
Äîêòîðñêà äèñåðòàöèjà

Ïåðôîðìàíñè è áåçáåäíîñò êàj ïðåñìåòóâà»å

âî îáëàê

Ñàøêî Ðèñòîâ

Óíèâåðçèòåò Ñâ. Êèðèë è Ìåòîäèj

Ôàêóëòåò çà èíôîðìàòè÷êè íàóêè è êîìïjóòåðñêî èíæåíåðñòâî

Ñêîïjå, Ìàêåäîíèjà

Ìåíòîð: Ïðîô. Ìàðjàí Ãóøåâ

Перформанси и безбедност каj
пресметување во облак

Сашко Ристов

29 август 2012 г.

Истражувањето за оваа докторска дисертациjа е спроведено на Уни-
верзитетот „Свети Кирил и Методиj“, Факултетот за информатички нау-
ки и компjутерско инженерство во Скопjе, Република Македониjа. Поч-
нуваjк̀и како продолжение на истражувањето спроведено во моjот магис-
терски труд со наслов „Анализа на безбедноста на веб сервиси и неjзино
влиjание врз перформансите на веб серверите“ во насока на загубата на
перформанси и безбедносни предизвици каj пресметување во облак, ис-
тражувањето се втурна во длабока и детална анализа на архитектурата
на повек̀е процесорските системи и нивното искористување во пресмету-
вање со високи перформанси каj пресметување во облак.

Критичен момент за ова интензивно истражување од нецела година
беше следењето на курсот за докторанти „Податочни структури и прес-
метување со високи перформанси (Data Structures and High Performance
Computing)“ каде што еден од предавачите беше и моjот ментор про-
фесор Марjан Гушев. Продолжуваjк̀и го истражувањето во областа на
пресметување со високи перформанси добивме суперлинеарно забрзува-
ње за множење матрици на мултипроцесор со споделена мемориjа. Од
овоj значаен момент го интензивирав истражувањето и работевме заед-
но со активно вклучување на моjот ментор во следните неколку месеци.

Вовед
Во минатото беше тешко да се наjде потребната информациjа. Многу
повек̀е енергиjа се трошеше за да се пренесе информациjата отколку неj-
зината обработка. Со поjавата на Интернет и подобрувањето на податоч-
ните комуникации информациjата стана подостапна со што се зголеми и
потребата за поголеми ресурси за обработка на информациите, особено
за сложени пресметки.

2

Употребата на паралелизациjата и пресметување со високи перфор-
манси нагло се зголеми кога мок̀ните компjутерски ресурси почнаа да
пресметуваат во разумно време. Точната временска прогноза за следни-
те неколку дена може да се пресмета за еден ден. Суперкомпjутерот на
ИБМ Дипблу го победи тогашниот светски шампион во шах Каспаров
играjк̀и по правилата за турнир. Многу софтверски апликации ги пред-
видуваат движењата на берзите. Сите овие барања мораат да се извршат
точно и прецизно за кратко време.

Постоjат многу механизми за да се забрза извршувањето. На пример,
подобрување на одреден алгоритам намалуваjк̀и ги броjот на пресметки
и програмски чекори на ист компjутерски систем; или извршувањето на
ист алгоритам со ист броj на операции за помалку време на побрзи ком-
пjутери. Воведувањето на различни начини на паралелно извршување и
пресметување со високи перформанси се модерни механизми денеска за
побрзо извршување на одредена програма.

Постоjат два различни пристапи за ХПЦ: грид пресметувања и супер-
компjутери. И двата пристапи користат огромен броj на мултипроцесори
но различно организирани. Каj архитектурата грид тие се дистрибуира-
ни и „лабаво поврзани“ (loosely coupled), т.е. како кластер од кластери,
додека каj суперкомпjутерите се „цврсто поврзани“ (tightly coupled), т.е.
тие се блиску еден до друг.

Сепак и двата пристапи повек̀е се достапни за универзитетите и науч-
ните организации отколку за бизнис компаниите. Нивната работна око-
лина е различна од случаj до случаj и затоа проблемите мораат да се
редизаjнираат според соодветната спецификациjа за секоj посебно.

Воведувањето на концептот пресметување во облак ги направи ре-
сурсите подостапни и поблиску до корисниците. Исто така тоj нуди про-
ширливи, флексибилни и неограничени ресурси за пресметување како
и грид и суперкомпjутерите. Но тоj нуди и многу повек̀е. Корисниците
можат да изнаjмат произволен броj на виртуелни машни и секоjа од нив
со произволни ресурси и платформи според нивните потреби. Уште по-
век̀е, корисниците можат да си креираат свои виртуелни машини каде
што нивните апликации к̀е работат перфектно и к̀е ги пренесат да се
извршуваат во облак.

Работеjк̀и со големи податоци и нивна миграциjа од корисниците кон
облакот и обратно, покраj постоечките безбедносни предизвици произ-
легуваат и нови. Поради фактот што апликациите и нивните податоци
излегуваат од обезбедената зона на корисникот, наjважен дел е да се
обезбеди информациска сигурност. Постоjат неколку отворени прашања
како несогласувања со законската регулатива, довербата и приватнос-
та на податоците. Повек̀ето од добавувачите на услуги во облак (Cloud

3

Service Providers - CSP) наjмногу се фокусирани на безбедноста на нивни-
те корисници и речиси сите имаат сертификати за безбедност за нивните
jавни облаци [16]. Уште повек̀е, тие им нудат на своите корисници и алат-
ки за проверка на безбедноста дали нивните сервиси кои се поставени во
облакот на CSP се во согласност со одреден безбедносен стандард.

Опис на проблемот и целите
Целта на оваа докторска дисертациjа е да спроведе детална анализа на
перформансите и безбедноста каj пресметување во облак. За да се пости-
гне оваа цел дисертациjата има четири области на истражување: 1) Ос-
новни концепти за облак и ХПЦ, 2) анализа на перформанси на кеш
интензивни алгоритми и веб сервиси поставени во традиционална око-
лина, 3) анализа на перформанси кога се поставени во традиционална
околина и во облак со различни слоеви во облакот и различни стандар-
ди за безбедност на веб сервиси, и на краj 4) евалуации на безбедност и
безбедносни предизвици, проверка на ризици и одржување на контину-
итет на бизнисот каj деловните информациски системи.

Целта на првата област на истражување за основните концепти на
облак и ХПЦ е да не запознае со концептот пресметување во облак,
перформансите и користените алгоритми и нивните имплементации во
оваа дисертациjа. По приложувањето на основните концепти, целта на
следните две области е да ги анализира намалувањето на перформан-
сите што ги предизвикува облакот и воведувањето безбедност. Целта на
последната област е да презентира неколку методологии за евалуациjа
на безбедноста за различни слоеви од облакот и решениjата за облак со
отворен код.

Основните прашања за истражување на оваа дисертациjа се:

• Дали дополнителниот слоj од виртуелизациjата ги намалува пер-
формансите?

• Кои се намалувањата на перформансите на различни сервиси и
апликации при нивна миграциjа во облак?

• Дали постоjат проблеми за пресметување кои се извршуваат по-
добро во облак отколку во традиционална околина на страна на
корисникот?

• Дали постоjат некои региони каде што се постигнува суперлинеар-
но забрзување во облак?

4

• Кои безбедносни предизвици постоjат за деловните информациски
системи доколку мигрираат во облак?

• Кои слоеви во облакот имаат поголема важност отколку традици-
оналните околини за контролните цели за безбедност

• Кое решение за облак со отворен код е наjсоодветно за развоj и
одржување на систем за управување со информациска сигурност?

Опсег на дисертациjата
Опсегот на оваа дисертациjа е определување на влиjанието на различни-
те слоеви во облакот IaaS, PaaS и SaaS врз перформансите и безбедноста
на кеш интензивните алгоритми и веб сервиси. Оваа студиjа се концен-
трира на избор на наjдобрата распределба на ресурсите и наjсоодветната
платформа за да се добиjат наjдобри перформанси за иста цена.

Оваа дисертациjа го моделира влиjанието на инфраструктурата во
облакот врз перформансите на различните типови, броj и големина на
влезни пораки кои jа оптеретуваат истата. Исто така дефинира и кван-
титативни индикатори за определување на ризикот од мигрирање на сер-
висите во облак за различна големина на пораките и различен броj на
конкурентни пораки.

Методи
За да се обработат прашањата за истражување од областа на перфор-
мансите поставени се неколку различни инфраструктури со три различ-
ни платформи: традиционална (домак̀ин), виртуелна (гостин) и облак со
отворен код. Исто така, различни платформи и нфраструктури се иско-
ристени на комерциjалниот облак Windows Azure.

Како тестни податоци се изработени различни веб сервиси кои се по-
ставени во облак и на традиционална платформа, како и неколку раз-
лични референтни (benchmark) апликации за секвенциjална и паралелна
имплемнетациjа на пресметковно, мемориско и кеш интензивниот алго-
ритам за множење матрици.

Наjпрвин е извршена детална теоретска анализа за да се определат
номиналните перформанси во традиционална околина. Потоа се реали-
зирани огромен броj на експерименти за различни влезни параметри и
различно оптеретување за да се измерат перформансите на алгоритми-

5

те. На краj е реализирана анализа и класификациjа на теоретските и
експерименталните резултати.

За истражувањето од областа на безбедност извршен е преглед на
главните мег̀ународни и индустриски стандарди што jа обработуваат бе-
збедноста, како и анализа на нивната применливост каj пресметување во
облак. Изработени се неколку евалуации за безбедност каj пресметување
во облак користеjк̀и jа како основа сериjата на стандарди ИСО 27000.

Содржина на дисертациjата
Оваа дисертациjа се состои од 6 делови: 1) Основни концепти за перфор-
мансите, множење матрици и пресметување во облак, 2) Подобрувања
на алгоритамот за множење матрици, 3) Теоретски и практичен доказ за
суперлинеарно забрзување на мултипроцесор и графички карти, 4) Ана-
лиза на перформансите на кеш интензивен алгоритам каj пресметување
во облак, 5) Анализа на перформансите на веб сервисите каj пресметува-
ње во облак и 6) Безбедносни предизвици и евалуации каj пресметување
во облак.

Во Дел I се прикажани основните концепти и дефиниции за потреби-
те на оваа дисертациjа. Тоj се состои од пет глави. Глава 1 ги опишува
основните концепти и архитектурата на облакот, моделите за поставу-
вање и нивоата на услуги. Основните поими за перформанси и ограни-
чувањата се дефинирани и елаборирани во Глава 2. Посебен осврт на
мемориската хиерархиjа и воведувањето на кеш мемориjата во модерни-
те мултипроцесори е даден во Глава 3 бидеjк̀и пристапот до мемориjа
е тесно грло на сите пресметувања и влиjае на перформансите. Глава 4
ги презентира основните секвенциjални и паралелни имплементации на
алгоритамот за густо множење на матрици на мултипроцесор и графич-
ки карти како пресметковно, мемориско и кеш интензивен алгоритам.
На краj, Глава 5 врши краток преглед на веб сервисите, факторите за
нивните перформанси и неколку предизвици.

Делот II во две глави го анализира и предлага подобрувања на алго-
ритамот за множење на матрици и презентира теоретска анализа и ек-
спериментален доказ за падот на перформансите коj се поjавува поради
употреба на сет асоциjативен кеш за кеш интензивни алгоритми. Глава 6
дефинита просечен вкупен броj на циклуси по инструкциjа и анализира
коjа политика за замена во кеш е наjоптимална за алгоритамот за мно-
жење матрици. Во Глава 7 го презентираме симулаторот ММКешСим
коj ги предвидува перформансите на алгоритамот за множење матрици
на одреден постоечки или непостоечки повек̀епроцесорски систем. Глава

6

8 презентира две верзии на нов хибриден 2Д/1Д алгоритам за множење
матрици со декомпозициjа коj што го подобрува основниот алгоритам за
множење матрици со 2Д декомпозициjа. Глава 9 го анализира и модели-
ра падот на перформансите за одредена големина на влезните податоци
поради сет асоциjативен кеш. Исто така ги презентира и големите па-
дови забележани при експериментите за забрзувањето при паралелно
извршување и брзината при секвенциjално и паралелно извршување.

Делот III се состои од две глави и го обработува добиеното суперли-
неарно забрзување каj множење матрици. Глава 10 ги презентира тео-
ретските анализи со експериментален доказ за тоа зошто, како и кога
може да се добие суперлинеарно забрзување при множење матрици на
мултипроцесор. Во Глава 11 анализираме како да се добие суперлинеар-
но забрзување при множење матрици на НВИДИА (NVIDIA) графички
картички со конфигурирачки кеш и ги прикажуваме резултатите од ек-
спериментите за брзината и забрзувањето во зависност од побарувањето
за кеш мемориjа и броj на СМ-и (SMs).

Следниот Дел IV е наменет за перформансите на алгоритамот за мно-
жење на густи матрици во различни околини во облак. Се состои од 5
глави. Глава 12 jа побива хипотезата дека дополнителниот слоj од вирту-
елизациjата придонесува за полоши перформанси, т.е. презентира дека
постои регион за одредена големина на влезните податоци за множе-
ње матрици каде што програмата работи побрзо во виртуелна околи-
на, и при секвенциjална и при паралелна имплементациjа. Главите 13 и
14 прикажуваат како различните слоеви на сервиси PaaS и SaaS влиjа-
ат на перформансите на алгоритамот за множење матрици соодветно.
Мег̀усебното влиjание на станарите во облакот врз перформансите на
алгоритамот за множење матрици е презентирано во Глава 15. Конечно,
постоењето на суперлинеарно забрзување при паралелно извршување на
алгоритамот за множење матрици е дадено во Глава 16.

Делот V ги покрива разликите во перформансите за различни веб
сервиси кога се поставени во традиционална околина и во облак за опте-
ретувања на серверот со различни влезни параметри. Се состои од три
глави. Глава 17 ги прикажува резултатите од експериментите за падот
на перформансите кога веб сервисите се поставени во облак за различно
оптеретување на серверот. Следните две глави 18 и 19 предлагаат две
стратегии за подобрување на перформансите на веб сервисите кога се
поставени во облак.

Пследниот Дел VI ги покрива безбедносните предизвици и каj прес-
метување во облак и врши неколку евалуации на безбедноста во четири
глави. Во Глава 20 го презентираме падот на перформансите поради
имплементациjа на стандарди за безбедност на веб сервисите за да jа по-

7

добриме нивната безбедност во нивната нова околина - во облакот. Гла-
ва 21 врши преглед на основните мег̀ународни и индустриски стандарди
кои jа опфак̀аат информациската сигурност и jа анализираме нивната
применливост со предизвиците за безбедност каj пресметување во облак.
Глава 22 ги адресира ризиците од безбедносните предизвици во облакот
со пристап од високо ниво базиран на ризици за да го подобри контину-
итетот на бизнисот на клиентот доколку ги мигрира своите податоци во
облак. Глава 23 предлага нови методологии за безбедносна евалуациjа
доколку сервисите на корисникот се поставени во неговите просториите
или во облак или во различни слоеви на сервиси IaaS, PaaS или SaaS со
ИСО 27001:2005 контролните цели како основа за евалуациjата. Глава 24
ги презентира безбедносните евалуации за решението за облак со отво-
рен код ОпенСтек (OpenStack) и три други наjраспространети решениjа
за облак со отворен код.

Главни резултати
Многу резултати од истражувањата за оваа докторска дисертациjа беа
обjавени во рецензирани конференции и журнали. Наjважните резул-
тати се во областите на перформанси и безбедност. Исто така постоjат
многу детални анализи, критики на обjавени статии, теоретски анали-
зи на различни алгоритми во насока на хардверската инфраструктура и
платформа, практични експерименти и евалуации.

Сите дадени хипотези се докажани или побиени и теоретски и експе-
риментално. Многу неочекувани резултати беа разгледани и анализира-
ни за време на експериментите и сите се детално обjаснети и елаборирани
со длабоки анализи.

Главните резултати се елаборирани во следните секции.

Оптимална политика за замена во кеш за алгоритамот
за множење матрици

Бидеjк̀и алгоритамот за множење матрици е кеш интензивен, политиката
за замена во кешот е следниот важен параметар коj влиjае на перфор-
мансите по произлегувањето на проблемот со капацитетот на кешот. Би-
деjк̀и броjот на операции не зависи од политиката за замена во кешот, ние
дефинираме и предлагаме методологиjа за определување на просечниот
борj на мемориски циклуси по инструкциjа кои ги изведува алгоритамот,
затоа што има наjголемо влиjание врз перформансите.

8

Резултатите од експериментите кои се обjавени од авторите во [1]
како дел од истражувањето за оваа докторска дисертациjа покажуваат
оптимална политика за замена во кеш за секвенциjална и паралелни
имплементации на алгоритамот за множење на густи матрици.

Ние утврдивме дека и двете политики за замена во кеш, LRU и FIFO,
обезбедуваат слична брзина и просечен броj на циклуси по инструкциjа
CPIT (N) за секвенциjално и паралелно извршување. Сепак, резултатите
покажуваат дека LRU политиката за замена во кеш обезбедува подобро
CPIT (N) за секвенциjално извршување каj кеш мемориjа дедицирана по
jадро. Паралелното извршување обезбедува наjдобро CPIT (N) каj про-
цесори со споделена мемориjа и LRU политика на замена, односно LRU
произведува поголемо забрзување од FIFO и е посоодветна отколку FIFO
политика за замена на кеш за алгоритамот за множење густи матрици.

Високо конфигурлив симулатор ММКешСим

Како дел од истражувањето за оваа докторска дисертациjа авторот обjа-
ви во [29, 24] нови методологии и подобрувања на хардверските курсеви
користеjк̀и визуелни симулатори, вежби со постепено зголемување на те-
жината и воведување на работење на хардверски компоненти со што се
добиjа значаjни подобрувања во распределбата на оцените и зголемува-
ње на интересот на студентите на компjутерски науки за архитектурата
на хардверот.

Како понатамошна работа, авторите развиjа и обjавиjа во [2] високо
конфигурлив симулатор - ММКешСим (MMCacheSim). Главната при-
добивка од ММКешСим е што овозможува симулациjа на различните
процесорски архитектури и да определи коjа е наjдобрата внатрешната
архитектура на кешот во процесорот за определена секвенциjална или
паралелна имплементациjа на даден алгоритам. Со негова употреба се
олеснува и подобрува учењето и предавањето на компjутерските архи-
тектури и пресметувањето со високи перформанси. ММКешСим овозмо-
жува да се конфигурира:

• Хиерархиjата мег̀у нивоата на кеш мемориjа, дали да бидат споде-
лени или дедицирани;

• Инклузивноста помег̀у различните нивоа на кеш мемориjа;

• Големината на кеш мемориjата, асоциjативноста, големината на
кеш блокот; и

• Политиката на замена, со можност за различни политики за замена
за различни нивоа во кешот.

9

Подобрување на алгоритмот за множење матрици

Алгоритамот со 2Д декомпозициjа на матрици кои можат да се смес-
тат во Л1 кешот на процесорот ги намалува промашувањата во кешот
бидеjк̀и операциите к̀е пристапуваат до податоци сместени само во Л1 ке-
шот. Сепак, како што елабориравме во оваа дисертациjа, големината на
кешот не е единствениот важен параметар коj влиjае на перформансите.

Како дел од истражувањето за оваа дисертациjа предложивме во [9]
нов хибриден 2Д/1Д алгоритам со декомпозициjа коj го намалува броjот
на операции и пристапи до мемориjа во однос на оригиналниот алгоритам
со 2Д декомпозициjа обjавен неодамна во литературата како оптимиза-
циjа на кешот. Идеата е да се користат правоаголни наместо квадратни
блок матрици со цел намалување на операциите.

Користеjк̀и теориска анализа за да ги искористиме предностите на
другите параметри на кешот кои можат да влиjаат врз перформансите,
предлагаме модифициран хибриден 2Д/1Д алгоритам со декомпозициjа
коj дури и го подобрува основниот хибриден 2Д/1Д алгоритам со де-
композициjа. Уште повек̀е, модифицираниот алгоритам е поотпорен на
малата асоциjативност на кешот каj процесорите од марка АМД отколку
оригиналниот алгоритам со 2Д декомпозициjа. Експериментите ги дока-
жуваат теоретските анализи, т.е. и двата наши предложени алгоритми ги
надминуваат перформансите на оригиналниот алгоритам со 2Д деком-
позициjа за големи матрици на АМД Феном (AMD Phenom) процесор.

Анализа на перформансите каj мултипроцесор со сет
асоциjативен кеш

Пад на перформансите за одредена големина на влезните параметри се
коментирани низ литературата без детално обjаснување. Ние ги анализи-
равме и моделиравме падовите на перформансите за одредена големина
на влезните параметри за секвенциjално и паралелно извршување на кеш
интензивен алгоритам и резултатите од ова истражување ги обjавивме
во [11, 6, 13].

Врз основа на теоретската анализа и експериментално истражување
заклучивме дека n асоциjативниот кеш може сериозно да влиjае врз пер-
формансите. Ги анализиравме и теоретски ги наjдовме точките каде што
асоциjативноста предизвикува пад на перформансите и предложивме ор-
ганизациjа на алгоритамот за множење матрици со што би се одбегнале
ситуации каде што мапирањето на n сет асоциjативниот кеш к̀е користи
само мал дел од кешот наместо целиот капацитет на кешот. Реализирано-
то експериментално истражување ги потврди резултатите покажуваjк̀и

10

реални случаи за пад на перформансите и при секвенциjално и при па-
ралелно извршување.

Презентиран е теоретски доказ за поjавување на екстреми на времето
на извршување за одреден случаj кога се користи асоциjативен кеш за
кеш интензивни алгоритми како што е алгоритамот за множење матрици.
Големи падови на перформансите се добиени и анализирани за брзина-
та при секвенциjално извршување. Падот на брзината е по изразен за
поголеми матрици отколку за помали во критичните точки.

Голем пад на перформансите се добиени и анализирани и за брзина-
та и за забрзувањето при паралелно извршување. Паралелно извршува-
ње на алгоритамот резултира со пад на брзината поголем од секвенци-
jалното извршување. Падот на брзината и забрзувањето при паралелно
извршување е незначителен за критичната големина на матрици од L2

регионот на кеш дедициран по jадро. Значаjни падови на на брзината
и забрзувањето при паралелно извршување се забележани во L3 и L4

регионите, особено при извршување за повек̀е jадра. Тие се изразени
за експериментите при извршување на P = 4 процесори каде брзината
V (4) е помала од брзината V (2). За N = 512 брзината V (4) е слична како
брзината V (1) во разгледаните точки од дадената област. Падовите на
брзината за експериментите извршени на P = 2 процесори се исто така
изразити. Брзината V (2) е слична или дури помала од брзината V (1) во
другите точки од дадената област.

Ние заклучивме дека падовите на перформансите се поjавуваат по-
ради зголемен броj на генерирани промашувања на кешот од последното
ниво.

Суперлинеарно забрзување при множење матрици

И покраj Густафсоновиот закон дека максималното скалирано забрзува-
ње е p и ограничувањето на Ши (Shi) дека суперлинеарно забрзување
е можно само за алгоритми без постоjана структура, ние добивме су-
перлинеарен регион за паралелно извршување и реализиравме длабока и
опсежна анализа. За потребите на истражувањето за оваа дисертациjа ги
обjавивме теоретската анализа и експериментални резултати во [14, 8, 3].

Суперлинеарно забрзување на мултипроцесор

Исто така пробавме да одиме над границите специфицирани во Густаф-
соновиот закон и тоа не само да наjдеме примери за суперлинеарно
забрзување за множење матрици, туку и да извршиме теоретска ана-
лиза како да го добиеме во реален систем со споделена мемориjа. По-

11

кажуваме и обезбедуваме докази за постоењето во реален мултипроце-
сорски систем коj користи кеш мемориjа. Суперлинеарно забрзување е
можно во случаи каде што при секвенциjалното извршување се иницира
повек̀е промашувања во кешот отколку при паралелното извршување.
Ова се случува на пример, во мултипроцесор со споделена мемориjа со
дедицирани кешови по процесор (jадро).

Презентиравме теоретска поткрепа за постоење на суперлинеарно заб-
рзување и воведовме методологиjа како, кога и каде да се добие. Исто
така дефиниравме и методологиjа за тестирање и реализиравме броjни
експерименти за да обезбедимие доказ за суперлинеарно забрзување и
неочекуваните високи перформанси.

Експериментите исто така ги потврдиjа теоретските резултати во [8].
Добиените резултати со високи перформанси и суперлинеарно забрзува-
ње се демонстрирани на пример од алгоритамот за множење густи мат-
рици. Можно е во рамките на одреден ранг на големина на матриците,
дури и кога се извршува во виртуелна околината.

Суперлинеарно забрзување каj графички картички

Во [3] ние ги презентиравме теоретската анализа и експерименталните
резултати за добиеното суперлинеарно забрзување на графички картич-
ки, кои исто така се карактеризирани како СИМД. Имплементиравме
алгоритам со постоjана структура коj ефикасно го искористува споделе-
ната кеш мемориjа и ги избегнува промашувањата во кешот што е можно
повек̀е.

Експериментите jа потврдиjа теоретската анализа и суперлинеарни-
те региони од влезните параметри за множењето матрици на графич-
ки картички, каде што нормализираните перформанси по процесирачки
елемент за паралелно извршување се подобри од оние при секвенциjално
извршување.

Понатаму презентиравме и доказ базиран на експериментите за по-
стоење на суперлинеарно забрзување за процесори со СИМД архитекту-
ра со дедициран кеш, т.е. графички картички. Сепак, добивме суперли-
неарно забрзување само во суперлинеарниот регион каде што побарува-
њата за кеш мемориjа можат да се сместат во Л2 кешот за паралелно
извршување, а се генерираат промашувања во Л2 кешот при секвенци-
jално извршување.

12

Влиjание на виртуелизациjата врз перформансите на
кеш интензивните алгоритми

Одредена програма би требало да се изврши побавно во виртуелна околи-
на во облак споредено со традиционален сервер поради дополнителниот
слоj за виртуелизациjа. Сепак, и покраj оваа хипотеза, експериментал-
ните резултати потврдуваат дека перформансите во виртуелна средина
се подобри од традиционалната за дистрибуирана мемориjа отколку во
споделена мемориjа каде што има голем пад на перформансите.

Реализиравме детални експерименти обjавени во [4] за потребите на
истражувањето од оваа дисертациjа. Заклучивме големи неправилности
во перформансите за кеш интензивни алгоритми во виртуелна средина.
Постои регион за одредена големина на матриците при нивно множење
каде што програмата работи побрзо во виртуелна средина.

Виртуелизациjата има речиси исти перформанси од 98% како тради-
ционалната средина при секвенциjално извршување на алгоритамот за
множење матрици. При паралелизациjа се добиваат уште подобри брзи-
ни од речиси 15% за одреден броj на процесори (jадра) во L1 и L2 реги-
оните (дистрибуирани кешови по jадро).

