of the health records is ensured by using Homographic
Encryption and bi-layer access control.






Part 11
Parallelization of DSP Filtering






Chapter 6
CUDA DSP Filter for ECG Signals

The content of this Chapter was published at the 6th International Conference on
Applied Internet and Information Technologies [40], 2016.

This chapter aims to explore whether GPU DSP filter processing of the ECG sig-
nals is faster than the CPU processing. This will be tested by measuring the speedup
of the obtained GPU solution over the serial solution. Furthermore, our research
also aims to determine the optimal size of threads per block to obtain the maximum
speedup.

6.1 Parallelization for GPU Computing

The algorithm presented in Figure 8.1 is a sequential version of a convolution of a
one dimensional input with a corresponding kernel. The complexity of the algorithm
depends on the input and the kernel stream length, i.e O(nm). When run on a CPU,
the flow is sequential, meaning that the inner loop length depends on the kernel size.

GPU computing is a rather different computing paradigm when compared to the
traditional CPUs. GPUs have a massively parallel architecture consisting of thou-
sands of smaller, more efficient cores designed for handling multiple tasks simul-
taneously. Using this key feature, we have achieved a row based parallelization of
convolution computation for the ECG input signal.

The sequential loop that iterates the input signal is massively parallelized by syn-
chronously utilizing thousands of GPU cores. The proposed solution is visualized
in Figure 8.2.

General purpose GPU programing on NVIDIA CUDA enables modifiable exe-
cution plans, which are specified by blocks and grids. Block is considered as a group
of threads. Its important to note that threads inside the blocks can be synchronized.
Threads across same block can communicate via a shared memory dedicated to the
block. Besides, a grid is a group of blocks. CUDA does not provide means for syn-
chronization between blocks. Moreover, a blocks inside a grid can communicate via
the global memory.
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Fig. 6.1: Parallel GPU Computation algorithm.

This row version of the algorithm uses threads which size is proportional to the
filter kernel. Whenever the threads are executed on a streaming multiprocessor of a
GPU, a number of threads per block (TPB) is defined. We plan to test several values
of TPB and determine its optimal size.

Note that this solution does not include any optimization of the CUDA code,
and we are aware of a lot of concurrent memory reads. Still, the distribution of the
workload on the GPU cores, makes the advantage of using 1536 cores, even the
system clock is much lower.

6.2 Experimental results

This section describes the conducted experiments and presents the obtained results.
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6.2.1 Testing environment

The sequential and parallelized code are tested on an Amazon EC2 - G2 2xlarge
instance. It consists of a 8-core Intel(R) Xeon(R) CPU E5-2670 2.60GHz 64-bit
system with a 15GB of memory. Additionally, the parallelized code is tested on a
NVIDIA GRID GPU (Kepler GK104) device, having 1,536 CUDA cores with a
800Mhz system clock and 4GB RAM.

In this research we have experimented with the Hamming window and the Black-
man window with length of 100 and 200 elements to obtain relatively good results.

6.2.2 Functional Verification

Several experiments are conducted to verify if the functional characteristics of the
sequential and parallel algorithms are identical The input was a short stream of 1000
samples of an ECG signal with all characteristic P, Q, R, S and T waves, as presented
in Figure 8.3.

We have verified both the sequential and parallelized CUDA and sequential so-
lutions obtain identical results.

6.2.3 Test data

The measured parameters in the experiments are the time required to process the
sequential algorithm 7§, and the time required to process the parallel algorithm with
p cores, denoted by T),.

The speed-up is calculated by (10.1) as a ratio of the measured times for execu-
tion of the sequential and parallel algorithms.

Sp=-2 6.1)

6.2.4 Results

Note that for each input signal, the speedup values are calculated by using 7 and
T, values for the same input configuration. Hence, the main reason for using these
values is to compare the performance of the sequential code on CPU and the paral-
lelized code on CUDA enabled GPU.

A total of 5 experiments were conducted, where input length varies from 10.000
to 500.000 in steps of 10.000 samples. The tested kernel length was 100, 500, 2000,
5000 and 7500.
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Table 8.1 presents the running times of the sequential and parallel algorithms
tested in our experiments only for selected values.

One can observe that the speedup increases as the input length is increased as
it was expected. Moreover, the speedup is increasing slightly as the kernel length
increases, due to a more efficient utilization of GPU cores without extra costs for
allocating and dealocating a core.

Table 6.1: Speed-up analysis as the input size and kernel increase.

No Input |Kernel| CPU Run.|GPU Run. S
Size | Size |Time (ms)| Time(ms)| ~P
10000 53 04 12.9
50000 26 11278

! Tooooo] 100 54 21305
500000 266 6] 42.8
10000 27 11205
50000 132 20 60.7

2 ffoooo0] 90 264 4] 669
500000 1323 16 80.0
10000 103 1] 75.9
50000 524 6] 81.8

3 ooooo| 2000 1075 2] 91.6
500000 5288 56] 95.1
10000 248 3898
50000 1330 4] 93.0

4 ffooooo| 000 2649 28 957
500000 13342 133[100.1
10000 359 4917
50000 1955 211 937

> roooo0] P3040 317 96.1
500000 19784 197[100.2

6.2.4.1 Speedup of CUDA GPU vs CPU Solution

The conducted experiments are tested for various input and kernel length. Figure 6.2
presents the speedup of the CUDA algorithm compared to the sequential CPU ver-
sion, where the input length varies from 10.000 to 500.000 samples and filter kernel
lengths of 100, 1.000 and 2.500, with TPB value of 1024.

The algorithm has a steady linear speedup as the ECG signal length increases.
Additionally, increasing the kernel length has a noticable effect on the speedup. This
is due to the effect of allocating and deallocating a thread, which becomes negligible
as kernel length increase. We observe that for some configurations a speedup of up
to 100 is achieved, with a scalable nature.

Therefore the hypothesis is confirmed.
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Fig. 6.2: Speedup of parallelized CUDA solution compared to sequential version.

6.2.4.2 Optimal number of Threads Per Block

In the context of our research question we have provided several additional exper-
iments. Selecting right parameters for number of threads in a block has positive
effect on the speedup. In order to find the optimal value of the TPB number, we
have conducted tests for various TPB from 8 up to 1024. Figure 6.3 presents the
speedup values for different TPB values.
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Fig. 6.3: Effect of threads per block on speedup.

Our analysis shows that, TPB should be kept as high as possible by taking into
account the upper limit of threads per block being provided by the specification of

the GPU.






Chapter 7

Optimizing high-performance CUDA DSP filter
for ECG signals

The content of this Chapter was published at the 27th DAAAM International Sym-
posium [42], 2016.

In this chapter, we focus on optimizing the parallel version of the filtering al-
gorithm on graphics processing unit (GPU) cores. The goal is to find an optimized
solution that speed ups the parallel CUDA solution.

We especially want to explore whether the utilization of shared and constant
memories on GPU can yield faster execution times on ECG signal filtering. To test
this we will measure the execution times of naive GPU solution over the optimized
solution. We are also interested in determining whether loop unrolling and precision
has an effect on the speedup. Moreover, we think it would be worthy to investigate
the performance of the element version.

7.1 Identifying CUDA GPU obstacles for high-performance
convolution

CUDA allows massive parallelism, which should be utilized in an efficient way. In
order to design an optimized code, it is important to optimize memory alignment
and thus accesses. Generally, most important performance consideration is the coa-
lescing of the memory accesses. Figure 7.1 illustrates the coalescing concept.

JIldll
0 32 64 96 128

Fig. 7.1: Coalesced access to memory - all threads access one cached line.
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Moreover, utilization of shared memory is another performance improvement.
Shared memory is located on-chip and generally provides much higher bandwidth
and lower latency than the global memory [36]. This is valid especially when there
are no bank conflicts. When multiple addresses of a memory request values of the
same memory bank, the accesses are serialized, which degrades the performance
significantly.

Constant memory is another CUDA improvement that enables a fast access to
data. Particularly, consecutive reads of the same address do not incur any additional
memory traffic. A single read from constant memory can broadcast to other nearby
threads. This will ensure that no bank conflict will occur in the case of access to
constant memory.

A high-performance solution will include a combination of the shared memory
and constant memory. Since the filter kernel coefficients are not changing over the
execution, a natural solution will be to use the shared memory for storing the input
signal and constant memory for the filter kernel, as presented in Figure 7.2.

Another obstacle is the bank conflict that may occur while accessing the data in
the shared memory. An example of 2-way bank conflict is illustrated in Figure 7.3.

Optimized CUDA Convolution

Input ECG Data ( Global Memary )

Block Window Block Window Block Window

Shared
Memory

Thread Thread
Block # 1 Block #1

Impulse Response

Constant Memory E.I.llll > III.'I'

Fig. 7.2: Data flow in a solution that uses both the shared and constant memory.
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Fig. 7.3: A two-level bank conflict

The solution needs a highly accurate filter and fast processing. Therefore the FIR
filter is the best candidate for the filtering. A problem will occur if the filter length
is bigger than the maximum number of threads per block to eliminate propagation
of partial results and introducing internal synchronization inside a block. Currently,
NVIDIA devices have 1024 threads per block. In our case, to process an ECG signal,
a FIR filter length of 1000 is acceptable, since it generates 30db attenuation with a
relatively small ripple passband of 0.1db.

7.2 Optimization approaches

A sequential algorithm for performing convolution is an iterative procedure that
repeats the kernel item for each new data element. The complexity of the algorithm
O(nM) depends on the input n and the kernel stream length M. The flow on CPU is
sequential, where inner loop length depends on the kernel size.

In our previous research [40], we have used a naive parallel CUDA version of the
DSP filtering algorithm running on a GPU. Since it did not include any optimization,
we have faced lower performance due to lots of concurrent memory reads. In this
research, we target all identified bottleneck problems by optimizing the concurrent
memory reads, aligning memory accesses and reorganization of computations. The
following optimization approaches will be tested:

O1 - using shared memory for the input signal,

02a- using shared memory for the filter kernel,

O2b- using constant memory for the filter kernel,

O3 — using loop unrolling,

04 — smaller calculation precision, and

O5 — element version.
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7.2.1 Utilizing Shared Memory

The Ol optimization approach utilizes the shared memory for storing relevant seg-
ment from the actual ECG signal, although the complete input is expected to be
stored on the Global Memory.

Let any thread block consist of 7PB threads, and the filter length is . Each block
will eventually require an input segment of length 7PB + F from the original signal.
The first TPB threads (within a given thread block) initialize the relevant shared
memory. Before each convolution operation, the block threads are synchronized by
the intrinsic CUDA synchronization primitive __syncthreads() in order to ensure
consistent data when initializing the shared memory.

Similarly, the O2a optimization approach utilizes the shared memory for storing
corresponding filter kernel coefficients. In this case, O1 and O2a will both occupy
the shared memory and therefore, the capacity limitation will decrease the level of
performance gain.

7.2.2 Utilizing Constant Memory

The O2b optimization approach, which is complementary to the O2a approach, uses
CUDA constant memory to store the read-only filter kernel (weight) coefficients. In
this manner, consecutive reads of the same address do not generate any additional
memory traffic. It is important to note that no bank conflict happens when using
constant memory.

A combination of the O1 and O2b optimization approaches will use shared mem-
ory for the input signal segment and constant memory for impulse response coeffi-
cients. This avoids the bank conflicts that occur when utilizing only shared memory.
Figure 4 presents the idea of this version of the parallel CUDA algorithm.

7.2.3 Loop unrolling

The O3 optimization approach is based on unrolling the loop in the thread. Eventu-
ally, this will eliminate instructions that increment the loop index and test if the limit
is reached and combine two or more loop bodies into one loop body. The technique
decreases the number of realized operations per thread.

Figure 7.4 presents a simplified code segment that loops 100 times. Figure 6a
shows the basic method, and Figure 6b a code that uses twice unrolled loop. The
procedure decreases the number of overall processed instructions, since instead of
100 checks for the looping condition and 100 instructions to increase X, the program
is now performing those instructions only 50 times.
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for (x=0; =<100; =xt+) for (x=0; =<100; x+=2)
{ {
process (x) ; process (x);
1 process (x+1);
}
a) Normal loop b} Unrolling by a factor of 2

Fig. 7.4: A loop unrolling example

7.2.4 Precision decrease

The naive parallel CUDA code used double precision as a base type. On devices
of computing capability 2.x, each bank has a bandwidth of 32 bits every two clock
cycles, and successive 32- bit words are assigned to successive banks [5]. The warp
size is 32 threads accessing 32 locations in a memory bank, each with a 32-bit
precision. When double precision is used, in the case of accessing 64-bit numbers,
the total number of memory locations is 16. Thus, a simultaneous access of 32
threads is not possible in a warp to 32 words of 64-bit length will cause, and only a
half warp can be executed.

In order to increase the performance, the O3 approach decreases the precision
to 32-bit single precision mode. In such case bank capacity limitation will be elim-
inated since 32 threads in a warp will simultaneously access 32 words of 32-bit
length. Devices with computing capability 3.x allow a bandwidth of 64 bits every
clock cycle [3]. Thus, bank capacity limitation arising from using double precision
will be eliminated for devices with computing capability 3.x or higher. In addition,
processing a single precision instruction is faster than the double precision.

7.2.5 Element version

Moreover, the element version of convolution is designed and implemented for ECG
signal. In this version, instead of rows, a thread computes multiplication and sum-
mation of elements. Threads are defined for each combination of input and kernel
items. Summation, on the other hand, is performed in logarithmic time. However,
this approach leads to use of a lot of synchronization, which can cause a perfor-
mance decrease.

7.3 Experimental Methodology

This section describes the conducted experiments.
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7.3.1 Testing Environment

The sequential and parallelized codes are tested on an Amazon EC2 - G2 2xlarge
instance. It consists of an 8-core Intel(R) Xeon(R) CPU E5- 2670 2.60GHz 64-
bit system with a 15GB of memory. Moreover, the parallelized code is tested on
a NVIDIA GRID GPU (Kepler GK104) device, having 1,536 CUDA cores with
an 800Mhz system clock and 4GB RAM. The total amount of constant memory is
64KB where each block has 48KB of shared memory. This device has a computing
capability 3.x, and input data is 64-bit double precision.

7.3.2 Experiments and test cases

The experiments were defined by testing the each previously described optimization
approach independently and in a combination with the other approaches. Each ex-
periment had several test runs for various sizes of the input data stream that consist
of 10.000 up to 500.000 samples of an ECG signal with incremental steps of 10.000
samples.

Since the sampling frequency is 500Hz, the input data stream present an ECG
signal from 2 seconds up to 1000 seconds. The filter kernels tested consisted of
M=100, 250, 500, 750 and 1000 elements.

Each test run for the experiments was tested at least five times and an average
value of measured times was calculated and used for further processing. A func-
tional verification was conducted for each test run to verify if the functional charac-
teristics of the naive and optimization parallel algorithm executions obtain identical
results.

7.3.3 Test Data

The measured parameters in the experiments are T, as time required by executing
the naive parallel algorithm using n cores, and T,, as time required by the given
experiment with an appropriate combination of optimization approaches. The speed-
up is calculated by Equation 10.1 as a ratio of the measured times for execution of
the sequential and parallel algorithms.

S, = (7.1)
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7.4 Performance analysis

This section describes the conducted experiments and presents the obtained results.

7.4.1 Shared Memory

Figure 7.5 shows the speedup of the O1 optimization using the shared memory for
the input signal. The optimized version is more efficient, and the speedup increases
with the filter kernel size. An average value of 13% increase is obtained as speedup
for the filter length of 100, and 78% for filter length of 1000. We observe that for
each filter size, the speedup S, > 1 and the greater speedup is achieved when in-
creasing the filter length, which proves the scalability of the improvement.

19
18 S
17
16 P » ya
.__..-rl-—-l-_7 wx ap=1000
15 E—
e e~ y rd —B=750
1.3 /S ~—" > 500
1:2 / B —=1250
1 L N\\/ —#=100

Speedup

-

+
1 T T T T T T T T

) o R~ S N S
& (,,@D °<§§° & @@ F & &H&FSFSS
L T G

ECG Input Signal Length

Fig. 7.5: Speedup of the O1 optimization using shared memory for the input signal
in the case of different kernel sizes.

Additionally, Figure 7.6 shows the speedup of O2a optimization only using the
shared memory for filter kernel. It can be noted code is optimized by roughly 10%
and that speedup increases with the increasing filter kernel length. The higher the
filter kernel is, the better performance gain is obtained. Better results are obtained
for the usage of shared memory for storing the input signals, instead of the filter
coefficients.
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Fig. 7.6: Speedup of the O2a optimization using shared memory for different kernel
sizes.

7.4.2 Constant Memory

Figure 7.7 presents the analysis made on the constant memory defined by the O2b
optimization approach. One can conclude that using a constant memory for the ker-
nel will increase the performance by average 15%. We have compared the O2a and
O2b approaches, as presented in Figure 7.8. The solution using constant memory
instead of shared memory for storing the filter kernels obtains a higher performance
by an average speedup of 4%.
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Fig. 7.7: Speedup of the O2b optimization approach using Constant Memory for the
filter kernel.
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Fig. 7.8: Speedup of the O2b optimization approach compared to the O2a.

7.4.3 Loop Unrolling

The speedup obtained by loop unrolling O3 optimization approach is presented in
Figure 7.9. On average, the loop unrolling optimization technique increases the per-
formance for 1 to 5 percent. The best performance gain was obtained for the un-
rolling length of 64.

7.4.4 Decreasing the double to single precision

The conducted experiments generally use a 64-bit double precision for storing and
calculating the convolution. However, a GPU double precision calculation is a costly
operation [136]. We have tested the performance by decreasing the precision to 32-
bit, since the functional testing showed difference in both approaches expressed in
order of 107>. Figure 7.10 presents the effect of the decreased precision on the
performance. As input size increases, the single precision version is approximately
40 to 60 percent faster than the pure parallel code.
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Fig. 7.9: Speedup of O3 optimization approach using loop unrolling for filter length
of 1000.
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Fig. 7.10: Speedup obtained by the O4 optimization approach by decreasing the
precision.

7.4.5 Element version

The conducted experiments show that the element version actually decreases the
performance. This happens due to the synchronization and bank conflicts that need
to be performed in each step.



Chapter 8
Dataflow DSP Filter for ECG Signals

The content of this Chapter was published at the 13th International Conference on
Informatics and Information Technologies [41], 2016.

In this chapter, we focus on parallelizing the sequential DSP filter for processing
of the heart signals on dataflow cores. The DSP filter is used for preprocessing of
the ECG data, in order to eliminate noise from the ECG signal. Based on the noise
components of the ECG signal, several filtering methods are available, such as Low
pass, High bass and Bandpass filter.

Dataflow Computing is a completely different paradigm of computing than
traditional CPUs. Instructions are parallelized across the available space, rather
than time. It is a revolutionary way for High Performance Computing (HPC)
solutions[122, 59]. Data streams are optimized by utilizing thousands of dataflow
cores, providing order of magnitude speedups. Maxeler systems are used for dataflow
computing [4]. The performance of the parallelized code is compared to that of the
sequential code. Our analysis shows speedups linear to the kernel size of the filter.

8.1 Parallelization for Dataflow Computing

Algorithm 1 presents the sequential version of convolution of a one dimensional
input with a kernel. The complexity of the algorithm depends on the input and kernel
stream length, i.e O(nm). When run on a CPU, the flow is sequential, meaning
that the inner loop length depends on the kernel size. This flow is visualized in
Figure 8.1.

In CPU computing, iterations are parallelized across the available time, and per-
formed sequentially.

Dataflow is a completely different computing paradigm compared to the tradi-
tional CPUs. Here, the instructions are parallelized across the available space, rather
than time. Using this key feature, we have achieved parallelization of kernel com-
puting via Dataflow cores. In this manner, iterative kernel computation is massively
parallelized. Depending on the kernel size, up to thousands of dataflow cores can be

49



50 8 Dataflow DSP Filter for ECG Signals

Algorithm 1 Filtering algorithm

1: procedure CONVOLUTION(in, kernel,out)
2: i+ 0

3 while i < inputSize do

4 sum <0

5 j<0

6: while j < kernelSize do

7: sum < sum+ in[i — j] x kernel(j]
8: j—j+1

9 outli] < sum

0 i<i+1

1 return out

—_—

Convolution - CPU
¥
lterative

WeightedSum © @
¥

‘ Neict kemel

Fig. 8.1: Flow of sequential filtering algorithm.

utilized synchronously, providing a speedup with a higher order of magnitude. The
proposed solution is visualized in Figure 8.2.

8.2 Tests and Results

The sequential code is tested on an §-core Intel(R) Xeon(R) X5647, 2.93 Ghz sys-
tem with 12GB of memory. On the other hand, parallelized code is tested on a
Mazxeler simulator. Five different kernel sizes are tested, and vice versa, for various
length ECG input signals.
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Fig. 8.2: Parallel Dataflow Computation algorithm.
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Fig. 8.3: A segment of an ECG signal with several QRS complexes.

8.2.1 Functional Verification

To verify the functional characteristics of the execution of the sequential and parallel
algorithms we have provided several experiments. The input was a short sequence
of 500 samples of an ECG signal with all characteristic P, Q, R, S and T waves, as
presented in Figure 8.3.
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Fig. 8.5: The ECG signal filtered with a high pass filter of 0.5Hz.