Сепак, виртуелизациjата jа губи битката во L4 регионот (споделена
мемориjа) при поjавување на голем броj скапи промашувања во кешот.
Неjзините перформанси се за 33.42% полоши од традиционалната среди-
на во овоj регион.

Влиjанието на PaaS врз перформансите на кеш интен-
зивни алгоритми

Извршуваjк̀и иста програма во различни работни околини обезбедува
различни перформанси. Спротивно на хипотезата дека Линукс базира-
ните работни околини обезбедуваат подобри перформанси, резултатите
од експериментите обjавени во [7] покажуваат дека Windows базираните
работни околини во Windows Azure облакот работат подобро од Линукс,
особено кога големината на влезните податоци може да се смести во кеш
и не се генерираат голем броj на промашувања во кешот.

Измерените брзини за истиот алгоритам на Windows се поголеми от-
колку на Линукс постигнуваjк̀и до 2.5 пати подобри перформанси осо-
бено во регионите L1-L3. Однесувањето во L4 регионот е споредливо, но
сепак Windows платформата постигнува подобри перформанси.

13

Влиjанието на IaaS врз перформансите на кеш интен-
зивни алгоритми

Цената за изнаjмување на ресурси има линеарна зависност од потроше-
ните ресурси, но не секогаш сите понудени ресурси на инстанците од
виртуелните машини се наjпогодни за клиентите. Истата количина на
ресурси понудени од страна на облакот може да се изнаjмуваат и да се
користат различно за да се забрзаар пресметувањата. Еден начин е да
се користат техники за паралелизациjа на инстанци со повек̀е ресурси.
Другиот начин е да се раздели работата помег̀у неколку инстанци од
виртуелните машини со помалку ресурси. Како дел од истражувањето
за оваа дисертациjа во [21] се анализира коj е наjдобриот начин да се
скалираат ресурсите за да се забрзуваат пресметувањата и да се добиjат
наjдобри перформанси за истата сума на пари потребни за изнаjмување
на тие ресурси во Windows Azure облакот.

Се добиjа очекувани резултати од експериментите за секвенциjално
извршување, односно Extra Large виртуелната машина постигнува мак-
симална брзина пред Large, Medium и Small во L2 регионот. Сепак, Small
виртуелната машина постигнува слична брзина како Extra Large вирту-
елната машина и тие водат пред Large и Medium виртуелната машина
во L4 регионот.

При паралелно извршување се добиjа почудни резултати. Алгорита-
мот за множење на густи матрици постигнува максимална брзина при
паралелно извршување на 8 x Small инстанци, пред 4 x Medium, 2 х Large,
и 1 x Extra Large во L2 и L3 регионите и речиси целиот набљудуван L4

регион. Ова значи дека наjдобри перформанси може да се постигнат ако
алгоритамот за множење на густи матрици се гранулира на 8 делови и
секоj дел треба да се изврши на 8 конкурентни процеси со една нишка
во Small Windows Azure виртуелна машина. Истата средина постигнува
максимално забрзување во L2 регионот. Во L3 и L4 регионот максимално
забрзување се постигнува ако алгоритамот за множење на густи матрици
е гранулиран на 4 делови и секоj дел треба да се изврши на 4 конкурентни
процеси со две нишки во Medium Windows Azure виртуелна машина.

Влиjанието на повек̀естанарството (multitenancy) врз
перформансите на кеш интензивни алгоритми

Поради фактот што модерните повек̀е jадрени мултипроцесори исто така
го споделуваат последното ниво кеш мег̀у сите jадра на еден чип, целта
е да се овозможи оптимална алокациjа на ресурси, преку избегнување
на промашувања на кешот колку што е можно повек̀е, бидеjк̀и тоа к̀е

14

доведе до зголемување на перформансите. Реализираните експерименти
обjавени во [5] за потребите на истражувањето од оваа дисертациjа пока-
жуваат дека и алокациjата на сите сингл-станар и мулти-станар во облак
обезбедуваат подобри перформанси отколку во просториите на клиентот
за одреден обем на работа.

Извршените експерименти адресираат неколку виртуелни машини во
облак користеjк̀и различен броj на процесори (под претпоставка дека
сите jадра се користат). Секоj експеримент користи исти ресурси, но
различно групирани низ виртуелните машини. Резултатите можат да
бидат сумирани како:

• Експериментите потврдиjа дека постои регион (L2 регион) каде што
облакот постигнува подобри перформанси отколку традиционална-
та и виртуелната средина, и за паралелно и за секвенциjално из-
вршување, и

• Експериментите потврдиjа дека пресметување во облак обезбедува
подобри перформанси во мулти-виртуелна околина, наместо доде-
лување на сите ресурси на само една виртуелна машина.

Наjдобра алокациjа на ресурси за традиционална средина за кеш ин-
тензивни алгоритми е користење на повек̀е процеси со една нишка. По-
век̀е виртуелни машини со една нишка е наjдобра алокациjа на ресурси
за во облак. Споредуваjк̀и ги околините, пресметувањето во облак дава
наjдобри перформанси.

Суперлинеарно забрзување во облак

Резултатите обjавени од авторите во [20] како дел од истражувањето за
оваа дисертациjа покажуваат дека облакот исто така може да се постигне
суперлинеарно забрзување при извршување на кеш интензивни алгорит-
ми кога се користи пресметување со високи перформанси во виртуелни
машини доделени со повек̀е од еден процесор (jадро). Забрзување поч-
нува да се зголемува за оние матрици A и B кои не се вклопуваат во Л2
кешот од последното ниво за секвенциjално извршување, т.е. половина
од L2 кешот, но во исто време се вклопуваат во целиот Л2 кеш коj е
достапен за паралелно извршување со две или четири нишки на две или
четири jадра соодветно. Забрзувањето се зголемува до N = 628 утврде-
но теоретски за традиционална средина кога почнуваат да се генерираат
промашувања во Л2 кешот. Исто така постоjат и точки на свртување
на забрзувањето за виртуелна средина и облак поголема од теоретска-
та вредност бидеjк̀и виртуелизациjата обезбедува подобри перформанси

15

за паралелно извршување отколку секвенциjално во споделена мемориjа
како што обjавувивме во [4].

Виртуелна средина и облак постигнуваат подобро забрзување за де-
дициран кеш и наjдобри перформанси се постигнуваат во облак. По реги-
онот L2, каде се генерираат промашувања во Л2 кешот, традиционалната
средина го извршува подобро алгоритамот во споредба со облакот. Вир-
туелната средина постигнува наjлошо забрзување кога алгоритамот бара
многу пристапи кон споделената главна мемориjа.

Експериментите покажуваат различни опсег на забрзувањето. Наj-
широкиот опсег на суперлинеарно забрзување се доби за традиционална
средина, додека наjтенок за виртуелната средина. Облакот и виртуел-
ната средина имаат поширок опсег на суперлинеарно забрзување за па-
ралелно извршување со два наместо четири нишки бидеjк̀и последното
ниво кеш е дедицирано по jадро што е случаj каде што виртуелизациjа
обезбедува подобри перформанси отколку споделена мемориjа како што
обjавиме во [4] за потребите на истражувањето за оваа дисертациjа. Оп-
сегот е скратен до 3 пати од десната страна (за големи вредности на
N) во споредба со левиот регион (помали вредности за N). Опсегот во
традиционална средина се намалува за 80 од левата страна и 120 од дес-
ната страна на опсег. Во виртуелната средина се скратува за 56 и 184, а
во облакот 88 и 144 од левата и десната страна соодветно. Суперлинеар-
ниот регион е наjмногу скратен во виртуелната средина додека наjмалку
во традиционална средина.

Друг важен резултат е добивањето на суперлинеарно забрзување во
виртуелна околина со три различни хипервизори: Microsoft Hyper-V,
KVM и VMware ESX.

Перформанси на веб сервиси во облак

Иако наjдовме региони каде што облакот е подобра средина за кеш ин-
тензивна алгоритми, па дури и со суперлинеарно забрзување при пара-
лелно извршување, тоа не е случаj за веб сервисите поставени во облак.
Дополнителниот слоj поради виртуелизациjата во облакот ги намалува
перформансите на веб сервисите. Сериjа на експерименти се реализира-
ни и обjавени во [28] за потребите на истражувањето за оваа дисертациjа
за да се анализираат перформансите на веб сервисите и да се спореди
нивото на деградациjа ако веб сервисите се мигрираат од просториите
каj клиентот во облак со користење на истите хардверски ресурси.

Резултатите од експериментите покажуваат дека перформансите ди-
ректно зависат од големината на влезната порака особено за веб сервис
коj побарува големи пресметувања и количество мемориjа, без оглед на

16

платформата. Ова не е нагласено за веб сервис коj побарува само мемо-
риjа.

Исто така дефиниравме квантитативни индикатори за да се утврди
ризикот од миграциjа на сервисите во облакот за различна големина на
пораки и броj на конкурентни пораки. Заклучокот е дека перформанси-
те се намалени на 71.10 % од традиционалната околина за веб сервисите
што побаруваат мемориjа и 73.86 % за веб сервисите кои побаруваат
големи пресметувања и количество мемориjа ако мигрираат во облак.
Облакот наjмалку ги намалува перформансите за поголеми пораки без
оглед на броjот на конкурентни пораки за веб сервис што побарува ме-
мориjа. Мег̀утоа, наjмало намалување на перформансите за веб сервис
коj побарува големи пресметувања и количество мемориjа при мигрира-
ње во облак има за помал броj на конкурентни пораки и за поголеми
пораки.

Стратегиjа со посредник за подобрување на перформансите на
веб сервисите во облак

Ова решение што динамички се справува со екстремни пресметковни оп-
товарувања за веб сервисите поставени во облак е предложен во [23] за
потребите на истражувањето за оваа дисертациjа. Тоа воведува нов слоj
- посредник помег̀у клиентите и серверот коj што динамички к̀е покрене
дополнителни виртуелни машини по барање штом оптеретувањето к̀е го
достигне минималното ниво на перформанси што е дефинирано и к̀е го
проследува пораките низ виртуелните машини. Дополнителните вирту-
елни машини к̀е се исклучат кога оптовареноста на сервисите к̀е се врати
на номиналната вредност.

И покраj латентноста на едноставни веб сервиси, експериментите по-
кажуваат дека посредникот ги подобрува перформансите на пресметков-
но интензивни веб сервиси (каде голем дел од времето на извршување се
троши на пресметувања).

Трансформациjа на пораки за подобри перформанси во облак

Иако стратегиjата со посредник се справува со екстреми кои се поjавува-
ат како резултат на зголемениот броj на конкурентни барања, тоа не се
справува добро со екстреми со зголемување на оптоварувањето поради
огромна големина на пораките.

Предложивме друга стратегиjа наречена стратегиjа со трансформа-
циjа на пораките во [22] за потребите на истражувањето за оваа дисерта-
циjа. Ги употребивме заклучоците од [10] и од оваа дисертациjа дека

17

Microsoft Windows обезбедува подобри перформанси од Linux Ubuntu за
големи пораки, и Linux Ubuntu OS обезбедува подобри перформанси од
Microsoft Windows за голем броj на конкурентни пораки и за мали пора-
ки.

Ако времето за одговор се зголемува над прагот, тогаш посредникот
к̀е ги подели влезните параметри во помали парчиња кои Линукс опе-
ративниот систем може да ги процесира побрзо отколку целата порака.
Ако екстремот е уште поголем, тогаш посредникот к̀е подигне дополни-
телни инстанци инсталирани со Windows Server оперативен систем и к̀е
ги пренасочува клиентските барања мег̀у двата веб сервиси, целата пора-
ка на Windows Server оперативен систем и пораките поделени во помали
парчиња на Линукс сервер базиран оперативен систем.

Перформанси на безбедносните мерки во облак

Преместувањето на податоците и апликациите надвор од безбедниот пе-
риметар на компаниjата наметнува имплементирање на стандарди за бе-
збедност за да се постигне соодветно ниво на краj-до-краj безбедност
со информациските системи во просториите на корисникот. Бидеjк̀и веб
сервисите се наjчесто користена техника, ние ги анализиравме перфор-
мансите на воведување на наjчестите стандарди за безбедност на веб
сервис XML Signature и XML Encryption обjавени во [25, 27, 26] за пот-
ребите на истражувањето за оваа дисертациjа.

Резултатите покажуваат дека зголемуваjк̀и jа големината на пораки-
те и броjот на конкурентни пораки ги намалуваат перфромансите на веб
сервисите. Различни платформи се исто така анализирани. Linux опера-
тивниот систем се справува подобро со броjот на конкурентни пораки а
Windows обратно, т.е. тоj се справува подобро со поголеми пораки.

Ги анализиравме и максималниот проток со имплементациjа само
на XML Signature и имплементациjа и на XML Signature и на XML
Encryption. Ги споредивме двете платформи и определивме дека Linux
има подобар проток од Windows за мал броj на пораки со и без импле-
ментациjа на безбедност. Со имплементациjа на безбедност Linux исто
така обезбедува подобри перформанси за големи пораки. Windows има
подобри перформанси за пораки со средна големина.

Подобрувања на стандардите за безбедност во облак

Направивме преглед на главните мег̀ународни и индустриски стандарди
наменети за безбедност на информациите и jа анализиравме нивната со-
образност со безбедносните предизвици во облак. Исто така направивме

18

и преглед на напорите направени кон стандардизациjа на безбедност во
облак. Резултатите се обjавени во [16, 15, 17, 19] за потребите на истра-
жувањето за оваа дисертациjа.

ИСО 27000 сериjата (27001:2005, 27002:2005, and 27005:2011) од стан-
дарди се дефинирани како генерални и ги покриваат не само техничките
решениjа на технички идентификуваните опасности и слабости, туку ги
земаат во предвид и операционите, организациските и менаџмент слабос-
тите исто така. Поради нивната општост, како и многуте отворени преди-
звици за безбедност во облак, ИСО 27001:2005 не е целосно применлив
за систем за информациска безбедност во облак. Затоа ние предлага-
ме нова контролна цел во барањата на ИСО 27001:2005, управување со
виртуелизациjата, со две контроли кои к̀е покриваат виртуелизациjа и
управување на виртуелните машини.

Со пристап базиран на ризици од високо ниво ги адресиравме ризи-
ците од безбедносните предизвици во облакот со цел да го подобриме
континуитетот на бизнисот на компаниjата доколку ги мигрира своите
сервиси во облак.

Не наjдовме ниеден труд коj ги покрива аспектите на континуите-
тот на бизнисот во детали за облак и не предизвика да ги адресираме
недостатоците на континуитетот на бизнисот за клиентот на облакот:
приватност на податоци и нивна заштита, усогласеност со законската
регулатива и стандардите, губењето на управување, локациjа на подато-
ците, хетерогеност, сложеност и интероперабилност, околина со повек̀е
станари, и опоравување по катастрофа - усогласеност со RPO и RTO.

Воведовме предлози кои го минимизираат влиjанието на континуитет
на бизнисот и вероjатноста за случување инцидент за секоj недостаток.
Овие главни ризици може да се оценат соодветно и да се ублажат до
прифатливо ниво со примена на препораките од овие предлози според
матрицата за нивото на ризик како функциjа од влиjанието врз бизнисот
и вероjатност за случување на инцидент.

Ги адресиравме придобивките од облакот кои го подобруваат кон-
тинуитетот на бизнисот: елиминирање прекини, подобро управување со
безбедност на мрежа и информациите, опоравување по катастрофа со уп-
равување ма резервна копиjа на повек̀е места. Тоа исто така го избегнува
или елиминира нарушување на работењето, се зголемува достапноста на
услугата и ги намалува DoS нападите.

19

Нови методологии за евалуациjа на безбедност на стра-
на на корисникот спрема облак

Како дел од оваа дисертациjа дефиниравме и обjавивме во [17, 16] две
методологии за проценка на безбедноста на страна каj корисникот или
во облак и различните слоеви за услуги во облакот. ИСО 27001:2005 кон-
тролните цели се земени како основа за оценувањето.

Првата методологиjа ги квантифицира барањата на ИСО 27001:2005
групирани во контролни цели, споредуваjк̀и ги страната на корисникот
и облакот. Евалуациjата и анализата на ИСО 27001:2005 стандардот ре-
зултира во пренесување на влиjанието од корисникот кон ЦСП. Истов-
ремено корисникот мора да обезбеди голем напор за да ги имплементира
сите контролни цели со намалена важност во SLA договорот со неговиот
ЦСП.

Втората методологиjа ги квантифицира барањата на ИСО 27001:2005
групирани во контролни цели за страната на корисникот и различните
слоеви на услуги во облакот. Евалуиравме дека при миграциjа во облак,
12 од 39 контролни цели се за управување и не зависат дали сервисите
се на страна на корисникот или во облак. Факторот на важност не се
менува во просек за контролните цели, се намалува на 18, а се зголемува
на само две. Според тоа, мигрираjк̀и во облак, корисниците jа пренесу-
ваат важноста на безбедноста на своjот ЦСП и очекуваат дека нивните
податоци и апликации к̀е бидат безбедни. Затоа, поради новите безбед-
носни предизвици кои ги продуцира облакот, корисниците мораат да го
реевалуираат своjот план за континуитет на бизнисот.

Нови методологии за евалуациjа на безбедност за ре-
шениjа за облак со отворен код

Сите клучни комерциjални добавувачи на облак поседуваат сертификати
за безбедност како компаниjа. Дополнително сите тие нудат некои услуги
за безбедност на своите корисници [16]. Решениjата со отворен код нудат
мал броj на услуги за безбедност кон своите корисници или во општ
случаj не нудат.

Ниту безбедносна проценка ниту компаративна анализа на безбеднос-
та на облак не се извршени досега во литературата. Ние предложивме
две методологии за евалуациjа на безбедноста на решениjата со отворен
код обjавени во [18, 12] како дел од истражувањето за оваа дисертациjа.

Ги анализиравме работите околу безбедноста коjа Опенстек решени-
ето за облак со отворен код и останатите безбедносни алатки можат да
се интегрираат за да се подобри неговата безбедност. Евалуациjата на

20

безбедноста беше реализирана анализираjк̀и ги соодветните контролни
цели дефинирани во ИСО 27001:2005 и споредуваjк̀и ги со останатите
решениjа за облак со отворен код.

Резултатите од нашата проценка покажуваат дека Еукалиптус и Cloud-
Stack имаат интегрирано максимално ниво на безбедност пред OpenNebula.
OpenStack има интегрирано наjмалку безбедност во споредба со другите
решениjа.

Општ заклучок од евалуациjата е дека сите решениjа за облак со
отворен код се грижат до некое ниво на безбедност. Резултатите од ева-
луациjата покажа дека CloudStack е наjдобар избор од сите решениjа
за облак со отворен код за да се мигрираат сервисите и има интегри-
рано максимално ниво на безбедност во своjата архитектура. Тоа е во
согласност со сите ИСО 27001:2005 11 контролни цели кои зависат од
решението за облак. Еукалиптус и OpenNebula, исто така, достигнаа да-
леку во безбедноста. OpenStack е наjлошото решение да се мигрираат
сервисите од аспект на безбедност.

Иако решениjата за облак со отворен код внимаваат на безбедноста,
компаниjата сè уште има и други 28 технички барања, организациски и
менаџмент барања кои треба да се усогласат со стандардот. Исто така,
ИСО 27001:2005 дефинира општи барања, т.е. одговорност на менаџмен-
тот и воспоставување, управување, преглед и подобрување на систем за
управување со информациска сигурност.

Применливост на резултатите
Покраj огромниот броj на важни резултати кои ги споменавме претходно,
вреди да се спомене и нивната применливост.

ХПЦ подобрувања

Реализациjата на модерни процесори се базира на повек̀е jадрена архи-
тектура со зголемување на броjот на jадра по процесор што се всушност
организирани како мултипроцесор со споделена мемориjа со заеднички
Л2 кеш и дистрибуирани L1 кеш. Затоа, овие резултати к̀е имаат вли-
jание врз иднината на развоj на софтвер и експлоатациjа на паралелел
хардвер.

Резултатите и методологиjата можат да се користат во пресметки на
масовни податоци со голема рата на промашувања во кешот. Поделбата
на податоците во помали парчиња со оптимална големина пресметани
со нашата методологиjа ги намалува промашувањата во кешто при па-

21

ралелно извршување во систем со дедициран кеш по jадро. Иако ние
ги поедноставивме нашите пресметки, нашата методологиjа може да се
користи во други слични пресметки со високи перформанси.

Како заклучок, математичките релации покажаа можност за супер-
линеарно забрзување и голем броj експериментални истражувања ги пот-
врдиjа резултатите покажуваjк̀и реални случаи на неочекувано зголе-
мени перформанси во мултипроцесорски или мултиjадрени (или двете)
системи, со дедициран кеш по jадро и на тоj начин предлагаме употреба
на таквите системи во паралелно процесирање.

Избор на платформа за облак

Главниот придонес на оваа дисертациjа се базира врз експериментални
докази и препораки за користење на Windows платформата при корис-
тење на Windows Azure облак за кеш интензивни проблеми, и покраj
хипотезата дека Линукс оперативниот систем има подобри перформанси
од Windows. Со други зборови, хипервизорите имаат огромно влиjание
на вкупните перформанси, а понекогаш дури и ги подобруваат перфор-
мансите.

Виртуелизациjата во облак може дури да ги подобри
перформансите

Ние откривме дека перформансите во виртуелна средина е подобра от-
колку традиционалната средина за дистрибуирана мемориjа (дедициран
кеш по jадро). За споделена мемориjа постои огромен пад во перформан-
сите во виртуелната средина (L4 регион). Затоа, ние предлагаме проце-
сори со дедициран кеш по jадро при градење на облаците.

Извршување на ХПЦ апликации во облак

Ние jа дефиниравме наjдобрата алокациjа на ресурси мег̀у виртуелните
машини во облакот за да се постигнат максимални перформанси. Наjдоб-
рата алокациjа на ресурси за традиционална средина за кеш интензивни
алгоритми е користење на повек̀е процеси со една нишка. Повек̀е вирту-
елни машини со една нишка е наjдобра алокациjа на ресурси во облак.

Наjдобри перформанси можат да се добиjат ако алгоритамот за мно-
жење матрици се гранулира на 8 делови и секоj дел да се изврши на
8 конкурентни процеси со по една нишка one во Small Windows Azure
виртуелна машина. Истата околина добива наjдобро забрзување во L2

регионот. Во L3 и L4 регионите максимално забрзување се постигнува

22

ако алгоритамот за множење матрици се гранулира на 4 делови и секоj
дел да се изврши на 4 конкурентни процеси секоj со по две нишки во
Medium Windows Azure виртуелни машини.

Евалуациjа на безбедност во облак

Дефиниравме 4 методологии за евалуациjа на безбедноста ако компани-
jата ги мигрира сервисите од своите простории во облак, потоа во коj слоj
од сервиси во облак, кое решение за облак со отворен код и миграциjа
од едно на друго решение за облак со отворен код.

Скопjе, Сашко Ристов
Август 2012

Литература
1. Anchev, N., Gusev, M., Ristov, S., Atanasovski, B.: Optimal cache

replacement policy for matrix multiplication. In: to be published in ICT
Innovations 2012. Springer Berlin / Heidelberg (2012)

2. Atanasovski, B., Ristov, S., Gusev, M., Anchev, N.: Mmcachesim: A
highly configurable matrix multiplication cache simulator. In: to be
published in ICT Innovations 2012, Web Proceedings, Skopje, Macedonia
(2012)

3. Djinevski, L., Ristov, S., Gusev, M.: Superlinear speedup in gpu devices.
In: to be published in ICT Innovations 2012. Springer Berlin / Heidelberg
(2012)

4. Gusev, M., Ristov, S.: Matrix multiplication performance analysis in
virtualized shared memory multiprocessor. In: MIPRO, 2012 Proceedings
of the 35th International Convention, IEEE Conference Publications. pp.
264–269 (2012)

5. Gusev, M., Ristov, S.: The optimal resource allocation among virtual
machines in cloud computing. In: Proceedings of The 3rd International
Conference on Cloud Computing, GRIDs, and Virtualization (CLOUD
COMPUTING 2012). pp. 36–42 (2012)

6. Gusev, M., Ristov, S.: Performance gains and drawbacks using set
associative cache. Journal of Next Generation Information Technology
(JNIT) 3(3) (31 Aug 2012)

23

7. Gusev, M., Ristov, S.: Superlinear speedup in windows azure cloud. Tech.
Rep. IIT:06-12, University Ss Cyril and Methodius, Skopje, Macedonia,
Faculty of Information Sciences and Computer Engineering (Jul 2012)

8. Gusev, M., Ristov, S.: A superlinear speedup region for matrix
multiplication. Tech. Rep. IIT:02-12, University Ss Cyril and Methodius,
Skopje, Macedonia, Faculty of Information Sciences and Computer
Engineering (Jan 2012)

9. Gusev, M., Ristov, S., Velkoski, G.: Hybrid 2d/1d blocking as optimal
matrix-matrix multiplication. In: ICT Innovations 2012. Springer Berlin
/ Heidelberg (2012)

10. Ristov, S.: Analysis of Web Service Security and its Impact on
Web Server Performance. Master’s thesis, University Sts Cyril
and Methodius, Faculty of Electrical Engineering and Information
Technologies, Macedonia (May 2011)

11. Ristov, S., Gusev, M.: Achieving maximum performance for matrix
multiplication using set associative cache. In: The 8th Int. Conf.
on,Computing Technology and Information Management (ICCM2012),
IEEE Conference Publications. ICNIT ’12, vol. 2, pp. 542–547 (2012)

12. Ristov, S., Gusev, M.: Open source cloud security audit. Tech. Rep.
IIT:08-12, University Ss Cyril and Methodius, Skopje, Macedonia,
Faculty of Information Sciences and Computer Engineering (Jul 2012)

13. Ristov, S., Gusev, M.: Performance gains and drawbacks in
multiprocessor using set associative cache. Tech. Rep. IIT:10-12,
University Ss Cyril and Methodius, Skopje, Macedonia, Faculty of
Information Sciences and Computer Engineering (Jul 2012)

14. Ristov, S., Gusev, M.: Superlinear speedup for matrix multiplication.
In: Information Technology Interfaces, Proceedings of the ITI 2012 34th
International Conference on. pp. 499–504 (2012)

15. Ristov, S., Gusev, M., Kostoska, M.: Information security management
system for cloud computing. In: ICT Innovations 2011, Web Proceedings,
Skopje, Macedonia (2011)

16. Ristov, S., Gusev, M., Kostoska, M.: Cloud computing security in
business information systems. International Journal of Network Security
& Its Applications (IJNSA) 4(2), 75–93 (2012)

24

17. Ristov, S., Gusev, M., Kostoska, M.: A new methodology for security
evaluation in cloud computing. In: MIPRO, 2012 Proc. of the 35th Int.
Convention, IEEE Conference Publications. pp. 1808–1813 (2012)

18. Ristov, S., Gusev, M., Kostoska, M.: Security assessment of openstack
open source cloud solution. In: Proceedings of the 7th South East
European Doctoral Student Conference (DSC2012) (2012)

19. Ristov, S., Gusev, M., Kostoska, M., Kiroski, K.: Business continuity
challenges in cloud computing. In: ICT Innovations 2011, Web
Proceedings, Skopje, Macedonia (2011)

20. Ristov, S., Gusev, M., Kostoska, M., Kjiroski, K.: Virtualized
environments in cloud can have superlinear speedup. In: ACM
Proceedings of 5th Balkan Conference of Informatics (BCI2012) (2012)

21. Ristov, S., Gusev, M., Osmanovic, S., Rahmani, K.: Optimal resource
scaling for hpc in windows azure. In: to be published in ICT Innovations
2012, Web Proceedings, Skopje, Macedonia (2012)

22. Ristov, S., Gusev, M., Velkoski, G.: Message transformation to gain
maximum web server performance in cloud computing. In: Proceedings
of the Conference of Informatics and Information Technology CiiT (2012)

23. Ristov, S., Gusev, M., Velkoski, G.: A middleware strategy to survive
peak loads in cloud. In: Proceedings of the Conference of Informatics
and Information Technology CiiT (2012)

24. Ristov, S., Stolikj, M., Ackovska, N.: Awakening curiosity - hardware
education for computer science students. In: MIPRO, 2011 Proceedings
of the 34th International Convention, IEEE Conference Publications. pp.
1275 –1280 (may 2011)

25. Ristov, S., Tentov, A.: Performance comparison of web service security on
windows platform – message size vs concurrent users. In: X International
Conference ETAI 2011 (2011)

26. Ristov, S., Tentov, A.: Security based performance issues in agent-
based web services integrating legacy information systems. In: CEUR
Workshop Proceedings. WASA 2011, vol. 752, pp. 45–51 (2011)

27. Ristov, S., Tentov, A.: Performance impact correlation of message size
vs. concurrent users implementing web service security on linux platform.
In: ICT Innovations 2011. Advances in Intelligent and Soft Computing,
vol. 150, pp. 367–377. Springer Berlin / Heidelberg (2012)

25

28. Ristov, S., Velkoski, G., Gusev, M., Kjiroski, K.: Compute and memory
intensive web service performance in the cloud. In: to be published in
ICT Innovations 2012. Springer Berlin / Heidelberg (2012)

29. Stolikj, M., Ristov, S., Ackovska, N.: Challenging students software skills
to learn hardware based courses. In: Information Technology Interfaces
(ITI), Proceedings of the ITI 2011 33rd International Conference on. pp.
339 –344 (june 2011)

26

Sasko Ristov

Performance and Security in
Cloud Computing

PhD Thesis

August 29, 2012

Dedicated to my father Kiro who is
unfortunately not among us long time ago,
but would be very proud with this thesis.

Preface

The PhD research was realized at the Ss. Cyril and Methodius University, Faculty of
Information Sciences and Computer Engineering in Skopje, Macedonia. The moti-
vation was based on my M.Sc. thesis research titled ”Analysis of Web Service Secu-
rity and its Impact on Web Server Performance” with goal to continue in the world
of performance penalties and security challenges in cloud computing. The research
was extended into in-depth and comprehensive analysis of multiprocessor architec-
tures and their exploitation in high performance computing and cloud computing
environment.

A critical point for this intensive research of almost 9 months was learning the
PhD Course ”Data Structures and High Performance Computing” where one of the
teachers was my supervisor professor Marjan Gusev. Continuing the research in
the field of HPC, we have achieved a superlinear speedup for matrix multiplication
algorithm executions on a shared memory multiprocessor. From this crucial moment
I changed several gears forward and was working together with active involvement
of my supervisor in the next period.

Background

Some time ago it was difficult to find the information that we need. More efforts
were performed to transfer the information rather than their computation. Internet
and improved data communications enabled more information available online and
thus increase the computing resources requirements.

Usage of parallelization or high performance computing increased enormous
when the powerful computing resources begin to compute in reasonable time. Con-
sistent weather forecast for the next few days can be performed in a day. First com-
puter program on IBM Deep Blue supercomputer defeated the chess world cham-
pion Kasparov in a match organized by tournament regulations [66]. Many software
application predict the stock exchange rates.All these requirements must be accu-
rately and precisely executed in proper time.

vii

viii Preface

There are several mechanisms to speedup the execution. For example, improving
particular algorithm to reduce the computation and program steps on the same com-
puter system; or executing the same algorithm with the same number of operations
for less time on faster computers. Introducing different versions of parallelism and
high performance computing are todays’ modern mechanisms for faster program
execution.

There are two different approaches in HPC: 1) grid computing and 2) super-
computers. Both approaches use massive number of multiprocessors orchestrated
differently. While grid computing organizes the multiprocessors distributed and
loosely coupled, i.e. as cluster of clusters, the multiprocessors in supercomputer
are ”tightly” coupled, i.e. close to each other.

However, both HPC solutions, the grid computing and supercomputers are mainly
available for universities and scientific organizations, rather than for business and
companies. Their runtime environment is unique and the problems should be re-
designed according to the specifications.

Introducing the cloud computing paradigm made the resources more available
and more closely to the consumers. It also offers scalable, flexible and infinite avail-
able computing resources as grid and supercomputers. It offers even more features.
The customers can rent an arbitrary number of virtual machines each with arbitrary
resources as they need with different platforms. Even more, the customers can cre-
ate their own virtual machines where their application work perfectly and upload in
the cloud for execution.

New security challenges arise when working with huge amount of data and mi-
grating in the cloud, beside the existing ones. Since the applications and data are
moving outside of the customer security perimeter, the most important part is to en-
sure certain information security. Several open issues exist like regulatory violation,
trust and data privacy. Most common cloud service providers (CSPs) are mostly fo-
cused on customer security and almost all have security certificates or compliances
for their public cloud infrastructure [126]. Even more, they offer security features
to their customers to assess whether their services hosted in the CSP cloud are com-
pliant to particular security standard.

Problem Description and Objectives

The goal of this thesis is to conduct a comprehensive analysis of performance and se-
curity in cloud computing. To achieve this objective the thesis follows four research
areas: 1) Basic cloud computing and HPC performance concepts, 2) Performance
analysis of cache intensive algorithms and web services on-premise, 3) Performance
analysis when hosted on-premise and in the cloud with different cloud service layers
and different web service security standards, and finally 4) High-level cloud com-
puting security challenges and evaluations, risk assessment and business continuity
for business information systems.

Preface ix

The purpose of first research area for basic cloud computing and HPC perfor-
mance concepts is to introduce the concept of cloud computing, performance and
used algorithms and their implementations in this thesis. Once the basic concepts
are finished, the purpose of the next two research areas is to analyze the amount
of performance penalties that cloud and security provide. The purpose of the final
area is to present several methodologies for security evaluation of different cloud
computing service layers and open source cloud solutions.

The main research questions of this thesis are:

• Is the additional cloud virtualization layer providing performance discrepancy
and drawbacks?

• What are the penalties when different services and application migrate from on-
premise to the cloud?

• Are there any computing problems that run better in the cloud than on-premise?
• Is there a region where a superlinear speedup can be achieved in the Cloud?
• What are the security challenges for business information systems if they migrate

in the cloud?
• Which cloud service layer provides better importance for security control objec-

tives than on-premise?
• What open source cloud solution is the most appropriate to develop and maintain

information security management system?

Scope

The thesis scope is to determine the impact of different cloud service layers IaaS,
PaaS and SaaS to the performance and security of cache intensive algorithms and
web services. This study concentrates on selecting the best resource allocation and
the most appropriate platform to achieve the best performance for the same cost.

This thesis models the impact of the cloud infrastructure to the performance for
different types, number and size of input messages that load the cloud infrastructure.
It also defines quantitative performance indicators to determine the risk of migrat-
ing the services in the cloud for various message size and number of concurrent
messages.

Methods

To address the research questions from the performance area, several different in-
frastructures are deployed with three different platforms: Traditional on-premise
(host), Virtual (guest) and Open source cloud platforms. Also, different platforms
and infrastructures are used in Windows Azure Cloud.

As test data, different web services are deployed in the cloud and on-premise,
as well as several different benchmark application for sequential and parallel im-

x Preface

plementations of compute, memory and cache intensive dense matrix multiplication
algorithm.

Detailed theoretical analysis is performed in order to analyze the on-premise
performance. Next, huge number of experiments are realized for different problem
size and different load to measure the algorithm performance. Detailed analysis and
classification of the theory and the results of the experiments are realized.

We overview main international and industry standards towards security and an-
alyze their conformity to cloud computing. Several security evaluations are per-
formed using ISO 27000 series of standards as a baseline.

Content of the Thesis

This thesis consists of six parts: 1) Basic concepts of performance, matrix multi-
plication and cloud computing, 2) Matrix multiplication algorithm improvements,
3) Theoretical and practical proof of superlinear speedup in CPUs and GPUs, 4) Per-
formance analysis of cache intensive algorithm in cloud computing, 5) Web service
performance analysis in cloud computing, and 6) Cloud computing security chal-
lenges and evaluation.

Part I presents the basic concepts and definitions for the purpose of this thesis.
It consists of five chapters. Chapter 1 describes the basic concepts and architecture
of cloud computing, its deployment models and service layers. Basic performance
fundamentals and limits are defined and elaborated in Chapter 2. The memory hi-
erarchy and introducing cache memory in modern multiprocessors is described in
Chapter 3 since memory access is the bottleneck of all computations and impacts
to the performance. Chapter 4 presents basic sequential and several parallel imple-
mentations of dense matrix multiplication algorithm on CPU and GPU as compute,
data and cache intensive algorithm. Finally, Chapter 5 briefly overviews the web
services, their performance factors and several challenges.

Part II in four chapters analyzes and proposes matrix multiplication algorithm im-
provements and presents the theoretical analysis and experimental proof for perfor-
mance drawbacks that appear when using set associative cache for cache intensive
algorithm. Chapter 6 defines the Average Total Cycles Per Instruction and analyze
which replacement policy is most appropriate for matrix multiplication algorithm. In
Chapter 7 we present the MMCacheSim simulator which predicts matrix multipli-
cation performance on particular existing or non-existing multiprocessor. Chapter 8
presents two versions of new hybrid 2D/1D partitioning that improves 2D blocking
matrix multiplication algorithm. Chapter 9 analyzes and models the performance
drawbacks for particular problem size due to set associative cache. It also presents
huge performance drawbacks that are observed experimentally for speedup in par-
allel execution and speed in sequential and parallel execution.

Part III consists of two chapters and deals with superlinear speedup in matrix
multiplication. Chapter 10 presents the theoretical analysis with experimental proof
about why, how and when superlinear speedup can be achieved in multiprocessor. In

Preface xi

Chapter 11 we analyze how to achieve superlinear speedup for matrix multiplication
on NVIDIA GPU and show the results of the experiment for speed and speedup vs
cache requirements and number of SMs.

The next Part IV is devoted for the performance of dense matrix multiplication
algorithm in the different cloud environments. It consists of five chapters. Chap-
ter 12 denies the hypothesis that additional virtualization layer provides worse per-
formance, i.e. it presents that there is a region with particular problem size for ma-
trix multiplication where the program runs faster in virtual environment, both for
sequential and parallel implementation. Chapters 13 and 14 present how different
PaaS and SaaS cloud service layers impact to the matrix multiplication algorithm
performance correspondingly. Cloud multitenant environment impact to the matrix
multiplication algorithm performance is presented in Chapter 15. Finally the exis-
tence of superlinear speedup for parallel execution of matrix multiplication algo-
rithm is given in Chapter 16.

Part V covers the performance discrepancy of different web services when hosted
on-premise and in the cloud for different input parameters server load. It also
presents the performance drawbacks due to security implementation to web ser-
vices. It consists of three chapters. Chapter 17 presents the results of the experiments
for performance drawbacks when web services are hosted in the cloud for varying
the server load. The next two chapters 18 and 19 propose two strategies for better
web service performance in the cloud.

Finally, Part VI covers the cloud computing security challenges and performs
several security evaluations in four chapters. In Chapter 20 we present the perfor-
mance drawbacks due to security standards implementation to web services in order
to improve their security in the new cloud environment. Chapter 21 overviews the
main international and industrial standards targeting information security and an-
alyzes their conformity with cloud computing security challenges. Chapter 22 ad-
dresses the risks of the security challenges in the cloud with high-level risk-based
approach this chapter in order to improve the client company business continuity if
migrates its services into cloud. Chapter 23 proposes new methodologies for secu-
rity evaluation of the security on-premise or in the cloud and cloud service layers
with ISO 27001:2005 control objectives as a baseline for the evaluation. Chapter 24
presents the cloud security challenges evaluation of OpenStack open source cloud
solution and three other open source clouds.

Main Results

A lot of results were published within this PhD thesis research on reviewed confer-
ences and journals. The most important results are in the areas of performance and
security. There are also plenty of state-of-the-art overviews, literature reviews, the-
oretical analyses of different algorithms towards hardware infrastructure and plat-
form, practical experiments and evaluations.

xii Preface

All given hypotheses are proved or denied both theoretically and experimentally.
Many unexpected results were observed and analyzed during the experiments and
all of them are explained with comprehensive elaboration and in-depth analysis.

The main results are elaborated in the following sections.

Optimal Replacement Policy for Matrix Multiplication Algorithm

Since matrix multiplication algorithm is cache intensive, cache replacement policy
is the next important parameter that impacts its performance after arising cache ca-
pacity problem. As the number of operations does not depend on cache replacement
policy, we define and propose a methodology to determine the average memory
cycles per instruction that the algorithm performs, since it mostly affects the perfor-
mance. The results of the experiments published by the authors in [9] for the purpose
of this thesis research show the optimal cache replacement policy for sequential and
parallel dense matrix multiplication algorithm implementations.

We determined that both cache replacement policies, LRU and FIFO, provide
similar speed and average cycles per instruction CPIT (N) for sequential and par-
allel execution. However, the results show that LRU replacement policy provides
better CPIT (N) for sequential execution in dedicated per core cache memory. Par-
allel execution provides the best CPIT (N) in shared memory LRU CPU, i.e. LRU
produces greater speedup than FIFO and is more appropriate rather than FIFO cache
replacement policy for dense matrix multiplication algorithm.

Highly Configurable MMCacheSim Simulator

For the purpose of this thesis research the autors published in [145, 134] a new teach-
ing methodologies and hardware courses improvements using visual simulators, in-
crementally weighted exercises, and finally working on real hardware controllers
achieved significant improvements in grade distribution and computer science stu-
dent interest in hardware.

As a further work, the authors develop and published in [11] Highly Configurable
MMCacheSim Simulator. The main contribution of MMCacheSim is to allow sim-
ulation of various CPU architectures and to find out which possible internal CPU
cache architecture is the most appropriate for particular sequential or parallel algo-
rithm execution. The simulator makes the computer architecture and HPC teaching
and learning process most appropriate. MMCacheSim allows to be configured:

• The hierarchy among cache levels, to be shared between cores or dedicated;
• The inclusivity between different cache levels;
• The size of the cache memory, the associativity, cache line sizes; and
• Replacement policy, with ability to have different cache replacement policies per

different cache levels.

Preface xiii

Matrix Multiplication Algorithm Improvements

2D block decomposition of matrices that can be placed in L1 CPU cache decreases
the cache misses since the operations will access data only stored in L1 cache. How-
ever, as we elaborate in this thesis, cache size is not the only one important cache
parameter that impacts to the performance.

As part of this thesis research we propose in [53] a new hybrid 2D/1D partitioning
that reduces the number of operations and memory accesses than the original 2D
blocking algorithm reported recently in the literature as cache optimization. The idea
is to use rectangles instead of squared blocks in order to minimize the operations.

Using theoretical analysis to exploit the advantages of other cache parameters
that can impact the algorithm performance we propose modified hybrid 2D/1D par-
titioning algorithm that even improved the basic 2D / 1D hybrid algorithm. Even
more, the modified algorithm is prone to small cache set associativity on AMD
CPU caches rather than the original 2D blocking algorithm. The experiments prove
also the theoretical analysis, i.e. both our proposed algorithms outperform the 2D
blocking algorithm for huge matrices on AMD Phenom CPU.

Performance Analysis of Multiprocessor with Set Associative Cache

Performance drawbacks in particular problem sizes are commented in literature
without detailed explanation. We analyzed and modeled the performance drawbacks
for particular problem sizes for sequential and parallel execution of cache intensive
algorithm and within this research we have published the results in [120, 50, 123].

Based on theoretical analysis and experimental research we have concluded how
n-way associative cache can seriously affect performance. We have analyzed and
found theoretically the points where the associativity causes performance drawbacks
and suggest organization of the matrix multiplication algorithm avoiding situations
where mapping onto n-way set associative cache will use only a small part of the
cache instead of whole cache capacity. The performed experimental research ap-
proved the results showing real cases of performance drawbacks in both sequential
and parallel executions.

A theoretical proof of execution time peaks is presented for a case when set
associative cache for cache intensive algorithms is used for execution of the matrix
multiplication algorithm. Huge performance drawbacks are observed and analyzed
for speed in sequential execution. The speed drawback is more expressive for greater
matrix size than smaller in the critical points.

Huge performance drawbacks are also observed and analyzed both for speed and
speedup in parallel execution. Parallel algorithm executions result with speed draw-
backs more than sequential. Parallel speed and speedup drawbacks are inconsider-
able for critical matrix sizes in L2 region dedicated per core. Significant speed and
speedup drawbacks are found in L3 and L4 regions, especially for parallel execution
on more cores. They are expressive for the experiments executing on P = 4 proces-
sors where the speed V (4) is smaller than the speed V (2). For N = 512 speed V (4) is

xiv Preface

similar as speed V (1) in the observed points of the particular area. The speed draw-
backs for the experiments executing on P = 2 processors are also expressive. Speed
V (2) is similar or even smaller than speed V (1) in other points of the particular area.

We conclude that performance drawbacks appear due to increased number of
generated cache misses in last level cache.

Superlinear Speedup in Matrix Multiplication

Despite the Gustafson’s Law that maximum scaled speedup is p and Shi’s limitation
that superlinear speedup is only possible for Non Structure Persistent algorithms, we
found superlinear region for parallel execution and realized deep and comprehensive
analysis. For the purpose of this thesis research we published the theoretical analysis
and experimental results in [124, 52, 33].

Superlinear Speedup on Multiprocessor

We tried to go beyond the limits specified in Gustafson’s law not just finding exam-
ples of superlinear speedup for matrix multiplication but also to provide theoretical
analysis how to achieve it in a real shared memory system. We show and provide a
proof of its existence in a real multiprocessor system that uses caches. The super-
linear speedup is possible in cases where sequential execution initiates more cache
misses than for parallel execution. This happens for example, in a shared memory
multiprocessor with dedicated caches.

We have presented the theoretical background of superlinear speedup existence
and also introduced a methodology how to achieve it, when and where it can be
achieved. We have also defined a testing methodology and realized a series of ex-
periments to provide evidence of superlinear speedup and unexpected high perfor-
mance.

The experiments also confirmed our theoretical results in [52]. The achieved high
performance results and superlinear speedup is demonstrated on the example of
dense matrix multiplication algorithm. It is possible within a range of values of
matrix sizes, even if the environment is virtualized.

Superlinear Speedup on GPU

In [33] we present the theoretical analysis and experimental results of achieved su-
perlinear speedup for GPU devices, which are also categorized as SIMD. We im-
plement a structure persistent algorithm which efficiently exploits the shared cache
memory and avoids cache misses as much as possible.

The experiments have confirmed the theoretical analysis about existence of su-
perlinear regions of the problem size for matrix multiplication using GPU devices,

Preface xv

where the normalized performance per processing element for parallel execution is
better than in sequential execution.

Based on the experiments, we have presented further proof that there is existence
of superlinear speedup for SIMD architecture processors with dedicated caches,
more particular GPU devices. However, we have only obtained superlinear speedup
in the superlinear region where the cache memory requirements of the problem fit
in L2 for parallel execution and generate L2 cache misses for sequential execution.

Virtualization Impact on Cache Intensive Algorithm Performance

The program should be executed slower in cloud virtual environment compared to
traditional server due to additional virtualization layer. Despite this hypothesis, the
experimental results prove that virtualization performance is even better than tradi-
tional for distributed memory, rather than shared where there is a huge performance
drawback.

We performed detailed experiments published in [48] for the purpose of this the-
sis research. We concluded a huge performance discrepancy for cache intensive al-
gorithm in virtualized environment. There is a region with particular problem size
for matrix multiplication where the program runs faster in virtual environment.

Virtualization provides almost equal performance of 98% as traditional for se-
quential execution on matrix multiplication algorithm. Using parallelization it pro-
vides even greater speed of almost 15% for particular number of processing ele-
ments in L1 and L2 regions (distributed per core).

However, the virtualization loses the battle in L4 region when a lot of costly cache
misses appear. Its performance is 33.42% worse than traditional in this region.

PaaS Impact on Cache Intensive Algorithm Performance

Executing the same program in different runtime environments provides different
performance. Opposite to the hypothesis that Linux based runtime environment pro-
vides better performance, the results of the experiments published in [51] show that
Windows based runtime environment in Windows Azure Cloud runs better than
Linux, especially for problem size that can be placed in cache and will not generate
a lot of cache misses.

The measured speeds for the same algorithm on Windows are greater than on
Linux achieving up to 2.5 times better performance especially in L1-L3 regions.
The behavior in L4 region is comparable, but still Windows platform achieves better
performance.

xvi Preface

IaaS Impact on Cache Intensive Algorithm Performance

The price for renting the resources has linear dependency on consumed resources,
but not always all offered resources of virtual machine instances are most suitable
for the customers. The same amount of resources offered by the cloud can be rented
and utilized differently to speedup the computation. One way is to use techniques
for parallelization on instances with more resources. Other way is to spread the job
among several instances of virtual machine with less resources. As part of this thesis
research in [131] we analyze which is the best way to scale the resources to speedup
the calculations and obtain best performance for the same amount of money needed
to rent those resources in Windows Azure cloud.

The results of the experiments are as expected for sequential execution, i.e. Extra
Large VM achieves maximum speed in front of Large, Medium and Small in L2
region. However, Small VM achieves similar speed as Extra Large VM and they
lead in front of Large and Medium VMs in L4 region.

Parallel execution provides more strange results. Dense matrix multiplication al-
gorithm achieves maximum speed when executed parallel on 8 x Small instances, in
front of 4 x Medium, 2 x Large, and 1 x Extra Large in L2 and L3 regions, and al-
most all observed L4 region. This means that the best performance can be achieved
if dense matrix multiplication algorithm is granulated on 8 chunks and each chunk
to be executed on 8 concurrent processes with one thread in Small Windows Azure
VM. The same environment achieves maximum speedup in L2 region. In L3 and
L4 region maximum speedup is achieved if dense matrix multiplication algorithm
is granulated on 4 chunks and each chunk to be executed on 4 concurrent processes
with two threads in Medium Windows Azure VM.

Multitenancy Impact on Cache Intensive Algorithm Performance

Since modern multi-core multiprocessors also share the last level cache among all
cores on one chip, the goal is to enable an optimal resource allocation by avoiding
cache misses as much as possible, since this will lead to performance increase. The
realized experiments published in [49] for the purpose of this thesis research show
that both single-tenant and multi-tenant resource allocation in the cloud provide
better performance than on-premise for certain workload.

The performed experiments address several virtual machine instances in a cloud
system using different number of CPUs (assuming all cores are utilized). Each ex-
periment uses the same resources but orchestrated differently. The results can be
summarized as:

• The experiments prove that there is a region (L2 region) where cloud environ-
ment achieves better performance than traditional and virtual environment, both
for parallel and sequential process execution, and

• The experiments prove that cloud computing provides better performance in a
multi-VM environment, rather than allocating all the resources to only one VM.

Preface xvii

The best resource allocation for traditional environment for cache intensive al-
gorithms is the usage of multiple processes with single threads. Multiple VMs with
single threads is the best resource allocation for cloud environment. Comparing the
environments, cloud computing provides the best performance.

Superlinear Speedup in Cloud Virtual Environment

The results published by the authors in [130] as part of this thesis research show
that cloud environment can also achieve superlinear speedup for execution of cache
intensive algorithms when high performance computing is used in virtual machines
allocated with more than one processor (core). The speedup begins to increase for
those matrices A and B that do not fit in available last level L2 cache for sequential
execution, i.e. half of L2 total cache, but in the same time fit in the whole L2 cache
which is available for parallel execution with two or four threads on two or four
cores, correspondingly. The speedup increases until N = 628 determined theoreti-
cally for traditional environment when L2 cache misses begin to appear. There are
also a speedup turnover points for virtual and cloud environment greater than theo-
retical value since virtualization provides better performance for parallel execution
rather than sequential in shared memory as we published in [48].

Virtual and cloud environments achieve better speedup for dedicated cache and
the best performance is achieved by the cloud environment. After the L2 region,
where the L2 cache misses are generated, the traditional environment performs bet-
ter in comparison to the cloud environment. Virtual environment achieves the worst
speedup when the algorithm requires a lot of accesses to shared main memory.

The experiments show different speedup range. The widest superlinear speedup
range is present at traditional environment, while the thinest is found at the virtual
one. Cloud and virtual environments have wider superlinear speedup range for par-
allel execution with two rather than four threads because the last level cache is ded-
icated per core which is the case where virtualization provides better performance
than shared memory as we published in [48] for the purpose of this thesis research.
The range is shortened up to 3 times from the right side (for great values of N) com-
pared to the left region (smaller values of N). The range in traditional environment
shortens 80 from the left side and 120 from the right side of the range. In virtual
environment it shortens 56 and 184, and in cloud environment 88 and 144 for left
and right side correspondingly. Virtual environment’s superlinear range is the most
shortened while the superlinear speedup region in traditional environment shortens
the least.

Another important result was obtaining superlinear speedup in virtualized envi-
ronment with three different hypervisors: Microsoft Hyper-V, KVM and VMware
ESX.

xviii Preface

Web Service Performance in the Cloud

Although we found regions where cloud is better environment for cache intensive
algorithms, even with superlinear speedup for parallel execution, it is not the case
for web services hosted in the cloud. Additional layer that virtualization adds in
the cloud decreases the performance of the web services. Series of experiments are
realized and published in [138] for the purpose of this thesis research to analyze
the web services performance and compare what is the level of degradation if the
web services are migrating from on-premises to cloud using the same hardware
resources.

The results of the experiments show that the performance directly depends on
input message size especially for both memory demand and compute intensive web
service regardless of the platform. This is not emphasized for memory only demand
web service.

We also defined quantitative performance indicators to determine the risk of mi-
grating the services in the cloud for various message size and number of concurrent
messages. The conclusion is that the performance is decreased to 71.10% of on-
premise for memory demand and to 73.86% for both memory demand and compute
intensive web service if it is migrated on the cloud. The cloud provides the small-
est penalties for greater message sizes regardless of number of concurrent messages
for memory demand web service. However, the smallest penalties for both memory
demand and compute intensive web service migrated in the cloud are provided for
smaller number of concurrent messages and for greater message sizes.