Figure 8.4 presents the effect of applying a low pass filter on the ECG signal.
One can notice that the 50Hz noise is eliminated.

The effect of the high pass filter is presented in Figure 8.5. The effect of this
filter is elimination of the baseline drift, caused by breathing and other physical
movements.

The effect of the band pass filter as a combination of a low pass and high pass
filter is presented in Figure 8.6. This filter eliminates the baseline drift, caused by
breathing and other physical movements and also the 50Hz noise caused by the
electricity.

We have verified both the sequential and parallelized solution and obtain identical
results.

8.2.2 Speed-up Analysis

Speed-up is calculated by (10.1), where 7} is the time required to process the se-
quential algorithm, and 7}, is the time required to process the parallel algorithm with
p cores. Since the system clock on the sequential machine is much higher than the
system clock on the parallel machine, we will compare the number of sequential
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Fig. 8.6: The ECG signal filtered with a band pass filter between 0.5Hz and 30Hz.

steps N, (operations required by the sequential algorithm) and the number of pro-
cessing steps N, (operations required by the parallel algorithm), by considering the
sequential system clock C; and parallel device’s system clock Cp.
I, N;Cp

S:—‘_
"7 1, N, G

8.1)

Note that for each input signal, the speedup values are calculated by using T
and Tp values for the same input configuration. Hence, the main reason for using
these values is to compare the performance of the sequential code on CPU and the
parallelized code on Maxeler Dataflow Engine (DFE).

Sequential running code has mainly two phases: the initialization and processing
phases. Let the input stream contains N elements and the filter kernel M elements.
On initialization, the input stream and filter kernel are transfered from the memory to
the CPU by a total of N + M memory access operations and the N output elements
are written in the memory. Processing phase requires N * M multiplications and
N x M additions. Assuming that each memory access, multiplication and addition
requires 1 processing step, the relation that shows the total number of processing
steps is presented in (8.2).

Ny =2NM+2N+M (8.2)

The number of operations for the parallel algorithm is calculated differently. In
addition to processing, the dataflow engine needs to transfer data from memory to
device and return the results back, which is equal to a total of N + N + M memory
access operations for the input and output stream, and the filter kernel. The dataflow
engine performs operations on N samples concurrently in a pipelined manner, so
the processing takes N processing steps plus the pipeline length of the number of
operations, which is equal to the kernel length M. Note that the summation can be
realized in a tree parallel organization, which will take only log,M steps, but since
we expect that N >> M it will not affect the final result. So the total processing
steps is expressed by (8.3).
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N, =2N+M+N+M=3N+2M (8.3)

Table 8.1 presents the number of operations and calculated speedup for our ex-
periments where the input contains 100.000 samples and kernel length was 100,
500, 2000, 5000 and 7500. The sequential machine clock was 2.93 GHz and the
dataflow Maxeler device system clock 400 Mhz. The speedup increases with the
length of the kernel size.

Table 8.1: Speed-up analysis as the kernel size increase.

No. Plat- InPut Ke.rnel Num. of Sp
form| Size | Size Opers.

1 CDEE 100000 100 20?8%88 9.19

2 CDE[]; 100000 500 10058(1)(5)88 45.45

3 CDIP;[é 100000 2000 400?82888 179.72

4 CDEE 100000| 5000 1000??8888 440.47

5 CD?E 100000| 7500 1500?1);388 650.18




Chapter 9

Parallelization of Digital Wavelet
Transformation of ECG Signals

The content of this Chapter was published at the 40th International Convention
on Information and Communication Technology, Electronics and Microelectronics
(MIPRO), IEEE [44], 2017.

Wavelet Transformation is being used in many signal processing applications. It
has been successful in the area of signal compression, data compression and detec-
tion of ECG characteristics. It mainly generates time-scale representation of an ECG
signal, thus making it possible to accurately extract features from a non-stationary
ECG signal [117, 14].

Wavelet Transformation is basically a linear operation, which decomposes a sig-
nal into various scales according to their frequency components. Each of these scales
is further analyzed with a predefined resolution [9].

Wavelet Transform of a continuous signal is by definition a sum of the sig-
nal multiplied by scaled and shifted versions of the wavelet function, used to di-
vide a continuous-time function into wavelets with the ability to construct a time-
frequency representation of the signal. In many practical applications, though, Dis-
crete Wavelet Transformation (DWT) is sufficient, as it provides only the vital in-
formation of the signal in a significantly faster manner.

This chapter aims at optimizing the sequential Discrete Wavelet Transform
(DWT) used for DSP filtering and feature extraction. DWT is a highly dependent
structure with numerous dependencies between data. We set a hypothesis that op-
timizing the DWT initialization and processing parts can yield a faster code. Our
analysis shows that proposed optimization techniques provide faster code.

9.1 DWT Algorithm analysis

The DWT algorithm contains two phases determined as initialization and process-
ing phases, as presented in Fig. 9.1. Table 9.1 presents the variables used in the
algorithm.

55



56 9 Parallelization of Digital Wavelet Transformation of ECG Signals

S

Initializations Phase
‘ Variable Initialization 1
i=0, m=0, k=0

[ Reading Wavelet Coefficients :l

[ Output Delay Calculation ]

! \
| 1
| 1
| 1
| 1
| 1
| 1
1 1 |
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1

[ Step Array Calculation ]

Fig. 9.1: A high-level abstraction of the DWT algorithm.

The initialization phase creates the base context for the processing part of the
DWT. It is formed of 4 stages, which can be listed as Variable Initializations, Read-
ing Wavelet Coefficients, Output Delay Calculation and Step Array Calculation.

Variables are declared and initialized in the first stage, whereas wavelet coeffi-
cients are read on the second. In wavelet transformation algorithms, there is a delay
for the first output. This is calculated in stage 3. Finally, a vital step matrix for the
wavelet computation is calculated.

On the other hand, the processing phase is responsible for the transformation
itself. For each input element, the Wavelet Compute and Update (WCU) module
realizes the decomposition of the ECG signal into signal approximation and detailed
information.
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Table 9.1: Variables used in the DWT algorithm

variables  |meaning
i,m,k,K, and P|loop index variables

tand f boolean evaluation , i.e true and false
D delay for the first output
L number of Wavelet levels
N data array input size (ECG data samples)
F filter length

wcCcu wavelet compute and update

IwWCcu inverse wavelet compute and update

The Inverse Wavelet Compute and Update (IWCU) removes the low-frequency
components and regenerates the signal. The output of IWCU is pushed to a circular
buffer of length D. The first baseline drift eliminated signal is actually produced
after D steps [19].

Let L be the number of wavelet levels to compute. Assuming an input ECG signal
using a 500 Hz sampling frequency, the highest frequency component that exists in
the signal is 250 Hz (each DWT level processing divides the band in two parts).
Since the ECG baseline drift removal needs a high pass filter of 0.5 Hz then the
DWT algorithm requires L = 9 wavelet levels.

Our research is concentrated on the parallelization of DWT algorithm. Analysis
shows that DWT has highly dependent structure. This in turn makes direct par-
allelization inconvenient. In this section, we provide the dependency analysis and
propose an efficient solution for parallelizing DWT algorithm.

Profiling the code showed that execution time is mostly spent in two segments of
the code. These are the Step Array Calculation stage and the Processing phase.

Algorithm 2 Step Initialization and Calculation Algoritm

I: PK+0

2: while P < L do > Initialization
3 while K < 2L do

4 Step[P][K] + 0

5: P+0

6: while P < L do > Calculation
7 MK« 0

8: while K < P do > Calculate M
9: M <+ M %2
10: while K < 2L do
11: Step[P|[K] < 0
12: if K%M == 0 then
13: Step|P][K] + Step[P][K] + 1
14: if K%(M x2) == 0 then

15: Step[P][K] < Step[P][K] +1
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Algorithm 2 shows the operations executed for the Step Array Calculation stage.
At a glance, it is seen that the complexity of this stage is O(L % 2F). Especially on
high Wavelet levels, this part becomes a serious bottleneck.

The operations start with initializing the two-dimensional step array, of length L
and 2L, A 2-level loop is used, though the second level executes 2L jterations. Once
initialized, the calculations are performed on the second loop, requiring 27 iterations
for each input.

In the Processing phase, a loop iterates N + D times. Calculation of the delay D is
presented in Algorithm 3. We can conclude that D is proportional to C; * 2%, where
Cy is a constant number depending on level L. As the number of levels increases
significantly, the constant C;, and N can be neglected resulting in an algorithmic
complexity of O(Lx2%).

Algorithm 3 Delay Calculation

1: D,P+0
2: while P < L do
3: D+ 2+«D+(F—1)

From the high-level algorithm presented in Fig. 9.1, we observe that in each
iteration WCU and IWCU iterate L times. Algorithm 4 presents the inner structure
of the WCU. Operations start from the first level and repeatedly execute until the last
level. The input to this module is the data value computed as result of the previous
WCU. WCU actively performs operations with the values of the dynamic wavelet
filter stored in the filter buffer.

Algorithm 4 Wavelet Compute and Update operations

1: Circular(Tail] < Previous

2: Tail < Tail — 1

3: Next,P <+ 0

4: while P < L do

5 Next <+ Circular[P]* Coef ficients[P]

Each WCU operation starts with pushing the previously calculated value by a
preceding WCU to the circular buffer. The next step is to rearrange the tail pointer
of the circular buffer. Finally, the coefficients are convolved with the buffer. The
output of this operation is used as input to the next WCU. WCU is performed in a
sequence for all wavelet levels L.

IWCU practically contains same operations except that it uses Step array as an
indicator whether the operations will be performed or bypassed in the current itera-
tion. If Step array is 1, then the previously computed value by a preceding IWCU is
updated to 0.

From the profiled code we observed that WCU part is the most important bottle-
neck having a highly dependent nature.
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Fig. 9.2: A high-level view of Wavelet Compute and Update.

9.2 Dependency Analysis and Parallelization

The previous section presented algorithmic details, especially for the main bottle-
necks which are Step Array Calculation stage and the Processing phase. This section
discusses the data dependence between loop iterations.

Starting from the Step Array Calculation stage, it is observed that iterations are
independent, which is important for efficient parallelism. On the other hand, when
we analyze the Processing phase, we see that it has a highly dependent structure,
especially due to the fact that current input to the WCU or IWCU, depends on the
output of preceding WCU or ICWU computation.

To realize a visual presentation of the data dependence we will use that A — B
means B depends on A. Fig. 9.3 shows the data dependency of the Processing phase
implementation and gives an initial idea about the sequence of computations that
need to be processed. It also gives an idea how to arrange computations in a parallel
environment exploiting concurrent computations.

Each of the nodes presented in Fig. 9.3 stands for both WCU and IWCU opera-
tions. The result of WCU computing the input NV and level L is basically the detailed
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approximation of the signal at L’th decomposition level. This information is then
transferred to the next L+ 1’th level of the N’th input signal for further processing.

The computations in each node realize a WCU operation, that is composed of
several steps. The first step inserts previously computed data sample. The second
step is to increment the tail of the circular buffer and lastly convolve coefficients
with the buffer, where the output of the convolution is passed as input to the next
WCU.

For a single input element, the detailed approximation for decomposition level L
starts by computing the approximation at first level. Detailed approximation at any
level is computed by performing a convolution with an orthonormal wavelet basis.
This information then is transferred to the next node, which is the right node in
Fig. 9.3. In this manner, by repeatedly computing and passing the detailed approxi-
mation to the right node, next level detailed approximation can be computed.

Once the level L is reached, the same procedure is applied to the next input ele-
ment which is at the bottom of the starting node. In this manner, the algorithm flows
from right to left when going at higher decomposition levels, and top to bottom
when computing the next input elements. One can observe that the algorithm has
highly dependent nature.

On the first sight, it is observable that dependency prevents direct paralleliza-
tion. However, several methods can rearrange the presented structure and parallelize
the execution. One possible way rearranges the nodes, such that the calculation of
values for a certain node assumes that previous (left and upper) nodes are already
calculated. We use the Pipeline-Parallel-Processing methodology for parallelizing
DWT.

Fig. 9.4 shows the organization and flow of computations in the existing data
flow arrangement of the nodes. One can observe that computation waves can flow
with 45 degrees to the axes. Each wave contains independent computations and can
be executed simultaneously at a given time stamp. This ensures that previous nodes
(found on the left) are already calculated. Due to this pipelined structure, the first
output will be ready after L iterations, which is 9 in this case.

When iteration size is relatively bigger, the overhead due to the opening and
closing phases of the pipeline can be neglected. Next section will outline the imple-
mentation strategies of the following algorithm to different platforms.

In this paper, we use OpenMP library to implement the parallel algorithm. The
Step Array Calculation stage does not have dependencies between loops, thus itera-
tions are directly parallelized by OpenMP loop directives.

On the other hand, for the Processing phase, each node in Fig. 9.3 computes the
WCU, by performing a set of complex operations. The idea behind is to allocate a
separate thread to each of the nodes. The main consideration would be to order the
execution of threads in the right manner, with the aim to produce a correct output.

The nodes (representing computations) found on the wavefront can be processed
independently when the previous nodes (on the left) are calculated and results are
transmitted to the neighbor. These threads are synchronized once they finish their
execution, and continued to the next iteration.
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Fig. 9.3: Dependency analysis of the Sequential DWT code. Each node presents a
WCU or IWCU operation.

Our analysis is based on using cores more than the maximum number of algo-
rithm nodes that can be simultaneously executed. This is critical in order to elimi-
nate delays. Let’s consider a reverse case of having less cores than needed, such as
4 cores and decomposition level 9. Fig. 9.4 shows the numbered WCU nodes. In
the first time step = 1, only one thread will execute the node number 1 and other
threads will be idle. The next time step r = 2 addresses execution of 2 threads (nodes
2 and 10). This is followed by # = 3, where three cores will execute the code (nodes
3,11, 19) and only one core will be idle. Starting with the fourth time step (t = 4) the
cores will fully execute the algorithm without idle moments. However, in the next
timestamp (f = 5) 5 nodes should be executed simultaneously and there are however
there are only 4 available cores. Thus, this will require 2 cycles in order to complete,
such that nodes 5, 13, 21, 29 will be executed in one cycle simultaneously, and, only
the node 37 will execute in the latter cycle, while the other cores will be idle. This
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Fig. 9.4: Simultaneous Execution of nodes on the DWT code for 9 decomposition
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Fig. 9.5: Execution times of running the three proposed optimizations, with input
size of 2000, 8000 and 32000. Number of cores are identical to number of Wavelet
Levels. Values are presented on a logarithmic scale of base 10.
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Fig. 9.6: Speedup of three proposed optimizations, with input size of 2000, 8000
and 32000. Number of cores are identical to number of Wavelet Levels.

will increase the delay, and decrease the performance of the application seriously.
The best performance for decomposition level of L is to use at least L cores.

By parallelizing the both bottlenecks, theoretically, the algorithm can achieve a
speedup of L on L cores. The next sections present experimental research of the
proposed optimizations.

9.3 Testing methodology

Denote the response time required to process the sequential algorithm be denoted
by T, and the response time required to process the parallel algorithm with p cores,
be denoted by T,. Then, the speedup is defined as the ratio of the execution times
by (10.1).

Sp= > ©.1)

The sequential and parallel code are tested on an Amazon C3 c3.8xlarge in-
stance. It consists of a high-frequency Intel Xeon E5-2680 v2 (Ivy Bridge) Pro-
cessor with 32 cores, 60GB of memory. The performance of the code is tested for
various wavelet levels.

OpenMP library is used for shared memory parallelism [105] without prebuilt
optimizations from the OpenMP library. The static scheduling method is used to
evaluate the sequential results.

Three optimization approaches are tested:

O1: Parallelization of Step Array Calculation
02: Parallelization of Processing
03: Complete Parallelization
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The experiments were defined by testing the each previously described optimiza-
tion approaches in a combination with the other approaches. Each experiment had
several test runs for various sizes of the input data stream that consist of 2.000, 8.000
and 32.000 samples of an ECG signal. The tested wavelet levels consists of 3 up to
24, with incremental steps of 1 level. Daubechies filters with length are used in the
experiment.

Although being theoretically possible, it is difficult to calculate behind 24 wavelet
levels practically, due to memory and architectural constraints.

Each test run for the experiments was tested at least five times and an average
value of measured times was calculated and used for further processing. Moreover,
functional verification was conducted to verify the functional characteristics of the
sequential and optimization parallel algorithm executions obtain identical results.



Chapter 10
Optimal Parallel Wavelet ECG Signal Processing

The content of this Chapter was published at the 14th International Conference on
Informatics and Information Technologies [43], 2017.

In this chapter, we investigate the dependence between the nodes in the DWT im-
plementation (and therefore to their corresponding threads) and the available num-
ber of cores that can execute the code. This analysis leads to valuable conclusions
that will allow construction of even better optimizations. We give a detailed anal-
ysis and also realize experimental testing to analyze the practical implementations.
Evaluation of the results are compared with the results of previously parallel code
[45].

10.1 Discrete Wavelet Transform Analysis

Our analysis on the previous study [45], showed that DWT algorithm contains two
bottlenecks, exposed in the Initialization and the Processing phase.

Observation is that the former phase does not include data dependencies between
iterations. This was a vital information for pure parallelization. Though, the latter
phase is highly dependent, preventing direct parallelization. This is presented in
Fig. 9.4 where data dependence is vizualised as A — B, with the meaning B depends
onA.

10.2 Previous Parallel Algorithm

Our previous parallel algorithm [45] was based on optimizing both of the bottle-
necks. The Initialization phase was parallelized by a straightforward approach. Nev-
ertheless, high data dependency on the Processing phase required re-arrangement on
the nodes for a concurrent computation.
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Computation waves can flow with 45 degrees to axes where each wave con-
tains independent computations and can be executed simultaneously at a given time
stamp. This ensures that previous nodes (found on the left) are already calculated.
Due to this pipelined structure, the first output will be ready after L iterations, where
L is the number of wavelet levels.

The proposed implementation requires that each block of independent nodes to
be synchronized between iterations. However, this is a costly operation and prevents
theoretical speedup of L, when executed on L cores.

Next section gives further optimization strategies, in order to achieve the best
efficiency through the parallel algorithm.

10.3 Optimization Approaches

The methodology for testing the parallel algorithm on the previous study [45] was
based on executing both the bottlenecks on the same number of cores.

The algorithmic and storage complexity of the DWT is O(L % 2%), making it
nearly hard to increase the Wavelet levels.

One interesting approach is to keep the core numbers for Initialization phase
high. This would increase the efficiency, simply because the data independent itera-
tions.

In the Processing phase the maximum available nodes that can concurrently be
processed is restricted to the number of wavelet levels. Thus, increasing the core
numbers, will only increase the number of idle cores. However, executing this region
with less number of cores can decrease the burden of barrier synchronization.

Our previous work did not address the effect of filter length. Theoretically, in-
creasing the filter length will directly increase the percentage of processing com-
pared to the percentage required to synchronize iterations.

Moreover, OpenMP provides built in optimization strategies [76]. Previous study
did not considered using them. It would be interesting to test their effect on the
barrier synchronization.

10.4 Testing Methodology

Let the response time required to process the parallel algorithm be denoted by T,
and the response time required to process the optimized parallel algorithm with p
cores, be denoted by Tj,,. Then, the speedup is defined as the ratio of the execution
times by (10.1).

TP
1 D

Sop = (10.1)
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The proposed optimization approaches are tested on an Amazon C3 c3.8xlarge
instance. It consists of a high-frequency Intel Xeon E5-2680 v2 (Ivy Bridge) Pro-
cessor with 32 cores, 60GB of memory. OpenMP library is used for testing the
proposed optimizations.

The following optimisation approaches will be tested:

OA1l: Using more core numbers for Initialization phase.
OA2: Using less core numbers for Processing phase.
OA3: Increasing the filter length.

0OA4: Using compiler optimizations.

OAS5: Combined Effect.

On the previous study, we observed the effect of input size is negligible as the
wavelet levels increase. Due to this, the input size will be fixated to 10.000 sample
length ECG signal. Throughout the tests, wavelet levels vary from 3 up to 24, with
incremental steps of 1 level.

On the test environment, the maximum number of available cores is 32. Consid-
ering this, the test configuration is presented in Table 16.1.

Table 10.1: Test Environment Setup

Optimization Description of The
Approach Testing Methodology
OAl Core numbers from 2 to 30, incremental steps of 2
0OA2 Core numbers from 2 to 10, incremental steps of 2

OA3 Daubechies filters of length 4, 8, 16, 32 and 64
OA4 OpenMP’s built-in O1, O2 and O3 optimizations
OA5 Combination of the most efficient approaches

Each test case was tested ten times and an average value of measured times was
calculated and used for further processing. Moreover, functional verification was
conducted to verify the functional characteristics of the executions obtain identical
results.






Chapter 11
Overview and Related Work

The content of this Chapter was published at the 6th International Conference on
Applied Internet and Information Technologies [40], 2016, 27th DAAAM Interna-
tional Symposium [42], 2016, 13th International Conference on Informatics and
Information Technologies [41], 2016, 40th International Convention on Informa-
tion and Communication Technology, Electronics and Microelectronics (MIPRO),
IEEE [44], 2017 and 14th International Conference on Informatics and Informa-
tion Technologies [43], 2017.