A Middleware Strategy to Improve Cloud WS Performance

This solution that handles the compute peak loads dynamically for web services
hosted in cloud is proposed in [133] for the purpose of this thesis research. It in-
troduces a middleware layer between clients and server which will instantiate ad-
ditional VMs dynamically on demand as service load reaches defined minimum
performance level and will forward the messages across VMs. The additional VMs
will be shut down when service load returns to defined nominal value.

Despite the latency for simple web services, the experiments prove that the mid-
dleware improves the performance of compute intensive web services (where huge
part of the response time is spent for service calculations).

Message Transformation for Better Cloud WS Performance

Although a middleware strategy handles peaks that appear due to increased number
of concurrent requests, it does not handles well peaks with increased load due to
huge message size.

We proposed another strategy called message transformation strategy in [132]
for the purpose of this thesis research. We used the conclusion from [119] that Mi-

Preface xix

crosoft Windows OS provides better performance than Linux Ubuntu OS for huge
messages, and Linux Ubuntu OS provides better performance than Microsoft Win-
dows OS for huge number of concurrent messages and for small messages.

If the response time increases beyond the threshold, then the middleware strategy
will split the input parameters into smaller chunks that Linux OS can process faster
rather than the whole message. If the peak is even bigger, then the middleware will
start additional instance installed with Windows Server based OS and forwards the
client requests among two endpoint web services, the whole messages to Windows
Server based OS and the messages divided into smaller chunks on Linux Server
based OS.

Performance of Security Measures in the Cloud

Moving the data and applications outside the company security perimeter enforces
implementing security standards to achieve proper end-to-end security level with
on-premise information systems. Since web services are the most used technique,
we analyzed the performance of introducing most common web service security
standards XML Signature and XML Encryption and published the results in [135,
137, 136] as part of this thesis research.

The results show that increasing message size and number of concurrent mes-
sages degrade the web service performance. Platform environment is also analyzed.
Linux OS handles better the number of concurrent messages and Windows the op-
posite, i.e. it handles better greater messages.

We analyzed the maximum throughput via web services implementing XML Sig-
nature and both XML Signature and XML Encryption. We compared both platform
and determine that Linux OS provides better throughput than Windows OS for small
number of messages with and without security implementation. When implement-
ing security Linux also provides better performance for huge messages. Windows
provide better performance for middle sized messages.

Cloud Security Standardization Improvements

We overview the main international and industrial standards targeting information
security and analyzes their conformity with cloud computing security challenges.
We also overview the efforts done towards cloud security standardization. The re-
sults are published in [126, 125, 127, 129] as part of this thesis research.

ISO 27000 series (27001:2005, 27002:2005, and 27005:2011) of standards are
defined as generic and they cover not only the technical solutions to technically
identified threats and vulnerabilities, but take into account the operational, organiza-
tional and management vulnerability, as well. Due to its generality, as well as many
open cloud security challenges, ISO 27001:2005 is not fully conformal with cloud
information security system. Therefore, we propose a new control objective in ISO

xx Preface

27001:2005 requirements, virtualization management, with two controls covering
virtualization and virtual machines control.

With high-level risk-based approach we addressed the risks of the security chal-
lenges in the cloud in order to improve the client company business continuity if
migrates its services into cloud.

No paper so far has presented business continuity aspects in detail of cloud com-
puting and it challenged us to address the cloud computing model security detri-
ments that depreciate the cloud customer business continuity: data privacy and pro-
tection, regulatory and standards compliance, loss of control, data location, het-
erogeneity, complexity, and interoperability, multi-tenant environment, and disaster
recovery - RPO and RTO compliance and effectiveness.

We introduced proposals which minimize the impact to business continuity and
the probability of incident scenario for each detriment. These main risks can be
assessed appropriately and mitigated to the acceptable level by applying recom-
mendations in these proposals according to matrix for risk level as a function of the
business impact and probability of incident scenario.

We address cloud computing model security beneficial that improves the business
continuity: eliminating downtime, better network and information security manage-
ment, disaster recovery with both backup management and geographic redundancy.
It also avoids or eliminates disruption of operations, increases service availability
and decreases DoS attacks.

New Methodologies for On-premise vs Cloud Security Evaluation

As a part of this thesis we defined and published in [127, 126] two methodologies
for security evaluation of the security on-premise or in the cloud and cloud service
layers. ISO 27001:2005 control objectives are taken as a baseline for the evaluation.

The first methodology quantifies the ISO 27001:2005 requirements grouped in
control objectives, comparing on-premise and cloud environments. The evaluation
and analysis of ISO 27001:2005 standard result in the importance transfer from
cloud customer to CSP. Simultaneously cloud customer must provide a huge effort
to implement all control objectives with decreased importance in SLA with its CSP.

The second methodology quantifies the ISO 27001:2005 requirements that are
grouped in control objectives, for on-premise and different cloud service layers. We
evaluate that moving into cloud, 12 of 39 control objectives are for management, and
are not affected if the services are on-premise or in cloud. Importance factor doesn’t
change on average seven Control Objectives, depreciates on 18, and increases on
only two of them. Thus, moving into cloud, cloud customers (SMEs) transfer the
importance of the security to its CSP, and expect that their data and applications are
to be secured. Therefore, due to emergent security challenges that cloud computing
produces, cloud customers must re-evaluate their BCPs.

Preface xxi

New Methodologies for Open Source Cloud Security Evaluation

All key commercial cloud providers possess some security certificate as a company.
Additionally all of them offer some security services to their customers [126]. Open
source solutions provide a small number of security services to the clients or gener-
ally do not provide any.

Neither security assessment nor comparative security analysis of the cloud were
not performed in the literature so far. We proposed two new methodologies for Open
Source Cloud Security Evaluation and published in [128, 122] as a part of this thesis
research.

We have analyzed the security issues that OpenStack cloud software possess and
what other security tools can be integrated to improve its overall security. The evalu-
ation of the security was realized by assessing the relevant control objectives defined
by ISO 27001:2005 and comparing it to the other open source cloud computing so-
lutions.

The results of our assessment show that Eucalyptus and CloudStack have inte-
grated the maximum security level in front of OpenNebula. OpenStack has inte-
grated the least security compared to others solutions.

General conclusion of the evaluation is that all open source clouds take care
about some level of security. The results of the evaluations show that CloudStack is
the best choice of all open source clouds to migrate the services and integrated the
maximum security level in its architecture. It conforms with all ISO 27001:2005 11
control objectives that depends of the cloud solution. Eucalyptus and OpenNebula
has also reached far in security. OpenStack is worst solution to migrate the services
in the manner of security.

Although open source clouds heed the security, the company still have other 28
technical requirements, organizational and management requirements that should
be conformed. Also, ISO 27001:2005 defines general requirements, i.e.management
responsibility and establishing, managing, reviewing and improving the information
security management system.

Applicability of the Results

Besides the huge number of important results that we mentioned previously, it is
worth to mention their applicability.

HPC Improvements

The realization of modern processors is based on a multicore architecture with in-
creasing number of cores per processor which is actually organized as a shared
memory multiprocessor with shared L2 cache and distributed L1 cache. Therefore

xxii Preface

these results will have impact on future software development and exploitation of
parallel hardware.

The results and methodology can be used in the massive data computations with
high cache miss ratio. Dividing data into smaller chunks with optimal size calculated
with our methodology, reduces cache misses in parallel execution in the dedicated
cache per core system. Although we simplified our calculations, our methodology
can be used in other similar high performance numeric computations.

As a conclusion mathematical relations showed a possibility of superlinear
speedup and extensive experimental research approved the results showing real
cases of increased unexpected performance in a multiprocessor or multicore sys-
tem (or both), with dedicated cache per core and thus propose using such systems
in parallel computing.

Cloud Platform Selection

The main contribution of this thesis is based on experimental proof and recommen-
dation to use the Windows platform while using Azure cloud for cache intensive
problems, despite the hypothesis that Linux Operating System has better perfor-
mance than Windows. That is, hypervisors have a huge impact to the overall perfor-
mance, sometimes they even improve the performance.

Cloud Virtualization Can Even Improves Performance

We found that virtualization performance is better than traditional for distributed
memory (dedicated caches per core). For shared memory there is a huge perfor-
mance drawback in virtual environment (L4 region). Therefore, we propose CPUs
with dedicated cache per core when building the clouds.

HPC Application Execution in Cloud

We defined the best resource allocation among virtual machines in the cloud to
achieve maximum performance. The best resource allocation for traditional environ-
ment for cache intensive algorithms is the usage of multiple processes with single
threads. Multiple VMs with single threads is the best resource allocation for cloud
environment.

The best performance can be achieved if matrix multiplication algorithm is gran-
ulated on 8 chunks and each chunk to be executed on 8 concurrent processes with
one thread in Small Windows Azure VMs. The same environment achieves maxi-
mum speedup in L2 region. In L3 and L4 region maximum speedup is achieved if
multiplication algorithm is granulated on 4 chunks and each chunk to be executed
on 4 concurrent processes with two threads in Medium Windows Azure VMs.

Preface xxiii

Cloud Security Evaluation

We defined 4 methodologies for security evaluation if the company migrates from
on-premise in the cloud, then what cloud service layer, which open source cloud
solution and migrating from one to another open source cloud solution.

Skopje, Sasko Ristov
August 2012

Acknowledgements

First and foremost, I wish to thank my supervisor, professor Marjan Gusev for not
just given greatest support, but active involvement in research and writing our pub-
lished papers for this thesis research without saving the efforts even during week-
ends and holidays. He gave unnecessary contribution in improving and publishing
papers. I am very happy for choosing him as a supervisor. I hope and I’ll be very
glad to continue and amplify our common research in the future.

I would also like to thank my wife Monika and my children Kirjana and Teo for
their given support and understanding. Many thanks also to my mother Slavica and
my brother Blaze for their encouragement.

xxv

Contents

Part I Basic Concepts

1 Cloud Computing . 3
1.1 Global Concepts . 3

1.1.1 What is Cloud Computing . 3
1.1.2 Virtualization . 4

1.2 Cloud Deployment Models and Service Layers 5
1.2.1 Main Cloud Service Layers . 5
1.2.2 Other Cloud Service Layers . 6

1.3 Which Cloud to Migrate the Services on? . 7
1.4 Open Source Cloud Architectures . 8

1.4.1 The OpenStack Cloud Architecture . 8
1.4.2 OpenNebula Cloud Architecture . 9
1.4.3 CloudStack Architecture . 9
1.4.4 Eucalyptus Architecture . 9

1.5 Summary . 10

2 Performance . 11
2.1 Performance Fundamentals . 11

2.1.1 Basic Definition of Performance . 11
2.1.2 Speed . 12
2.1.3 Speedup Factor . 12
2.1.4 Efficiency . 12
2.1.5 Cost . 13

2.2 Performance Limits . 13
2.2.1 Speedup Analysis . 13
2.2.2 Speedup Limits . 15

2.3 Intensive Algorithms . 17
2.3.1 Compute and Data Intensive Algorithms 17
2.3.2 Cache Intensive Algorithms . 18

2.4 Summary . 18

xxvii

xxviii Contents

3 Memory Hierarchy . 19
3.1 Memory is the Bottleneck . 19

3.1.1 Multilevel Cache to speedup the Memory 20
3.1.2 Cache Regions . 20

3.2 Cache Parameters . 21
3.2.1 Cache Size - Capacity problem . 21
3.2.2 Cache Line (block) . 22
3.2.3 Cache Replacement Policy . 23
3.2.4 Cache Associativity . 23
3.2.5 Inclusive / Exclusive Cache . 24
3.2.6 Intel Advanced Smart Cache . 24

3.3 Summary . 25

4 Matrix Multiplication Algorithm Implementations 27
4.1 Dense Matrix Multiplication Algorithm . 27
4.2 CPU Parallelization Requirements . 27

4.2.1 CPU Parallel Architectures . 28
4.2.2 Runtime Environments for Parallelization 28

4.3 Parallel Implementations on CPU . 29
4.3.1 1D Partitioning Matrix A in Rows . 29
4.3.2 1D Partitioning Matrix A in Blocks . 30
4.3.3 1D Partitioning Matrix B in Blocks . 31

4.4 Sequential vs Parallel Complexity and Cache Requirements 31
4.4.1 Computational Complexity . 32
4.4.2 Memory Complexity . 32
4.4.3 Cache Requirements . 33

4.5 Parallelization on GPU . 34
4.5.1 NVIDIA GPU Architecture and Runtime Environment 34
4.5.2 Parallel Implementation on GPU . 35

4.6 Summary . 36

5 Web Service Fundamentals . 37
5.1 Introduction . 37
5.2 Web Service Models . 38

5.2.1 Traditional Client-Server Concept . 38
5.2.2 Client-Server Concept with virtualization 39

5.3 Web Service Performance . 39
5.4 Web Service Improvements - Load Balancing 40
5.5 Moving Web Services in the Cloud . 41

5.5.1 The Cloud Challenges . 41
5.5.2 Migration Challenges . 41

5.6 Summary . 42

Part II Matrix Multiplication Algorithm Improvements

Contents xxix

6 Matrix Multiplication Algorithm Analysis . 45
6.1 Algorithm Analysis . 45
6.2 The Testing Environment . 47
6.3 Results of the Experiments . 47

6.3.1 Results for CPU with FIFO Cache Replacement Policy 47
6.3.2 Results for CPU with LRU Cache Replacement Policy 48

6.4 LRU and FIFO Cache Replacement Policy Comparison 51
6.4.1 Speed Comparison . 52
6.4.2 CPIT (N) Comparison . 52
6.4.3 CPIT (N) Decomposition Comparison 52
6.4.4 CPIM(N) Comparison . 52

6.5 Summary . 53

7 Matrix Multiplication Algorithm Simulation . 55
7.1 Introduction to Simulators . 55
7.2 Literature Review . 56
7.3 MMCacheSim architecture . 57
7.4 Experiment Environment . 58
7.5 The Results of the Experiments . 58
7.6 Summary . 60

8 Matrix Multiplication Algorithm Improvements 61
8.1 Matrix Multiplication Algorithm Optimizations 61
8.2 Existing 2D Blocking matrix multiplication algorithm 62
8.3 Hybrid 2D/1D Blocking matrix multiplication algorithm 63

8.3.1 Decrease the Operations and Memory Accesses 63
8.3.2 The Algorithm and the Cache Parameters 65
8.3.3 Modified Hybrid 2D / 1D matrix multiplication algorithm . . 66

8.4 The Testing Methodology . 66
8.4.1 Testing Environment . 66
8.4.2 Test Data . 67

8.5 The Results of the Experiments . 67
8.5.1 The Results on Intel CPU . 67
8.5.2 The Results on AMD CPU . 69

8.6 Summary . 69

9 Performance Drawbacks Using Set Associative Cache 71
9.1 Storing matrix elements in set associative cache 71
9.2 Performance drawbacks in a n-way set associative cache 73
9.3 Experiments for Performance Drawbacks in Sequential Execution . . 77

9.3.1 Experiment 1 - range around N = 64 . 77
9.3.2 Experiment 2 - range around N = 128 79
9.3.3 Experiment 3 - range around N = 256 79
9.3.4 Experiment 4 - range around N = 512 81
9.3.5 Experiment 5 - range around N = 1024 83

xxx Contents

9.3.6 Experiment 6 - range around N = 2048 85
9.4 Experiments for Performance Drawbacks in Parallel Execution 87

9.4.1 Experiment 1 - range around N = 64 . 90
9.4.2 Experiment 2 - range around N = 128 91
9.4.3 Experiment 3 - range around N = 256 93
9.4.4 Experiment 4 - range around N = 512 95
9.4.5 Experiment 5 - range around N = 1024 96
9.4.6 Experiment 6 - range around N = 2048 98

9.5 Summary . 98
9.5.1 Summary for Drawbacks in Sequential Exectuion 100
9.5.2 Summary for Drawbacks in Parallel Exectuion 100

Part III Achieving Superlinear Speedup

10 Superlinear Speedup in Matrix Multiplication on Multiprocessor 105
10.1 Sequential vs Parallel Cache Occupancy . 105
10.2 Speedup Analysis with Memory Behavior . 107
10.3 How to Obtain Super-Linear Speedup . 108

10.3.1 Existence of Superlinear Speedup . 109
10.3.2 Memory and Cache Requirements . 110
10.3.3 A Superlinear Region for Matrix Multiplication 111

10.4 Determination of Superlinear Speedup Regions 112
10.4.1 Multi Chip-Multi Core . 112
10.4.2 Single Chip-Multi Core . 113
10.4.3 Multi Chip-Single Core . 114

10.5 Testing Methodology and Theoretical Results 114
10.5.1 Results for Multichip - Multicore systems 115
10.5.2 Results for Singlechip - Multicore systems 116
10.5.3 Results for Multichip - Singlecore systems 116
10.5.4 Results for Singlechip - Multicore dedicated cache systems . 117

10.6 Experimental Results . 117
10.6.1 Case 1: Multi Chip-Multi Core . 117
10.6.2 Case 2: Single Chip-Multi Core . 117
10.6.3 Case 3: Multiple Chip-Single Core . 118
10.6.4 Case 4: Single Chip-Multi Core - Dedicated L2 Without L3 . 119
10.6.5 Case 5: Single Chip-Multi Core - Shared Cache in Core2Duo119
10.6.6 Case 6: Single Chip-Multi Core - Shared Cache in CoreQuad120

10.7 Discussion . 121
10.7.1 Wider Superlinear Region . 121
10.7.2 Shared Memory Competition . 122
10.7.3 Cache Occupancy due to OS and Virtualization 122
10.7.4 What about 2D blocking Matrix Multiplication 123

10.8 Summary . 124

Contents xxxi

11 Superlinear Speedup in Matrix Multiplication on GPU 125
11.1 How to Achieve Superlinear Speedup in GPU 125

11.1.1 Superlinear regions . 125
11.1.2 Analysis of Memory Utilization . 126

11.2 Testing Methodology . 127
11.2.1 Testing data . 128
11.2.2 Testing Environment . 128

11.3 Results . 129
11.3.1 Speed and Speedup vs Cache Requirements 129
11.3.2 Speedup vs SMs . 129

11.4 Summary . 131

Part IV Performance Analysis of Cache Intensive Algorithms in Cloud
Computing

12 Virtualization Impact on Cache Intensive Algorithm Performance . . . 135
12.1 Testing Environment . 135
12.2 Parallel Matrix Multiplication in Traditional Environment 136
12.3 Parallel Matrix Multiplication in Virtual Environment 137
12.4 Traditional vs Virtual Environment . 138

12.4.1 Speed Comparison . 138
12.4.2 Speedup Comparison . 140
12.4.3 Performance Comparison in Cache Regions 142

12.5 Discussion . 142
12.6 Summary . 143

13 PaaS Impact on Cache Intensive Algorithm Performance 145
13.1 Testing Methodology . 145

13.1.1 Testing Algorithm . 145
13.1.2 Testing Environments . 145
13.1.3 Test Platforms . 146
13.1.4 Test Cases . 146

13.2 Experimental Results . 146
13.2.1 Speed . 147
13.2.2 Speedup . 147

13.3 Performance Comparison of Linux and Windows platforms 149
13.3.1 Speed . 149
13.3.2 Speedup . 151

13.4 Summary . 151

14 IaaS Performance Impact on Cache Intensive Algorithm 153
14.1 Testing Methodology . 153

14.1.1 Testing Algorithm . 153
14.1.2 Testing Environments . 154
14.1.3 Test Cases . 154
14.1.4 Test Data . 156

xxxii Contents

14.1.5 Tests Goal . 156
14.2 The Results of the Experiments . 156

14.2.1 Test Cases 1 and 5 . 157
14.2.2 Test Cases 2 and 6 . 157
14.2.3 Test Cases 3 and 7 . 158
14.2.4 Test Cases 4 and 8 . 159

14.3 Which Hardware Infrastructure Orchestration is Optimal for HPC . . 161
14.3.1 Hardware Infrastructure impact on Sequential Execution . . . 161
14.3.2 Hardware Infrastructure impact on Parallel Execution 162

14.4 Summary . 164

15 Multitenancy Impact on Cache Intensive Algorithm Performance . . . 167
15.1 The Workload Environments . 167

15.1.1 Traditional On-premise Environment . 167
15.1.2 Virtual Environment . 168
15.1.3 Cloud Virtual Environment . 169
15.1.4 Test Goals . 170

15.2 Environment Performance Comparison with all Resources Allocated171
15.3 Multiprocess, Multithread and Multitenant Performance 173
15.4 Summary . 174

16 Superlinear Speedup in Cloud Virtual Environment 177
16.1 Testing Methodology . 177

16.1.1 Testing Algorithm . 177
16.1.2 Testing Environments . 177
16.1.3 Test Cases . 178
16.1.4 Test Goals . 178

16.2 Experimental Results . 178
16.2.1 Speedup Analysis in Traditional Environment 178
16.2.2 Speedup Analysis in Virtual Environment 179
16.2.3 Speedup Analysis in Cloud Environment 180
16.2.4 Speedup Comparison for two threads . 180
16.2.5 Speedup Comparison for four threads 182

16.3 Summary . 183

Part V Performance Analysis of Web Services in Cloud Computing

17 Web Service Performance in the Cloud . 187
17.1 The Testing Methodology . 187

17.1.1 Test Environment Identification . 187
17.1.2 Performance Criteria Identification . 188
17.1.3 Test Data . 188
17.1.4 Test Plan . 189

17.2 The Results and Analysis . 189
17.2.1 Web Service Performance Hosted On-premise 189
17.2.2 Web Service Performance Hosted in the Cloud 190

Contents xxxiii

17.2.3 On-Premise vs Cloud Performance Comparison 192
17.3 Summary . 193

18 A Middleware Strategy to Improve Web Service Performance in
the Cloud . 197
18.1 Middleware Architecture . 197

18.1.1 The Endpoint Web Service . 198
18.1.2 The Middleware Web Service . 198
18.1.3 The Infrastructure Web Service . 199

18.2 Middleware Strategy . 199
18.2.1 Traditional Scenario . 199
18.2.2 Middleware Scenario . 199
18.2.3 Configuration Parameters . 200

18.3 The Experiments and the Results . 200
18.3.1 Middleware Additional Latency . 200
18.3.2 Middleware without Load Balancing . 201
18.3.3 Middleware with Load Balancing and Peak Mode 202
18.3.4 Why (or when) to Introduce Middleware Layer? 203

18.4 Pros and Cons . 204
18.4.1 Middleware Cons . 204
18.4.2 Middleware Pros . 204

18.5 Summary . 205

19 Message Transformation for Better Web Service Performance in
Cloud Computing . 207
19.1 Cloud Testing Environment . 207

19.1.1 The Infrastructure . 208
19.1.2 The Platform . 208
19.1.3 The Client . 208

19.2 The Message Transformation Algorithm . 209
19.3 New Solutions for Peak Loads . 209

19.3.1 Peak load with huge number of concurrent messages 210
19.3.2 Peak load with huge messages . 210

19.4 The Performance Analysis and Discussion . 211
19.4.1 Peak load with huge number of concurrent messages 211
19.4.2 Peak load with huge messages . 212

19.5 Summary . 213

Part VI Cloud Computing Security Challenges and Evaluation

20 Web Service Performance when Introducing Security 217
20.1 The Testing Methodology . 217

20.1.1 Test Environment Identification . 217
20.1.2 Test Plan . 218
20.1.3 Test Environment Configuration . 218

20.2 Cost of Message Overhead . 218

xxxiv Contents

20.3 The Results on Windows OS . 219
20.3.1 Web Service without Security . 219
20.3.2 Web Service with XML Signature . 219
20.3.3 Web Service with XML Signature and XML Encryption . . . 221

20.4 The Results on Linux OS . 221
20.4.1 Web Service without Security . 222
20.4.2 Web Service with XML Signature . 222
20.4.3 Web Service with XML Signature and XML Encryption . . . 223

20.5 How to Measure Maximum Throughput . 224
20.5.1 Max. Throughput without Security . 225
20.5.2 Max. Throughput with XML Signature 226
20.5.3 Max. Throughput with XML Signature and XML Encryption226

20.6 Web Server Performance when Increasing Number of Requests 228
20.6.1 Response Time Overhead without Security 228
20.6.2 Response Time Overhead with XML Signature 228
20.6.3 Response Time Overhead with Signature and Encryption . . . 229

20.7 Web Server Performance for Different Message Security Type 229
20.7.1 Response Time Overhead Implementing Security 230
20.7.2 Response Time Overhead Adding Encryption 230

20.8 Summary . 231

21 Cloud Security Standardization . 233
21.1 General Security Standards and Audit and Assessment Guidance . . . 233

21.1.1 NIST’s 800-53 R3 Security Controls . 233
21.1.2 ISO 27000 Standard series . 234
21.1.3 Audit and Assessment Standards and Guidance 234

21.2 Efforts in Cloud Security Standardization . 235
21.2.1 Appropriate Standard for Cloud Security Challenges 236
21.2.2 CSPs’ Efforts towards Security . 236

21.3 ISO 27001:2005 (in)Compliance for Cloud Computing 237
21.3.1 Security Challenges due to Virtualization 237
21.3.2 Security, Data Protection and Privacy as-a-Service 239
21.3.3 Performance challenges . 240

21.4 Summary . 240

22 Cloud Computing Security in Business information systems 241
22.1 Security Challenges Moving into Cloud . 241
22.2 Risk-based Approach . 242

22.2.1 Information Security Risk Management 243
22.2.2 Risk Assessment Process . 243

22.3 Business Continuity vs Cloud . 245
22.3.1 Why Business Continuity and Disaster Recovery Planning? . 245
22.3.2 Business Continuity Benefits from the Cloud 246
22.3.3 Business Continuity Detriments . 247

22.4 Summary . 249

Contents xxxv

23 New Methodologies for On-premise vs Cloud Security Evaluation . . . 251
23.1 ISO 27001:2005: On-Premise vs Cloud . 251

23.1.1 Metric Definition . 252
23.1.2 Evaluation of Control Objectives Importance 252
23.1.3 Analysis of Control Objectives Importance 252

23.2 ISO 27001:2005 Evaluation in All Cloud Computing Service Layers254
23.2.1 Metric Definition . 254
23.2.2 Control Objectives Importance Evaluation 255
23.2.3 Control Objectives Importance Analysis 256

23.3 ISO 27001:2005 Quantification . 259
23.4 Summary . 262

24 New Methodology for Open Source Cloud Security Evaluation 265
24.1 OpenStack Security Assessment . 265

24.1.1 User Access Management . 265
24.1.2 Network Access Management . 266
24.1.3 Operating System Access Control . 266
24.1.4 Application and Information Access Control 267
24.1.5 Mobile Computing and Teleworking . 267
24.1.6 Cryptographic Controls . 267
24.1.7 Security of System Files . 267
24.1.8 Information Security Incident Management 267
24.1.9 Backup and Disaster Recovery Procedure 268

24.2 Open source Cloud Solution Security Evaluation with OpenStack . . 268
24.2.1 Security Evaluation Metric Definition 268
24.2.2 Security Evaluation . 268
24.2.3 Security Evaluation Analysis . 269

24.3 OpenStack security pros and cons . 270
24.3.1 OpenStack Pros . 271
24.3.2 OpenStack Cons . 272

24.4 Security Evaluation of Open Source Clouds . 272
24.4.1 Metrics Definition . 272
24.4.2 Security Evaluation and analyses . 272

24.5 Summary . 275

Glossary . 277
References . 278

Index . 291

List of Figures

1.1 Traditional (left) [156] and Virtual (right) environment comparison
[157] . 4

1.2 Comparison between On-premises computing, IaaS, PaaS and SaaS
[84] . 6

1.3 OpenStack networking example [107] . 8
1.4 The OpenNebula Cloud Software Architecture [104] 9
1.5 The CloudStack Cloud Software Architecture [23] 10
1.6 The Eucalyptus Cloud Software Architecture [38] 10

2.1 Speedup given by Amdahl’s law and by problem scaling [54] 14
2.2 Ensemble computing performance pattern [54] 15
2.3 Typical Speedup Curve [57] . 16
2.4 Fixed Time Superlinear Speedup according to [57] 17

3.1 CPU cache structure [141] . 20

4.1 Parallel Matrix Multiplication [48] . 29
4.2 Measured average processor speed with real cache [120] 33
4.3 Memory hierarchy of NVIDIA Fermi architecture [33] 34
4.4 GPU matrix multiplication algorithm [33] . 35

5.1 Traditional web service client server model [133] 38
5.2 web service client server model hosted in cloud [133] 39
5.3 Load Balancing HTTP and Web Services [88] 40

6.1 Speed for execution on FIFO CPU [9] . 48
6.2 CPIT (N) for execution on FIFO CPU [9] . 48
6.3 Decomposed CPIT (N) for sequential execution on FIFO CPU [9]. . . 49
6.4 Relative CPIM(N) to CPIT (N) for sequential execution on FIFO

CPU [9]. 49
6.5 Speed for execution on LRU CPU [9]. 50
6.6 CPIT (N) for execution on LRU CPU [9]. 50

xxxvii

xxxviii List of Figures

6.7 Decomposed CPIT (N) for sequential execution on LRU CPU [9]. . . . 51
6.8 Relative CPIM(N) to CPIT (N) for sequential execution on LRU

CPU [9]. 51

7.1 Comparison CPU cycles for memory access for MMCacheSim
simulation and sequential execution on Xeon server with FIFO
replacement policy [11] . 59

7.2 Comparison of CPU cycles used for memory access for sequential
execution on Phenom CPU and simulate with Bit-PLRU
replacement policy [11] . 60

8.1 2D Blocking matrix multiplication algorithm [53] 63
8.2 Hybrid matrix multiplication algorithm [53] . 64
8.3 Modified hybrid matrix multiplication algorithm [53] 66
8.4 The execution time for sequential execution on Intel CPU [53] 68
8.5 The speed for sequential execution on Intel CPU [53] 68
8.6 The execution time for sequential execution on AMD CPU [53] 69
8.7 The speed for sequential execution on AMD CPU [53] 70

9.1 Storing column matrix B in a n-way set associative cache [120] 73
9.2 Execution time in the area around N = 64 [120] 77
9.3 Speed in the area around N = 64 [120] . 78
9.4 L1 data cache misses in the area around N = 64 [50] 78
9.5 L3 data cache misses in the area around N = 64 [50] 79
9.6 Execution time in the area around N = 128 [120] 80
9.7 Speed in the area around N = 128 [120] . 80
9.8 L1 data cache misses in the area around N = 128 [50] 81
9.9 L3 data cache misses in the area around N = 128 [50] 81
9.10 Execution time in the area around N = 256 [50] 82
9.11 Speed in the area around N = 256 [50] . 82
9.12 L1 data cache misses in the area around N = 256 [50] 83
9.13 L3 data cache misses in the area around N = 256 [50] 83
9.14 Execution time in the area around N = 512 [120] 84
9.15 Speed in the area around N = 512 [120] . 84
9.16 L1 data cache misses in the area around N = 512 [50] 85
9.17 L3 data cache misses in the area around N = 512 [50] 85
9.18 Execution time in the area around N = 1024 [120] 86
9.19 Speed in the area around N = 1024 [120] . 86
9.20 L1 data cache misses in the area around N = 1024 [50] 87
9.21 L3 data cache misses in the area around N = 1024 [50] 87
9.22 Execution time in the area around N = 2048 [120] 88
9.23 Speed in the area around N = 2048 [120] . 88
9.24 L1 data cache misses in the area around N = 2048 [50] 89
9.25 L3 data cache misses in the area around N = 2048 [50] 89

List of Figures xxxix

9.26 Achieved speed with executions on 1 and 4 cores for matrix
multiplication [123] . 90

9.27 Speeds in the area around N = 64 [123] . 91
9.28 Speedups in the area around N = 64 [123] . 91
9.29 Speeds in the area around N = 128 [123] . 92
9.30 Speedups in the area around N = 128 [123] . 93
9.31 Speeds in the area around N = 256 [123] . 94
9.32 Speedups in the area around N = 256 [123] . 94
9.33 Speeds in the area around N = 512 [123] . 95
9.34 Speedups in the area around N = 512 [123] . 96
9.35 Speeds in the area around N = 1024 [123] . 97
9.36 Speedups in the area around N = 1024 [123] . 97
9.37 Speeds in the area around N = 2048 [123] . 99
9.38 Speedups in the area around N = 2048 [123] . 99

10.1 Cache occupancy in sequential and parallel execution [52] 106
10.2 Expected average processor speed with real cache [52] 106
10.3 Experimental Speedup for Test Case 1 [52] . 118
10.4 Experimental Speedup for Case 2 [52] . 118
10.5 Experimental Speedup for Case 3 [52] . 119
10.6 Experimental Speedup for Case 4 [52] . 120
10.7 Experimental Speedup for Test Case 5 [52] . 120
10.8 Experimental Speedup for Test Case 6 [52] . 121
10.9 Experimental Speedup for Test Case 1 for P = 4 of 16 [52] 122
10.10Experimental Speedup S(4) for blocking matrices [52] 123

11.1 Expected speed with real cache [33] . 126
11.2 Memory utilization of the sequential implementation [33] 127
11.3 Memory utilization of the parallel implementation [33] 127
11.4 GPU speed for sequential execution (1 active SM) and the average

normalized speed per core (14 active SMs) in parallel execution [33] 129
11.5 GPU speedup for the parallel execution (14 active SMs) [33] 130
11.6 GPU speedup for the second experiment [33] . 130

12.1 Speed in Traditional (T) Operating System [48] 136
12.2 Speedup in Traditional (T) Operating System [48] 137
12.3 Speed in Virtualized (v) Operating System [48] 137
12.4 Speedup in Virtualized (v) Operating System [48] 138
12.5 Speed comparison for odd processing elements [48] 139
12.6 Speed comparison for even processing elements [48] 139
12.7 Speed comparison in L4 region for better presentation [48] 140
12.8 Speedup comparison for odd processing elements [48] 140
12.9 Speedup comparison for even processing elements [48] 141
12.10Relative Performance for odd processing elements [48] 141
12.11Relative Performance for even processing elements [48] 142

xl List of Figures

13.1 Speed achieved on Linux platform [51] . 147
13.2 Speed achieved on Windows platform [51] . 148
13.3 Speedup achieved on Linux platform [51] . 148
13.4 Speedup achieved on Windows platform [51] . 149
13.5 Speed comparison of Linux and Windows platforms [51] 150
13.6 Relative Speed comparison of Windows and Linux platforms [51] . . . 150
13.7 Speedup comparison of Linux and Windows platforms [51] 151

14.1 Test Cases 1 (a) and 2 (b) [131] . 155
14.2 Test Cases 3 (a) and 4 (b) [131] . 155
14.3 Speed for test cases 1 and 5 [131] . 157
14.4 Speedup for test cases 1 and 5 [131] . 158
14.5 Speed for test cases 2 and 6 [131] . 158
14.6 Speedup for test cases 2 and 6 [131] . 159
14.7 Speed for test cases 3 and 7 [131] . 159
14.8 Speedup for test cases 3 and 7 [131] . 160
14.9 Speed for test cases 4 and 8 [131] . 160
14.10Speedup for test cases 4 and 8 [131] . 161
14.11Speed V for sequential execution [131] . 162
14.12Relative speedup R for sequential execution [131] 162
14.13Speed V for parallel execution [131] . 163
14.14Relative speed R for parallel execution [131] . 163
14.15Speedup comparison for test cases 1 to 4 [131] 164

15.1 Test Cases in Traditional Environment [49] . 168
15.2 OpenStack dual node deployment [105] . 169
15.3 Test Cases in Cloud Virtual Environment [49] . 170
15.4 Speed comparison for traditional / virtual machine allocated with

all hardware resources (4 threads) [49] . 171
15.5 Relative speed comparison for Fig. 15.4 [49] . 172
15.6 Speed comparison for virtual machine(s) in cloud allocated with

different resources per machine and per thread [49] 173
15.7 Relative speed comparison for Fig. 15.6 [49] . 174

16.1 Speedup in traditional environment [130] . 179
16.2 Speedup in virtual environment [130] . 179
16.3 Speedup in cloud environment [130] . 180
16.4 Speedup comparison for two threads [130] . 181
16.5 Relative speedup comparison for Figure 16.4 [130] 181
16.6 Speedup comparison for 4 threads [130] . 183
16.7 Relative comparison for Figure 16.6 [130] . 183

17.1 Concat web service response time while hosted on-premise [138] . . . 190
17.2 Sort web service response time while hosted on-premise [138] 190
17.3 Concat web service response time while hosted in the cloud [138] . . . 191
17.4 Sort web service response time while hosted in the cloud [138] 191

List of Figures xli

17.5 Cloud vs on-premise relative response time for Concat web service
[138] . 192

17.6 Cloud vs on-premise relative response time for Sort web service [138]193
17.7 Response time for constant message size but different number of

concurrent messages for Sort web service hosted on-premise [138] . . 194
17.8 Response time for constant message size but different number of

concurrent messages for Sort web service hosted in the cloud [138] . . 195

18.1 Middleware web service client server model in cloud [133] 198
18.2 Latency for simple web service after introduction of middleware

[133] . 200
18.3 Scenario comparison for middleware without load balancing [133] . . 201
18.4 Scenario comparison for middleware with load balancing [133] 202
18.5 Scenario with Overall Improvement introducing middleware [133] . . 203
18.6 Each endpoint responses . 204
18.7 Better performance introducing middleware [133] 205

19.1 Cloud Testing Environment [108] . 208
19.2 The Message Transformation Algorithm [132] 209
19.3 Response time for peak load with small messages of 0.2KB [119] . . . 212
19.4 Response time for peak load with huge messages of 1MB [119] 212

20.1 Message overhead in kilobytes [137] . 219
20.2 Concat web service response time without security while hosted on

Windows . 220
20.3 Concat web service response time with XML Security while hosted

on Windows . 220
20.4 Concat web service response time with both XML Security and

XML Encryption while hosted on Windows . 221
20.5 Concat web service response time without security while hosted on

Linux . 222
20.6 Concat web service response time with XML Security while hosted

on Linux . 223
20.7 Concat web service response time with both XML Security and

XML Encryption while hosted on Linux . 223
20.8 The intersection of theoretical and real throughput for message 2K

without security on Linux OS [119] . 224
20.9 Maximum throughput comparison for a various message size on

Windows and Linux OS . 225
20.10Maximum throughput comparison for a various message size on

Windows and Linux OS using XML Signature 227
20.11Maximum throughput comparison for a various message size on

Windows and Linux OS using both XML Signature and XML
Encryption . 228

xlii List of Figures

20.12Response time for a given number of requests in a second and
message type, depending of message size [136] 229

20.13Response time overhead (ratio) for implementing security for a
given number of requests, depending of message size [136] 230

20.14Response time overhead (ratio) for adding encryption to the
signature [136] . 231

21.1 Virtualized Multi-tenant Environment in IaaS and PaaS [29] 238
21.2 Virtualized Multi-tenant Environment in SaaS [151] 238

22.1 The risk level as a function of the business impact and probability
of incident scenario [75] . 244

23.1 Control objective comparison: On-premises computing versus
cloud [127] . 254

23.2 Comparison between On-premises computing versus cloud service
layers - IaaS, PaaS and SaaS [126] . 258

23.3 Qualitative analysis on ISO 27001:2005 control objectives when
moving into each cloud service layer [126] . 258

24.1 The qualitative analysis of the security evaluation of other open
source cloud solutions compared to OpenStack [128] 270

24.2 The average of the security evaluation [128] . 271
24.3 The qualitative analysis of the security evaluation [122] 273
24.4 The quantitative analysis of the security evaluation [122] 275

List of Tables

1.1 Cloud platform offers for different cloud service layers [126] 7

4.1 Different Shared Memory Multiprocessors with L3 cache [52] 28

7.1 Cache hit and miss cost in cycles [11] . 58

9.1 Cache type [120] . 76
9.2 Cache variables for the experiments [120] . 76
9.3 Results of the experiments in the area around N = 64 [123] 90
9.4 Results of the experiments in the area around N = 128 [123] 92
9.5 Results of the experiments in the area around N = 256 [123] 93
9.6 Results of the experiments in the area around N = 512 [123] 95
9.7 Results of the experiments in the area around N = 1024 [123] 96
9.8 Results of the experiments in the area around N = 2048 [123] 98

10.1 Variable abbreviations for better presentation [52] 107
10.2 Test Case Environments [52] . 114
10.3 Calculated Matrix Size for Each Test Case [52] 115
10.4 Theoretical values for maximum speedup for Case 1 [52] 115
10.5 Theoretical values for maximum speedup for Case 2 [52] 116
10.6 Theoretical values for maximum speedup for Case 3 [52] 116
10.7 Theoretical values for maximum speedup for Case 4 [52] 117

11.1 Combinations of L1 cache memory sizes and cacheline sizes [33] . . . 128
11.2 GPU Device Specifications of Tesla C2070 [33] 128

12.1 virtual vs traditional average speed performance [48] 143

16.1 Environment Comparison for two threads [130] 182
16.2 Environment Comparison for four threads [130] 184

xliii

xliv List of Tables

17.1 Cloud relative performance compared to on-premise for Concat
web service [138] . 193

17.2 Cloud relative performance compared to on-premise for Sort web
service [138] . 194

18.1 Comparing the nominal performance [133] . 201

20.1 Maximums for different message size without security on Windows
and Linux OS without security implementation [135, 137] 225

20.2 Maximums for different message size on Windows and Linux OS
using XML Signature [135, 137] . 226

20.3 Maximums for different message size on Windows and Linux OS
using both XML Signature and XML Encryption [135, 137] 227

21.1 Existing CSPs Security Certification and Accreditation, as well as
Security Features [126] . 237

22.1 Potentially Disastrous Events [3] . 246

23.1 Control objective importance metrics [127] . 252
23.2 Evaluation of ISO 27001:2005 Control Objectives [127] 253
23.3 Control objective importance metrics [126] . 255
23.4 Existing CSPs’ Security Certification and Accreditation, as well as

Security Features [126] . 257
23.5 Details of ISO 27001:2005 Control objectives importance

evaluation [126] . 262

24.1 Metrics for security evaluation in comparison to OpenStack
solution [128] . 269

24.2 Security evaluation of open source cloud solutions [128] 269
24.3 Metrics for security evaluation [122] . 273
24.4 Security evaluation of open source cloud solutions [122] 274

Acronyms

API Application Programming Interface
B2B Business to Business
BCP Business Continuity Plan
CaaS Communication-as-a-Service
CAPEX Capital expenditure
cbs Cache block (line) Size
CC Cluster Controller (in Eucalyptus Cloud)
CLC Cloud Controller (in Eucalyptus Cloud)
CPU Central Processing Unit
CSA Cloud Security Alliance
CSP Cloud Service Provider
DaaS Data Storage-as-a-Service
EBS Amazon’s Elastic Block Store
EC2 Amazon’s Amazon Elastic Compute Cloud
FIFO First-In-First-Out Cache Replacement Policy
GPU Graphics Processing Unit
HPC High Performance Computing
IaaS Infrastructure-as-a-Service
ICT Information and Communication Technology
IDS Intrusion Detection System
IDSaaS Intrusion Detection System-as-a-Service
IPS Intrusion Prevention System
ISMS Information Security Management System
ISRM Information Security Risk Management
IT Information Technology
Java EE Java Enterprise Edition
KPI Key Performance Indicators
KVM Kernel-based Virtual Machine
l Number of elements that fit in a cache block (line)
LAN Local Area Network
LIP LRU Insertion Policy

xlv

xlvi Acronyms

LM Cache Level Misses
LRU Least-Recently-Used Cache Replacement Policy
ME Memory Element Size
MPI Message Passing Interface
NC Node Controller (in Eucalyptus Cloud)
OpenMP Open Multiprocessing
OPEX Operational Expenditure
OS Operating System
PaaS Platform-as-a-Service
RBAC Role Based Access Control
RPC Remote Procedure Call
RPO Recovery Point Objective
RTO Recovery Time Objective
SaaS Software-as-a-Service
SC Storage Controller (in Eucalyptus Cloud)
SIMD Single Instruction Multiple Data
SIMT Single Instruction Multiple Thread
SLA Service Level Agreement
SM Streaming Multiprocessor
SME Small and Medium Enterprise
SP Scalar Processor
SECaaS SECurity-as-a-Service
VLAN Virtual Local Area Network
VM Virtual Machine
VPN Virtual Private Network
W3C World Wide Web Community
WSDL Web Service Definition Language
XaaS Everything-as-a-Service
XML Extensible Markup Language

Part I
Basic Concepts

Chapter 1
Cloud Computing

Abstract Cloud computing is a new concept of resource allocation and utilization.
It offers scalable, flexible and on-demand resources to host the companies applica-
tions and data. The on-demand concepts rent whenever you need and pay when you
rent offer the customers to invest the money into their business rather to invest in
advance for underutilized ICT equipment. For service providers it reduces CAPEX,
such as better resource utilization due to virtualization and multi-tenancy, hardware
and licenses costs, and reduces OPEX, such as human resources and equipment
maintenance. For customers it offers massive scalability, elasticity, and self provi-
sioning of user resources.

1.1 Global Concepts

1.1.1 What is Cloud Computing

Cloud computing is the fifth generation of computing after Mainframe, Personal
Computer, Client-Server Computing, and Web [116]. It is a model that enables con-
venient, on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or cloud provider
interaction [98]. It enhances collaboration, agility, scaling, and availability, and pro-
vides the potential for cost reduction through optimized and efficient computing
[29].

From customer perspective, cloud computing means unlimited on-demand, flex-
ible and scaled computing and storage resources. The customers do not know where
the data and application are hosted and if they are distributed or shared. From
CSP perspective, it is a multi-tenant shared environment with a usage-based billing
model.

3

4 1 Cloud Computing

1.1.2 Virtualization

Virtualization is a technique that offers creation of more dynamic, flexible and scal-
able datacenters. Figure 1.1 presents the architecture differences of traditional and
virtual environment.

Fig. 1.1 Traditional (left) [156] and Virtual (right) environment comparison [157]

It is impossible to build a modern enterprise without virtualization. Cost reduc-
tion for power consumption and cooling, easy administration, licenses regulation,
backup, migration, and security isolation are benefits and reasons why virtualiza-
tion techniques usage rapidly grows.

Virtualization is the baseline for cloud computing IaaS and PaaS service layers
[48]. Using virtualization the cloud resources are shared among multiple tenants
in one or more instances of virtual machines according to their needs. Therefore
isolating tenants in separated and secured platform environment is vital. However,
the tenants still share the hardware resources and this makes an impact to the overall
performances.

Despite all the advantages, current virtualization solutions do not produce per-
formance isolation among virtual machines (VMs). The introduction of a new layer
produces overall performance discrepancy of the application in a guest operating
systems. Running the same virtual machine on the same hardware at different times
among the other active VMs will not achieve the same performance [85].

Many different virtualization techniques exist, such as operating system virtu-
alization, platform virtualization, storage virtualization, network virtualization, and
application virtualization explained in details in [13].

1.2 Cloud Deployment Models and Service Layers 5

1.2 Cloud Deployment Models and Service Layers

Different companies posses different data types and application and they want from
the service providers to offer the services appropriate as their need. It is cheaper to
migrate the data and application in the cloud reducing IT administration and costs
for IT equipment and service management. However, not all the data and application
can be outsourced to the CSPs.

Three main cloud deployments exist:

• Public Cloud - The resources are dynamically shared to the customers by third
party CSP. The same services are offered to the customers (tenants). The re-
sources are hosted in one or many data centers and the customers do not know
where their data and application are hosted;

• Private Cloud - The resources are used only by the company that builds the
cloud. All the costs, management and administration remain within the company.
However, the private cloud offer increased security level than the public cloud
since the applications and data are not moving outside of the customer security
perimeter; and

• Hybrid cloud - Uses the benefits of the other two deployments. The company can
outsource its public data and non-core applications to the public cloud and build
its own private cloud to host its confidential data and core applications according
to its information security policy. The companies can use multiple public clouds
or hybrid clouds to increase the service availability. There are several multiple
cloud management strategies described in [64].

The main goal of the cloud is to offer Everything-as-a-Service (XaaS). This sec-
tion shows the three main cloud service layers IaaS, PaaS and SaaS, as well as others
XaaS that can be found in the literature.

1.2.1 Main Cloud Service Layers

Cloud services are delivered in three main cloud service layers:

• Infrastructure-as-a-Service (IaaS) - CSPs provide the entire hardware infrastruc-
ture for the customers to host their data and run the applications. The customer is
provided with processing, storage, networks and other computing resources, and
he is able to deploy and run arbitrary software [84]. IaaS offers scalable resources
in near real-time if the customer applications performance decrease or the storage
place becomes insufficient. The resources are charged in pay-as-you-go model;

• Platform-as-a-Service (PaaS) - The customer is provided with programming lan-
guages and tools, so as to be able to create and use various applications [84].
PaaS gives the illusion of infinite resources to the customers since they can scale
the resources without requiring additional actions on its site; and

6 1 Cloud Computing

• Software-as-a-Service (SaaS) - the customer uses CSPs’ applications running on
a cloud infrastructure. It represents the cloud computing from the end-users point
of view, used in everyday work [84].

Figure 1.2 compares the differences among three service layers of cloud com-
puting versus traditional on-premises computing through deducing which resources
or services are executed by the customer and CSP. The resources and services in
responsibility of the CSP are shown in green boxes, while those in responsibility of
the cloud customer are shown in red.

Fig. 1.2 Comparison between On-premises computing, IaaS, PaaS and SaaS [84]

Figure 1.2 shows that SaaS solution may be used from anywhere and at any time,
provided a client (web browser) and Internet connection. These features make SaaS
software most attractive for Small and Medium Enterprise (SMEs), and require no
additional expensive and complex resources and hardware on customer’s part. The
responsibilities for all parts of the IT services hosted on-premises are on the resource
owner, the customer in our case. Going from IaaS, through Paas to SaaS service
layers in cloud computing, more and more responsibilities are transferred from the
cloud customer to CSP [126].

1.2.2 Other Cloud Service Layers

Many other Something-as-a-Service items are proposed for different purposes.
Security-as-a-Service (SECaaS) and Data protection and privacy-as-a-Service will
speed up cloud market growth, both for the providers offers and clients, as well
as cloud trustworthiness [126]. Cloud Security Alliance (CSA) offers 10 candidate
domains for SECaaS [28].

1.3 Which Cloud to Migrate the Services on? 7

Data Storage-as-a-Service (DaaS) allows cloud customers to store their data on
CSPs’ servers located in remote locations [64]. Communication as a Service (CaaS)
provides reliable, schedulable, configurable, and (if necessary) encrypted commu-
nication [64]. Intrusion Detection System-as-a-Service (IDSaaS) [4] allows cloud
customers to define a virtual private area within the public cloud space for their
applications that can be secured with application-specific policies.

1.3 Which Cloud to Migrate the Services on?

In this section we present the analysis for current most common cloud computing
offers on the market performed for this thesis by the authors in [122]. The main
question at the beginning of cloud computing was if the cloud concept can become
basic ICT choice for the companies. Nowadays the main question is when the cloud
will become basic ICT choice for the companies. A list of 10 critical obstacles and
opportunities for growth of cloud computing is given in [10]. However, not all com-
panies will migrate their services in the public cloud. Some will keep the services
in their own IT resources, such as business critical software, and others will change
the use of IT resources into private clouds [114].

Many CSPs offer various public cloud solutions on the market, such as Amazon’s
AWS [6], Salesforce’s Sales Cloud [139], Google’s App Engine [45] and Cloud
Storage [46], Microsoft Azure [92] and Live [91], VMware’s vCloud [160] etc.
Table 1.1 presents the main cloud platform offers for different cloud service layers.

CSP IaaS PaaS SaaS

Amazon EC2, S3, Simple Queue
Service, SimpleDB

Salesforce Force.com, Heroku,
Database.com

Sales cloud, Service Cloud

Microsoft Azure (Windows, SQL,
.NET)

Live, Hotmail, Office Web
App

Google Google App Engine Gmail, Google Docs
IBM SmartCloud CloudBurst Appliance Lotus Live, Blueworks Live

Table 1.1 Cloud platform offers for different cloud service layers [126]

Despite the commercial clouds and their services, there are many open source
cloud solutions that allow the customers to develop their own private cloud, espe-
cially IaaS cloud service layer, such as well known OpenStack [106], Eucalyptus
[38], OpenNebula [104], and CloudStack [23]. The authors in [162] devise a set of
criteria to evaluate and compare most common open source IaaS cloud solutions.
Almost all open source cloud solutions provide interfaces to commercial cloud ser-
vices Amazon’s EC2 and S3, and Google’s App Engine.

8 1 Cloud Computing

1.4 Open Source Cloud Architectures

This section gives an overview and comparison of four most common Open Source
cloud components, architecture and features in more details that was performed by
the authors in [122] for the purpose of this thesis research.

1.4.1 The OpenStack Cloud Architecture

Openstack cloud consists of three main components: Compute, Object Storage, and
Image Service. Compute Infrastructure (Nova) is the core part of the cloud that
manages instances of virtual machines (VMs) and networking. Object Storage is
the subsystem that stores the objects in a massively scalable large capacity system.
It back ups and archives data, stores secondary or tertiary static data, stores data
when predicting storage capacity is difficult, and creates the elasticity and flexibility
of cloud-based storage for customer web applications. Image Service is lookup and
retrieval subsystem for VM images.

OpenStack can be deployed and runs on Linux Ubuntu, CentOS and RedHat.
It supports Kernel-based Virtual Machine (KVM), Xen, UML, Microsoft Hyper-V
and QEMU hypervisors. Nova services can be deployed either on the same physical
server or they can be installed on separate servers.

OpenStack network consists of two networks, public and private as depicted in
Figure 1.3. The IP addresses from the public network are associated with instances
of VMs to be accessed from the public internet. The private network is used for
internal web service communication.