11.1 Related Work of DSP Filters

Anwar et al. [18] have published a solution using shared memory, without analyz-
ing the possibilities of the constant memory. Wefers et al. [135] have concentrated
on implementing a real-time convolution on frequency domain. Herdeg et al. [96]
have also concentrated on the frequency and time domain fast convolution. On time
domain convolution, though, authors have not provided any information related to
memory storage, access, and optimizations.

We have considered parallelizing DSP filters on a Maxeler dataflow engine [41].
We obtained promising results, with linear speedups proportional to the kernel
length. We calculated speedup by measuring a number of sequential steps needed to
convolve the signal, whereas here we compared execution times.

Additionally, we have focused on parallelizing DSP filtering algorithm on CUDA
[40], by utilizing thousands of GPU cores. The experiments have shown linear
speedups, proportional to the kernel size. Obtained results serve as a basis for this
research. We have also observed that threads per block (TPB) should be kept as high
as possible by considering the upper limit being provided by the specification of the
GPU card.

Sava et al. [118] have developed two parallel solutions for generic Wavelet Trans-
form for signal processing, without addressing specifically the concept of baseline
drift of the signal. Their algorithm is based on pipeline processing farming. They
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conclude that the performance of algorithm increases as filter length and data length
increase. However, authors have not provided any information about the impact of
core numbers, parallelization platform, and the scalability.

Kayhan and Ercelebi [80], proposed lifting scheme based DWT algorithm for
ECG denoising. Tests were conducted with an 360Hz ECG signal with 216.000
samples. Their algorithm provided fast executions where on Daubechies filter of 8§,
0.141s execution times were provided.

Rajmic and Vlach [114] have proposed a real-time algorithm via segmented
wavelet transform analysis, presenting only the principle without practical imple-
mentations.

Stojanovié et al. [127] have proposed optimized algorithms for biomedical signal
processing. Their results are 2-4 times faster than the sequential implementation,
though being incomparable with our work.

11.2 Overview of Obtained Results

11.2.1 CUDA DSP Filter for ECG Signals

This section evaluates and discusses the obtained results, and also provides an anal-
ysis of the TPB number to determine an optimal configuration of the algorithm.

This work contributes CUDA GPU parallelization for noise filtering of ECG
heart signals. The provided parallel solution takes advantage of thousands of CUDA
cores. Their size is increasing linearly to the input length used.

Results obtained by executing the sequential algorithm and the parallel CUDA
algorithm show they are identical for low-pass, high-pass and band-pass filters.

The analysis on GPU shows that higher available numbers for threads per block
produce higher speedups. Increasing the kernel length has a noticable effect on the
speedup. The row version of the CUDA algorithm achieves a speedup proportional
to the input and filter length.

This research is the first step of the ECG signal processing with the intention to
extract hidden information.

As future work, we plan to carry out more tests on multiple GPUs tied together
and compare the results to the OpenMP and similar solutions. We also plan to find
a more appropriate CUDA algorithm and optimize the GPU execution if possible
by an element algorithm version, where the threads are defined on element level,
and not on a row level, expecting that the parallelized code will scale linearly with
increasing filter size, and achieve even higher speedups by eliminating the synchro-
nization barriers and aligning the memory access without bank conflicts.
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11.2.2 Optimizing high-performance CUDA DSP filter for ECG
signals

Figure 11.1 combines the optimizations compared to the double precision version
of the previous code. We observe that Shared Input and Output version speedups the
code by 13% and 78%. Using Constant memory version is 15% faster compared to
the previous code [40]. Combining these, the maximum speedup of 2.4 is obtained.
Thus we can conclude that the hypothesis we set is confirmed.
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Fig. 11.1: Performance gain by a combination of optimization approaches.

We were also interested to investigate the effect of the loop unrolling. We observe
that using a loop unrolling with a length of 64 introduces additional 4 % perfor-
mance gain. Additionally when the precision is decreased to 32 bit, the speedup in-
creases up to 6. An interesting case was to see whether the element version performs
better. We observed that, due to the internal synchronization and bank conflicts per-
formed on each step, the performance of the element version is not attractive.

This research was concentrated on time-domain convolution. Generally, data in-
tensive streams are convolved on the frequency domain, by actually multiplying two
signals on the frequency domain. Gained results were much faster, but the results
were not accurate. This is because ECG signal is not always periodic; since the
heart beat rate changes due to physical activity, emotional state, etc. So, in the case
of ECG, frequency-domain convolution is not recommended.

We also investigated the usability of NVIDIA’s CUBLAS library to dispatch
each of the required convolution calculations as a Level 1 BLAS (Basic Linear Al-
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gebra. Subprograms) caxpy (Scalar Alpha X Plus Y) operation. Caxpy computes a
constant alpha times a vector x plus a vector y, and finally, overwrites the initial val-
ues of vector y. In the case of ECG signal, the impulse response has variable filter
elements, making the use of this operation useless.

Moreover, we designed and implemented the element version of convolution for
ECG signal context using explicit synchronization for reduction and summation.
Even though the reduction operation has logarithmic complexity, our tests have
shown that this approach decreases the performance. We plan to develop an opti-
mized algorithm where multiplications will be distributed across different blocks,
and the synchronization will be handled inside threads of a block. We believe that
this will optimize the current version of the code.

Higher speedups are obtained when using single instead of double precision. This
is directly related to the achieved GFLOPS (billions of floating point operations per
second) of the device. On GPUs, double precision GFLOPS is smaller than the
single precision [1], which results in faster executions when floating point numbers
are used.

In this research, we have also considered using loop unrolling. Approximately
1-5 % performance gain is obtained with double precision. We have also tested to
decrease the precision, and nearly doubled the performance of the algorithm.

This research contributes to the CUDA GPU optimization strategies for the noise
elimination on ECG heart signals. The proposed optimizations, take advantage of
intra-block shared memory and the general constant memory. By storing ECG seg-
ments on shared memories, we have optimized the memory accesses.

Additionally, we used storing of the filter coefficients on the constant memory,
thus consecutive reads of the same address does not generate any additional memory
traffic. We are aware of the limitations, where filter length should be smaller than the
maximum number of threads per block due to the internal synchronization inside a
block.

Results obtained by executing optimized algorithms show they are identical for
each of the filter types. From the obtained results, we can conclude that proper
usage of shared and constant memory has a positive impact on the performance.
Our analysis showed that their combined effect yield 2.4 times faster executions
compared to the previous code. We can, therefore, conclude that the hypothesis is
confirmed.

Considering loop unrolling speeds up the code by 1-5%. Moreover, we tested the
decreased precision effect on the performance and got nearly 1.5 faster code when
on 1000 filter length. We observed that the element version is not effective when
ported on GPU.

It is important to note that each of the proposed optimization techniques adds up
to the combined speedup. We observed that the best-combined effect had a speedup
of 6.
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11.2.3 Dataflow DSP Filter for ECG Signals

The provided parallel solution takes advantage of thousands of Dataflow cores.
Their size is increasing linearly (according to the maximum number of available
space) depending on the kernel size used.

Results obtained by executing the sequential algorithm and the parallel dataflow
algorithm show that the obtained results are identical for low-pass, high-pass and
band-pass filters.

The analysis shows that the speedup is proportional to the filter length. In this
research we have experimented with the Hamming window and the Blackman win-
dow with length of 100 and 200 elements to obtain relatively good results.

11.2.4 Parallelization of Digital Wavelet Transformation of ECG
Signals

Fig. 9.5 presents the execution times on a logarithmic scale with base 10 since the
algorithm complexity is O(L*2"). Additionally, Fig. 9.6 presents the speedup values
for the proposed optimization approaches. Input sizes are selected as 2000, 8000 and
32000 samples of ECG activity. Wavelet levels vary from 3 to 24, with incremental
steps of 1. The increase of wavelet levels demands more cores.

It can be observed that O1 optimization approach tends to give positive results.
The performance of the code is increased by roughly 20% for increased number of
wavelet levels and cores.

The results with the O2 and O3 optimization approaches are not efficient. This
is due to the barrier synchronization, used to synchronize the nodes.

This can be neglected only when the number of nodes (that can simultaneously
execute wavelet levels) is relatively high.

Speedup values presented in Fig. 9.6 show that the optimization approach O1
gives up to 20% faster code. This was the expected case since the Step Array Calcu-
lation phase does not contain any data dependencies between loop iterations. Con-
sidering that an input ECG signal is using a S00Hz sampling frequency, then elimi-
nating the baseline drift will require 9 or 10 wavelet levels. In this case, the proposed
optimization approach will yield 10 — 15% faster code.

Moving forward to the optimization approach 02, it is clearly seen that this ap-
proach is not attractive for significantly low number of wavelet levels. As wavelet
levels increase, the performance of the algorithm increases. The main reason not to
obtain a higher speedup is the overhead of using barrier synchronization for syn-
chronizing nodes.

Since using higher wavelet levels is practically not possible we conclude that this
strategy is not attractive. Same arguments can be made for the optimization approach
03, except that it is yielding a bit faster code compared to the optimization approach
02.
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Fig. 11.2: Speedup of the paralleled Initialization phase with fixed number of cores
compared to an implementation with cores equal to the Wavelet levels.

We tried using explicit synchronization strategies, without any success. Such
strategies are only efficient on a high level of iterations.

Based on the results presented, we can conclude that the hypothesis set in this
paper is partially confirmed. Even though the proposed parallel algorithm for the
processing part was not efficient on small wavelet levels, parallelization of the ini-
tialization part resulted with a faster code.

This work contributes OpenMP parallelization for the baseline drift elimination
of ECG heart signals. Three optimization strategies were provided.

Results obtained showed that parallelizing the initialization part gives a speedup
of nearly 1.2. On the other hand, the parallelization approach for processing part was
based on transforming loop iterations, in a manner that they become independent.
Pipelined parallel algorithms were developed, and tested.

Our observation is that, on low wavelet levels, the parallel algorithm for the pro-
cessing part is not efficient. This is primarily due to barrier synchronization between
iterations.

We also tested the effect of input sizes. Unless the delay is bigger, input size plays
a huge role in the speedup. The higher the input size is, the higher the speedup.

In both cases, it can be noted that the provided algorithm is scalable. Theoreti-
cally, if we run the algorithms on higher orders of magnitude, the achieved speedup
will be higher.

11.2.5 Optimal Parallel Wavelet ECG Signal Processing

Figure 11.2 presents the speedup values when running the parallelized Initialization
phase with fixed number of cores. These values are calculated by comparing with
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Fig. 11.3: Speedup of the paralleled Processing phase with fixed number of cores
compared to an implementation with cores equal to the Wavelet levels.
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Fig. 11.4: Speedup of combining the best optimisation approaches compared to an
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Fig. 11.5: Average speedup of the paralleled Processing phase with different filter
lengths.

the case when running on core numbers equal to Wavelet levels. It is observed that,
from wavelet levels ranging from 3 to 10, the fixed 2 core execution is faster by an
average speedup of 12%. Similar speedup is obtained between wavelet levels 11 and
20, when running on 4 cores. On wavelet levels higher than 20, the average speedup
is calculated to be 14%, though on executions with fix 10 cores.

These results indicate that, running the initialization phase on fixed number of
cores yield faster code. It is observed that, as the wavelet increase, using higher
number of cores becomes efficient. The speedup which is obtained is nearly 12%.
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Fig. 11.6: Speedup of the parallel algorithm with using built-in OpenMP optimiza-
tion flags.

Next, on the Figure 11.3, speedup values which correspond to running paral-
lelized Processing phase with fixed number of cores. Again, values are calculated by
comparing with the case when running on core numbers equal to Wavelet levels. It
is observed that this optimization approach is effective especially when the Wavelet
level is greater than 13. Fix core 2 case yields the best results. This was expected,
since it decreases the negative effect of barrier synchronization. On wavelet levels
higher than 13, the average speedup is calculated to be 10%, though on executions
with fix 2 cores.

Figure 11.5 presents the effect of filter length. Filter length has an effect only on
the Processing phase, thus test is conducted on the complete parallelization case. As
expected, increasing the filter length has a direct effect on the speedup of the paral-
lelization. This is primarily due to the fact that, as filter length increase, the effect
of synchronization becomes less important. On filters of length 64, the completely
parallel algorithm performs 2 times faster.

The effect of compiler optimizations is shown in Figure 11.6. Results indicate
that the build-in O3 optimization, fastens the completely parallel algorithm by at
least 15%.

Figure 11.4 shows the combined effect of the optimization approaches, where the
code is tested on the best configuration, i.e. fix 2 cores, with 64-length Daubechies
filter and built-in compiler optimization flag O3. Observation is that on Wavelet lev-
els less than 10, the Step Optimization algorithm has an average of 4 speedup. What
is more interesting, when the Wavelet levels are greater than 10, the optimizations
yield a speedup of 4 Complete Parallelization, in a scalable nature.

Observation is that proposed optimisation approaches can yield faster codes
when run on proper configurations.

This work contributes OpenMP optimization for the baseline drift elimination
of ECG heart signals. Totally five optimization approaches were proposed. Results
indicate that, each of them can yield faster codes on proper configuration.

Approaches OAI and OA2 yields speedup values of at least 10%. On the other
hand, results showed that as filter length increases, the proposed parallel algorithm’s
efficiency increases. To be more specific, the OA3 approach speeds up the parallel
code by a factor of 2, when the filter length is increased from 4 to 64.
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The effect of compiler’s built-in optimization strategies were tested. The out-
come of this OA4 approach was that the O3 flag performs best, with at least a 15%
performance gain.

Lastly the combined effect was tested as the proposed OAS5 approach. Observa-
tion was that the combined effect yields a speedup of 4.
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Chapter 12

Optimal DSP Bandpass Filtering for QRS
detection

The content of this Chapter was published at the 41st International Convention
on Information and Communication Technology, Electronics and Microelectronics
(MIPRO), IEEE [64], 2018.

ECG signal is usually contaminated with noise, that can stem from different in-
ternal and external sources, such as environmental noise or internal body muscle
movement. The next step is to reduce the search space and extract only the QRS
complexes as much as possible in order to construct a good QRS detector. Analyz-
ing the QRS structure and the properties of a typical ECG signal, one can conclude
that a bandpass filter can successfully be used for these purposes. Some authors sug-
gest using only a high-pass filter to extract the QRS complexes, mostly based on the
knowledge that the intensity of QRS is larger than the intensity of high frequencies
noise.

To avoid misinterpretations due to the baseline drift and other potential noise and
obstacles generated by other internal waves, we continue with an analysis based on
bandpass filters. Our goal in this chapter is to determine the optimal values of the
bandpass filter that can successfully eliminate the noise and extract the QRS waves
only.

Therefore, we will investigate the effect of the filter length in case of FIR filtering,
or other characteristics relevant for IIR filters or wavelet filters, trying to find the
optimal values of the central frequency, bandwidth and -3 db cutoff frequencies of
the filter. The influence of the band pass filter will be evaluated by the accuracy,
sensitivity, and precision. We use the standard MIT-BIH database while evaluating
the algorithm.

12.1 Analysis of the ECG and QRS spectra

We have analyzed experimentally the power spectra of QRS complexes and other
signals including the noise of the MIT-BIH dataset of 48 records. Here we present,
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Fig. 12.1: Relative power spectra of QRS complexes (MIT-BIH 100).
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Fig. 12.2: Relative power spectra of noise, P and T waves (MIT-BIH 100).

a typical spectrum for patient ID=100 in Fig.12.1 for QRS signals only, and in
Fig.12.2, the determined noise spectra and the spectra of the P and T waves.
Although the measured values mostly correspond to the earlier findings and con-
clusions, we can determine that there is no clear distinction of the exact QRS band.
Note that the patients with pacemakers have a slightly different spectrum, mostly

due to the

fact that the QRS is shorter.

One can observe oscillations in the range of 0 and 10 Hz in the spectra of the
QRS complexes and a typical answer is that they happen due to respiration and
muscle movements. However, the respiration rate and muscle movement affect only
the spectra from O to 1 Hz.
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Oscillations in the region from 1 to 10 Hz represent a typical situation of a fre-
quency modulation between the QRS complex waves and heart rate waves. Suppose
that a typical QRS wave is a part of an ideal sine wave with a frequency of fors.
Then this wave is repeated at regular time intervals determined by the heartbeat
rate with frequency fyg. A composition of these two signals results in a frequency
modulation of the signal with a higher frequency (fgrs), also known as carrier fre-
quency, with a signal with a smaller frequency (fgr) or signal frequency. The power
spectra of this composed signal will consist of these two frequencies presenting the
corresponding intensities.

However, in reality, the QRS wave is not an ideal sine wave and it is a composi-
tion of several frequencies. This also applies to the heart beat since a typical heart
changes its frequency almost in each heartbeat. This is reflected as a variation of
the carrier frequency. The oscillations in the observed spectra, actually represent the
effects of frequency modulation of these signals.

The following analysis addresses the power spectra of the QRS complexes
(Fig. 12.1) in the band 0 to 10 Hz. The regular peaks that repeat each 1.25 Hz are
noticeable and they represent the heart rate frequency fyr, which corresponds to the
average heartbeat rate of 1.25 %60 = 75BPM. The variations in the sine wave shape
present the heart rate variations, and in higher harmonics, they are less expressed.
One can notice that a low pass filter will determine the heart rate frequency (fgg)
and the high-pass filter, the carrier frequency (fors).

The same frequency modulation phenomenon can be observed also for T (and P
waves although they are smaller in intensity) in Fig. 12.2. One can notice the first
harmonic with a value of about 3.8 Hz, and its harmonics.

In this paper, we desire to determine the spectra of the carrier frequency and
detect the QRS complexes, by a theoretical interpretation of the experimental results
about spectral analysis at higher frequencies.

The literature [15] points the typical values of time duration of a normal heartbeat
QRS complex to be between 60 and 120 ms. The inner part of the signal that mostly
looks like a half sine wave occupies approximately most of this interval. So, one
can expect that the distribution is mainly around a frequency that corresponds to
a full sine wave of 120 ms, which in fact is 8.33 Hz. A larger and smoother QRS
complexes last 120 ms correspond to 4.17 Hz, and smaller sharper QRS complexes
might last at least 30 ms, which correspond to 16.7 Hz.

So far, our analysis leads to a conclusion that filtering the signal within 4 and 20
Hz will reduce the feature space to mostly the values of those in the QRS complexes.
Note that in the case of paced beats, the QRS complexes might look even sharper
and last less than 30 ms, which will need filtering with frequencies higher than 33
Hz. On the other hand, in the case of premature ventricular beats, the morphology
of the QRS complex is prolonged and might last more than 250 ms, which leads to
frequencies lower than 4 Hz.

The problems in detection might arise by the onset of P and T waves. The typical
values of P waves (half sine wave) is 110 ms, so its power spectral energy will be
around 4.5 Hz. T waves are even larger than 200 ms that corresponds to frequencies
below 2.5 Hz.
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This analysis shows that a bandpass filter with a central frequency of approxi-
mately 8.33 Hz and cut off frequencies at 4 Hz and 20 Hz will enable feature space
reduction to extract QRS complexes. However, a good QRS detector has to be im-
plemented also on experimental results and analyze also the other sources of the
power spectra, including the environmental noise, P and T waves and muscle and
motion artifacts.
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Fig. 12.3: Accuracy for different bandpass filter values for FIR filters.

12.2 Testing Methodology

There is no ideal filter design, so this is why we analyze several filters to estimate
their performance not just from the feature space reduction and noise elimination
aspects but also from the aspects of their computational complexity, and their im-
plementation in real environment with real wearable sensors, such as the long-term
Savvy ECG sensor [119].

For the experiments, we have used a differential approach to detect a QRS com-
plex, based on applying filtering with DWT reconstruction db3 low and high pass
filters, which actually constructs a bandpass filter. The output of this filter is com-
pared to a threshold value, which is calculated as one-third of the average value of all
output items. The experimental environment was a computer with a high-frequency
Intel Core i7-3632QM CPU @ 2.2 GHz processor with § cores, and 12GB memory.

The dataset used was the MIT-BIH database [99]. We have conducted test cases
on all 48 records with 650000 samples each corresponding to 30 minutes ECG
records with a 360 Hz sampling frequency.
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Fig. 12.4: Frequency response characteristics of used FIR, IIR and DWT filters.

The test cases included high-pass cutoff frequency ranges from 1 to 14 Hz with
incremental steps of 1Hz and low pass cutoff frequency from 15 up to 35Hz, with
incremental steps of 1Hz.

The test range of the band pass FIR filter length, ranges from 11 to 201 with
incremental steps of 10. On the last case, the best parameters will be combined and
tested. We have used FIR filters with lengths of 5 up to 201 and IIR filters with
length of 5,7, 9, 11, 13 and 15.

The signal filtered by DWT was reconstructed by using the approximation of A3
(0-22.5Hz) and deducting the AS (0-5.625Hz) which leads to a bandpass filter with
a close approximation of the desired band between 5.625 - 22.5Hz.