Fig. 1.3 OpenStack networking example [107]

1.4 Open Source Cloud Architectures 9

1.4.2 OpenNebula Cloud Architecture

OpenNebula is an open source cloud software that builds both public and private
clouds. It supports all most common hypervisors and operating systems. The Open-
Nebula architecture is depicted in Fig 1.4. Front-end executes the OpenNebula ser-
vices. Hypervisor-enabled hosts provide the resources that instances of VMs need.
Datastores hold the base images of the VMs. Service Network is used to support
interconnection of the storage servers and OpenNebula control operations. VM Net-
works are physical networks that support VLANs for the VMs.

Fig. 1.4 The OpenNebula Cloud Software Architecture [104]

1.4.3 CloudStack Architecture

CloudStack is an open source cloud software that builds both public and private
clouds. It supports all most common hypervisors and operating systems. The Cloud-
Stack architecture is depicted in Fig 1.5. Management Server is a single point of
configuration that provides web user interface and APIs, manages the assignment
of VM instances to particular hosts, public and private IP addresses to particular
accounts, and the allocation of storage. Cloud infrastructure is organized as Zone
(equivalent to a single datacenter) with one or more Pods (typically one rack) such
that each Pod with one or more clusters.

1.4.4 Eucalyptus Architecture

Eucalyptus is an open source cloud software that builds both public and private
clouds. It supports all most common hypervisors and Linux operating systems.
The Eucalyptus architecture is depicted in Fig 1.6. It consists of six components:
Cloud Controller (CLC), Walrus, Cluster Controller (CC), Storage Controller (SC),
NodeController (NC). Each component is a stand-alone web service. CLC makes

10 1 Cloud Computing

Fig. 1.5 The CloudStack Cloud Software Architecture [23]

high-level resources scheduling decisions and makes requests to the CCs and is re-
sponsible for exposing and managing the underlying virtualized resources (servers,
network, and storage). Walrus stores and accesses VM images and user data. CC
schedules VM execution on specific nodes and manages the VM instances networks.
SC has a function as Amazon’s EBS [5]. NC controls activities of VM instances and
manages the virtual network endpoint.

Fig. 1.6 The Eucalyptus Cloud Software Architecture [38]

1.5 Summary

This chapter presents the basic concepts of cloud computing. It relies on virtual-
ization technique. The cloud services are grouped into three main service layers:
IaaS, PaaS and SaaS and can be deployed in private, public or hybrid cloud. We
also present the main CSPs and open source cloud solutions for private and hybrid
clouds.

Chapter 2
Performance

Abstract Todays huge computing requirements make a desire for faster program
execution. Many mechanisms exist to speedup the execution. Examples start from
improving algorithm and executing less operations and program steps on the same
computer; and move towards usage of faster computers executing the same num-
ber of operations for less time. Implementation of parallelism and high performance
computing is final modern mechanism for faster program execution. It is neces-
sary to define a way to compare two or more different algorithms, computers or
approaches and determine which is faster.

2.1 Performance Fundamentals

The performance can be defined differently depending on the problem and the envi-
ronment. A faster software program is the one that finishes in less time. Faster bank
cashier is the one that serves more customers in the bank in one working day. In
both cases the time spent is very important.

2.1.1 Basic Definition of Performance

Since smaller execution time is needed for better performance, the performance of
a system A is defined in (2.1) [63].

Per f ormanceA = 1/ExecutionTimeA (2.1)

Therefore, system A has better performance than system B, i.e. Per f ormanceA >
Per f ormanceB if ExecutionTimeA < ExecutionTimeA

11

12 2 Performance

2.1.2 Speed

Todays vendors race which computer will execute more operations in second. This
is the most important performance factor, i.e. computer system speed V which is
defined in (2.2) as a ratio between number of operations o and time required t.

V = o/t (2.2)

The Speed is equal parameter to performance and reciprocal value of execution
time.

In addition, two important parameters determine the CPU performance for a
given software program. The first one is MIPS (Millions of Instructions Per Sec-
ond) defined in (2.3).

MIPS =
InstructionCount

CPUExecutionTime ·106 (2.3)

More important parameter is GFLOPS (Giga FLOating point instructions Per
Second) defined in (2.4).

GFLOPS =
FPInstructionCount

CPUExecutionTime ·109 (2.4)

Todays modern supercomputers produce speed of more than 20.000 TFlops
[141].

2.1.3 Speedup Factor

If some problem can be divided on several smaller chunks then it can be executed
concurrent on several processors. Speedup S(p) that can be achieved is defined in
(2.9) as a ratio of execution time using one processor ts and execution time using p
processors tp.

Speedup =
ts
tp

(2.5)

The best sequential algorithm should be executed and underlying algorithm for
parallel implementation might be different for maximum speedup.

2.1.4 Efficiency

Most of modern clusters, grids or clouds are heterogeneous environments. There-
fore, neither all processors work with the same speed nor all processing elements
finish the same job in total execution time. E f f iciency E defines the fraction of time

2.2 Performance Limits 13

that the processors are being used. It is formally defined as a ratio of execution time
using one processor ts and the product of execution time using p processors tp with
the number of processors p (2.6).

E =
ts

tp · p
=

S(p)
p

(2.6)

2.1.5 Cost

The Cost is another parameter for parallel execution. It defines the total time that p
processors are used or utilized for program execution. Relation (2.7) gives a formal
definition of cost as a product of execution time and the number of used processors
p. It also show several derived variants with other parameters.

C(p) = tp · p =
ts · p
S(p)

=
ts
E

(2.7)

2.2 Performance Limits

This section presents the performance limits analysis published by the authors in
[124] for the purpose of this thesis research.

Amdahl has shown that multiprocessor execution performance is not propor-
tional to the number of processors [7]. Gustafson has found a way to show that
there are algorithms which can have almost linear speedup [54].

2.2.1 Speedup Analysis

Both Amdahl’s law [7] and Gustafson’s scaled speedup [54] use a single equation
(2.8) and bring conclusions according to the value of a single parameter s, i.e. the
sequential portion of a parallel algorithm which characterizes the algorithm.

Speedup =
1

s+ p/P
(2.8)

The parallel portion of the program is p and can be executed by P processors in
parallel. Normalized time where s+ p = 1 is used in (2.8). Amdahl assumes that the
number of processors P→∞ and in (2.9) concludes limited speedup independent of
the number of processors.

Speedup≤ 1
s

(2.9)

14 2 Performance

Gustafson walks on the surface of small sequential fractions assuming s→ 0 and
in (2.10) concludes scaled speedup bounded by the number of processors P.

Scaled speedup = P+(1−P)s′ (2.10)

Figure 2.1 from [54] shows both fixed size and fixed time (scaled) speedups.

Fig. 2.1 Speedup given by Amdahl’s law and by problem scaling [54]

A good understanding of these relations is given in [140] with equivalence of
both approaches along with examples of possible misuse of given formulas.

Sun and Ni in [147] consider uneven workload allocation and communication
overhead to evaluate the speedup. They use W to be the amount of work of an
application, Ti(W) the time required to complete W amount of work on i processors,
Wi be the amount of work executed with degree of parallelism i and m the maximum
degree of parallelism. Thus, W = ∑Wi, i = 1, . . . ,m. By QP(W) they express the
communication overhead when P processors are used and derive the speedup as

SP =
∑

m
i=1 Wi

∑
m
i=1

Wi
i d

i
Pe

The simplified version without communication overhead of the speedup is

SP =
W1 +G(P)WP

W1 +
G(P)

P WP +QP(W∗)

2.2 Performance Limits 15

where G(P) =W ∗P/WP is defined to represent the ratio of work increment. It equals
to Amdahl’s Law for fixed-size speedup and to Gustafson’s scaled speedup for fixed-
time speedup, as special cases of memory bound speedup.

2.2.2 Speedup Limits

In [146] if both A and B are restricted to square matrices with dimension N, then
the computation requirement of matrix multiplication is equal to WP = 2N3 and the
memory requirement is M = 3N2. Therefore the authors compute WP = (2M

3)3/2 and

according to [146] the function G(P) will be G(P) =
√
(3P

P+2)
3, which is less than

P, for P > 1, and is bounded by 3
3
2 . Note that due to data replication, the memory

capacity requirement increases faster than the computation requirement does.
The conclusion in [54] is that linear speedup is maximum speedup in a paral-

lel system and presents the domain of computing performance pattern in the log
scaled Figure 2.2. The conclusion is that fixed-size speedup (Amdahl’s law) bounds
speedup to the amount dependent of sequential fraction of the algorithm; the fixed-
time speedup is less than scaled speedup bounded to the linear speedup and the
author specifies the domain of insufficient memory.

Fig. 2.2 Ensemble computing performance pattern [54]

Authors in [39] conclude the impossibility of superlinear speedup, based on im-
plicitly on the assumption there is no savings from diminished loop overhead.

16 2 Performance

Shi in [140] refers to a prerequisite to apply Amdahl’s or Gustafson’s formulation
clarifying that the sequential and parallel programs should take the same number of
total calculation steps for the same input and avoid cheating to break the law. Shi
points to O(n2) comparison-based sort algorithm as an example to ”break” the law,
since the O(n2) sort algorithm cannot retain its structure when crafting a parallel
algorithm from it. In other words, partitioning such a sequential algorithm can im-
proved its efficiency. Therefore the introduction of structure persistent algorithm is
imperative.

Gustafson has referred to memory limitations in [56] and makes further anal-
ysis. Historical ensemble models hold uniprocessor performance flat as problem
size varies, even beyond physical memory size. However, Gustafson defines tiered
memory as a system which can make performance increase instead of decrease as
problem size per processor shrinks, and workload can shift to routines with higher
speed as the problem is scaled. Superlinear speedup results in such cases and is far
from being an anomaly, it becomes a common place when the performance model
makes realistic assumptions about memory speed and problem scaling.

Gustafson refers to flat memory approximation in [57] comparing it to assump-
tion that the Earth is flat. For many everyday activities, like estimating short dis-
tances, a planar view of the world simplifies life at little cost of accuracy. If we scale
up the problem to distances of thousands of miles or down to a few inches, the flat
Earth assumption gets us into trouble.

A typical curve for fixed size speedup (Amdahl’s Law) is presented in the log
scale Figure 2.3 bounded by the superlinear speedup.

Fig. 2.3 Typical Speedup Curve [57]

As a final example of a surprising result of fixed time performance evaluation,
the fixed time model creates a new source of superlinear speedup. In this context,
”speed” means operations per second for some type of operation; whatever the mea-
sure, we assume speed varies on each processor as a function of time. You can think
of the speed as a function of the subtask. If there are two subtasks, each growing
with problem size N, and each possible to run in parallel, then Figure 2.4 shows
how the changing speed ”profile” can increase performance superlinearly [56].

2.3 Intensive Algorithms 17

Fig. 2.4 Fixed Time Superlinear Speedup according to [57]

2.3 Intensive Algorithms

Each processor’s operation consists of several parts: load some data from the mem-
ory, executes the operation upon the data and then store the result in the memory.

2.3.1 Compute and Data Intensive Algorithms

The total execution time (and the performance) mostly depends of what type of
operations (computations) particular algorithm performs and the total ammount of
data. The authors in [42] define two types of intensive algorithms presented as defi-
nitions 2.1 and def:DataIntensiveAlgorithm.

Definition 2.1 (Compute Intensive Algorithm).
The Compute Intensive Algorithm is the algorithm which spends the most of its

time on computations. These algorithms usually perform the computations on small
amount of data and I/O operations. However, increasing the problem size also in-
creases the computation complexity. Parallelization of compute intensive algorithms
achieves almost linear speedup because usually small amount of data is used without
any data dependency.

Definition 2.2 (Data Intensive Algorithm). The Data Intensive Algorithm (or Mem-
ory Demanding) is the algorithm that requires the computations on huge amount of
data and I/O operations. It spends the most of its time on loading and storing the
data into memory. These algorithms usually achieve smaller speedup since usually
there is data dependency and memory access performance bottleneck.

Both Shared memory and Message passing concurrent systems usually have a
part of the program that need to be executed sequentially due to synchronization,
data consistency and coherency.

18 2 Performance

2.3.2 Cache Intensive Algorithms

However, dividing parallel processing as either compute-intensive or data-intensive
does not satisfies todays computing demands. Many algorithms exist that have an-
other feature beside compute or data intensive. It is reuse of the same data. We intro-
duce Definition 2.3 that is published in [130] for the purpose of this thesis research,
which formally defines those algorithms as cache intensive algorithm.

Definition 2.3 (Cache intensive algorithm). Cache intensive algorithm with com-
plexity k is the algorithm where the average number of accesses per element is k > 1.

The notation O(k) is used for k-cache intensive algorithm. For example, the dense
matrix multiplication algorithm is O(N) cache intensive since each element is ac-
cessed N times for different computations. Nevertheless, it is compute intensive
O(N3) and memory demanding O(N2).

2.4 Summary

To compare two algorithms or programs we need to define and measure their per-
formances. This chapter defines the performance factors and its limits in parallel
execution. Besides compute and data intensive, we introduce new additional cache
intensive algorithm for better analysis and faster execution of algorithms.

Chapter 3
Memory Hierarchy

Abstract Memory access is the main bottleneck in all kinds of program execution,
regardless it is compute, data or cache intensive algorithm. Memory access time is
100 to 1000 times slower than executing one basic processor operation [62], such
as addition or multiplication. Introducing memory hierarchy, i.e. on-chip or off-chip
cache memory, increases memory access performance, especially for the algorithms
that repeatedly use the same data. Only intelligent program transformation approach
based on cache size analysis and algorithm organization can efficiently exploit better
performance [120]. Therefore it is important to understand the memory hierarchi-
cal architecture organization and its different parameters that impact to the overall
algorithm performance.

3.1 Memory is the Bottleneck

Basic computer system is built on the Von Neumann concept (or Eckert-Mauchly
as recently recognized) with central processing unit (CPU), main memory and bus.
The problem of matching the speed of the instruction execution with the speed of
fetching and storing the data / instruction degrades the overall performance of the
computer system. Modern multiprocessors use multilayer cache memory system
[63] to balance the gap between CPU and main memory and to speedup data access.

CPU runs a particular program by accessing data from the memory, executing ba-
sic operations addition or multiplication and storing the results in the memory. The
main bottleneck in the process is the data access in memory which is approximately
up to 1000 times slower than floating point operation execution [63]. Introducing
memory hierarchy based on caches in CPU speeds up the execution of programs
that reuse the same data, i.e. cache intensive algorithms.

19

20 3 Memory Hierarchy

3.1.1 Multilevel Cache to speedup the Memory

Nowadays, most of modern multiprocessors use three layer cache memory to
speedup main memory access. The cache size grows but the access time and miss
penalty rise going from the lowest L1 to L3 cache, main memory and disk. Fig-
ure 3.1 depicts the memory hierarchy.

Fig. 3.1 CPU cache structure [141]

The effect of exploiting last level shared cache affinity is considerable, due its
sharing among multiple threads and high reloading cost [112]. Intel introduces Intel
Smart Cache into their newest CPUs to improve their performance [69].

3.1.2 Cache Regions

The same application behaves discrepant for different problem size [48]. Therefore
we introduce new important application parameter Cache storage requirements CSR
defined in Definition 3.1. It concerns the data re-use and does not refer to cache
misses generating for the first usage. Once the data is stored in the cache they should
be re-used for the whole algorithm execution.

Definition 3.1 (Cache Storage Requirements). Cache Storage Requirements is the
size of the cache memory that algorithm requires to fit the whole data without gen-
erating cache misses for data reuse. It is determined by relation (3.1) as a sum of
products of the total number of data elements Ni and the memory element size MEi
for each group i of total groups g of memory elements with different size.

CSR =
i=g

∑
i=1

Ni ·MEi (3.1)

3.2 Cache Parameters 21

Particular Cache storage requirement determines the algorithm behavior when
executed on particular cache. The following definitions 3.2, 3.3 and 3.4 define the
particular cache regions L1, L2, L3 and L4 correspondingly for todays shared mem-
ory multiprocessors with memory hierarchy as depicted in Figure 3.1.

Definition 3.2 (First Level Cache Region (L1 Region)). The algorithm works in
cache region L1 if relation (3.2) is satisfied.

CSR≤CacheSize(L1) (3.2)

Definition 3.3 (Medium Level Cache Region (L2 and L3 Region)). The algorithm
works in medium level cache regions L2 or L2 if relation (3.3) or (3.3) is satisfied
correspondingly.

CacheSize(L1)<CSR≤CacheSize(L2) (3.3)

CacheSize(L2)<CSR≤CacheSize(L3) (3.4)

Definition 3.4 (Last Level Cache Region (L4 Region)). The algorithm works in
cache region L4 if relation (3.5) is satisfied.

CSR >CacheSize(L3) (3.5)

Lets explain the definitions in more details. The region L1 is determined as mem-
ory size of the L1 cache and its capability to store complete memory requirements.
It is assumed that in this case no cache miss will be generated in L1 cache since
all relevant data will be stored in the cache. Increasing the problem size N will pro-
duce cache misses, which causes to enter in the L2 region which enables storage of
all memory requirements in L2 cache and avoid generation of cache misses on L2
level. The same definitions continue to explain L3 and L4 regions.

3.2 Cache Parameters

Previous Section 3.1 presents that introducing multilevel cache memory speedups
the memory access. This section analyzes in details all the cache parameters that
impacts on the overall performance of the algorithms, particular on cache intensive
algorithms.

3.2.1 Cache Size - Capacity problem

Cache memory speeds up the execution only when the data fit in the cache. Only
in this case faster cache data access will be exploited rather than much slower main

22 3 Memory Hierarchy

memory access for the previously accessed data that are already placed in the cache.
When the problem size exceeds a particular cache size then the cache misses start
generating and the performance decreases.

In Definition 3.5 we introduce a new parameter Capacity Problem that impacts
the algorithm performance.

Definition 3.5 (Capacity Problem). Capacity problem arises when the condition
in relation (3.6) is satisfied, i.e. the cache storage requirement exceeds the size of
particular cache level i.

CSR >CacheSize(Li) (3.6)

One can propose why don’t we use cache with bigger size, but that is not an
appropriate solution since that kind of cache will be much slower than the one with
the smaller one.

3.2.2 Cache Line (block)

Cache line speeds up the time locality, i.e. if sometimes a particular memory location
is referenced, then it is likely that near or even the same location will be referenced
again in the near future.

When the processor initiates an access to some data X from the memory this
action will result with transfer of the whole cache line (block) in the cache. This
activity will transfer all memory elements from the block to be loaded and stored
into the same cache line.

Lets denote with cbs the size of cache line in bytes, with ME the size of a memory
element. Then the number of elements l that can fit in a cache line is determined with
relation (3.7).

l = d cbs
ME
e (3.7)

For example, since todays modern multiprocessor cache line is 64B, if the algo-
rithm uses double precision data (ME = 8Bytes each), then l = 8 elements can fit
in a cache line and will be loaded from the memory reading particular element of
them.

Cache line is very important for algorithms with arrays or matrices. However, it
is more important how they are stored in the memory. For example, C++ stores the
data row major, but Fortran column major. Reading the matrix column by column
in C++ will be much slower than row by row and opposite for Fortran.

3.2 Cache Parameters 23

3.2.3 Cache Replacement Policy

If capacity problem arises and a new data is needed, then some cache line in the
cache will be replaced with the new data from the lower cache level or main mem-
ory. Which cache line will be replaced in this case depends on the Cache Replace-
ment Policy. Thus cache replacing policy also impacts the algorithm performance.
Three basic cache replacement policies are suggested: Random, Least-Recently-
Used (LRU) and First-In-First-Out (FIFO) [63].

Many proposals for cache replacement policies can be found in the literature.
Several improvements are proposed for LRU. LRU Insertion Policy (LIP) places
the incoming line in the LRU position instead of the MRU [115]. The authors in
[35] propose even better replacement policy, i.e. a Score-Based Memory Cache
Replacement Policy. Adaptive Subset Based Replacement Policy for High Perfor-
mance Caching is proposed in [61], i.e. to divide one cache set into multiple subsets
and victims should be always taken from one active subset when cache miss occurs.
Map-based adaptive insertion policy estimates the data reuse possibility on the ba-
sis of data reuse history [72]. The authors in [79] propose Dueling CLOCK cache
replacement policy that has low overhead, captures recency information in mem-
ory accesses and exploits the frequency pattern of memory accesses compared to
LRU. A new replacement algorithm PBR L1 is proposed for merge sort which is
better than FIFO and LRU [47]. The authors in [87] propose LRU-PEA replace-
ment policy that enables more intelligent replacement decisions due to the fact that
some types of data are less commonly accessed depending on which bank they re-
side in. The authors in [78] propose cache replacement using re-reference interval
prediction to outperform LRU in many real world game, server, and multimedia
applications. However, improving replacing policies requires either additional hard-
ware or modification of existing. PAC-PLRU replacing policy utilizes the prediction
results generated by the existing stride prefetcher and prevents these predicted cache
blocks from being replaced in the near future [171].

3.2.4 Cache Associativity

This section presents a part of the analysis published by the authors in [120] for the
purpose of this thesis research.

Most of modern processors use n-way associative cache where a block can be
placed in a restricted set of places in the cache [62]. There are S sets in the cache
memory and each set is a group of n blocks in the cache. A block is first mapped
onto a set and then the block can be placed anywhere within that set. Equation (3.8)
gives the relation for cache associativity with other cache parameters.

CacheSize = S ·n · cbs (3.8)

24 3 Memory Hierarchy

The cache associativity is another important performance parameter in addition
to the cache size, especially for particular problem size. In Definition 3.6 we intro-
duce Cache Associativity Problem that arises due to cache associativity.

Definition 3.6 (Cache Associativity Problem). Cache Associativity Problem arises
in storage of matrix columns and inefficient usage of cache where the matrix will
always map onto a small group of same cache sets and initiate a significant number
of cache misses. In this case it looks like the processor is using only a small group
of cache sets instead of complete number of sets in associative memory where max-
imum performance can be achieved. Thus, Capacity problem arises much earlier
than relation (3.6) is satisfied.

The worst case appears in the strongest relation (3.9).

N > n (3.9)

Chapter 9 will present the deeper analysis for dense matrix multiplication algo-
rithm performance gains and drawbacks in n-way associative cache.

3.2.5 Inclusive / Exclusive Cache

Multi level caches has another feature that can differently impact to the performance,
inclusive or exclusive multi level caches.

Inclusive caches are the ones that all data of L1 cache is also placed in L2 cache.
Since this cache loses the L1 cache size area in L2 cache, the L1 cache should be
much smaller than L2. This is the case of Intel CPU. The data in L1 and L2 caches
are disjunct in Exclusive caches. AMD CPU mostly posses exclusive cache.

3.2.6 Intel Advanced Smart Cache

This section briefly presents the main features of Intel Advanced Smart Cache [69].
Since todays CPUs are multi-cores instead of obsolete single-cores, Intel shares the
last level cache between the cores. This sharing stores the data in one place accessi-
ble to all cores. Thus the cores dynamically can use up to 100 percent of available
last level cache and threads dynamically can use the required cache capacity.

For example, if CPU has 4 cores and 12MB shared cache, if three cores are
inactive then the only active core will access to the full 12MB cache.

3.3 Summary 25

3.3 Summary

As memory accesses are more demanding operation than computations, we analyze
the multilevel memory hierarchy in the modern multiprocessors. In this chapter we
define L1 to L4 cache regions that directly depend of the size of different cache level.
Cache intensive algorithms behave similar for different problem sizes in the same
cache region. However, we analyze and the other important cache parameters beside
cache size that impact to the algorithm performance: cache line, replacement policy,
cache associativity, inclusive / exclusive cache and smart last level cache.

Chapter 4
Matrix Multiplication Algorithm
Implementations

Abstract Matrix multiplication is the most common representative of many linear
algebra algorithms which performance directly depends of the cache. It is one of
the most utilized tasks in many different numerical computations and is an excellent
algorithm for parallel computing. This chapter presents on-premise sequential and
several parallel implementation that are used as a test algorithm in the experiments
in this Part II, and parts III and IV.

4.1 Dense Matrix Multiplication Algorithm

To simplify, squared matrices with dimension N are used. The result product ma-
trix CN·N = [ci j] for all i, j = 0,1, . . .N − 1 is defined in (4.1) by multiplying
the multiplier matrix AN·N = [ai j] and the multiplicand matrix BN·N = [bi j] for
i, j = 0,1, . . .N−1.

CN·N = AN·N ·BN·N , ci j =
N−1

∑
k=0

aik ·bk j (4.1)

Each element ci j in (4.1) is calculated as an inner product of row i from matrix A
and column j from matrix B.

4.2 CPU Parallelization Requirements

Parallel architecture and tool for parallel execution of parallel implementation of
some algorithm are required. This section presents possible architectures and tools
that achieve scaled speedup, and even superlinear speedup for dense matrix multi-
plication algorithm.

27

28 4 Matrix Multiplication Algorithm Implementations

4.2.1 CPU Parallel Architectures

Several modern processors use shared L3 cache, besides L1 and L2. In most cases,
L1 and L2 are dedicated per core, and L3 is shared per chip. In the following we
assume that s is number of chips and c is number of cores per chip in a modern
processor.

In this thesis we’ll use all 3 possible CPU shared memory environments shown
in Table 4.1. These environments differ in number of chips and cores per chip, i.e.
values of s and c. In case 1, both s,c > 1; in case 2, s = 1 and c > 1; in case 3, s > 1
and c = 1. The case where s = c = 1 is equal to sequential execution.

Case Acronym Environment

1 Multi Chip -
Multi Core

Multiple s processors each with multiple c cores. Each core has its own
dedicated L1 and L2 cache, and each chip has its own last level shared L3
cache.

2 Single Chip -
Multi Core

Single processor with multiple c cores. Each core has its own dedicated L1
and L2 cache, and the processor poses last level shared L3 cache.

3 Multi Chip -
Single Core

Multiple s processors each with single core (c = 1). Each processor (core)
has its own dedicated L1 and L2 cache. In this test case L2 is last level cache
since it is in the same time dedicated and shared per core.

Table 4.1 Different Shared Memory Multiprocessors with L3 cache [52]

4.2.2 Runtime Environments for Parallelization

We present four most common runtime environments for parallelization:

• C++ / Fortran with OpenMP on Linux Server for CPU. This is the most common
used runtime environment for shared memory multi-processors, such as multi-
core and multi-chip multiprocessors. The program is written in C++ (or Fortran),
and compiled with gcc compiler with option -fopen to use OpenMP [103] API
for parallelization and then executed in Linux operating system. We use in the
most of the cases this runtime environment;

• C++ with MPI on Linux Server for CPU. This is the most common used runtime
environment for distributed memory multiprocessors where the intra-processor
communication latency is very low, such as supercomputers. The program can
be written in C++, and compiled and then executed in Linux operating system.
We don’t use this runtime environment in this thesis since we are working on
shared memory multiprocessors;

• C# with threading on Windows Server for CPU This runtime environment can be
used for distributed memory multiprocessors where the intra-processor commu-

4.3 Parallel Implementations on CPU 29

nication latency is very low, such as supercomputers. The program is written in
C# with .NET Framework and compiled and then executed in Windows operat-
ing system. We use this runtime environment for Windows Azure environment;
and

• CUDA programming model [101] for GPU facilitates by tapping into the avail-
able computational resources. CUDA programs are accelerated by data-parallel
computations of millions of threads, which in this context means instance of a
kernel, where krenel is the program running on the GPU device.

4.3 Parallel Implementations on CPU

In the experiment of this thesis 3 different parallel implementations of dense matrix
multiplication on CPU are used in order to have maximum efficiency and lower cost.

4.3.1 1D Partitioning Matrix A in Rows

This section presents the algorithm that the authors used in [48].
Matrix A is partitioned on N rows and each row Ci of matrix C is calculated as

defined in (4.2) and depicted in Figure 4.1,

Ci = Ai ·B (4.2)

where each row matrix Ai (for i = 0,1, · · · ,N−1) consists of

Ai =
[
ai0 ai1 · · · ai N−1

]
1·N

and each row matrix Ci (for i = 0,1, · · · ,N−1) consists of

Ci =
[
ci0 ci1 · · · ci N−1

]
1·N .

-
Pi

= ·

Matrix C Matrix A Matrix B

Ci Ai B

Fig. 4.1 Parallel Matrix Multiplication [48]

30 4 Matrix Multiplication Algorithm Implementations

To exploit maximum performance for parallel execution on P processors rows Ai
are grouped in P sets, such that for all i = 0,1, · · · ,N−1 and s = 0,1, · · · ,P−1 row
Ai is placed in Sets if equation (4.3) is satisfied. The algorithm assures that each row
Ai will be placed in exactly one set.

s = i mod P (4.3)

Each set Sets is sent to execution on the processor Ps.

4.3.2 1D Partitioning Matrix A in Blocks

This section presents the algorithm that the authors used in [52].
The idea for this parallel matrix multiplication in a shared memory multiproces-

sor assumes matrix size N such that P is divisor of N to achieve maximum efficiency
and minimum cost. The basic idea is to partition the matrices A and C into smaller
P sub matrices (block rows) Ai and Ci respectively, as presented in Figure 4.1.

Let the matrix size N = q ·P, where P is the number of processing elements, and
q ≥ 1 is an integer. The basic idea is to partition the matrix A into smaller P sub
matrices (block rows) Ai

AN·N =

A0
A1
...

AP−1

where each matrix Ai (for i = 0,1, ...,P−1) consists of

Ai =

a(q·i)0 ... a(q·i)(N−1)

a(q·i+1)0 ... a(q·i+1)(N−1)
...

...
...

a(q·(i+1)−1)0 ... a(q·(i+1)−1)(N−1)

q·N

.

Matrix C from (4.1) can be constructed as

CN·N =

C0
C1
...

CP−1

where

Ci = Ai ·BN·N , i = 0,1, ...,P−1. (4.4)

In this algorithm each processor computes its own partition Ci of Matrix C by
multiplying partition Ai with matrix B.

4.4 Sequential vs Parallel Complexity and Cache Requirements 31

The P equations defined in (4.4) can be easily parallelized and scaled to P pro-
cessing elements in a shared memory environment as shown in [124]. A program is
developed using C++ and OpenMP that parallelize P equations defined in (4.4) such
as each processing element Pi computes its own partition Ci of matrix C.

pragma omp p a r a l l e l
{

i n t i d = o m p g e t t h r e a d n u m () ;
i n t num= o m p g e t n u m t h r e a d s () ;
f o r (i = i d ∗N/ num ; i <(i d +1)∗N/ num;++ i)

f o r (j =0 ; j<N; ++ j)
{

do ub l e sum = 0 . 0 ;
f o r (k =0; k<N; ++k)
{

sum += A[i ∗N+k] ∗ B[k∗N+ j] ;
}
C[i ∗N+ j] = sum ;

}
}

The algorithm takes the same number of total calculation steps for the same in-
put, both for sequential and parallel, and avoids cheating to break the law. Thus,
the algorithm is Structure Persistent according to [140] and therefore, maximum
speedup should be limited to the number of processors P.

4.3.3 1D Partitioning Matrix B in Blocks

This section presents the algorithm that the authors used in [130].
This implementation is similar as the partitioning described in Section 4.3.2 but

the partitioning is implemented on matrix B. That is, each thread multiplies the
whole matrix AN·N and column matrix BN·N/c where c denotes the total number of
parallel threads.

4.4 Sequential vs Parallel Complexity and Cache Requirements

Matrix multiplication algorithm is computationally, data and cache intensive and
depends of matrix size N. The next two sections 4.4.1 and 4.4.2 present the part of
the analysis that the authors published in [48] for matrix multiplication algorithm
computational and memory complexity.

32 4 Matrix Multiplication Algorithm Implementations

4.4.1 Computational Complexity

The algorithm performs N3 sums and N3 products, or total 2 ·N3 operations for
sequential execution on one processing element.

The matrix partitioning algorithm explained previously defines different data and
code for each processing element in parallel execution. Each processing element in
parallel environment executes average 2 ·N/P ·N2 operations. In total the algorithm
performs 2 ·N3 operations for parallel execution, i.e. same as sequential execution
on one processing element.

4.4.2 Memory Complexity

The algorithm needs to store 3 ·N2 elements. If ME denotes the size of one ma-
trix element in bytes, then total memory requirement is 3 ·N2 ·ME for sequential
execution. Cache memory does not need to store three matrices but only two input
matrices A and B since the write is directly forwarded to main memory. No matter
what cache memory type the processor uses it needs to store 2 ·N2 ·ME bytes.

Due to shared memory parallel system, last level memory (L4 or main memory
in this case) needs to store the whole matrices A, B and C, or total 3 ·N2 ·ME bytes.
Opposite to sequential execution the cache memory requirement directly depends
on cache type and level for parallel execution.

Dedicated cache memory per processing element (core) needs to store the whole
matrix B with capacity of N2 ·ME bytes and only chunk of matrix A. The amount
of necessary space in dedicated per core cache memory is given in (4.5).

DedicatedCachePerCore = (1+1/P) ·N2 ·ME (4.5)

L3 cache is usually shared per chip if exists. If s denotes the number of chips
the shared multiprocessor consists, then L3 needs to place the whole matrix B with
N2 ·ME bytes and around N2/s elements of matrix A, i.e. around 1/s ·N2 ·ME bytes.
The total amount of necessary space in dedicated per chip cache memory is given
in (4.6).

DedicatedCachePerChip = (1+1/s) ·N2 ·ME (4.6)

The test environments in [48] use L1 and L2 dedicated per core caches. Each L2
cache should be able to store DedicatedCachePerCore bytes defined in (4.5). The
multiprocessor uses s = 2 chips with dedicated per chip L3 cache and thus each L3
cache needs to store DedicatedCachePerChip bytes defined in (4.6).

4.4 Sequential vs Parallel Complexity and Cache Requirements 33

4.4.3 Cache Requirements

In this section we present the analysis that the authors published in [124] for the
purpose of this thesis research.

Each element ci j in matrix C is calculated as inner product of row i from matrix A
and column j from matrix B. The required number of reads from main memory for
each element ci j is 2 ·N, i.e. one row from matrix A and one column from matrix B.
This means that each element ai j and bi j need to be accessed N times. If the elements
are not present in the cache, they need to be loaded from main memory, which is
much expensive operation. Therefore, increasing the matrix size N will occupy the
cache faster, increase the cache miss ratio and thus increase the total execution time.
We must address that matrix C does not need to be loaded into the cache because the
program writes the values ci j in the memory and the program stores the elements ci j
only once in the memory.

Let’s analyze the cache occupancy by the given algorithms. A part of the cache is
occupied by the operating system (OS) for its requirements, usually a small portion.
The cache will not generate cache misses if all the matrices A and B are both stored
in the cache.

Note that no space is required for matrix C, since the values are computed and
stored with write no allocation algorithm directly in main memory. If write alloca-
tion is used then a small space will be used in the cache but its dimension is small
in comparison to the need of storage of whole matrices A and B.

Suppose that matrices are stored in L1 cache. If matrix dimension increases then
there is a need for more space and cache misses generation starts provoking perfor-
mance degradation. The analysis continues with storage problems in the next level
of the caches L2, L3 and so on. The same situation with generation of cache misses
happens when L2 (L3) cache will be occupied by both matrices. The performance
degradation is presented in Fugire 4.2.

Fig. 4.2 Measured average processor speed with real cache [120]

34 4 Matrix Multiplication Algorithm Implementations

4.5 Parallelization on GPU

In this section we present the parallel implementation that was proposed by the
authors in [33] for the purpose of this thesis research in order to maximum exploit
the GPU architecture with matrix multiplication algorithm.

4.5.1 NVIDIA GPU Architecture and Runtime Environment

NVIDIA GPUs have evolved into massively parallel, many-core architectures.
These GPUs contain an array of Streaming Multiprocessors (SM), each containing
8 Scalar Processors (SP) for the Tesla architecture [86], 32 SPs for the Fermi archi-
tecture [43], and 192 SPs for the latest Kepler architecture [102]. However, CUDA
in particular is a Single Instruction Multiple Thread (SIMT) programming model
[96], where all threads execute in step the same instruction, but within one SM. On
the other hand, threads in different SMs are executing instructions independently
from each other, thus providing scalability.

The memory hierarchy of NVIDIA Fermi GPU device is presented in Fugire 4.3.
The GPU devices have off-chip memory, so called global memory where average
single fetching of data takes at least 400 cycles.

 SM (0)

L1 cache

16/48KB

Shared Memory

48/16KB

Private Memory

32K x 32bit registers

 SM (1)

L1 cache

16/48KB

Shared Memory

48/16KB

Private Memory

32K x 32bit registers

 SM (N-1)

L1 cache

16/48KB

Shared Memory

48/16KB

Private Memory

32K x 32bit registers...

L2 cache (768KB)

Global Memory (up to 6GB)

Fig. 4.3 Memory hierarchy of NVIDIA Fermi architecture [33]

The first level in the memory hierarchy is the L1 and shared memory, which is
shared by a number of threads organized in thread blocks. It can be accessed almost
as fast as register memory and is called private memory which is exclusive to a
single thread. L2 cache is off-chip memory and can be accessible from all threads
in any SM.

4.5 Parallelization on GPU 35

4.5.2 Parallel Implementation on GPU

For simplification, we multiply square matrices of same sizes N ·N. The basic dense
matrix multiplication algorithm is defined by ci j = ∑

N−1
k=0 aik ·bk j where aik, bk j and

ci j are correspondingly elements of matrices A, B and C, for all i, j = 0, . . . ,N−1.
The idea is to store greater part of B in the L2 cache and share it among all

processes avoiding cache misses as much as possible. Based on the algorithm in
[124], we have developed a parallel algorithm for a GPU device. Since multicore
processors have larger cache memories it is easier to store the whole matrix B. In
GPU the largest cache memory is L2 (736KB) and the matrix B cannot be fitted in
L2 for larger problem sizes. However, we solve this, by partitioning the matrix B
with the number of available processing elements. An example of two processing
elements is presented in Figure 4.4, where the horizontal and the vertical striped
matrices (A and B respectively) are multiplied, and the unstriped matrix which is
divided in four regions is the resulting matrix C, m is the size of the partitioned
submatrix, am ost is the residual of problem size and the number of processing
elements, bx stands for the ID of the processing element and j j together with bx
indicate which submatrix has to be processed.

1 2

3 4

m m

m
m

am
_o
st

am_
ost

bx = 0

bx = 1

bx = 0

jj = 0 jj = 1

Fig. 4.4 GPU matrix multiplication algorithm [33]

36 4 Matrix Multiplication Algorithm Implementations

The region 1 in matrix C is calculated for each problem size. However, for prob-
lem sizes which is a factor of the number of processing elements, there is no residual
and there is perfect alignment with the number of divided submatrices, thus regions
2, 3 and 4 do not have data to calculate.

4.6 Summary

Dense matrix multiplication algorithm is the best representative algorithm of cache
intensive algorithms. In this chapter we presents the sequential and several parallel
implementations that are used in this thesis research to maximize CPU exploitation.
We analyze the algorithm complexities and cache memory requirements for CPU
and GPU implementations.

Chapter 5
Web Service Fundamentals

Abstract Web services are the most commonly used technology as a standardized
mechanism to describe, locate and communicate with web applications. They are
used for collaboration between loosely bound components. This chapter gives a
brief overview of web services, their performance factors and several challenges.

5.1 Introduction

W3C defines a Web service as a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL) [163]. Effective and ubiquitous
B2B systems are being built using web services [31]. Additionally, independence
of the underlying development technology enhances web services usage due to the
mitigation to development process time and effort [151]. SOAP and REST are two
main approaches for interfaces between web site and web services. A high-level
comparison of theses approaches is realized in [17]. RESTful web services are more
convenient to be hosted on mobile devices than SOAP [93].

Web services usage increases due to their advantages over other types of dis-
tributed computing architectures and benefits they provide. Microsoft defines sev-
eral key benefits for software developers in [95]. Interoperability and usability are
the most important ones. Standardization of the web services allows a possibility
for developers to reduce learning curve for other web services following the stan-
dards. Easy deployment forces IT managers to transfer their services to web service
technology.

37

38 5 Web Service Fundamentals

5.2 Web Service Models

This section presents two different web service client service models as they de-
veloped from the traditional client-server model to todays client-server model in
modern virtualized enterprise data centers.

5.2.1 Traditional Client-Server Concept

The first generation of web services are traditional web services which rely on client
- server concept depicted in Figure 5.1. One or many clients request some service
from one or several web services hosted on the web server. Web service can call
another web service hosted on the same or other web server or can write or retrieve
some data from some database server.

Fig. 5.1 Traditional web service client server model [133]

IT managers propose a hardware, system, network and software resources for
web server according to prediction of server average load and risk management of
possible peaks. A vast number of this generation servers are either underutilized
for small loads and over-utilized for peak loads. The former is desired by the cus-
tomers as they want the best service performance. The latter is desired by finance
department as they want to cut all possible costs.

The solution for underutilization does not exist. Maybe the transfer of server’s
hardware resources or change the whole web server with other server will mitigate
the underutilization.

5.3 Web Service Performance 39

5.2.2 Client-Server Concept with virtualization

The second generation of web services are virtualized web services which also rely
on client - server concept depicted in Figure 5.2. Virtualization solves some open is-
sues in the traditional client server model. Web service can now easily utilize more
hardware resources (CPU, RAM, HDD) for peak load or release the unnecessary
hardware resources when load decreases. However, there will be still some signifi-
cant service downtime for maintenance, although it will be smaller than traditional
client server concept.

Fig. 5.2 web service client server model hosted in cloud [133]

Cloud computing concept offers on-demand dynamic and elastic resources which
improve web service availability and scalability. Nevertheless, there is a service
downtime for maintenance, although it will be the smallest compared to other tim-
ings for both virtual or traditional client server model.

5.3 Web Service Performance

Web service customers want fast responses for their requests. Therefore web service
performance is vital to preserve and even increase web service technology usage.
There are external and internal parameters that impact the web service performance.
Throughput expressed by the number of concurrent messages in a second, with their
size and type are the most important external parameters that depend on customer
activities. Web server hardware resources are internal parameters that depend on IT
and business managers. Implementing web service security standards outcomes with
message overhead and requires complex cryptographic operations for each message,
thus decreasing the web service performance. The authors in [137] define quantita-
tive indicators to determine risk of introducing web service security standards for
SOAP messages for various message size and number of concurrent messages.

40 5 Web Service Fundamentals

Web service payload is unpredictable most of the time and in most cases. Adding
more hardware resources can increase overall web service performance if the num-
ber and size of the requests increases. However, the additional hardware will be
underutilized for small payload. The costs will be increased due to additional power
consumption as well.

Research results about web service performance can be found in many papers
in different domains. Web services can be simulated and tested for various perfor-
mance metrics before they are deployed on Internet servers, which give results close
to the real environment [152]. The authors in [148] propose a deserialization mecha-
nism to reuse matching regions from the previously deserialized application objects
from previous messages, and performs deserialization only for a new region that
would not be processed before. Web service performance in wireless environments
and implementing WS-Security are analyzed in [144]. Web server performance pa-
rameters response time and throughput are analyzed via web services with two main
input factors message size and number of messages in [137]. This thesis extends this
research to compare the web service performance with the same input factors in the
cloud.

Web servers are usually underutilized since IT managers plan the strategy for
hardware resources in advance for the period of several years. Servers are overuti-
lized in peaks which can enormously increase web service response time or even
make the services unavailable. Companies can benefit if they migrate their services
in the cloud since it offers flexible, scalable and dynamic resources.

5.4 Web Service Improvements - Load Balancing

We found a nice approach for Load Balancing HTTP and Web Services in [88]
depicted in Figure 5.3.

Fig. 5.3 Load Balancing HTTP and Web Services [88]

5.5 Moving Web Services in the Cloud 41

The authors also present Web Services Loadbalancing in the Amazon Cloud Us-
ing Membrane. However, the solution sets up a web services cluster in the Ama-
zon Cloud and the cluster instances always run. Our proposed solution and strategy
works with minimum necessary resources and dynamically utilize new resources in
peak load.

5.5 Moving Web Services in the Cloud

Chapter 1 presents the cloud concept and the advantages compared to other resource
models and concepts. In this section we focus on cloud features to host web services.

5.5.1 The Cloud Challenges

Cloud computing is a paradigm that offers scalable and high quality resources, re-
dundancy, elasticity and multi-tenancy. The concept of cloud computing reduces
customers’ cost. The on-demand concepts ”rent whenever you need” and ”pay when
you rent” offers the customers to invest the money into their business rather to invest
in advance for underutilized ICT equipment. However, the overall cost is not always
the key factor in business manager decisions. Cloud computing provides many ben-
efits and detriments to business continuity. A comprehensive analysis for business
information system security in cloud computing is given in [126]. Service unavail-
ability for only several hours or even minutes can be source of costs bigger than
those for IT equipment.

5.5.2 Migration Challenges

Hosting web services in public cloud can be a good solution for SMEs. However,
it provides several open issues: Software Licensing; Security, Privacy and Trust;
Cloud Lock-In worries and Interoperability; Application Scalability Across Mul-
tiple Clouds; Dynamic Pricing of Cloud Services; Dynamic Negotiation and SLA
Management; Regulatory and Legal Issues [16]. It is not an optimal solution for
many-tasks scientific computing [70]. The cloud and virtual environments are also
worse than on-premise environment for cache intensive algorithms when the data
exceeds the cache size [130]. EC2 is slower than a typical mid-range Linux cluster
and a modern HPC system for HPC applications due to interconnection on the EC2
cloud platform which limits performance and causes significant variability [76].
However, the cloud provides better performance in distributed memory per core
[49].

42 5 Web Service Fundamentals

Implementing security often adds an overhead and outcomes with complex cryp-
tographic operations that always degrades the service overall performance.

Faster web service response time is imperative for both the clients and the
providers. A lot of proposals and solutions exist to speedup the web service re-
sponse time. Algorithm transformation can highly improve the web service perfor-
mance. Installing more hardware resources on web server is another solution. Cloud
computing should facilitate this issue. However, both solutions add additional cost
to service providers. The former costs concern additional software developer man
hours. The latter costs concern additional OPEX (operating costs) for renting more
instances of virtual machines or the instances with more resources and in the most
of the cases additional system administrator man hours.

Our intention is to find a solution that will improve the overall performance of
web services with less additional costs, or even without it if possible. In Chapter 18
we introduce a middleware layer implementation between the clients and the end-
point web service as a strategy to survive compute peak loads in cloud computing.
The experiments prove that although the middleware produces additional latency
to overall response time, this solution provides better web service performance for
compute intensive web services. This solution reduces the costs for additional hard-
ware only during the peaks and also reduces the system administrator man hours
since it automatically starts and shut downs instances with needed resources. Chap-
ter 19 continues the idea introducing message transformation to achieve better per-
formance from particular OS on web server.

5.6 Summary

Web service technology is sine qua non in todays business information systems. We
overview some web service models, their performance factors and several deploy-
ment and migration in the cloud challenges.

Part II
Matrix Multiplication Algorithm

Improvements

Chapter 6
Matrix Multiplication Algorithm Analysis

Abstract Matrix multiplication performs O(N3) operations, demands storing O(N2)
elements and accesses O(N) times each element, where N is the matrix size. Since it
is cache intensive algorithm, cache replacement policy is the next important parame-
ter that impacts its performance after arising cache capacity problem. Several cache
replacement policies are proposed to speedup different program executions. This
chapter analyzes and compares two most implemented cache replacement policies
FIFO and LRU. The results of the experiments published by the authors in [9] for the
purpose of this thesis research show the optimal solutions for sequential and parallel
dense matrix multiplication algorithm. As the number of operations does not depend
on cache replacement policy, we define and determine the average memory cycles
per instruction that the algorithm performs, since it mostly affects the performance.

6.1 Algorithm Analysis

In this section we analyze the dense matrix multiplication algorithm execution. For
better presentation and analysis we use CPU clock cycles instead of execution time.
Relation (6.1) derives the total execution clock cycles (TC) as a sum of clock cy-
cles needed for operation execution (CC) and clock cycles needed for accessing the
matrix elements (MC) [63].

TC =CC+MC (6.1)

CC does not depend neither of CPU architecture nor cache size, associativity and
replacement policy, but directly depends of matrix size N. CPU executes N3 sums
and N3 multiplications or total 2 ·N3 floating points operations. MC is more inter-
esting for analysis. It depends on matrix size N, but also on cache size, associativity
and replacement policy.

More important parameters for analysis are the average values of TC, MC and
CC defined in the next three definitions [9].

45

46 6 Matrix Multiplication Algorithm Analysis

Definition 6.1 (Average Total Cycles Per Instruction). CPIT (N) for particular
matrix size N is defined as a ratio of total number of clock cycles and total number
of instructions given in (6.2).

CPIT (N) =
TC

2 ·N3 (6.2)

Definition 6.2 (Average Memory Cycles Per Instruction). CPIM(N) for par-
ticular matrix size N is defined as a ratio of total number of memory cycles and total
number of instructions given in (6.3).

CPIM(N) =
MC

2 ·N3 (6.3)

Definition 6.3 (Average Calculation Cycles Per Instruction). CPIC(N) for par-
ticular matrix size N is defined as a ratio of total number of calculation cycles CC
and total number of instructions given in (6.4).

CPIC(N) =
CC

2 ·N3 (6.4)

We measure speed, TC, CC, MC for each matrix size, number of cores in defined
testing environments. We calculate CPIT (N), CPIM(N) and CPIC(N) and analyze
the distribution of CPIM(N) in CPIT (N). All the experiments are realized both for
sequential and parallel execution.

We measure total execution time T T for each experiment with algorithm de-
scribed in (4.1) and then calculate TC as defined in [63] and calculate CPIT (N)
using (6.2).

To measure MC we developed another algorithm defined in (6.5) and published in
[9]. This algorithm performs the same floating point operations on constant operands
and writes the results in matrix C elements. The difference is that it does not read
from memory or some cache the elements of matrices A and B.

ci j =
N−1

∑
k=0

a ·b (6.5)

Executing this algorithm we measure its execution time CT for each experiment
and then calculate the difference from TC and CT . Then we calculate MC as defined
in [63] using CPU speed for particular processor and calculate CPIM(N) using (6.3).

CC and CPIC(N) are calculated as defined in (6.6) and (6.4).

CC = TC−MC (6.6)

6.3 Results of the Experiments 47

6.2 The Testing Environment

Two servers with different CPUs with different cache replacement policies are used:
FIFO and LRU. Both servers are installed with Linux Ubuntu 10.10. C++ with
OpenMP support is used for parallel execution.

FIFO testing hardware infrastructure consists of one Intel(R) Xeon(R) CPU
X5680 @ 3.33GHz and 24GB RAM. It has 6 cores, each with 32 KB 8-way set
associative L1 and 256 KB 8-way set associative L2 cache. All 6 cores share 12
MB 16-way set associative L3 cache. Each experiment is executed using different
matrix size N for different number of cores from 1 to 6. Tests are performed by unit
incremental steps for matrix size and number of cores.

LRU testing hardware infrastructure consists of one CPU Quad-Core AMD Phe-
nom(tm) 9550. It has 4 cores, each with 64 KB 2-way set associative L1 and 512 KB
16-way set associative L2 cache. All 4 cores share 2 MB 32-way set associative L3
cache. Each experiment is executed using different matrix size N on different num-
ber of cores from 1 to 4. Tests are performed by unit incremental steps for matrix
size and number of cores.

6.3 Results of the Experiments

This section presents the results of realized experiments to determine how different
replacement policies impact to dense matrix multiplication cache intensive algo-
rithm.

6.3.1 Results for CPU with FIFO Cache Replacement Policy

Figure 6.1 depicts the results of measured speed. SpeedT (i) denotes the speed in
gigaFLOPS for algorithm execution on i cores where i = 1,2, ...,6.

CPIT (N) presents another perspective of the experiment. Figure 6.2 depicts the
results for algorithm execution on 1,2, ...,6 cores for each matrix size 128 < N <
1000. We can conclude that executing the dense matrix multiplication algorithm on
more cores needs more average cycles per core for each matrix size N. Also, the
speed decreases by increasing the matrix size N.

The next experiment analyzes the decomposition of the average total cycles per
instruction on average calculation cycles per instructions and average memory cy-
cles per instruction.

Figure 6.3 depicts the absolute decomposition of CPIT (N) on CPIM(N) and
CPIC(N) for sequential execution.

The conclusion is that CPIC(N) is almost constant with average value of 4.93 cy-
cles per instruction. More important is that CPIM(N) follows CPIT (N), i.e. CPIT (N)
depends directly of average memory cycles per instruction.

48 6 Matrix Multiplication Algorithm Analysis

Fig. 6.1 Speed for execution on FIFO CPU [9]

Fig. 6.2 CPIT (N) for execution on FIFO CPU [9]

Figure 6.4 depicts the relative value of CPIM(N) to CPIT (N) for sequential exe-
cution.

We can conclude that CPIM(N) has a trend to equalize with CPIT (N) as N grows,
i.e. for greater matrix size N the total execution time depends directly of average
memory access time, instead of time for computations.

6.3.2 Results for CPU with LRU Cache Replacement Policy

Figure 6.5 depicts the results of measured speed. SpeedT (i) denotes the speed in
gigaFLOPS for algorithm execution on i cores where i = 1,2, ...,6. We can conclude

6.3 Results of the Experiments 49

Fig. 6.3 Decomposed CPIT (N) for sequential execution on FIFO CPU [9].

Fig. 6.4 Relative CPIM(N) to CPIT (N) for sequential execution on FIFO CPU [9].

that there is a huge performance drawback after N > 362 which is entrance in the
L4 region, i.e. the region where elements of matrices A and B cannot be placed in
L3 cache and thus producing L3 cache miss.