The test goal is to measure and optimize the sensitivity (SEN), accuracy (ACC)
and positive predictivity rate (PR) values, as defined by (12.1).
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TP
SEN = ——
TP+FN
TN+TP
ACC = 12.1
TN+TP+FN+FP (12.1)
TP
R=—
TP+FP

To calculate these performance measures we used the count of those beat anno-
tations that appear to be correct by true positive and denoted by TP, and samples
that were correctly annotated that are not peaks true negative denoted by TN. An-
notations that were generated as a QRS peak, but are not real heart beats as false
positive by FP, and those that were missed by the algorithm are false negative as
FN. Our testing QRS detection algorithm is based on a wavelet filter using a simple
algorithm based on differential approach testing the slope of the ECG curve. The
performance of the algorithm is 99.63% QRS sensitivity values, without using extra
filters prior to applying the QRS detector algorithm.

Table 12.1: Comparison of various filters on QRS detection sensitivity (Sens.), ac-
curacy (Acc.) and positive predictivty rate (PR).

Filter Type| TP TN | FP | FN |Sensitivity |Accuracy| PR
No Filter | 105443 2874 | 4051 | 0.963 0.938 (0.973
FIR (9) | 106683 2888 | 2811 | 0.974 0.949 (0.973
IR (9) | 108486 1141 | 1008 | 0.991 0.981 [0.989
DWT (db2)| 108668 1165 | 826 0.992 0.982 [0.985

S O olo




Chapter 13
Optimizing the Impact of Resampling on QRS
Detection

The content of this Chapter was published at the International Conference on
Telecommunications, Springer [65], 2018.

Hamilton [69] has created a QRS detector that works on a sampling rate of
200 Hz and tuned threshold parameters to obtain a relatively good performance,
measured as QRS detection sensitivity and positive predictive rate.

Three different peaks may be classified in the QRS detection process, a real QRS
beat: a pattern with identified Q, R and S points with predefined slope and ampli-
tude; a noise peak: generated by muscles or skin, which does not follow the pattern
either by the number of detected points, amplitude or length; or artifact: a peak that
looks pretty much as a QRS beat, but lacks the amplitude or occurs due to muscle
movements or loose contact with the electrode.

In this chapter, an experimental research is used to measure the performance of
different sampling rates and find the optimal threshold values.

13.1 A QRS Detection Algorithm

QRS detection algorithms generally follow a standard procedure [106]. They start
with digital signal processing (DSP) filters with the aim to reduce noise and weaken
the effect of other waves on QRS detection. In the next phase the signal is matched
against a threshold. Last, there is a decision layer to classify peaks as real or noise.

One of the first published and most cited paper for QRS detection is the Pan &
Tomkins algorithm [107]. Apart from being a real-time algorithm, it offers the abil-
ity to adapt to noises. One of the disadvantages of this algorithm is the dependence
on the sampling rate, which is configured to run at 200 Hz, and its bad performance
on long records with small amplitudes. Unfortunately, there is no information about
bit resolution in their work.

Hamilton’s algorithm is another similar derivative-based approach [69]. It uses
a preprocessor similar to the Pan & Tomkins algorithm and offers a different set of
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complex rules for decision making. An open source implementation code has been
released by EP Limited [70].

The algorithm starts processing the input signal with a 16 Hz low pass filter,
followed by an 8 Hz high pass filter. The output is provided to a differentiation filter
that calculates a difference between consecutive samples and determines the slope
of the signal. Then, an absolute value is calculated and the average is calculated
over an 80 ms window. This ends the first phase where the energy of the signal is
calculated, as presented in Fig. 13.1 b) for the signal in Fig. 13.1 a).
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Fig. 13.1: Detecting artifacts, noise and real peaks based on values of static and
dynamic thresholds in the original Hamilton’s algorithm presented on signal extracts
over record 113 (MIT-BIH Arrhythmia database).

The second phase detects if the energy output is a peak, and classifies the peak
as an artifact, noise peak or real beat. Peaks are determined by calculating local
maximums and comparing them to a static and dynamic threshold. The static peak
determines if the analyzed local maximum is an artifact or candidate peak, while
the dynamic threshold classifies real peaks by extracting noise. The effect of static
and dynamic threshold filters is illustrated in Fig. 13.1, where the peaks A, and C are
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real beats (reaching a value over both thresholds), whereas B as noise peak (reaching
over static threshold, but not dynamic) and D as an artifact (below both thresholds).

The dynamic threshold is calculated as a mean of the last eight candidate peaks.
The default implementation uses a fixed static threshold equal to MIN_ AMP_PEAK =
7. In our improved algorithm, we treat this parameter as modifiable. The experi-
ments [46] show that decreasing this value will produce more artifacts and higher
number of true beats, and vice versa.

When we tested our improved algorithm, we have found that the optimal value
of the threshold parameter depends on the quality of the analog to digital convertor,
i.e. on the sampling frequency and bit resolution. The optimal value needs to be
selected as a compromise between the number of artifacts, and true peaks, balancing
the number of beat misses and extra found peaks.

13.2 Experiments

Testing was conducted on an annotated ECG benchmark databases in order to com-
pare the results, the MIT-BIH Arrhythmia ECG Database [99] in particular. It con-
tains two-channels of 48 half-hour ECG recordings publicly available on the Phys-
ionet web site [63]. The original recording frequency is 360 samples per second per
channel with 11-bit resolution over a 10 mV range.

13.2.1 Test Cases

In our experiments we excluded the paced beat records 102, 104, 107 and 217, and
tested a total of 44 records. The input test data was only the first ECG channel.

The experiment is planned with a lot of test cases. We start the experiment with
the default fixed static threshold value of 7 and measure QRS detection performance
on a set of sampling frequencies starting from 100 up to 360 with an increase of 25
(last two increases are 30 instead of 25).

The next test cases consisted of the same environment and a different static
threshold parameter, starting from 2 to 10, and included other threshold values (not
just evaluating the fixed value of 7).

13.2.2 Test Data

We have measured the number of true positive (TP) detections, which correspond
to correctly detected beats, the number of false positive (FP) errors, which is equiv-
alent to false detection of extra peaks that are not real beats, and false negatives
(FN) errors, which is equivalent to misses in detection of real beats. Performance
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measures are evaluated through QRS sensitivity QRS positive predictive rate, cor-
respondingly calculated as (13.1) and (13.2).

TP
R — 13.1
Ose TPTFN (13.1)
TP
= 13.2
O.p TPLFP (13.2)

QRS sensitivity indicates how many of the real beats are detected compared to
the total number of beats; and the QRS positive predictive rate specifies how many
of the detected peaks are real beats. It means that the QRS sensitivity specifies the
successfulness of detecting all real beats, whereas the positive predictive rate speci-
fies the successfulness of detecting real beats and avoiding false detections.

Given these performance measures, we can not posit what is better: to have higher
QRS sensitivity and lower positive predictive rate, or vice versa. For example, it is
ambiguous to compare an algorithm with a little higher value of QRS sensitivity,
but much lower value of positive predictive rate than another algorithm.

In our analysis, we give a performance advantage to those that have approxi-
mately equal values of QRS sensitivity and positive predictive rate, or a higher value
of sensitivity than the positive predictive rate.

13.3 QRS Detection Performance at Different Sampling Rates

This section presents the results from the experiments. It aims to evaluate the depen-
dence of QRS detection performance on different sampling frequencies and to find
an optimal threshold parameter for achieving the best QRS detection performance.

13.3.1 Fixed threshold - Hamilton’s approach

Fig. 13.2 presents the dependence of QRS sensitivity and positive predictive rate on
different sampling frequencies. In the figure, x-axis represents different sampling
frequencies (from 80 to 360) and y-axis the QRS sensitivity QOsg and positive pre-
dictive rate rate Q4 p.

QRS sensitivity fluctuates between 99.53% for a sampling frequency of 100 Hz
to 99.81% for 250 Hz. The average QRS sensitivity is equal to 99.74% with a stan-
dard deviation of 0.081.

QRS positive predictive rate fluctuates within a smaller range of values (99.71%
and 99.79%) and achieves an average value of 99.75% with a standard deviation of
0.032.
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Fig. 13.2: QRS performance vs sampling rates for fixed static threshold equal to 7.

According to our measurements, the best performance is reached for a sampling
frequency of 175 Hz. One can conclude that there is a discrepancy in QRS sensitivity
and positive predictive rate at different sampling frequencies.

The best performance is, when the sensitivity and positive predictive rate reach
almost the same values, and at the same time, their value is high. Note that the
original Hamilton’s algorithm was tuned for the static threshold parameter of 7 at a
sampling frequency of 200 Hz.

Another interesting discrepancy is the dependence trend. The positive predictive
rate reaches lower values at sampling frequencies that are modulo 50 than in the
neighboring frequencies.

13.3.2 Performance Testing Different Threshold Values

To determine if there is a better performance than the one achieved for the fixed
static threshold value we conducted test cases for pairs of different threshold values
and sampling frequencies.

The dependence of QRS detection performance on different sampling frequen-
cies and different threshold parameters are presented in the 3D graphs in Fig. 13.3
and Fig. 13.4. The x-axis presents the sampling frequencies, the y-axis represents
different static threshold parameters and the z-axis (depth) presents the correspond-
ing QRS sensitivity and positive predictive rate in Fig. 13.3 and Fig. 13.4.

A fixed static threshold parameter with a value of 7 reveals a relatively satisfac-
tory performance for the QRS positive predictive rate only, even though higher static
threshold values reveal higher QRS positive predictive rates. However, as we have
discussed earlier, one needs to make a compromise and achieve a higher value of
QRS sensitivity at the same time.

Normally, QRS sensitivity is higher for smaller static threshold parameter values.
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Fig. 13.3: QRS sensitivity values for different thresholds at different sampling rates.
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Fig. 13.4: QRS positive predictive rate for different thresholds at different sampling
rates.

QRS sensitivity reaches the smallest value of 98.49% for a sampling frequency
of 100 Hz and a threshold parameter of 10 and the highest value of 99.87% for
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200 Hz. The average QRS sensitivity is equal to 99.71% with a standard deviation
of 0.173 in all conducted test cases.

The lowest value 99.40% of the QRS positive predictive rate is reached for a
sampling frequency of 100 Hz and threshold parameter 2, and the highest value of
99.88% for 225 Hz and threshold parameter 10. The average value in all test cases
is 99.72% and standard deviation of 0.09.

To conclude, the threshold parameter needs to be tuned to achieve the best per-
formance.

13.4 Discussion

This section discusses the optimal threshold parameter values at different sampling
frequencies.

13.4.1 Optimal Threshold and Performance

Fig. 13.5 presents the optimal threshold values found in our experimental research,
where the x-axis represents different sampling frequencies and the y-axis the optimal
threshold values.
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Fig. 13.5: Optimal threshold values at different sampling rates.

The performance for optimal threshold values at different sampling frequencies
is presented in Fig. 13.6.

QRS sensitivity reaches higher values than those achieved for a fixed static
threshold. The minimum value of 99.73% is reached instead of 99.53% for a sam-
pling frequency of 100 Hz and maximum 99.86% (for 330 Hz) instead of 99.81%
(for 250 Hz). At the same time the QRS positive predictive rate reaches a minimum
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Fig. 13.6: Optimal performance values at different sampling rates.

of 99.67% (for 100 Hz) and maximum of 99.80% (for 250 Hz) instead of 99.79 Hz
(for 225 Hz).

The average performance values obtained for optimal threshold values are im-
proved to 99.80% QRS sensitivity instead of 99.74% with fixed threshold keeping
the same average value of the QRS positive predictive rate. At the same time the
standard deviation is reduced to 0.044 instead of 0.081 for QRS sensitivity, which
is almost the same as the standard deviation of the QRS positive predictive rate.

13.4.2 Optimal vs Fixed Static Threshold Performance

Fig. 13.7 and Fig. 13.8 correspondingly compare QRS sensitivity and positive pre-
dictive rate for found optimal and fixed static threshold values at different sampling
rates.

In all cases, the optimal threshold parameter achieves a better performance with
an exception at the sampling frequency of 250 Hz.

Although, this conclusion is also valid for the QRS positive predictive rate, it can
be noted that there are cases where the fixed threshold parameter .reaches higher
values, such as for 200 and 225 Hz, or 300 and 330 Hz, but these discrepancies
are very small and the selected optimal threshold parameter compensates for this to
achieve higher QRS sensitivity at these frequencies.

13.4.3 Response Time and Performance Analysis of Sampling
Rates

Fast response is an important issue, especially if the algorithm is to be built in wear-
able ECG sensing devices. Due to limited resources and energy supply, one would
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Fig. 13.7: QRS sensitivity at different sampling rates for optimal static threshold
values.
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Fig. 13.8: QRS positive predictive rate at different sampling rates for optimal static
threshold values.

appreciate an algorithm that achieves the best performance by executing fewer op-
erations.

In most of the differentiation (derivation) or DSP based algorithms, the com-
plexity of the algorithm is linear O(n) meaning that it is directly dependent on the
number of samples. This means that signals sampled on a sampling frequency of
125 Hz will have approximately three times less data than those sampled at 360 Hz
sampling frequency.

Therefore, one would prefer a lower sampling frequency, which still achieves the
best performance.

Note that using frequencies below 125 Hz generate a lot of false detections and
decrease the expected QRS detection performance.

Nyquist [103] determines the minimal sampling frequency to be twice the max-
imum frequency of the signal to be converted into a digital stream. The highest
frequency of the heart beat is 220 beats per minute, which is less than 4 Hz, the
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analysis of the QRS spectra is in the range between 5 and 20 Hz. Some features,
such as short QRS peaks shorter than 40 ms may go even beyond this limit, which
corresponds to 25 Hz. Therefore, the sampling frequency should be more than 50Hz.

13.4.4 Comparative Analysis

Hamilton has measured the performance of the QRS detector at different sampling
rates [70], and obtained the results presented in Table 13.1.

Table 13.1: QRS detector performance at different sample rates

MIT BIH database AHA database |
Sample Rate Ose Q.p Ose O+p

100 0.996856 | 0.997905 | 0.995839 | 0.996423
125 0.997426 | 0.998257 | 0.996660 | 0.996788
150 0.997458 | 0.998016 | 0.997429 | 0.997652
175 0.997601 | 0.998093 | 0.997119 | 0.997268
200 0.997426 | 0.998071 | 0.997397 | 0.997588
225 0.997228 | 0.997994 | 0.997268 | 0.997769
250 0.997502 | 0.998060 | 0.997087 | 0.997300
300 0.997360 | 0.998016 | 0.997450 | 0.997897
325 0.997448 | 0.997874 | 0.997578 | 0.997684
360 0.997535 | 0.998038 | 0.997503 | 0.997865

The performances fluctuate in the range up to 0.08% between 99.68 and 99.76%
for QRS sensitivity and a relatively smaller fluctuation difference of 0.03% between
99.79 and 99.82%, for the MIT BIH Arrhythmia ECG database. In the case of the
AHA database, the obtained performances are lower, and the fluctuation difference
is 0.18% for QRS sensitivity and 0.13% fluctuation difference for QRS positive
predictive rate.

Ajdaraga and Gusev [13] have analyzed the accuracy of QRS detection. Their
study is very precise, since a correct detection (true positive) is considered to be
the one that is located at most five samples from the identified one. Therefore their
reported accuracy is lower than the usual published values. In this study we use a
window of 150 ms where the identified peak may differ in location from the real
one, which is treated as a correct QRS detection. In addition, the authors use a fixed
static threshold.

Malik et al. report on a conclusion from the American Heart Association Task
force: [90] low sampling rates may produce a jitter and wrong QRS detection and
so the sampling frequency range needs to be between 250 - 500 Hz. To achieve a
better performance they suggest additional resampling interpolation that refines the
signal for satisfactory QSR detection.
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Berntson et al. [26] also report that sampling frequencies below 100 Hz will
result with decreased performance and suggest 128 samples per second as the lowest
frequency to be used. .

Ziemssen et al. [140] reported irrelevance in QRS detection performance at dif-
ferent sampling frequencies in the range between 100 and 500 Hz.

Ellis et al. [54] have conducted a series of experiments at sampling frequencies
from 71.43 Hz up to 1000 Hz, and concluded a satisfactory performance even at
the lowest analyzed sampling frequency, discrepancies above 125 Hz are especially
negligible.

According to the above-mentioned papers, one might conclude that QRS perfor-
mance may be satisfactory on a wide range of sampling frequencies without any
problems. However, practical experiments confirm that threshold parameters need
to be chosen carefully in order to obtain the optimal performance.






Chapter 14

Amplitude Rescaling Influence on QRS
Detection

The content of this Chapter was published at the International Conference on
Telecommunications, Springer [46], 2018.

Developing an industrial QRS detector has been a hot research topic since the
late 80’s. As advances in IoT rapidly continues, so do the trends in ECG processing.
That is why, our primary focus in this research, is the QRS detection stage.

Hamilton has published a relatively good QRS detector [69]. In this chapter, we
aim to optimize QRS detection performance especially on lower sample rates and
amplitudes and to improve the original algorithm.

14.1 Hamilton’s QRS Detection Algorithm

Algorithm details on Hamilton’s QRS detector are already presented in [69]. Gen-
erally, algorithms for QRS detection publish their conceptual work, but lack imple-
mentational details.

For this particular case though, EP Limited [70] has released an open source
implementation of the algorithm, which we will use to improve it. They provide a
complete C-implementation for Hamilton’s algorithm with different variations. It
includes three different detectors and a fundamental beat classification unit.

Fig. 14.1 presents the processing steps to detect a peak and classify it as a beat.
The processing is executed in two different phases, the first is DSP Filtering and
the second Peak Detection. The primary aim of the first phase is to eliminate noise
stemming from different sources, such as breathing, muscle or skin movements.
This is important for proper beat detecting. Whereas, the latter phase aims to detect
a peak, and classify it as a real beat or an artifact.

Phase I implements a total of five sequential steps: a 16 Hz low pass filter (LPF),
an 8 Hz high pass filter (HPF), a differentiation filter (dd—[t’]), a filter that calculates an
absolute value (ABS), and a filter that calculates an average over an 80 ms moving
window of samples.

99
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Fig. 14.1: Architectural representation of Hamilton’s QRS detection algorithm.

The first two filters suppress environmental and internal noise, including base-
line drift and act as a bandpass filter (BPF). The essence of the detection is the
differentiation filter that aims to calculate a slope of differences. Since the slope
can be negative, the ABS stage calculates only positive portions, and the AVG filter
generates energy peaks that can be detected using rather simple rules in Phase II.

Phase II is responsible for peak detection by calculating a local maximum and
comparing to two thresholds: static threshold (MIN_AMP_PEAK) with a fixed
value, and dynamic threshold (DT) which is affected by the amplitudes of the last
eight real and noise peaks. Any peak value lower than the static threshold will clas-
sify as a artifact, and any value over both the static and dynamic peaks will classify
as a real peak. Otherwise it will classify as a noise peak.

The main optimization method used in this research is to choose an optimal
value of the static threshold. In addition to this, we have explored the dependence
of threshold values on different sampling frequencies and bit resolutions.

14.2 Testing Methodology

The experiments conducted during this study aim to find the dependence of sam-
pling frequency and bit resolution on QRS detection performance. Particularly, we
aim to find the optimal value and correct adjustment of the static threshold with
scaled amplitudes to boost maximum performance. This optimization will improve
the existing algorithm and reach higher performance.
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14.2.1 Testing environment

The experiments were conducted on the MIT-BIH Arrhythmia database [99], which
is considered as the most important benchmark for ECG monitoring. It contains two-
channels of 48 half-hour ECG recordings. These recordings are publicly available
on Physionet.org [63]. The sampling frequency is 360 Hz per channel, with a 11-bit
resolution over a 10 mV range. Each record is accompanied by an annotation file
made by physicians, and therefore enables a good-quality evaluation of the QRS
detection algorithm.

Although the database has a total of 48 records, there are four records that contain
paced beats, which may introduce a higher rate of errors (a paced beat followed by
a QRS to be misinterpreted). Therefore, our test cases use only 44 records.

Each record contains two channels of data representation, and we used the first
one which represents the ML II signal in most cases.

14.2.2 Test cases

Two experiments were conducted for the purpose of this research:

e FExp.l: Impact of rescaled amplitudes on the performance
e FExp.2: Optimal static threshold value to boost the performance

The first experiment Exp. aims to determine the impact of different amplitudes
on a 360 Hz sampling frequency. Test cases within this experiment start with the
initial data records from the default MIT BIH Arrhythmia ECG database using an
11-bit resolution. The following test cases gradually scale the amplitudes by a factor
varying from 1.00 to 0.25 with decremental steps of 0.05.

Note that if a scaling factor 1 is used, then it corresponds to the original signal
records with a 11-bit resolution, and the factor 0.5 corresponds to signals with half
of the amplitude, i.e. to a 10-bit resolution. Consequently, the test case with scaling
factor 0.25 corresponds to a quarter of the original signal, and represents a 9-bit
resolution.

The second experiment Exp.2 addresses the optimal value of the static thresh-
old. A crossed dependence check is performed to check the dependence of various
amplitudes and the static threshold parameter on performance.

The test cases include measurements where the input is a pair of static threshold
and the scaling factor of the amplitude. Static threshold values change from 2 to 10
with step 1, and amplitude scaling factor from 0.25 to 1 with step 0.05. Similar to
the previous experiment, the test cases were conducted on the first channel of signals
with an original sampling frequency of 360 Hz.



102 14 Amplitude Rescaling Influence on QRS Detection

14.2.3 Test data

Performance evaluation of proposed algorithms are done with existing metrics based
on measured correctness. Here we use the usual correctness classification:

e Correctly detected beats denoted as true positives TP;

e Extra detected peaks are considered as false positives FP meaning that the algo-
rithm has detected a peak that is not a real beat;

e Missed beats identified as false negatives FN meaning that the algorithm has not
detected real beats.

To measure the performance we will use number of errors as an indicator. The
smaller the number of errors - the better the algorithm. Following the previous defi-
nition, the total number of (false) errors is equal to the sum of F' P and FN, calculated
by (16.2).

False Errors = FP+FN (14.1)

Although the number of errors can be efficiently used to compare two different
algorithms, we still have to compare this number with total number of QRS beats.
The total number of QRS beats can be calculated as a sum of correctly detected
beats and those that were missed according to (14.2)

Total QRS = TP+ FN (14.2)

So instead of number of errors one can use the performance measure called Rel-
ative Error (RE), that explains the relative magnitude of false errors compared to
the total number of beats, which is calculated by (14.3).

False Errors _ FP+FN
Total QRS ~ TP+FN

(14.3)

Relative Error =

14.3 Evaluation of Results

This section evaluates the results from the experiments.

14.3.1 Performance Achieved on Rescaled Amplitudes

Fig. 14.4 presents the optimal performance of the execution of Hamilton’s algorithm
over signals sampled with 360 samples per second and 11-bit resolution. The x-axis
portrays the amplitude scaling factor represented as a percentage, and the y-axis the
number of false errors.

The presented results are based on measurements where Hamilton’s original al-
gorithm uses the default static threshold value MIN_AMP_PEAK = 7. It is obvious
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Fig. 14.2: False error detections of Hamilton’s approach for MIT BIH Arrhythmia
database signals

that the threshold parameter can not follow the downscaled amplitudes, and the
number of generated false positives (extra generated peaks that are not real beats).
Note that rescaled amplitudes with a scaling factor higher than 65% obtain a rel-
atively good performance for the fixed static threshold parameter (the number of
errors was lower than 600).

14.3.2 Optimal static threshold value to boost the performance

Presented results for the default static threshold MIN_ AMP_PEAK = 7 show big
discrepancies and performance fluctuations when the amplitudes are rescaled.

Second experiment defines test cases on different pairs of a static threshold pa-
rameter and amplitude scaling factor. The figures show charts where x-axis repre-
sents the amplitude scaling factor measured in %, and y-axis the static threshold
parameter. The presented values are three dimensional, where the third dimension
is a colored scale of relative error. The darkest squares are those with the highest
performance and smallest relative error presented in %, and the lightest color is the
worst performance and highest relative error.

Fig. 14.3 presents the Relative Error obtained by executing Hamilton’s algorithm
on different pairs of static threshold values and amplitude scaling factors.

The x-axis scale starts from 25% to 100%, and the y-axis from static threshold
value 2 up to 10. The colored relative error scale starts from 0.4% (darkest) up to
over 1.0% (lightest)
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Fig. 14.3: Relative Error of Hamilton’s approach with different static threshold and
amplitude scaling factors.

We observe that the best configuration for original signals with a sampling fre-
quency of 360 Hz is when the static threshold is 4 and amplitude multiplier is 65%,
with a relative error of 0.402% (total false errors 405).

14.4 Discussion

14.4.1 Performance impact of rescaled amplitudes

Table 14.1 summarizes the evaluation of best and worst performance for the fixed
static threshold, and gives the behavior expressed by the average number of errors
and fluctuations when different amplitudes are used with the same algorithm and
fixed static threshold parameter.

Table 14.1: The performance behavior for the fixed static threshold parameter equal
to7

Performance | Amplitude | Errors | Relative error

best 85% 470 0.467%
worst 25% 7085 7.033%
average - 1726 1.713%

fluctuation - 6615 6.566%
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The fixed value of the static parameter with value equal to 7 showed fluctuation
between 400 and 580 false errors in a dataset with 100733 beats. This is a relatively
a high fluctuation, since it is equal to 45% of the false detections. However, the
relative error in comparison to the total number of beats is between 0.578% and
0.397%.

When analyzing the fluctuations of the algorithm performance, one can conclude
that the fixed static threshold parameter will only obtain good performance on se-
lected amplitudes.

Next we will analyze which static threshold parameter achieves the best perfor-
mance.

14.4.2 Selecting an Optimal Static Threshold

Table 14.2 presents the best performances from the default threshold and the best
performance from different thresholds.

Table 14.2: Optimal static threshold parameters that reach the highest performance
using the Hamilton’s approach

Amplitude(%) | STHR | errors | RE(%)
100 9 474 0.471
95 8 454 0.451
90 8 451 0.448
85 4 407 0.404
80 4 423 0.420
75 4 503 0.499
70 3 457 0.454
65 4 405 0.402
60 3 462 0.459
55 3 436 0.433
50 4 517 0.513
45 4 498 0.494
40 2 487 0.483
35 2 478 0.475
30 2 508 0.504
25 2 580 0.576

When we analyze results, we firstly observe that the default fixed static threshold
does not yield the best performance. One can observe that the best static threshold
is 9 instead of 7.

Interestingly, the default amplitude is not the best option either. We found that
the best performance is achieved when rescaling by a scaling factor of 65% and a
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static threshold of 4 achieved. In this case, the relative error is 0.402%, and the QRS
sensitivity and positive predictivity rate are high (99.81% and 99.79% respectively).

Fig. 14.4 presents false error detections for the best chosen static threshold pa-
rameter from Table 14.2.
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Fig. 14.4: False error detections of improved Hamilton’s approach with optimal se-
lection of threshold parameters for MIT BIH Arrhythmia database signals sampled
on 360 Hz and 11-bit resolution.

Note, that the performance achieved with optimized static parameter (Fig. 14.4)
is much better than the one obtained with a fixed static parameter (Fig. 14.4). Inter-
estingly, signals using 65% of the amplitude reached The minimal number of errors
is achieved for an amplitude scaled by a scaling factor of 65%.

In addition, we have also tested the influence rescaling had on different sampling
frequencies. Fig. 14.5 presents the optimal performance of the improved Hamilton
algorithm using the optimal static threshold parameter over resampled signals to a
125 Hz sampling frequency with the original 11-bit resolution.

On can conclude that the performance of the optimal chosen threshold parameter
is improved even on different sampling frequencies.

Fig. 14.6 compares false error detections for typical values of bit resolutions
by applying the optimal static threshold parameter from Table 14.2. Note that the
performance difference of the algorithm for amplitudes using 9, 10 or 11 bits is
negligible, whereas we observe big increase of the number of errors up to 2.246%
for 8-bits .

Bit resolution is sometimes called sampling resolution. Note that low number
of bits used by the AD converter or rescaling to an amplitude with a small scaling
factor can yield an increased signal-to-quantization-noise ratio. Thus, in this case,
it will produce an increased number of errors in QRS detection algorithms. Our
experimental research has proven that 8-bit resolution will increase the number of
errors significantly when compared to 9, 10 or 11-bit resolution.
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Fig. 14.5: False error detections of improved Hamilton’s approach with optimal se-
lection of threshold parameters for MIT BIH Arrhythmia database signals sampled
on 125 Hz and 11-bit resolution.
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Fig. 14.6: False error detections comparison for different bit resolutions.

14.4.3 Comparison to Other Studies

Performance comparison with other approaches will be realized through conven-
tional performance metrics for QRS sensitivity QRSsg = TP/(TP+ FN). In ad-
dition, we also include the QRS positive predictivity rate defined by QRS p =
TP/(TP+FP). Sensitivity alone will not give us a good performance estimate,
since one can tune threshold parameters to include as many real peaks as possible,
but, at the same time, it will include extra false detections of peaks that are not real
peaks. This measure shows how successful the algorithm is in capturing real beats
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and avoiding false peaks. So the performance can be evaluated only if both QRS
sensitivity and positive predictive rate reach higher values.

Available QRS detectors, generally focus on the original 11 bit 360Hz sampled
data, though a small portion of them present results on different threshold values.

Table 14.3 gives an overview of relevant QRS detection algorithms. We selected
those that report results for all 44 records without paced beats in the MIT BIH
Arrhythmia database, or where the results can be verified. Some algorithms work
on both signals and obviously they are not compared in this study. Note that most
of the algorithms do not publish information on their performance was measured
on one or two channels, and we present the algorithms that use one channel for
QRS detection. In our algorithm, we apply the improved version of the Hamilton’s
algorithm that uses the optimal static parameter instead of the original fixed value.

Table 14.3: Performance comparison

Sampling Bit Total Relative
Algorithm Frequency|Resolution| -~ Error’ | ORSse | ORS.p
(Hz) (bit) (%)
M. Bahoura®? [21] 250 11 291 0.271 | 99.89 99.84
Our algorithm 360 11 405 0.402 | 99.81 99.78
Our algorithm 125 11 444 0.441 | 99.78 99.78
Hamilton [69] 360 11 569 0.564 | 99.68 99.76
Pan Tompkins® [107] 200 11 771 0.768 | 99.73 99.50
Afonso [10] 360 11 732 0.872 | 99.57 99.56
GQRS [63] 360 11 562 0.558 | 99.72 99.72
WQRS [63] 360 11 1411 1.401 | 99.79 98.82
SQRS [63] 360 11 1899 1.885 | 98.73 99.38
SQRS125 [63] 125 11 3951 3.922 | 96.19 99.88

¢ Values are computed according to the record-by-record tables in the referred works.
b QRSsp and QRS p calculated by (14.3).

The most important observation is that the optimized Hamilton approach (our al-
gorithm) produces better results than those reported in the original algorithm. More
importantly, even downscaled signals will obtain good performance results if the
static threshold parameter is tuned according to the provided results.

It is even more interesting to compare our results with the Pan Tompkins algo-
rithm. Our algorithm running at 360Hz correctly finnds 375 more peaks, and makes
366 less errors.



Chapter 15
Conclusion on QRS Detection

The content of this Chapter was published at the Journal of Technology and Health-
care [47], 2019, 41st International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), IEEE [64], International
Conference on Telecommunications, Springer [65, 46], 2018.

15.1 Related Work of QRS Detection

Pahlm, and S6rnmo [106] comment that algorithms sustain a standard procedure
even though their approaches differ. The steps they follow are: Reducing noise to an
acceptable level, then applying a Thresholding and Deciding whether the peak is a
beat.

In summary, published QRS detection algorithms are based on the following
techniques:

e Differentiation (derivation), where the difference between the current and previ-
ous samples is calculated, as a way of identifying the slope, and then it is com-
pared to a given threshold value including the Pan & Tompkins algorithm [107],
Hamilton’s algorithm [69], or other relevant approaches [12, 61, 100];

e Pure DSP algorithms, where fundamental DSP filters with different charac-
teristics are combined to produce a bandpass filter, with the aim to elimi-
nate noise, and filter the signal so that a threshold will determine the beats
[10, 28, 55, 58, 104];

e Pattern Recognition algorithms, where the signal data is matched with predefined
patterns and a waveform is detected in case of similarity within given constraints
of the amplitude and slopes [67, 32, 89, 126, 132];

e Neural Network, Multilayer Perceptron (MLP), Radial Basis Function (RBF),
and Learning Vector Quantization (LVO) networks are used to adaptively predict
the location of the next peak [138, 23, 39, 74, 89];

109
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o Digital Wavelet Transformation (DWT), where the signal is decomposed to a
certain level of scales, and then recomposed, which effectively reduces noise.
Then a threshold is applied to select proper peaks [87], [21], [121], [93], [98];

o Genetic Algorithms are used to optimize the preprocessing polynomial filter. The
ECG signal is compared to an adaptive threshold and the parameters are opti-
mized with a genetic optimization approach [113];

e Hidden Markov Models (HMM), used to train the probability function varying
according to the hidden Markov chain, and then the model predicts the current
state, which could be QRS complex. P and T waves can also be computed [33,
16, 35];

e Hilbert Transform, where Hilbert transform of ECG signal is calculated by Fast
Fourier Transform (FFT), and that is used for calculating the signal envelope
[124, 102, 25]; and

e Phasor Transformation, where each ECG sample is converted into a phasor to
correctly manage P, and T waves, by definition having lower amplitudes than an
R-peak with low computational cost, and then compares it against a threshold
[92].

High performance QRS detector directly affects the amount and the quality of
valuable information on ECG. QRS detection is the initial step for further ECG
analysis.

15.2 Overview of Obtained Results

15.2.1 Optimal DSP Bandpass Filtering for QRS detection

Fig. 12.3 presents the accuracy values for a FIR band pass filter with different val-
ues on the lower and higher cutoff frequencies. Note, that the maximal values are
obtained in the band with cutoff frequencies of 4 to 20, which proves the theoretical
analysis.

We do not present the measured sensitivity and precision diagrams since their
diagrams are quite similar.

The frequency response of used FIR, IIR and DWT filters is presented in
Fig. 12.4. To obtain a higher bandpass filtering one can use a smaller IIR length
and needs a higher filter length of the FIR filter to obtain a better performance. The
performance of the wavelet filter is even better.

The FIR filter is designed to reach the —3db cut off value at desired frequency.
The design of the IIR filter follows the same principles. While designing we have
used different filter lengths of FIR and IIR filters. Filter length impacts the algorithm
performance. For example, Fig. 15.1 presents the impact of FIR filter length on
performance expressed by sensitivity, accuracy, and positive precision rate. One can
notice that after a length of 100 the trend line stabilizes and reaches the maximal
performance.
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Fig. 15.1: Sensitivity, Accuracy and Precision dependency on FIR filter length.

Table 12.1 compares different filter approaches for using the filter between 5.625
and 22.5 Hz. The default configuration labeled as *No filter’ is the result of executing
the our QRS detector algorithm without extra filter prior to the QRS detection. The
values compared in the table are presented for FIR and IIR filters with length of 9
and DWT filter using db2.

Our algorithm is based on differential wavelet filter and the additional prepro-
cessing bandpass filter just gives the advantage in achieved performance. The sensi-
tivity, accuracy, and positive predictivity rate obtained in the best case for measuring
overall 48 patients in the MIT-BIH database reached 0.992, 0.983 and 0.990 corre-
spondingly. The implemented preprocessing filter actually improved the sensitivity
of 3.1% and accuracy of 4.5% and reached performance values where the mistakes
are less than 1.65%.

Note that some might think that wavelet transformation needs more processing
power and is not as fast as the other filters. However, a recent study [98] shows that
there are improved pipelined implementations that make the wavelet filtering fast.

We have concluded that QRS complexes are dispersed mostly in the range be-
tween 4 and 20 Hz. This was elaborated theoretically and proven experimentally.
Therefore, adding a bandpass filter in this range will improve the QRS detection
performance and reach values where the mistakes are less than 1%. Our research
shows that choosing a FIR filter with a length of 101 gives sufficient performance,
although IIR outperforms this filter for much smaller lengths. The wavelet-based
filters are the best and the difference in obtained results is very small (less than
0.5%).

We recommend the intended implementors of ECG wearable and mobile devices
to use the technique that allows stability of the filter and uses less complex opera-
tions that will enable faster processing with less resources.
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15.2.2 Optimizing the Impact of Resampling on QRS Detection

The goal of this paper was to find out what happens with QRS detection when resam-
pling the signals and using different sampling rates. For this purpose, we conducted
experimental research and found that QRS detection performance at different sam-
pling rates can be optimized if a proper static threshold value is used as opposed to
a fixed value.

Our optimization of the Hamilton’s algorithm results with a higher average per-
formance of 99.86% QRS sensitivity and 99.80% QRS positive predictive rate at
different sampling frequencies as opposed to 99.81% QRS sensitivity and 99.79%
QRS positive predictive rate in the original Hamilton approach with a fixed static
threshold.

To conclude, this optimization reveals that a good performance can be achieved
at both higher and lower sampling frequencies. Our experiments show that a good
quality industry QRS detector can work even with sampling frequencies of 100 Hz
to achieve a performance higher than 99.80% of QRS sensitivity and QRS positive
predictive rate.

In addition, lower sampling frequencies generate less data, therefore the number
of operations is lower, which reduces response time and energy requirements.

This research, along with the analysis of amplitude influence on QRS detection
performance, motivates us to establish a model of QRS detection behavior for re-
sampled and rescaled ECG signals. In addition, we wish to produce a quality QRS
detector independent of the sampling frequency and rescaled amplitude.

15.2.3 Amplitude Rescaling Influence on QRS Detection

In this study we primarily focused on finding the influence of the signal amplitude
on QRS detection performance.

We have observed that rescaling the amplitude directly affects the performance
and increases the number of false detections. The reason why is the selection of the
static threshold.

The experiment showed that choosing a fixed value of the static threshold will
not yield the best performance. Therefore, one needs to tune its value in order to
obtain a good performance.

Our research showed which optimal values of the static threshold result with best
performance, and one needs to update this value according to the input amplitude.
This optimizes Hamilton’s algorithm and makes for a better solution, when is com-
pared to other approaches.

This study is useful for future designers, gives the optimal value of the threshold
parameter to be used by an AD converter for satisfactory QRS detection perfor-
mance. For example, we concluded that 8-bit resolution will not yield performances
over 98%, while using a 9, 10 or 11-bit resolution may achieve performances of
ORSsg and QRS p over 99.80%.
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Chapter 16

Improving the QRS Detection for One-channel
ECG Sensor

The content of this Chapter was published at the Journal of Technology and Health-
care [47], 2019.

The performance of the QRS detector is evaluated by calculating how many real
QRS peaks are found (QRS sensitivity, denoted as Qsg), and how many of those de-
tected QRS peaks are real beats (QRS positive predictive rate, denoted as Q. p). The
default testing database was the Massachusetts Institute of Technology - Beth Israel
Hospital Arrhythmia database (MIT-BIH) [99] with 48 records of 30 minute ECG
measurements. The original signals are sampled with 360 Hz and 11 bit AD conver-
sion. Our research target is a QRS detector for signals using a sampling frequency
of 125 Hz and 10 bit AD conversion.

One of the most cited papers for QRS detection built for small devices with
limited resources is the Pan & Tomkins algorithm [107]. Its robustness lies in the
fact that it runs fast enough to be used in real time and can cope with noisy signals.
However, the performance of this algorithm depends on bit resolution in the AD
conversion. In our case, when using one channel ECG sensor and smaller sampling
frequencies, its performance was not satisfactory, especially for signals with smaller
amplitudes. It was not a good solution for us because of these factors.

Another alternative is the Hamilton algorithm [69]. Compared to the Pan &
Tompkins algorithm, it is quite similar but uses different filters and decision rules.
It is a stable solution, but, still is unable to cope with small amplitudes, or variations
in consecutive amplitude levels, especially, when using a smaller bit resolution in
AD conversion.

Physionet.org [63] is a very comprehensive resource where one can find several
QRS detection algorithms, including Wavedet, gqrs, wqrs, and sqrs. They represent
simple and fast algorithms demanding a small number of resources and obtain high
sensitivity and positive predictive rate values. However, they lack the beat classifica-
tion, and the obtained sensitivity and the positive predictive rate are also considered
to be lower than the demands of a quality industrial QRS detector for a wearable
one channel ECG sensor.

After these initial efforts, the attention of researchers gradually focused on devel-
oping more sophisticated QRS detection algorithms, including Machine Learning

115
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and other methods, as described in Section 18.1 (related work). Although some of
the new approaches achieved better performance, they generally require computa-
tionally intensive algorithms, not suitable for smartphones that collect continuous
ECG data from wearable sensors.

In this chapter, we improve Hamilton’s algorithm [69] in order to make it effi-
cient for industrial application. The improvement was a rather long process due to
the exponential nature of the effort to improve the algorithm. The closer you are to
the margin of 100%, the more effort is needed for a very small improvement of the
performance. We introduced several hundred rules to cope with the identified prob-
lems in QRS detection, and several thousand tests to tune parameters, and threshold
values for identified solutions. Some threshold values obtained good performance
on some test file while performing badly on others. When we fine-tuned some pa-
rameters, it so happened that some of the rules did not work on other test datasets,
which was even more challenging.

16.1 Background

In this section, we will explain the evaluation metrics and give an overview of the
original Hamilton’s QRS detector algorithm.

16.1.1 Performance measures

The benchmarks used in our testing methodology are the same used in the IEC
60601-2-47 standard for particular requirements for the safety, including an es-
sential performance of ambulatory electrocardiographic systems, and ANSI/AAMI
EC57:2012 for Testing and Reporting Performance Results of Cardiac Rhythm and
ST Segment Measurement Algorithms. These standards use the MIT-BIH ECG ar-
rhythmia database [99], and the American Heart Association’s (AHA database) [72].

MIT-BIH contains half-hour ECG recordings for 48 anonymized persons, and
only 44 records exclude those that contain paced beats. These recordings are pub-
licly available on the physionet.org web site [63]. The recording frequency is 360
samples per second, per channel, with a 11-bit resolution. Even though each record-
ing contains two-channels, we used the first channel, identified as ML II, in most of
the records.

In addition, we follow the requirements according to the standard IEC 60601-
2-47:2012 for medical electrical equipment, particularly, requirements for essential
performance of ambulatory electrocardiographic systems. According to these re-
quirements, any calculated peak is considered as detected if it is at most 150 ms
away from the real beat.

A detected QRS is denoted to be True Positive (TP), if the QRS detector has
found a QRS closer than 150 ms from the one which is annotated. A False Negative
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(FN) is a missed QRS, or if the QRS detector has found a QRS outside the 150 ms
perimeter, while a False Positive (FP) is an erroneously detected QRS (extra found).

The commonly used performance measures are sensitivity and positive predictive
rate, calculated by Eq. 17.1.

TP TP

E=rc—o  4P=— (16.1)
TP+FN TP+FP

In addition, to find an optimal value of a parameter, we provided a lot of test
experiments, and calculate the number of Total Errors by Eq. 16.2, as a sum of
errors denoted by FP and FN. The smaller the errors are, the better performance is
achieved.

Errors=FP+FN (16.2)

16.1.2 Analysis of Hamilton’s Algorithm

EP Limited’s open source software for arrhythmia detection serves as a basis for this
research [70, 69]. It has a complete C-code implementation of Hamilton’s algorithm,
with three different detectors, and a simple beat classifier. Two of the detectors are
for general-purpose, whereas the third one is for environments with a small amount
of memory.

Algorithmic details are theoretically provided in their original work [69]. Fig. 14.1
represents the conceptual level for the two phases, and the high-level steps con-
ducted for each of them.

After eliminating the noise in the DSP filtering phase, the algorithm continues
with the peak detection phase. It already has two thresholds for the AVG signal,
classified as a

e static threshold with a fixed value, and
e dynamic adaptive threshold (DAT) which is affected by the amplitudes of the
latest peaks.

The original algorithm sets the static threshold (ST HR) at value MIN_PEAK_AMP
= 7. A general rule of thumb is that a lower value of the static threshold will find
more peaks, but also detect lots of artifacts. On the other hand, a higher static thresh-
old value yields fewer peaks, but a smaller number of artifacts.

When a new local peak is found, the dynamic adaptive threshold is calculated by
taking the mean values for real peaks and noise peaks into account. The mean value
is computed by Eq. 16.3.

LD ¢
n=1n

8

Let the mean value for real beats and noise peaks be denoted as gmean and nmean
respectively, and also TH be the constant multiplier (with a default value of 0.3125),
then the DAT is calculated by Eq. 16.4.

(16.3)

mean —
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Fig. 16.1: Detecting artifacts, noise and real peaks based on values of static and
dynamic thresholds in the original Hamilton’s algorithm presented on signal extract
over MIT-BIH record 124 (1046 sec).

DAT = nmean + (gmean — nmean) x TH (16.4)

When a new local maximum is detected by calculating an AVG value, both of the
thresholds are compared to this value. If the value is higher than the static threshold,
then it is considered to be a potential peak, otherwise, it is an artifact. It is classified
as a noise peak if the calculated value is lower than the dynamic peak, and as a real
beat if it is higher than the dynamic adaptive threshold.

Fig. 16.1 presents both dynamic and static thresholds. Note, that detected peaks
Al, A2, ..., A7 are categorized as artifacts (smaller than the static threshold), and R1,
R2, R3 and R4 as real beats. N1, N2, and N3 are considered noise peaks since the
local maxima of each label are smaller than the dynamically calculated threshold.

16.2 Identification of performance issues

A discrepancy in peak amplitudes may introduce bad detection. We have identified
two cases when this happens:

e asequence of low-amplitude peaks after an isolated high-amplitude peak;
e an isolated low-amplitude peak after a sequence of high-amplitude peaks.

Furthermore, apart from fine-tuning the threshold value, and expecting lower
performance on cropped signals, we analyzed the segments where the algorithm
showed lower sensitivity, and specificity even though the signal was not contam-
inated with noise. The conclusion was that lower performance was obtained for
specific segments, and the problems can be classified as:

e a mixture of low and high-amplitude peaks;
e artifact elimination; and
e wrong R-peak location.
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Fig. 16.2: Signal extracts of executing the Hamilton algorithm over the MIT-BIH
record 114 (240 sec) a) Original ECG signal; b) Output after bandpass filtering;
c¢) Output after differentiation and absolute calculation; d) Output after average over
an 80 ms window.

16.2.1 Bad detection of low-amplitude peaks

Fig. 16.2 presents the case when an isolated high-amplitude peak is preceded and
followed by a sequence of low-amplitude peaks. An §-second segment extract of
MIT-BIH record 114 is displayed including the original signal and outputs after
executing each of the processing steps BPF, ABS, and AVG.

Fig. 16.2 d) identifies the static and dynamic thresholds and shows the case where
the beats between the two high amplitude are considered as artifacts, although they
should be real QRS beats.

The reason for bad detection of low-amplitude peaks after high-amplitude peaks
is primarily due to the high level of static threshold. Even if one makes a correction
by decreasing the static threshold value to include these peaks, there will still be a
problem regardless of the fact that the peak will be treated as a candidate, and the
dynamic threshold check will be applied. This is because the high-amplitude peak
will increase the dynamic threshold value caused by the calculation of the mean,
and so the peaks will be classified as noise peaks.



120 16 Improving the QRS Detection for One-channel ECG Sensor

mV
0.5
" w
0.3 1 T T T T T
0 1 2 3 4 5 6 7 time(s)
60
b) 45
-30+ T T T T T T T ™
0 1 2 3 4 5 6 7 time(s)
. U J | Lo
0 T T AI JAW\A’IL‘A )IMA ad T IM I;
0 2 3 4 5 6 7 time(s)
? “’M J\ f\ I I
0 A‘*“ o . el >
0 5 6 7 time(s)

Fig. 16.3: Signal extracts of executing the Hamilton algorithm over the MIT-BIH
record 201 (424 sec) a) Original ECG signal; b) Output after bandpass filtering;
c¢) Output after differentiation and absolute calculation; d) Output after average over
an 80 ms window.

16.2.2 Isolated peaks after sequences of high-amplitude peaks

High-amplitude peaks directly affect the calculation of dynamic adaptive thresh-
old. Tt is recalculated each time a new local maximum is found with an amplitude
higher than the static threshold. In this case, it is considered as a potential peak, and
the values lower than the dynamic threshold are considered as a noise peak, while
the others as real QRS peaks. The original algorithm buffers the latest eight peak
amplitudes and calculates a DAT value by Eq. 16.4.

An extensive analysis of the MIT-BIH record 201 shows too many misses, espe-
cially in cases of aberrated atrial premature beats (classified as a beat) as illustrated
in Fig. 16.3. Two of the beats highlighted by default cannot be captured due to the
dynamic adaptive threshold and mean calculation, since most of the latest beats have
a high amplitude. In this case, neither the static nor the dynamic adaptive threshold
will work. The example is highlighted in Fig. 16.4 by peaks C and D, which should
be classified as QRS peaks, but they are detected as artifacts because their value is
lower than the static threshold.
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Fig. 16.4: Static and dynamic threshold values on the output after average over an
80 ms window on MIT-BIH record 201 (424 sec).

16.2.3 Classification of artifacts

Dynamic adaptive thresholding identifies noise and real peaks. Although in most
cases, the dynamic adaptive threshold reacts properly, there are still cases where a
noise peak is incorrectly calculated as real. Correct classification of artifacts is of
primary importance for a quality industrial QRS detector.

Increasing the static threshold directly decreases the number of artifacts, how-
ever, this drastically increases the missed beats. This also applies to the dynamic
adaptive threshold. To find an optimum of the static and dynamic peaks means to
search for a comprise that would reach high values of both sensitivity, and positive
predictive rate.

An example is illustrated in Fig.16.4. Peaks labeled as A, C, D, E and G are low
amplitude peaks. However, peaks labelled as B and F are artifacts. With the default
threshold, A and E peaks are considered as candidates for QRS, whereas the rest are
considered as artifacts. For this particular case, decreasing the static threshold to 3
would catch all of the real peaks, but, will consider artifact peak F as a peak. On the
other hand, keeping the static threshold at 4 will only detect G as a peak, and the
other peaks will remain artifacts again.

16.2.4 Calculation of R-peak location

One of the issues in executing the original Hamilton algorithm is the proper de-
tection of a QRS peak. Fig. 17.8 illustrates such a case, where local maxima are
labeled with A, B, C, D, and E. Another peak appears in the output after bandpass
filter denoted by F, as seen in Fig. 17.8 b). The proximity of marked peaks B, C,
and F cause two local peaks on the output of 80 ms average window, marked as B
and C on Fig. 17.8 c¢). When static thresholding is applied to the time average over



122 16 Improving the QRS Detection for One-channel ECG Sensor

T N :
0 1 2 time (s)

20 4 A e Static

E
0 10 /E\ ----- Dynamic /T\

-0.5 4 T ——»
0 1 2 time(s)

Fig. 16.5: Signal extracts and R-peak detection over the MIT-BIH record 201 (426.4
sec): a) Original signal and local peaks A, B, C, D and E; b) Output after bandpass
filter; c) Output after average over an 80 ms window; d) Real and calculated R-peak
locations with constant delay introduced by the filter.

an 80 ms window, C, F', and D peaks are detected to be artifacts, whereas A, B, and
E are identified as potential peaks. Since the dynamic threshold is below the static,
these beats are classified as real.

Note that the filter makes a constant delay, which is deducted from the location
of peak values (as displayed on the signal average output). It correctly determines
properly the previous QRS peak A, and the next QRS peak E, but makes a mistake
in determining the peak B.

The original Hamilton’s algorithm detects the location of R-peaks to be at points
A€, BC, and EC, even though they have different real peak locations AR, BR and EX.

Hamilton’s algorithm detects a peak based on a calculated amount of delay [70].
Although filters produce a fixed delay, the author has pointed out that the detec-
tion delay can easily vary from 395 ms to 1 sec, depending on the heart rate and
detection rule. It is important to note that the search back detection method [70]
can produce a fixed delay if the search back algorithm does not report any local
peaks. Thus, we can conclude that the original Hamilton’s algorithm provides the
best likely position of the R-peak, however, it is not always exact. This problem
can particularly increase the total number of FP’s. This particular case is observed
in almost all MIT-BIH records. Even though the difference is not so big, there are
cases where the difference between the real and detected location is higher.
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16.3 Algorithm improvement

Increasing the algorithm performance is directly related to fine-tuning thresholds
and algorithm improvements.

16.3.1 Improving the detection of low-amplitude peaks

A careful analysis shows that the step (ABS) executed prior to time average, will not
be able to cope with the bad performance in detection of low-amplitude peaks. This
is especially crucial in cases when the signal is a mixture of one high amplitude beat,
and then followed by several beats with low amplitudes. We used the idea introduced
in the Pan Tompkins algorithm [107] to square the signal, instead of calculating the
absolute value.

Fig. 16.6 presents a case where a combination of a square mode and the opti-
mized static threshold will improve the detection of low energy peaks. The peaks
labelled as A, C, E, F, H, and I are real R peaks, whereas B and D are artifacts.
The original algorithm, which uses the calculation of an absolute value and average
along with the static threshold, is not able to classify F, and I as real peaks. How-
ever, the square mode and signal average in combination with a new (smaller) static
threshold, is able to detect that there is sufficient energy for a potential peak. The
square average signal also marks B, and D as potential peaks. Such peaks can be
reduced with the dynamic threshold or by introducing rules for artifact detection.

Nevertheless, there are side effects, especially in the calculation of the dynamic
adaptive threshold. This threshold increases due to increased amplitudes, and it be-
comes slightly difficult to adapt to sudden changes in the amplitudes.

This operation behaves as an important amplifier especially if it followed by a
calculation of an average over an 80 ms moving window. It shows that this copes
better with the identified problems. However, this is not enough, since this algorithm
cannot perform with static threshold values, and needs dynamic calculation by other
rules.

We have conducted several tests to experiment with threshold values STHR from
2 to 50, to find the optimal threshold value for which the number of errors is min-
imal. The left part of Fig. 16.11 presents the false detections for the conducted ex-
periment. The performance of the algorithm gradually decreases as the threshold
increases, mainly due to the high values of FP. The best performance is obtained for
STHR = 2. We noticed a decreased number of FN, which gives an idea for how to
get better performance if we decrease the number of FPs through other methods.
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Fig. 16.6: Signal extracts of executing the Hamilton’s algorithm over the MIT-BIH
record 201 (424 sec): a) Original signal; b) Output after average over a 80 ms win-
dow using the original Hamilton’s algorithm; c) Output after square average over a
80 ms window with the optimized static threshold.

16.3.2 Improving the calculation of the R-peak location

Since the Hamilton algorithm only gives an approximation where the peak is, one
way to reduce the number of FP’s that occur due to the determination of a proper
R peak location, is to search the real peak in near proximity. The idea is to search
the most convenient local maximum by analyzing the noise-eliminated output after
bandpass filtering.

The original Hamilton’s algorithm will determine the best approximate for the
location of the R-peak. This is the starting point for the search of the local maximum,
within a range, found SearchL ms to the left, and SearchR ms to the right of the
approximated R-peak location. Once the local maximum is found on the output of
the bandpass filter, we continue to find the local maximum on the actual signal,
though the range for searching will be limited to 48 ms.

Fig. 16.7 illustrates the basic steps of this improvement algorithm in the example
presented in Fig. 17.8. The corresponding search segments are marked on the orig-
inal signal. The original Hamilton’s algorithm detects the local peak B¢, and our
improvement algorithm finds BRC to be the real location.

We realized another experiment to locate the optimal values for SearchL, and
SearchR. False detections for thresholding values are plotted on a surface graph
presented in Fig. 16.8, for different values for SearchL, and SearchR, using the static
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Fig. 16.7: Proper calculation of the R-peak location on the MIT-BIH record 201
(426.4 sec): a) Calculated R-peak location B¢ and the search intervals over the out-
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Fig. 16.8: False detections improving the calculation of the R-peak location.

threshold value STHR = 4. The best results are obtained when SearchL=160 ms, and
SearchR=120 ms.
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16.3.3 Improving the detection of low-amplitude peaks after
sequences of high-amplitude peaks

Two functions, denoted as mean (Eq. 16.3) and thresh (Eq. 16.4), play a crucial role
in the original QRS detection algorithm.

We proposed a change in the mean function in order to alleviate the effect of high
amplitude complex proceeded by a significantly lower one. Instead of calculating
the mean of the last 8 peaks, our algorithm considers only half of this value when
the peak amplitude is higher than the dynamic threshold (DT HR) and the exact
value in all other times, as defined by Eq. 16.5. This prevents a linear increase in the
threshold especially for high amplitude signals and solves the identified problem.

o | Xn ifX.<DTHR.
Zn:l Xn

—, otherwise.

mean = g (16.5)

In addition, we changed the thresh method. Previously, the calculated threshold
was multiplied by the constant TH = 0.3125. Since the square mode filter is used,
we updated the multiplication constant by its square, i.e TH * TH. Thus the new
DAT calculation is defined by Eq. 16.6. Both these interventions enabled the detec-
tion of such beats.

DAT = nmean + (gmean — nmean) x TH? (16.6)

A good performance is achieved on both cases with:

e asequence of low-amplitude peaks after an isolated high-amplitude peak;
e an isolated low-amplitude peak after a sequence of high-amplitude peaks.

Fig. 16.9 illustrates the improvement idea for the example presented in Fig. 16.2,
where a sequence of low-amplitude peaks is followed by a high-amplitude peak,
which will increase the dynamic threshold to a value where all consequent low-
amplitude peaks are marked as noise peaks.

The figure demonstrates the output of an average of an 80 ms window realized
on squared (not absolute) values along with the static, and dynamic thresholds. Note
that the detected potential peaks and their absolute values presented in Fig. 16.2 are
smaller than the original dynamic threshold value.

The effect of applying the new way to calculate the dynamic threshold can be also
observed in Fig. 16.10, presenting isolated, low-amplitude peaks after a sequence
of high-amplitude peaks. The new minimum threshold detects 17 candidate peaks,
whereas the original algorithm with default dynamic threshold is not able to capture
the peaks labeled as C, D and G. The newly optimized threshold is able to capture
all 15 peaks correctly, and also classify B, and F peaks as noise.

We have conducted a lot of experiments to determine the optimized value for the
DTHR threshold value. The test cases included testing the threshold values of 100
up to 400. The middle part of Fig. 16.11 presents false detection as a function of
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Fig. 16.9: Effect of a dynamic threshold to detect peaks after average of squared
values over an 80 ms window over the MIT-BIH record 114 (240 sec).
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Fig. 16.10: Effect of a dynamic threshold to detect peaks after average of squared
values over an 80 ms window over the MIT-BIH record 201 (424 sec).

the threshold values. Threshold values near 200 are the best candidates for the most
effective performance.

16.3.4 Improvement of Artifact Elimination

In the final step, we introduce a new Classification phase. The aim of this is to
classify whether the calculated beat is real or an artifact. Three important decision
rules decide whether the peak is an artifact. If none of these rules are satisfied, the
beat is calculated as a real peak.

From the preliminary analysis, we observed that artifacts generally follow a real
beat and are closer than 320 ms away. The second important issue is that an artifact
obviously has lower energy when compared to the previously detected beat. The
original Hamilton’s algorithm eliminates artifacts closer than 195 ms. Our findings
show that this value can also be optimized. Table 16.1 describes some parameters
used in our optimization approaches. We introduce the following optimization rules
for artifact elimination:

C =Artifact if
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Fig. 16.11: False detections of optimization approaches for low-amplitude peaks
(left); sequences of high-amplitude peaks (middle), beat rate impact (right).

A0: RR <TA0=MS250
Al: RR<TAl1=MS260& PH/CH > THRAI
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A2: RR<TA2=MS320 & PH/CH >=THRA2
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Fig. 16.13: Signal extracts and outputs after squared average over 80 ms window of
executing our algorithm over MIT-BIH: a) signal and d) output for A0 type artifact
in record 103 (1304.4 sec); b) signal and e) output for A1 type artifact in record 124
(413.3 sec); c) signal and f) output for A2 type artifact in record 101 (132.2 sec).

Table 16.1: Parameter List for Artifact Detection Rules.

Parameter Description
C Current Detected Peak
P Previous Detected Beat

CH Current Peak Time Average Height

PH Previous Beat Time Average Height

RR Current beat to peak interval in ms

TAx  |Time in ms optimizing Ax, x € {0,1,2}
THRAx |Parameter optimizing Ax, x € {1,2}
MSxxx |xxx ms interval

Examples of different types of detected artifacts are presented in Fig. 16.13. The
identified segments demonstrate that the detected peaks are artifacts, since their en-
ergy is higher than static, and dynamic thresholds, but satisfies one of the A0, Al,
and A2 rules. Otherwise, if none of these rules are satisfied, then the detected beat
C is not an artifact.

The results of the experiment using the AO optimization approach, are presented
in the left part of Fig. 16.12. A threshold value of TAO = M S$250 = 250 ms yields
promising results, due to the lowest level of false detections.

The impact of threshold values on the A1 approach is demonstrated in the middle
part of Fig. 16.12. The x-axis denotes values which are multiplied by 100 and the
optimized value 80 for THRA1 corresponds to 80/100 = 0.8.

The right part of Fig. 16.12 shows how the threshold parameter impacts the
performance of the A2 optimization method. The x-axis denotes values that are
multiplied by 100, and the optimized value 250 corresponds to 250/100 = 2.5 for
THRA2.
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16.3.5 Beat rate impact on artifacts

Our experiments have shown that the beat rate affects the intervals in the A0-A2
optimization approaches. Let RR,,, be the average value of the last R to R intervals,
and f; the sampling frequency. Then beat rate BPM is measured by beats per minute,
and calculated by Eq. 16.7.

60 60f
= RRug/fs)  RRarg (6.9

To classify whether a peak is an artifact, we have set three time constants
TAO = 250 ms, TA1 = 260 ms and TA2 = 320 ms. Usually, the peaks closer than
250 ms are considered as peaks (corresponds to a beat rate higher of 240 BPM). The
second and third thresholds correspondingly check if the peak is closer than 260 ms
(corresponds to 230 BPM) or 320 ms (corresponds to 188 BPM).

However, our analysis has shown that premature beats might appear closer than
these values. This is why we introduced a scaling factor to the previous improve-
ment, and use the time thresholds calculated by Eq. 16.8, which are multiplied by
the scaling factor BPM _BASE and heart rate BPM.

BPM

BPM _BASE
RR < TAx——F—— 0,1,2 16.8
< TAx——po x€{0,1,2} (16.8)
The right part of Fig. 16.11 shows how the scaling factor BPM _BASE impacts
the performance. The x-axis shows the values of the scaling factor BPM _BASE in
a range from 40 to 130, with increments of 2, and y-axis the number of errors. We
observe that a value of BPM _BASE = 90 minimizes the errors.






Chapter 17
Improving ECG Beat Classification Algorithm

In this chapter we propose an approach based on a set of decision rules to classify
detected QRS complexes. It requires relatively simple operations and is a pipelined
solution, processing beat by beat without extensive memory or processing require-
ments. Thus it can also run on mobile devices.

Our goal was to apply the IEC 60601-2-47 standard for ambulatory electrocardio-
graphic medical devices [77] that classifies three most frequent QRS types: Normal
(N), Ventricular (V), Suprabentricular (S) and Fusion of a ventricular and normal
beat (F). We observe that having high sensitivity and positive predictive rate of QRS
detection also affects the performance of the algorithm. Our improved version of
Hamilton’s [47] algorithm is used as a QRS detector in this research.

17.1 Definition of QRS classes

A typical ECG is a periodical signal, with repeating patterns of P wave, QRS com-
plex and T wave. Figure 17.1 presents characteristic points of an ECG wave, the
baseline, ST, QT and RR intervals.

Our goal is to classify most frequent QRS complex types that can be detected by
analyzing single channel ECG recording and build a good quality rhythm detector.

17.1.1 Feature space

Beat classification is applied after the QRS detection phase. The technology to clas-
sify beats depends on definition of a specific feature as follows:

e F1 QRS width, that can be (normal) narrow (< 110ms), or wide (> 110ms) [129];
o F2 QRS morphology, determined by the QRS complex type, taking one of the
following shapes qRs, Rs, rsR’, 1S, rs, Q, QS, qR, QR, according to Fig. 17.2,

o F3 context behavior, determined by the last five beats,

133



134 17 Improving ECG Beat Classification Algorithm

PR Segment

<> RR Interval

75 - R < » R
PR Interval ST Interval ST Segment
(. ............ ) ( .................... ) ( ........... )
P T P Baseline
as s “ars.
75 QT IntervalI Complex : >
0 1 2 time/(s)

Fig. 17.1: Characteristics of an ECG wave on MIT-BIH Arrythmia record 101 (79.6
sec).

o F4 rhythm type, classified as regular and irregular, determined by the last five
beats,

o F5 heartbeat location, determined as premature, delayed or following the under-
lined rhythm;

o F6 heartbeat rate, classified as low (bradycardia), normal between 60 and 100
BPM for resting heart and high (tachycardia);

o F7 T wave morphology, determined as normal (positive), inverse (negative), or
biphasic (positive and negative part) [134];

o K8 elevation of the ST segment, that can be normal, elevated or depressed [134];

e F9 QT interval as normal, short, long or unmeasurable [134].

e F10 PR segment as line between P-wave and the start of QRS complex.

In general, QRS morphology can have eight different shapes, namely gRs, Rs,
rsR’, 1S, 1s, Q, QS, gR, QR as portrayed in Fig. 17.2.

We have degraded it to four different shapes, particularly NOR, INV, EQN and
EQI. Their illustration though are provided in Fig. 17.3.

Technical details for derived QRS types and R point calculation are provided in
Algorithm 5 and Table 17.2. Please note that the values are actually energies of the
ECG signal. Additionally, Table 17.1 lists the equivalencies between the primary
and derived QRS complex types.

Experienced doctors use additional features, to establish a more precise diagno-
sis, such as

morphology of the P wave, as normal, inverse, absent, abnormal, or saw;

PR interval, determined as normal, unmeasurable, short, or prolonged;
sequence of P waves prior to a QRS complex;

missing P wave prior to a QRS complex;

missing QRS complex in the rhythm sequence (different degree of AV block);
missing T wave between two QRS complexes;
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Fig. 17.3: Determination of different QRS types.

However, due to small amplitude level of P waves, the algorithms cannot be
efficient in determination of the P wave, especially dependent on the position of the
one-channel wearable ECG sensor and those features are omitted from our analysis.
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Table 17.1: Euivalecies between primary and derived QRS complex types.

Primary QRS | Derived QRS
Complex Type |Complex Type
qRs NOR

Rs NOR
rs EON, EQI
0 EQI
qR NOR
rsR’ NOR
rS INV
oS INV
OR NOR,EQON

Algorithm 5 Detect R point and QRS Morphology

1: procedure RANDQRSMORPHOLOGY( Index, HPF )

2:

A O

11:
12:

13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

Class = NONE, R, =0
PH =0,PH;,; =0
NH =0,NH;,; =0
for i = Index — 12;i < Index+8; i ++ do
if HPF(i) >0 & PH < HPF (i) then
PH < HPF (i)
PH;,g i
else
if HPF(i)<0 & NH > HPF(i) then
NH « HPF(i)
NHijpg < i
ABS(PH —NH)
MIN(PH,NH)
if RH<0.2 || (PH<8 & NH<S8) then
if PH > NH then
Class = EQN
Rina = PHing
else
Class = EQI
Rina = NHipg

RH =

else
if PH > NH then
Class = NOR
Ring = PHipg
else
Class = INV
Rina = NHipg
Return R;,q,Class

17.1.2 QRS classes

The QRS complex represents depolarization of ventricular muscle cells and it is
normally initiated by an electrical signal with origin in the sinoatrial (SA) node
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Table 17.2: Specification of derived QRS complex types.

Derived QRS RE | PH | NH [PH/NH

Complex Type
NOR >=0.2|>=8|>=8| >=1
INV >=0.2|>=8(>=8| <1
EON <02 - | - | >=1
EQON - [ <8 <8] >=1
EQI <0.2 | - - <1
EOI - [<8 <8 <1

[24]. Our intention in this research is to follow the IEC 60601-2-47:2012 standard
for medical electrical equipment as it it defines particular requirements for the ba-
sic safety and essential performance of ambulatory electrocardiographic systems,
covering the one-channel wearable ECG sensors. According to this standard, the
following beat types are to be classified into one of the following five classes:

e S, asupraventricular ectopic beat (sveb): an atrial or nodal (junctional) premature
or escape beat, or an aberrant atrial premature beat;

e V, a ventricular ectopic beat (veb): a ventricular premature beat, an R-on-T ven-
tricular premature beat, or a ventricular escape beat;

e (), a paced beat, a fusion of a paced and a normal beat, or a beat that cannot be
classified.

e [, a fusion of a ventricular and a normal beat;

e N, any beat that does not fall into the S, V, F, or Q categories described below (a
normal beat or a bundle branch block beat);

The rough distinction of these beat types is made upon the QRS complex mor-
phology, which differs mainly due to the origin of the electrical impulse or due to
the conduction disturbances of a normally initiated beat. This initiates classification
of a detected beat as:

e Normal (N) beat, when the QRS complex is initiated by SA node impulse;

o Supraventricular/Atrial (S) beat that result from impulses originating in atrial or
AV nodal (supraventricular) areas outside the SA node;

o Ventricular (V) beat, which originates in the ventricles instead of SA node. They
occur when electrical impulses depolarize the myocardium using a different path-
way from normal impulses.

For testing purposes we have used the extensive Physionet ECG bank [63], where
each QRS complex is labelled by an appropriate annotation. Table 17.3 presents how
our classification follows the IEC 60601-2-47:2012 standard [77].
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Table 17.3: Beat annotations from Physionet ECG bank [63] classified according to
the IEC 60601-2-47:2012 standard [77] and used in our algorithm.

1IEC
Description 60601-2-47
Class

Physionet
Beat type

Normal beat

Left bundle branch block beat
Right bundle branch block beat N
Bundle branch block beat (unspecified)
Paced beat

Premature ventricular contraction
R-on-T premature ventricular contraction %4
Ventricular escape beat
Fusion of ventricular and normal beat F
Atrial premature beat
Supraventricular ectopic beat
Aberrated atrial premature beat
Atrial escape beat N
Nodal (junctional) premature beat
Nodal (junctional) escape beat
Supraventricular escape beat
Unclassifiable beat 0]

Qs ~~ 2 tadmEms <~ x>~ =

17.1.3 Premature and Prolonged Contractions

Premature contractions are those beats that appear prior to the expected beat as de-
termined by a regular rhythm. These contractions are generally classified into three
categories: Ventricular, Atrial and Junctional (Supraventricular), depending on an
impulse origin - ventricular tissue, atrial tissue or atrioventricular (AV) junction cor-
respondingly.

Fig. 17.6 and 17.7 present premature ventricular and atrial contractions corre-
spondingly.

In our analysis, a beat is considered to be Premature if current RR interval differs
for at least 16% of the average RR interval of the last 6 beats. This value is selected
based on the study reported by Gusev et.al [66] and proven to be successful.

Postponed contractions are those beats that appear later to the expected beat as
determined by a regular thythm. Usually, they are late due to compensatory pause
from a previous premature contraction, or they can appear as an escape beat.

17.1.4 Normal Beats

We classify a detected QRS complex as N (Normal Beat) under the conditions pre-
sented in Table 17.4 [129].
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Table 17.4: Determination of a normal beat.

Parameter Characteristics Values
QRS complex width Normal 60-110 (ms)
QRS morphology |qRs, Rs, 1sR’, 1S, 15, qR, QR|  Fig. 17.2
Context behavior Similar to the last beat

Rhythm type Regular

Heartbeat location Follow the underlined rate

Heartbeat rate Normal 60 - 100 BPM
T wave morphology Normal

ST segment Normal

QT segment Normal

-1.6 T T T T T T T T N |=
0 1 2 3 4 5 6 7  time(s)

Fig. 17.4: Illustration of N beats and one V beat on MIT-BIH Arrhythmia record
100 (1514.8 sec).
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1L
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Fig. 17.5: Illustration of N beats and one A beat on MIT-BIH Arrhythmia record
100 (470.0 sec).

Fig. 17.6 and 17.7 display a series of normal beats identified by N, along with
occurrence of S (A) and V beats.

17.1.5 Supraventricular Beats

Supraventricular beats arise from an ectopic focus within the atria or from AV node.
QRS morphology of a supraventrucular beat is similar (same) to a normal beat due
to the same pathway of conduction through the AV node, and same pattern of ven-
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tricular depolarization, however its location is different, so it can be premature or
prolonged.

QRS width of normal and supraventricular beats is between 60 and 110 ms. Ta-
ble 17.5 presents the rules to determine its type determined by the irregular rhythm
and beat location.

Table 17.5: Determination of a supraventricular and normal beats.

Parameter|Premature (A, S)|Normal (N) [Escape (e, j)
Location Premature Normal | Postponed
Rate Normal Normal Normal
T wave Normal Normal Normal

An example of a premature atrial contraction (PAC) is listed in Fig. 17.7, denoted
as A.

17.1.6 Ventricular Beats

A ventricular beat can be detected by the abrnormal morphology of the QRS com-
plex, such that the QRS duration is longer than or equal to 120 ms. The irregularity
of the rhythm, rate and the beat location determine more specifically its type. Ac-
cording to Table 17.3 we classify four types of ventricular beats: a premature ven-
tricular beat (PVC), an R-on-T ventricular premature beat (r), a ventricular escape
beat (E) and fusion of a ventricular and a normal beat (F). Table 17.6 defines the
differences more precisely, and, therefore, our determination rules.

Table 17.6: Determination of a ventricular beat.

Parameter| PVC (V) | RonT (r) |Fusion (F)|Escape (E)
Location |Premature| Premature | Normal |Postponed
Rate Normal [> 150 BPM| Normal | Normal

T wave Opposite | Normal Normal | Opposite

An example of a premature ventricular beat is already illustrated in Fig. 17.6,
where a PV C ventricular beat has an obvious diversity and its location is premature.

17.2 Definition of Features

We use an improved version of Hamilton’s QRS detection algorithm [47] as illus-
trated in Fig. 17.8. Q,R and S points of a complex are calculated by this algorithm.
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Fig. 17.6: Illustration of N beats and one V and F beat on MIT-BIH Arrhythmia
record 205 (815.0 sec).
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Fig. 17.7: Illustration of N and V beats, one a, F and E beat on MIT-BIH Arrhythmia
record 210 (1755.0 sec).

Original Hamilton calculates the R-peak locations to be at AC,B¢ and CC points.
However, these locations are slightly different from the real R-peaks. That is why,
in our previous study [47] we introduced a SearchL and SearchR intervals, and ex-
perimentally found that best results are when they are 160 ms and 120 ms respec-
tively.We consider baseline to be the value 0 on over the bandbass filterred signal.

Based on these parameters, Algorithm 5 is used to find R-locations and QRS
complex type. If we have NOR or EQN complex type, then we search on the neg-
ative y-axis for Q and S locations. For both of them, we try to find the point that is
farthest from the baseline, on the left and right side of R for Q and S respectivelly.
In case of INV or EQI complex type, the only difference is that we search positive
y-axis for Q and S locations.

As a result of our algorithm, R-locations are found to be at R4,R? and RC, with
corresponding Q and S locations.

Fig. 17.9 visualizes fQSc parameter for R4,R® and RC peaks. Algorithm finds
the maxium energy, then gets 5% of it to mark the start and end points of Q and S
on signal output after average over an 80 ms window. This algorithm calculates that
for this segment particularly fQSc is 128ms. fQSa and fQSd are calculated based
on this parameter.

Fig. 17.10 visualizes SB and QBh parameter for R*,R5 and RC peaks. Algorithm
calculates the time required from S to the baseline on signal after bandpass filter,
and absolute energy difference between Q and baseline.
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Fig. 17.8: A signal extract and R-peak,Q and S point detection over the MIT-BIH
Arrhythmia record 100 (426.4 sec): a) Original signal and local peaks A, B and
C; b) Output after bandpass filter; c) Output after average over an 80 ms window;
d) Calculated R-peak locations with constant delay introduced by the filter. e) Cal-
culated R-peak locations A®,B and C€, and the search intervals over the output of
bandpass filter. ) Calculated R-peak locations R4,R? and RC and characteristic Q
and S locations.
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Table 17.7: Feature space detection parameters.

ID | Feature Description

F5| O,R,S [Detected Q,R and S point.

F1| fQOSc |Width between two points on squared average
signal over an 80 ms window. Start and End
points are calculated as 5% of the max height,
on 600ms interval from the detected maxima.

F1| fQOSa |Average of fQSc over last 5 peaks.

F1| fQOSd |Current difference of fQSc and fQSa.

F1 SB Distance from the detected S point until the base-
line on high pass filterred signal.

F10| OBh |Distance from the detected Q point until the
baseline on high pass filterred signal.

F8 ST Let R1, R2 and R3 be the latest R points, T3 be
the current T point, AvgRR3 the average value
from R1 to R3, and AvgRT3 be the average value
between R3 and T3. ST is calculated as the dif-
ference of AvgRT3 and AvgRR3.

F1 QSe | Average of input values between detected Q and
S point, subtracted to the minimum on that sec-
tion.

F1 QOSc Width between Q and S calculated on the high
pass filterred signal.

F1 QSa  |Average of QSc over last 5 values.

F1 | OSdiff |Current difference of QSc and QSa.

F2 | TriSim |Triangular similarity of current and previous beat
where Q,R,S are the points of the triangle.

F3 | (of)QORca|Deviation of current QR height from the average
of 20 QR’s, calculated on the original or filterred
signal

F3 | (of)RSca |Deviation of current RS height from the average
of 20 RS’s, calculated on the original or filterred
signal

F3 | (of)ORpc|Deviation of current QR height from the previous
QR, calculated on the original or filterred signal

F3 | (of)RSpc |Deviation of current RS height from the previous
RS, calculated on the original or filterred signal

F6 RA Average of RRI values over last 5 values

F4 | RA/RRI |Ratio of RA over current RR

F4 | RA/RRa |Ratio of RA over Rra

F6 | RARRId |Deviation of RA over RRI

F6 RRa  |Average of RRI values over last 5 values being
inside the interval 80% and 115% of the previous
average.

F6 RRI Current RR interval

F6 RRr  |Ratio of RRa over RRI

F6 | RRId |Difference of current and previous RR interval,
over the previous.

F2 | TYPEc |Current type of QRS complex. One of NOR,
EQ-N, INV or EQ_I

F2 | TYPEp |Previous type of QRS complex.

F2 | TYPE!I |Type of latest normal QRS complex.

F2| LAST |Detected class of last QRS complex.

143
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Fig. 17.9: A signal extract to visualize fQSc feature over the output after average
over an 80 ms window on MIT-BIH Arrhythmia record 100 (426.4 sec).
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Fig. 17.10: A signal extract to visualize SB and QBh feature over the output after
bandpass filter on MIT-BIH Arrhythmia record 100 (426.4 sec).

Fig. 17.11 visualizes ST parameter for R1,R2, R3 peaks and 73 location. Let the
average value between R1 and R3 be AvgRR3, and average value between R3 and
T3 be AvgRT3, then ST is calculated as AvgRT 3 — AvgRR3.
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Fig. 17.11: A signal extract to visualize ST feature over the original signal on MIT-
BIH Arrhythmia record 100 (426.4 sec).

Fig. 17.12 visualizes QSe parameter for R1,R2, R3 peaks and corresponding Q
and S locations. Let the average value between Q and S for R be AvgQS and MinQS
be the minimum value of Q and S, then QSe is defined as AvgQS — MinQS.
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Fig. 17.12: A signal extract to visualize QSe feature over the original signal on MIT-
BIH Arrhythmia record 100 (426.4 sec).
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Fig. 17.13: A signal extract to visualize QSc feature over the the output after band-
pass filter on MIT-BIH Arrhythmia record 100 (426.4 sec).
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Fig. 17.14: A signal extract to visualize QR and RS heights over the the output after
bandpass filter on MIT-BIH Arrhythmia record 100 (426.4 sec).

Fig. 17.13 visualizes OSc parameter for R1,R2, R3 peaks and corresponding O
and S locations.QSc is defined as the time elapsed from Q to S point. QSa and
QS8dif f are calculated based on this parameter.

Fig. 17.14 visualizes QR and RS heights for R1,R2, R3 peaks. Based on this
parameters, feature fQSca can be calculated as the deviation of current QR from
the average. The same applies to fRSca. Calculation of (of)QRca, (of)RSca,
(of)ORpc and (of)RSpc are done in the same manner.
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On the other hand, TriSim feature is calculated with QR and RS heights, and QSc
width. Let the previous heights be OR1 and RS1, and the width be OScl, whereas
current ones be QR2,RS2 and OSc2. If we consider QRS complex as a triangle, then
we can conclude that they are similar if both of the following conditions are valid at
the same time. Note that SIM_THR = 15%, which is the similarity threshold.

1. (QR1/RS1) = (RS2/QR2) <= SIM_THR
2. (QSc1/QR1)*(QR2/QSc2) <= SIM_THR

17.3 Set of Decision Rules

In this research, we have introduced more than 500 decision rules. In the process of
introducing new rules and features, we have been working closely with cardiology
experts. Fig. 17.15 gives presents a high evel overview for decision of Normal, PVC
and PAC beats.

.
Detect R Point
L= |

Normal Postponed

Premature

Rate QS Wide or
>150BPM ST low
F
Sudden
QRS chang

Sudden Sudden

Qcﬁ:r:gRes QRS change

Decide N

Fig. 17.15: High level view of the decision process.
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Table 17.8: Top 10 Decision Rules and the Criterias used for Normal Beat.

Feature Decision Rules and Values
P030 [ P034 [ P036 | P038 | P051 | P084 | P204 | R0O0T [R098| R999

fose | <17 | <17 | <17 | <17 | <20 | - ; zfé_ <9 -

70Sa 5 5 - T [<193] - 5 T [>15] -
=27

ST - - - - - ; - 1 Zie |8 -
>0

SB ; - ; ; - ; - 25 | >4 -

>355] >-55

OBh . <31 < | <18 - - - T
=35

Ose - | >20] - - | <40 - - o6 |23 -

0Sc <129 | - <14 - T >3 [>13] -
=85

0Sa N ; ; ; - 125

osair | - 5 5 < - 5 5 N -

TriSim | - |<0.16|<0.16] <0.16 |<0.16|<0.16|<0.05| - N -

fORca | - B B B B B B 5 -

RRI S - 5 T >48] - 5 5 N -

RRr | <133 |<1.76] - 5 : - <18 - | -

RRa >89 - - - - - - - - -

RA/Rra | - T ST <1 =] - 5 : N -

>0.15 =054

RRid <057 | ° <016 | T . ) . . )

TYPEc | INV | - - 5 T [NOR| - 5 B

TAST T [TPVC|1PVC|IPVC [[PVC| - 5 5 N -

]T)‘;tta' 71 | 145 | 37 | 30 | 85 | 257 | 71 | 47 | 549 [87520

17.3.1 Normal Beat

There are totally 114 decision rules for classifying beat as normal which are acti-
vated on MIT-BIH Arrhythmia, one of which has no criteria and applies when none
of the rules are effective. Table 17.8 presents top 10 of them, based on the number
of correctly classified normal beats. These rules in fact decide for 99.33% of the
existing normal beats in MIT-BIH Arrythmia database. An important note is that,
we use only 18 features for the top 10 rules, in order to classify normal beat.

17.3.2 Ventricular Beats

MIT-BIH Arrhytmia database activate 141 decision rules for Preature Ventricular
Cotraction. The most important 10 rules accounts for 54.26 % of the total classified
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PVC’s, where the details for them are presented in Table 17.9. We obseve that 18
features are generally used in these mostly used decision rules.

Table 17.9: Top 10 Decision Rules and the Criterias used for PVC Beat.

Feature Decision Rules and Values
P022 [P029] P096 [RO0S[RO11| R0O12 [ R014 | R033 | R040 | R083
<34 >18
fOSc 33 |<32| - |>16] - S e U I S
fOSa |<26.6| - - - - - - - - <35
f0sd  [<-06| - - - - - - - >04 -
>71
ST <3 | - - - - - <0 | - - | >-66
>5
SB S N R R R B I B e I RN
OBh | >T1| - - - - - - - - >5
>-125
QOse - - - - |<-64| - - - e |>220
>8 | >10
0OSc >15| - - [>15(>10| >9 | >10 | >10 2 | Zas
QSa N R N - - [ >10[<205
osdiff | >=1]>0] - [>2] - - - - |>-15] -
oORca | - | - |>045] - | - |>065/>0.65|<-2.0 z j .
oRSca - - - - - - >0.65|<-1.0 - -
>50 | >40
RRI i i ] N i ’ T | <80 | <149
RRr - <18 - - - - - - [>0.93
>40
RRa i j i | i ) . o127
TYPEc | - - - |NOR|EQI[EQN| - [EQI| - B
TYPEp | - - - - - - - - - | NOR
TYPEI - - - -~ [NOR|NOR| - |NOR| - -
lT):ttal 515 | 351 ] 332 | 731 | 478 | 208 | 213 | 192 | 275 | 371

17.3.3 Atrial Beats

On the other hand, 119 rule for Atrial Premature Contraction are activated on MIT-
BIH Arrhytmia databas. 64.66% of the total APC’s are actually classified by the top
10 classification rules. Table 17.10 presents them, where we observe that total of 20
features are used. Iterestingly we see that high percentage of features are regarding
the RR interval. This is an expected situation, since APC peak resambles a lot to a
normal, and RR interval is one of the differentiative factors.
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Table 17.10: Top 10 Decision Rules and the Criterias used for APC Beat.

Feature Decision Rules and Values
P044 [ P052 [R147] RT70 | R171| R172 | R173 | R174 | R175 | R196
ST1 S14 | 516 | >16 | 516 | 516 | >17
fOSe | <ITH>220 171 - | 20| <21 | <20 | <25 | <24 | <25
S16 | >168[>174
/0Sa N R I T 1<195| <184 (<196 ° -
>3 | >06
/05d ) ) ) ) ) <14 | <12 ) . .
=723 S5 | >-14
ST ; S R 1) vl IR I 2 ol B IR
>3 >4 >6 >5 | >5 >5
5B Sl (<] <0 <9 [<io] <] C
oBh 27 >16| >-16 | >-14 [ >-16 | >-15
) T <8 T l<2 | <4 | <6 <4 <2 )
S6 | S11 | 516 | >12 | >8 | >45
Qse A s 39| <34 | <26 | <24 | <34 | <30
>7 | 58 | >8 |59 | >7
0se <M <2 s < | < <2 | <as | 2T
S04 [ 504 | 594 | 594 [>04 [>124
QOSa ) ) - |<IL6 <102| <99 | <99 | <9.9 |<10.2|<13.8
. =09 >-009
osdff | - | <L | - | - T <06 | <06 | C - -
TriSim |<0.16|<0.16] - | - 5 5 B 5 N 5
2Rl =61 =56 | >80 | >87 | >89 [>89 | >89 | >56
Tl <86 T | <80 | <96 | <99 | <96 |<106|<106| <69
°R =85 | >88 | >87 | >88
“ ” Tl T 7 <96 | <95 | <96 | <95| -
=0.96 =0.96
RRr S ES -4 I B ) Gt BRI Bt ESKUT BIER
=594
RA ; A T - ; - - 2961|200
=095
RA/RRL| - o R N B E e I - s117] -
RA/RRa| - S B SSS 1V S I I R S ) - :
RARRId| - | >02] - |>04[ - N B 5 N 5
>-0.06|>-0.07
RRld ; L 0 - <006 <006 | " - -
TAST |PVC|PVC| - | - 5 n N 5 N 5
IT)‘;ttal 356 | 63 | 62 | 256 | 403 | 238 | 75 | 95 | 133 | 63
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17.4 Exerimental Setup

In this paper, we consider using the following banchmark databases:

e MIT-BIH arrhythmia database [99],
e American Heart Association’s (AHA) database [72],
e European ST-T database [130]

MIT-BIH arrhytmia database consists of total 48 records each of 30 minutes
length, with a default frequency of 360Hz and 11 bit resolution. In this research,
we use resampled data of 125Hz and 10 bits resolution instead. We also exclude
paced beats, which are found in records labelled as 102, 104, 107 and 217.

We additionaly consider AHA database for the sake of this research. Even though
this database contains 3 hour long recordings, we consider only the last hour since
it is the only part annotated. 2202 and 8205 labelled records have paced beats, thats
why they are removed. We also have dowsampled data from 250 to 125Hz and
decreased the resolution to 10 bits instead of the default 12 bits.

European ST-database is the last benchmark database we considered. It already
has 90 records of 2 hour long, sampled on 250 hertz with a resolution of 12 bits. We
consider using all of the records with a dowsampled rate of 125 and 10 bits.

Two testing environments were used for testing:

e Intel i7-3632QM CPU, 2.2 GHz system with 12 GB of memory and Windows 10
and,
e Intel i5 CPU 2.7GHz with 8 GB 1333 MHz DDR3 with MacOS Sierra.

All algorithms are compiled by a standard gcc compiler without any compiler
optimization flags.

Improved version of Hamilton’s [47] algorithm having a 99.91% QRS sensitivity
and 99.90% QRS positive predictivity rate is used as a QRS detector.

17.5 Evaluation of Results

We use sensitivity and positive predictivity a performance metrics. Eq. 17.1 presents
the formulas for calculating them, where TP, FP and F N are the true positive, false
positive and false negative values.

TP TP
- PPV=—
TP+FN TP+FP

Based on these metrics, results for Normal, PVC and APC beats are listed on
Tables 18.2, 18.3 and 18.4 respectively.

SENS = (17.1)



Chapter 18
Overview and Related Work

The content of this Chapter was published at the Journal of Technology and Health-
care [47], 2019.

18.1 Related Work

Several approaches have been proposed for ECG beat classification realized by the
following approaches based on: genetic algorithms, decision trees, neural networks,
fuzzy rules, wavelets, or other machine learning algorithms.

Decision based approaches that were proposed in earlier times revealed reason-
able results. Some of these studies are [6, 81, 101, 71]. The main disadvantage in
these algorithm is in the inability to adapt to temporary changes in the morphology
of beats.

Dokur and Olmez [38] propose hybrid neural network structure analyzing a to-
tal of eight features. They use genetic algorithms to train the hybrid structure and
classify ten different QRS types: N, L, R, P, p, a, E, V, F and f. A Total Classifica-
tion Accuracy (TCA) of 95.7% is reported for MIT-BIH arrhythmia database. The
main disadvantage lies in the fact that their algorithm needs to be trained enough
and personalized in order to produce highly accurate classification results.

Engin [56] proposes a Fuzzy-Hybrid neural network algorithm for beat classifi-
cation. He uses three features, in order to classify four different beat classes: the N,
V, R and x (a non-beat annotation according to PhysioNet [63]). The reported results
are 98% mean efficiency for only four records of MIT-BIH arrhythmia database.

Hu et.al [73] proposes MOE (mixture of experts) approach in order to implement
patient-adaptable beat classifier. Their algorithm classifies four types of beats: N, V,
F and Q. They exclude total of 15 records from MIT-BIH arrhythmia database, that
have paced beats and that do not have PVC beats. Their algorithm produces 95.9%
classification rate with using LE classifiers.

Wieben et.al [137] proposed an algorithm to classify PVC beats using a combina-
tion of filter banks, decision trees and a fuzzy-rule based system. Decision tree based

151



152 18 Overview and Related Work

algorithm produces sensitivity of 85.3% and a positive predictive rate of 85.2%,
whereas the fuzzy rule based system produces worse results of 81.3% sensitivity
and 80.6% positive predictive rate.

Afonso et.al [11] proposes a solely filter bank based ECG classifier, where a
specific machine learning method automatically creates the rules. The classifier is
able to distinguish paced and non-paced beats with a sensitivity of 87.64% and a
positive predictive rate of 90.97%.

A novel decision-tree approach was presented by Exarchos et.al. [57]. Their al-
gorithm has three stages, extraction of rules, transformation to fuzzy model and
optimizing the parameters. This algorithm classifies four types of beats: ventricular
flutter beats (noted as non-beat annotation according to PhysioNet [63]), V, N and
beats of second degree heart block; producing a 96% accuracy using the MIT-BIH
arrhythmia database.

Zhang et.al. proposes a combination of Wavelet Transformation and Decision
tree classification. This algorithm can classify N, L, R, P, V and A beats with 96.31%
accuracy on data obtained from MIT-BIH arrhythmia database.

An efficient approach was presented by Khoureich [78], by only using waveform
similarity and RR interval, in order to classify N, A, /, V, L and R beats. Experi-
ments on 46 out of 48 records of the MIT-BIH arrhythmia database had revealed a
classification rate of 97.52%.

An exclusively RR-interval based approach was also reported by Tsipouras
[133], for detecting N, V, ventricular flutter/fibrillation and second degree heart
block producing a 98% accuracy on MIT-BIH arrhythmia database. Furthermore,
this information is used to classify six rhythm types.

We observe that, each of the presented studies use different number of features
and various algorithm approaches.

18.2 Overview of Obtained Results

18.2.1 Improving the QRS Detection for One-channel ECG Sensor

The following parameter combination achieves the best overall performance: STHR
= 2, SearchL = 152 ms, SearchR = 56 ms, DTHR = 200, TAO = 250 ms, TAl =
260 ms, TA2 =320 ms, THRA1 = 0.8, THRA2 = 2.5, and BPM _BASE = 90.

Table 18.1 gives an overview of the obtained results and shows that our algorithm
has reached better-combined values of sensitivity and positive predictive rate.

One can face several problems comparing any QRS detection method to other
published papers as summarized below:

e 1o source code provided to check other approaches;
e no info about positive predictive rate; or
e 1o info about the number of errors.
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Table 18.1: Comparison of algorithm performance over MIT-BIH Arrhythmia
database.

no paced records

MIT-BIH Arrhythmia database all 48 records 44)
. fs | s |Scale| Total Tot Tot
Algorithm (Hz) Bits (mv) | Peaks TP| FP| FN Err Ose| O+p Err Ose| Q+p
Our Work 125 10 6]/109494(109382|110| 112| 222{99.90{99.90| 194(99.91{99.90

Ghaffari [62] | 360 11 10{109428(109327(129| 101| 230/99.91|99.88| N/A| N/A| N/A
Bahouraa[21] | 250| 11 10{116137[109625|133| 174| 307{99.83]|99.88| 303(99.82|99.88
Elgendi [53] 360| 11 10{109985|109775| 82| 247| 329{99.78|99.92| 322(99.76|99.92
Martinez [92] | 360| 11 10/109428(109111| 35| 317| 352(99.71{99.97| N/A| N/A| N/A
J.Martinez [93]| 360| 11 5[109428(109208 [153| 220| 373|99.80({99.86| N/A| N/A| N/A
Cvikl [37] 250{N/A| N/A|109494(109294|200| 200| 400(99.82{99.82| 373[99.81|99.82
Chiarugi [29] | 360| 11 10{109494[109228|210| 266| 476(99.76|99.81| 443(99.75|99.81
J.Lee [85] N/A|N/A| N/A[109481|109146|137| 335| 472|99.69|99.87| 459|99.68(99.87
Zidemal [139] | 360|N/A| N/A|109494|109101|193| 393| 586(99.64|99.82| 540|99.64(99.83
Hamilton [69] | 360| 11 10|109267(108927|248| 340| 588(99.69(99.77| 569|99.68(99.76
Choi [30] 360| 11| N/A|109494|109118|218| 376| 594(99.66(99.80| 561]|99.65|99.79
GQRS [63] 360 11 10{109494]109196|302| 298| 600{99.73|99.72| 562(99.72|99.72
Christov [31] | 360|N/A 5/109855(109615|386| 288| 674|99.74{99.65| 670]|99.72{99.62
Arzeno [20] 360 11 10| N/A[109099|405| 354| 759(99.68(99.63| N/A| N/A| N/A
Tompkins[107]| 200| 11 10{116137[109532|507| 277| 784{99.75|99.54| 771(99.73|99.50
Paoletti [109] | 360| 11 10{109809(109430|565| 379| 944{99.65|99.49| 924|99.64|99.45
Poli [113] 120f 11 10{109963[109522(545| 441| 986|99.60|99.51| N/A| N/A| N/A
Elgendi [52] 3601 11 10{109493[109397| 97[1715[1812(98.31{99.92(1798|98.33|99.91

When analyzing the performance, only a small number of papers give informa-
tion on the achieved positive predictive rate and they usually target achieving higher
sensitivity values. However, it is very easy to achieve a higher sensitivity value and
capture most of the results you would like to include in your algorithm by relaxing
the constraints on the optimization parameters, but, at the same time, this will pro-
duce many extra generated peaks that do not represent a QRS peak. This is why it
is very important to address both the sensitivity and positive predictive to evaluate
performance.

This means that there is no direct comparison method. To cope with this prob-
lem, we have analyzed the number of errors as a performance measure (as defined
by Errors in Eq. 16.2). Although this performance measure can be achieved by cal-
culation the sum of FP and FN, it can also be calculated through the harmonic mean
(HM) of the QRS sensitivity and positive predictive rate by Eq. 18.1.

1 1
Errors =Total QRS x | — 4+ ———2 (18.1)
Ose  O+p

We used Eq. 18.2 to evaluate this relation. In addition, we assumed that the num-
ber of extra detected (false negative) peaks is a lot smaller than the number of cor-
rectly detected QRS peaks, i.e. TP >> FN, leading to Total QRS ~ TP.
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I, | _TPYFN TP4FP
Ose  O4p TP TP
FP+FN
=24+ — 18.2
+ 0 (18.2)

A number of discrepancies were found while analyzing related work. Table 1 of
[107] shows that the number of errors is 782 although it is 784. The calculation of
total beats is the most unambiguous. For example, TP + FN is greater than TB in
[52]. Lee publishes two papers [84] and [85] providing correspondingly 109486 and
109481 total beats. The former one has 6 additional beats, which are from files /18,
201, 205, 220, 221 and 233, whereas the latter one has 1 additional beat at record
114.

We found that various authors have used a different number of detected peaks.
They should use the total number of detected beats, since the total number of peaks
includes also non-beat annotations, for example, locations where there is a rhythm
change. That is why we use the total number of annotated beats in the MIT-BIH
Arrhythmia database 109494.

Table 18.1 also shows that researchers focusing on QRS detection algorithms
mostly tend to use the original sampling frequencies, and resolution of reference
ECG databases. Running the algorithm on 125Hz means that nearly 3 times less data
is feed to the QRS detector, thus the execution times are deduced accordingly. More-
over, the adjustments that we proposed increased the performance metrics, which in
total yields a better QRS detector intended for a small wearable one channel ECG
Sensor.

We have introduced several methods to improve the QRS detection in differenti-
ation -based algorithms. Even though our approach is demonstrated on Hamilton’s
QRS detection algorithm, it can also be implemented in other algorithms. The re-
sults show superior performance over other published results. The improvements
were efficiently built in on an industrial QRS detector, for a wearable ECG monitor,
where the sampling frequency is 125 Hz, with 10-bit resolution of the AD converter.

Tuning the threshold values might increase the performance, but one needs to
develop new relations to generate the thresholds, such as finding

e how many previous beats might be analyzed to estimate the mean value,

e which peaks will be classified as QRS beats since they are very similar in shape,
and

e the impact of the beat rate on classifying the artifacts.

For this purpose, we have introduced several new rules for 1) threshold calcula-
tion to better classify QRS peaks; 2) elimination of QRS-like artifacts, and 3) artifact
elimination based on beat rate.

Due to rescaling, loose ECG contacts, and noise caused by muscles, 62 beats can-
not be detected by analyzing the first ECG channel, without the analysis of a second
channel. This gives a higher performance of the QRS sensitivity to 99.96%, and our
algorithm has reached a 99.90% QRS sensitivity, with 99.90% positive predictive
rate when all records are analyzed in the MIT-BIH, and 99.91% QRS sensitivity for
44 records without paced beats.
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Generally, the published papers on QRS detection algorithms do not offer their
source codes, and only some of them are validated with referenced ECG databases,
such as the MIT-BIH Arrhythmia database. Most of the algorithms give a brief
description of design issues without implementation details, addressing only the-
oretical related results. This is why one cannot directly compare results. Different
approaches generally do not achieve results as the ones achieved in a real imple-
mentation.

This study can facilitate possible QRS detection algorithms to consider rescal-
ing, and resampling on reference ECG databases in return for better performances.
Our findings show that the adjusted version of Hamilton’s QRS detection algorithm
yields better results with 125Hz data on nearly three times shorter execution times.

18.2.2 Improving ECG Beat Classification Algorithm

From the presented results for normal beat on Table 18.2 , we conclude that algo-
rithm produces excelent results for Normal beat detection.

Table 18.2: Results for Normal beat detection.

Database| TP FP | FN |SENS| PPV
MIT-BIH (100638 99| 95|99.91{99.90
AHA 174343| 477| 432| 99.73|99.76
EUR-ST |7881032462(1970{ 99.69(|99.75

When we analyze the results for Premature Vetricular Contraction listed on Table
18.3, we observe 94.55% sensitivity and 94.44% positive predictivity values. These
results tend to be strong enough on AHA database also. Algorithm also produces a
strong sensitivity value of 84.75% EUR-ST.

Table 18.3: Results for PVC detection.

Database| TP | FP | FN |SENS| PPV
MIT-BIH | 6627| 390| 382| 94.55|94.44
AHA 14273| 942]2023| 87.59|93.81
EUR-ST | 3786|1555| 681| 84.75|70.89

Table 18.4 lists the results for Atrial Premature Contraction. 89.23% sensitiv-
ity and 97.37% positive predictivity rate is observed for database MIT-BIH. AHA
database does not have APC beats, whereas on EUR-ST algorithm produces 42.45%
sensitivity and 44.18 % positive predictivity values. This is primarily due to the low
amplitude-energy signal.
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Table 18.4: Results for APC beat detection.

Database| TP | FP |FN|SENS| PPV
MIT-BIH (2700| 73|326| 89.23|97.37
AHA - -

EUR-ST | 467|590(633| 42.45(44.18

These findings suggest that the proposed algorithm classifies the peaks with a
very good performance. We also conclude that it can run on mobile devices, without
extensive memory or processing requirements.
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Chapter 19
Conclusions and Future Work

This PhD research was mainly focussed on the end-two-end optimization of digital
processing of ECG signals. This comes with lots of published results and conclu-
sions.

Our findings during this PhD research are already integrated to the Cloud Based
Remote ECG Monitoring portal ECGAlert, supported by the Macedonian Fund for
Innovations. Main outcomes and future direction is provided in the next concluding
sections.

19.1 Conclusions

Achievements of this PhD research can be summarized in four categories.

19.1.1 Requirement Analysis of Time-critical mHealth Solutions

This is the first and one of the important outcomes. Requirements elicitation of
mHealth solution is documented for the time-critical medical monitoring applica-
tions. We develop and present the most important functional and non-functional re-
quirements. 2 scientific papers have been published, which not only serves as a basis
for this thesis, but also serves a basis for possible implementations of time-critical
mHealth solutions.

19.1.2 Optimizing the ECG Data Pre-processing Phase

Along with this thesis, 3 scientific papers have been published on first phase of
ECG processing. Primary aim of them was to obtain superliniar speed-up on DSP
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filters, i.e mainly the convolution algorithm. CPU, GPU and Dataflow engines were
utilized. A comparative analysis is done to find the best parallelisation platform. Our
findings indicate that, a combination of multi engines can fascilitate the convolution
by yielding a superliniar speedup.

19.1.3 Optimizing the ECG Feature Space Reduction Phase

In this phase, our primary aim was to optimize algorithms for detecting QRS com-
plexes. Any further analysis and extraction of hidden information from ECG data is
directly related to the quality and quantity of found QRS complexes. Aligned with
this, we have published 6 scientific papers. The results show superior performance
over other published results. The improvements were efficiently built in on an in-
dustrial QRS detector, for a wearable ECG monitor, where the sampling frequency
is 125 Hz, with 10-bit resolution of the AD converter.

19.1.4 Optimizing the ECG Feature Extraction Phase

As a last step, we have also optimized the third step of ECG processing. We intro-
duced a Decision-Tree based model for classification of Normal, Premature Ventric-
ular Contraction and Atrial Premature Contrtaction beats. It requires relatively sim-
ple operations and is a pipelined solution, processing beat by beat without extensive
memory or processing requirements. Our achievements here is that the proposed
algorithm can also run on mobile devices.

19.2 Future Work

This thesis’s primary focus was on the first three phases of ECG signal processing.
As a future work we see that there are two important directions as stated below.

19.2.1 Classification of QRS detection errors

To analyze differentiation-based algorithms although the methods can be imple-
mented in all other methods. The main goal is to classify the QRS detection errors,
and analyze if it is possible to solve them. We believe that this will give an insight
to the quality of the QRS database to evaluate the performance of the QRS detection
algorithms.
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19.2.2 Optimizing ECG Rhythm detection algorithms

Hidden information from ECG can only be extracted by proper detection and clas-
sification of QRS complexes. An important future work is to improve ECG Rhythm
detection algorithms so that they can run on mobile devices and extract high level
of hidden health information.
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