CPIT (N) presents better the information. Figure 6.6 depicts results for execu-
tions on 1,2,3 and 4 cores for each matrix size 128 < N < 1000. We can see 2
regions, Region 1 for N < 362 and Region 2 for N > 362. The former presents
the L1 and L2 cache regions, i.e. dedicated per core regions where matrices can be
stored completely in L1 and L2 caches correspondingly. In this region sequential
execution provides the worst CPIT (N) compared to parallel execution. The latter
presents L3 and L4 regions, i.e. shared memory regions where matrices can and

50 6 Matrix Multiplication Algorithm Analysis

Fig. 6.5 Speed for execution on LRU CPU [9].

cannot be stored completely in L3 cache correspondingly. In this region sequential
execution provides the best CPIT (N) compared to parallel execution.

Fig. 6.6 CPIT (N) for execution on LRU CPU [9].

Figure 6.7 depicts the absolute decomposition of CPIT (N) on CPIM(N) and
CPIC(N) for sequential execution.

CPIC(N) is almost constant to the average value of 7.17 cycles per instruction.
More important is that CPIM(N) follows CPIT (N), i.e. CPIT (N) depends directly of
average memory cycles per instruction.

Figure 6.8 depicts the relative value of CPIM(N) to CPIT (N).
As depicted, CPIM(N) has a trend to equalize with CPIT (N) as N grows for

N · (N +1)< 2MB. This is the case when matrix BN·N and one row od matrix A1·N
can be placed in the L3 cache. CPIM(N) relative remains constant for greater N.

6.4 LRU and FIFO Cache Replacement Policy Comparison 51

Fig. 6.7 Decomposed CPIT (N) for sequential execution on LRU CPU [9].

Fig. 6.8 Relative CPIM(N) to CPIT (N) for sequential execution on LRU CPU [9].

6.4 LRU and FIFO Cache Replacement Policy Comparison

In this section we compare the results and analyze the difference between perfor-
mance of FIFO and LRU cache replacement policies.

52 6 Matrix Multiplication Algorithm Analysis

6.4.1 Speed Comparison

Comapring figures 6.1 and 6.5 we can conclude that both infrastructures have a
region around entrance to L3 region when the speed begins to fall down to a local
maximum. The graphs show that the speed decrease is more emphasized in LRU
rather than FIFO. However, it is because L3 region in LRU begins for N > 362 and
for FIFO CPU for N > 886. Therefore the real comparison should be the regions
N > 362 on LRU CPU with N > 886 on FIFO CPU, which are the beginning of L4
region.

6.4.2 CPIT (N) Comparison

Comparing figures 6.2 and 6.6 we can conclude that both infrastructures have simi-
lar curves for CPIT (N) for particular region. The important conclusion is that FIFO
CPU needs more cycles per core for each matrix size N regardless of cache region
(dedicated or shared). However, the LRU CPU has different features. Sequential ex-
ecution has the best CPIT (N) in dedicated per core L1 and L2 regions and parallel
execution on greater number of cores in shared L3 and L4 regions.

6.4.3 CPIT (N) Decomposition Comparison

Comparing figures 6.3 and 6.7 we can conclude that both infrastructures have sim-
ilar curves for CPIT (N). The graphs show that CPIT (N) is greater in LRU than
FIFO. However, the real comparison should be the regions N > 362 on LRU CPU
with N > 886 on FIFO CPU as explained in the previous subsection. CPIM(N) is
almost parallel compared to CPIT (N) for all matrix size N in both infrastructures.
Also, the similar result is the fact that CPIC(N) is almost constant for each matrix
size N for both CPUs.

6.4.4 CPIM(N) Comparison

Comparing figures 6.4 and 6.8 we can conclude that CPIM(N) is relative more closer
to CPIT (N) in LRU than FIFO. However, it is because L3 region in LRU begins for
N > 362 and for FIFO CPU for N > 886. Therefore the real comparison should
be the regions N > 362 on LRU CPU with N > 886 on FIFO CPU, which are the
beginning of L4 region and the relative values in LRU CPU are better than FIFO
CPU. LRU CPU has average of 59.77% in the region of N = 362 and FIFO CPU
has average 65.84% in the region of N = 886.

6.5 Summary 53

6.5 Summary

We determined that both cache replacement policies provide similar speed and aver-
age cycles per instruction CPIT (N) for sequential and parallel execution. However,
the results show that LRU replacement policy provides best CPIT (N) for sequen-
tial execution in dedicated per core cache memory. Parallel execution provides the
best CPIT (N) in shared memory LRU CPU, i.e. LRU produces greater speedup than
FIFO and is more appropriate rather than FIFO cache replacement policy for dense
matrix multiplication algorithm.

Chapter 7
Matrix Multiplication Algorithm Simulation

Abstract An optimal architecture to execute certain compute and memory intensive
algorithm is desirable in most applications. This chapter presents the MMCacheSim
simulator published in [11] for the purpose of this thesis research. MMCacheSim
simulator predicts matrix multiplication performance on particular existing or non-
existing multiprocessor. It simulates the execution time and number of cache misses
that matrix multiplication algorithm performs with particular matrix size and ele-
ment size executing on processor with different cache size, line, level associativity,
and replacement policy. Parallel execution of the matrix multiplication algorithm
can be simulated also on dedicated / shared cache memory per core in shared mem-
ory multiprocessor. The experiments prove MMCacheSim’s accuracy especially for
sequential execution.

7.1 Introduction to Simulators

All cache parameters presented in Chapter 3 impact the algorithm overall perfor-
mance and it is difficult to select the cache with optimal parameters for particular
algorithm. Even more, the same algorithm behaves differently for different input
size data. Applications provide better performance when they are executed on flex-
ible cache with reconfigurability [150]. Using a proper simulators to predict the
algorithm performance can save time and wasted money for unnecessary hardware.
They can be used to measure the performance of new proposed schemes [8]. The au-
thors in [20] propose techniques to predict the performance impact using hybrid an-
alytical models. The authors in [172] propose a technique to overcome inter-thread
cache conflict misses on shared cache and develop a highly configurable multi-core
cache contention MCCCSim simulator that reproduces parallel instruction execu-
tion. A predictive model is proposed in [169] to allow fast and accurate estimation
of system performance degradation also due to shared cache contention in parallel
execution. The authors in [37] propose a statistical cache model Statstack that mod-

55

56 7 Matrix Multiplication Algorithm Simulation

els a fully associative cache with LRU replacement policy and compared the results
with the output from a traditional cache simulator.

There are two types of simulation: trace or execution driven simulation. The for-
mer is the case when the simulator analysis a list of pre generated memory addresses
by a program and then uses them to simulate the memory activities. The latter is the
case when the simulator is active while the program is running and intercepts the
accesses to the memory to do the simulation of the cache. Trace driven simulation is
inconvenient because of the large trace files that need to be created and transferred
[77].

Simulation based methods depend on accurate data like complete memory traces
and produce results that are completely correct. Estimation based methods use
heuristics to complete their simulations and finish the task faster, but with lower
accuracy levels.

7.2 Literature Review

This section presents different purpose cache simulators that we found in the lit-
erature. Dinero IV is the cache simulator that simulates a memory hierarchy with
various caches [36]. A DEW strategy [60] speeds up the simulation of multiple
combinations of cache parameters. It simulates only FIFO replacement policy. The
authors in [41] define a fully parameterizable models applicable to n-way associa-
tive caches, but only for LRU replacement policy. Our MMCacheSim simulates both
FIFO and LRU cache replacement policies and all levels of cache hierarchy.

The authors in [77] propose a CMP$im simulator based on the Pin binary instru-
mentation tool. It is a better simulator offering multi core support and data gathering
for all levels of the cache. However, the capturing the results is more complex than
our MMCacheSim. HC-Sim is also based on Pin that generate traces during run-
time and simulates multiple cache configurations in one run [20]. An on-line cache
simulation using a retargetable application specific instruction set simulator is pro-
vided in [118]. CMPSched$im evaluates the interaction of operating system and
chip multiprocessor architectures [94].

Simulators can be also used in the teaching process. Hardware courses in soft-
ware oriented curriculum require a lot of effort, both from instructors and students
[145]. The authors in [134] using visual simulators, incrementally weighted ex-
ercises, and finally working on real hardware controllers achieved significant im-
provements in grade distribution and computer science student interest in hardware.
Visual EduMIPS64 helps teachers to better present the specific topics of computer
architecture and also help students to better learn [110].

We present our MMCacheSim simulator and analyze if a successful prediction
of cache performance can be achieved by simulating the execution of an algorithm
and measuring the number of misses on different levels of CPU cache. We build a
model that can be easily configured to represent different types of cache architec-
tures with different replacement policies. Series of experiments were performed for

7.3 MMCacheSim architecture 57

execution of dense matrix multiplication algorithm on real world implementations
and simulation with same parameters for the CPU cache architecture. We have also
performed simulation of the parallel execution of the same algorithms and compare
with the results of real experiments with the same cache parameters.

7.3 MMCacheSim architecture

The MMCacheSim simulator is implemented as a set of Java classes, each repre-
senting a different CPU cache element:

• Cache Line - Represents a single cache line. It is initialized with the size of the
cache line, the size of the elements saved inside it, and the address of the first
element saved inside. Contains methods for writing new elements in the cache
line and checking if an element is in the cache line;

• Cache Set - Represents a collection of cache lines available for both LRU and
FIFO implementations as cache replacement policies. It is initialized with the
associativity and line size. Contains methods for writing an address inside the
cache and with it replacing the obsolete one according to the chosen replacing
policy, checking whether an address is inside the given set;

• L1, L2, L3 Cache Levels - The actual cache memory, also available as LRU and
FIFO implementations initialized with the size, associativity and the cache line
size. Contains the cache sets, the data about misses and hits made on that partic-
ular level and methods for reading from and writing to the level;

• Processor Core - As a real processor core would have access to the cache. Several
cores may share same cache structures. The simulated model of a core is initial-
ized with instances of cache levels, by giving different cores the same instance of
a cache level we simulate sharing. A cache core has only method to read a data
element. If the element is not found in the cache levels a cache miss is recorded;

The MMCacheSim simulates execution of the simple dense matrix multiplication
algorithm. The simulation does not take into account the time required for arithmetic
operations and memory writes because we are looking for the effect that the cache
produces when the same data is accessed multiple times and the speedup that can
be gained when parallelizing the execution. The input for MMCacheSim is number
of cores, cache levels, shared / dedicated cache per core, cache line, cache size, and
cache replacement policy for each cache as input parameters. It returns the average
clock cycles for cache hit per each cache level and cache miss for last level cache.
It also measures the total clock cycles for accessing the data.

58 7 Matrix Multiplication Algorithm Simulation

7.4 Experiment Environment

The experiments are performed on the real multiprocessors with totally different
cache architectures. The first multiprocessor consists of 2 chips Intel(tm) Xeon(tm)
CPU X5680 @ 3.33GHz and 24GB RAM. Each chip has 6 cores, each with 32 KB
8-way set associative L1 data cache dedicated per core and 256 KB 8-way set asso-
ciative L2 cache dedicated per core. All 6 cores share 12 MB 16-way set associative
L3 cache. The second server has one chip AMD Phenom(tm) 9950 Quad-Core Pro-
cessor @ 2.6 GHz and 8 GB RAM. The multiprocessor has 4 cores, each with 64
KB 2-way set associative L1 data cache dedicated per core, and 512 KB 16-way set
associative L2 cache dedicated per core. All 4 cores share 2 MB 32-way set associa-
tive L3 cache. The real machines are installed with Linux Ubuntu 10.10. C++ with
OpenMP for parallelization are used.

The simulation is platform independent since it does not measure algorithm re-
sponse time, but only simulates the number of cache misses and hits on different
levels of simulated CPU cache. We simulate the same 2 multiprocessors as the ex-
periments.

7.5 The Results of the Experiments

The first performed test is to determine the number of CPU cycles needed to access
different levels of the cache in the simulated architectures. The same experimental
tests are executed on both servers. Table 7.1 presents the results. These results of the
practical experiments are used in the simulation.

Parameter Xeon Phenom

L1 hit 2.85 6.5
L2 hit 14.01 23.63
L3 hit 21.04 37.30

L3 miss 126.04 113.06

Table 7.1 Cache hit and miss cost in cycles [11]

Figure 7.1 depicts the comparison of the simulation of matrix multiplication on
a cache with FIFO replacement policy and cache parameters as Intel(tm) processor.

The horizontal axis represents the matrix size. The vertical axis represents the
average number of memory accesses MA to each element of a matrix calculated as
defined in (7.1). The values for total memory access cycles from the simulator are
calculated using the values from Table 7.1 as defined in [63].

MA =
TotalMemoryAccessCycles

N3 (7.1)

7.5 The Results of the Experiments 59

Fig. 7.1 Comparison CPU cycles for memory access for MMCacheSim simulation and sequential
execution on Xeon server with FIFO replacement policy [11]

The results show that MMCacheSim gives values close to the experimental ones
and successfully simulates the performance drawbacks due to cache associativity.

The final experiment was to simulate with a new replacement policy Bit-Pseudo-
LRU. Each cache line is associated with a MRU bit (most recently used) in this
cache replacement policy. When the line is read the MRU bit is set to 1. When all
lines in a cache set have their MRU bits set to 1, they are reset to 0. If some cache
line should be replaced then the cache line in a set with the largest index that has a
MRU bit 0 is replaced.

Figure 7.2 depicts that the simulation is much closer to the experimental values.
The simulation is still stepping away as the sizes of the matrices exceed the size
of the cache memory. A possible explanation to the differences are: the authors in
[25] show that the L3 cache at the Opteron processors uses some kind of pseudo-
LRU cache replacement policy. The way of choosing the line inside the set seems
to be different than the proposed Bit-PLRU policy. This is a logical explanation of
the differences between simulated and experimental results, with the assumption
that the cache replacement policy described in [25] is used in Phenom processors
too. However this shows the ability to use the simulator not just to find favorable
configurations for a certain algorithm but to research the configuration of a computer
system when data for it are not available.

60 7 Matrix Multiplication Algorithm Simulation

Fig. 7.2 Comparison of CPU cycles used for memory access for sequential execution on Phenom
CPU and simulate with Bit-PLRU replacement policy [11]

7.6 Summary

Our MMCacheSim simulator simulates main FIFO and LRU cache replacement
policies and it is easy to implement other policies. All levels of cache hierarchy
can be simulated. It is platform independent since the cache parameters are input
parameters in the simulator.

MMCacheSim can simulate both sequential and parallel implementation of ma-
trix multiplication algorithm. It can be easily used to simulate any algorithm by
giving a trace of memory accesses. The modularity of the implementation allows
any type of cache hierarchy to be simulated. MMCacheSim allows to change:

• The hierarchy between cache levels, to be shared between cores or dedicated;
• The inclusivity between different cache levels;
• The size of the cache memory, the associativity, cache line sizes; and
• Replacement policy, with ability to have different cache replacement policies per

different cache levels.

Chapter 8
Matrix Multiplication Algorithm Improvements

Abstract Multiplication of huge matrices generates more cache misses than smaller
matrices. 2D block decomposition of matrices that can be placed in L1 CPU cache
decreases the cache misses since the operations will access data only stored in L1
cache. However, it also requires additional reads, writes, and operations compared to
1D partitioning, since the blocks are read multiple times. This chapter presents a new
hybrid 2D/1D partitioning to exploit the advantages of both approaches which the
authors proposed in [53]. The idea is first to partition the matrices in 2D blocks and
then to multiply each block with 1D partitioning to achieve minimum cache misses.
We select also a block size to fit in L1 cache as 2D block decomposition, but we
use rectangle instead of squared blocks in order to minimize the operations but also
cache associativity. The experiments show that our proposed algorithm outperforms
the 2D blocking algorithm for huge matrices on AMD Phenom CPU.

8.1 Matrix Multiplication Algorithm Optimizations

Matrix multiplication algorithm is a basic linear algebra operation used in almost
all scientific computations. Different techniques are proposed to speedup the execu-
tion. Another very important issue is the selection of appropriate powerful hardware
environment for efficient execution. Fused multiply-add (FMA) units with in mod-
ern CPU architecture execute both addition and multiplication in one clock cycle.
Since matrix multiplication is compute intensive algorithm with O(N3) complex-
ity increasing the processor speed will speedup the execution. It is also a mem-
ory demanding algorithm with O(N2) complexity. Although memory complexity is
smaller than compute, it impacts more the overall performance due to average mem-
ory cycles per instruction is 50 to 80% from the average total cycles per instruction
[9]. However, the most important is the fact that matrix multiplication algorithm is
cache intensive algorithm with O(N) complexity since each matrix element is ac-
cessed N times for different computations and the memory access per element vary

61

62 8 Matrix Multiplication Algorithm Improvements

between several clocks for the lowest L1 cache memory and up to 1000 for main
memory [63].

Introducing multi-chip and multi-core CPUs, and many-core GPU processors to-
gether with different APIs and libraries for parallelization can significantly speedup
the execution since matrix multiplication is excellent algorithm for parallelization
and thus can maximize the efficiency. It can achieve almost linear speedup. How-
ever, there are regions where superlinear speedup can be achieved for multi-chip,
multi-core and GPU implementations as presented in Part III. It is also possible in
multi-GPU implementation on Fermi architecture GPU, due to configurable cache
[113].

Another focus is optimizing the algorithm if the matrices have some features
like symmetric, zero rows or columns, sparse, squared or triangle. The authors in
[34] optimized multiplication of small sized matrices. Superlinear speedup was re-
ported for sparse symmetric matrix vector multiplication in [142]. [80] reports also
superlinear speedup is also found with parallel execution of matrix multiplication
algorithm using MPI and transposing one source matrix. The authors in [12] im-
proved parallel execution based on Strassen’s fast matrix multiplication minimizing
communication.

Optimizing the algorithm according to CPU cache, platform and runtime envi-
ronment is the most appropriate approach. The authors in [164] used padding to the
first element of each submatrix to land on equidistant cache sets and to avoid cache
associativity performance drawbacks [50]. The authors in [63] propose compiler
optimizations with loop interchange and blocking to reduce cache miss rate. The
optimal rectangular partitioning can be significantly outperformed by the optimal
non-rectangular one on real-life heterogeneous HPC platforms [32] .

In this chapter we analyze blocking algorithm for matrix multiplication and pro-
pose a new hybrid 2D/1D blocking method for matrix multiplication that exploits
the maximum of the L1 cache size by reducing the number of compute operations
and cache associativity problems.

8.2 Existing 2D Blocking matrix multiplication algorithm

The 2D blocking matrix multiplication algorithm described in [63] reduces the num-
ber of cache misses. It works on submatrices or blocks of matrices A and B with
same size b instead of the entire matrix A rows and matrix B columns. Figure 10.10
depicts the algorithm. The goal is to maximize the reuse of the data of a block before
they are replaced.

The total number of operations in this algorithm is increased. Additional N/b ·
N/b ·N ·b = N3/b are performed for summing the elements of matrix C. Including
the necessary 2 ·N3 operations the total number of floating point operations is 2 ·
N3 +N3/b. The benefit of these additional operations is the decreased number of
memory accesses of N/b ·N/b ·N ·b ·2 = 2 ·N3/b in the worst case.

8.3 Hybrid 2D/1D Blocking matrix multiplication algorithm 63

Fig. 8.1 2D Blocking matrix multiplication algorithm [53]

Maximum efficiency for parallel execution of this algorithm is realized when the
product P ·b2 is divisor of N2.

8.3 Hybrid 2D/1D Blocking matrix multiplication algorithm

This section describes our new proposed Hybrid 2D/1D Blocking matrix multipli-
cation algorithm, its complexity, performance, and comparison with the other al-
gorithms. Also we analyze how different cache parameters impact the algorithm
performance.

8.3.1 Decrease the Operations and Memory Accesses

The idea is to exploit the benefits of both algorithms described in Section 8.2, i.e.
to use 2D blocking to minimize the memory access, but in the same time minimiz-
ing the additional operations for the elements of matrix C. Figure 8.2 depicts the
algorithm for hybrid blocking matrix blocking matrix multiplication. We propose
rectangles with the same area to be used instead of squares for blocks. Next, dense
matrix multiplication algorithm is implemented for multiplication in each block.

Lets denote with b the squared block size of 2D blocking algorithm and with bX
and bY the number of rows and columns for block of matrix B correspondingly such
that relations (8.1) and (8.2) are satisfied

bX > bY (8.1)

64 8 Matrix Multiplication Algorithm Improvements

Fig. 8.2 Hybrid matrix multiplication algorithm [53]

bX ·bY = b2 (8.2)

Lets denote with T MA the number of total memory accesses. Lemma 8.1 presents
how T MA depends of matrix size N and the block sizes bX and bY for new Hybrid
2D/1D Blocking matrix multiplication algorithm.

Lemma 8.1. The total number of memory accesses T MA that new Hybrid 2D/1D
Blocking matrix multiplication algorithm performs if blocks in matrix A consist of
bY rows and bX columns is defined in relation (8.3).

T MA =
N3

bX
(8.3)

Proof. The algorithm creates N/bY ·N/bX blocks per matrix and accesses each ele-
ment of those blocks N ·bY times. Thus T MA = N/bY ·N/bX ·N ·bY ·2 = 2 ·N3/bX .

Theorem 8.1 proves that new Hybrid 2D/1D Blocking matrix multiplication al-
gorithm performs smaller total number of memory accesses T MAH than the basic
2D Blocking matrix multiplication algorithm.

Theorem 8.1. New Hybrid 2D/1D Blocking matrix multiplication algorithm per-
forms smaller total number of memory accesses T MAH than the basic 2D Blocking
matrix multiplication algorithm T MA2D, i.e. relation (8.4) is true.

T MAH < T MA2D (8.4)

Proof. According to Lemma 8.1 T MAH = N3

bX
and T MA2D = N3

b . Using rela-

tion (8.1) in relation (8.2) yields bx > b. Multiplying this relation with N3

bX ·b yields
relation 8.4 that proves the theorem.

8.3 Hybrid 2D/1D Blocking matrix multiplication algorithm 65

Corollary 8.1. Maximum efficiency for parallel execution on P same multiproces-
sors of this algorithm is realized when the product P ·bX ·bY is divisor of N2.

Proof. Let k is integer, such that k≥ 1 and k = N2

P·bX ·bY
. This yields then the product

P · k = N2

bX ·bY
is also integer. Since N2 is the total number of matrix elements, and

bX ·bY is the number of elements in a block, then the matrix can be divided into P ·k
blocks. These blocks can be scattered to P processors and executed in k steps with
maximum efficiency.

8.3.2 The Algorithm and the Cache Parameters

Since matrix multiplication algorithm is cache intensive algorithm, lets analyze the
cache impact to the new algorithm compared to 2D blocking algorithm. The pre-
vious Section 8.3.1 presents that hybrid algorithm executes smaller number of op-
erations and memory accesses than 2D blocking. But is it enough to be a faster
algorithm?

Cache has several parameters that have a huge impact to the overall performance
especially for particular matrix size. Since the block area is the same for both al-
gorithms cache size impact is also the same, i.e. the same cache misses will be
generated only when the block is changed. Therefore cache replacement policy will
not impact also.

What about cache line? Lets denote with l the number of matrix elements that
can be placed in one cache line. Modern CPUs cache line size is 64B, i.e. it can
store l = 8 matrix elements (double precision) which can be loaded in one operation
from the memory. Our new algorithm defines that bX should be greater as much
as possible to reduce the operations and memory accesses, but still (8.2) should be
satisfied. However, to exploit maximum performance the same cache line should be
present in the L1 cache, and thus bY < l.

Further on we analyze cache associativity problem that appears in storage of ma-
trix columns and inefficient usage of cache for particular problem size [50]. Matrix
B blocks will map onto a smaller group of cache sets than the same 2D blocking
matrix multiplication algorithm and initiate more cache misses. In this case our al-
gorithm will use a smaller group of cache sets in associative memory.

Todays Intel L1 cache is 8-way set associative and AMD L1 cache is only 2-way
set associative. For particular matrix sizes N it means that Intel CPU will provide
better performance than AMD due to cache set associativity for the same block size
bX ·bY .

66 8 Matrix Multiplication Algorithm Improvements

8.3.3 Modified Hybrid 2D / 1D matrix multiplication algorithm

To avoid cache associativity problem especially for AMD CPU we make another
experiment where bX is smaller and bY is maximized. Figure 8.3 depicts this algo-
rithm. This algorithm has more operations and memory accesses than others, but
will be prone to cache size associativity, i.e. L1 cache works as fully associative.

Fig. 8.3 Modified hybrid matrix multiplication algorithm [53]

8.4 The Testing Methodology

This section present used testing methodology for the experiments in order to prove
that our new proposed basic and modified hybrid 2D / 1D algorithms provide better
performance than basic 2D blocking algorithm.

8.4.1 Testing Environment

The experiments are performed on two multiprocessors with different cache archi-
tectures since the hardware can impact to the algorithm performance. The first mul-
tiprocessor consists of 2 chips Intel(tm) Xeon(tm) CPU X5680 @ 3.33GHz and
24GB RAM. Each chip has 6 cores, each with 32 KB 8-way set associative L1 data
cache dedicated per core and 256 KB 8-way set associative L2 cache dedicated per
core. All 6 cores share 12 MB 16-way set associative L3 cache. The second server
has one chip AMD Phenom(tm) 9950 Quad-Core Processor @ 2.6 GHz and 8 GB
RAM. The multiprocessor has 4 cores, each with 64 KB 2-way set associative L1

8.5 The Results of the Experiments 67

data cache dedicated per core, and 512 KB 16-way set associative L2 cache dedi-
cated per core. All 4 cores share 2 MB 32-way set associative L3 cache. The servers
are installed with Linux Ubuntu 10.10. C++ with OpenMP for parallelization are
used without additional optimizations.

8.4.2 Test Data

We execute dense, 2D blocking, hybrid and modified hybrid matrix multiplication
algorithms on each multiprocessor with different matrix sizes to test algorithm be-
havior in different cache regions. For 2D blocking algorithm we choose b = 36 for
Intel CPU and b= 48 for AMD to satisfy that matrices can be stored in the L1 cache.
For our two hybrid algorithm experiments we use bx = 162 and by = 8 for hybrid
matrix multiplication algorithm and bx = 8 and by = 162 for modified hybrid matrix
multiplication algorithm for Intel CPU. For AMD CPU bx = 288 and by = 8, and
bx = 8 and by = 288 are used.

8.5 The Results of the Experiments

This section presents the results of the experiments realized to measure the perfor-
mance of the new hybrid 2D/1D matrix multiplication algorithms compared to 2D
blocking.

8.5.1 The Results on Intel CPU

Figure 8.4 depicts the execution time for dense, 2D blocking, hybrid and modified
hybrid matrix multiplication algorithms on Intel CPU. For N < 1296 all matrix mul-
tiplication algorithms run similar. Dense algorithm increases its execution time for
greater matrices more than modified hybrid 8x162. Hybrid 162x8 and blocking 2D
are the best matrix multiplication algorithms.

Figure 8.5 depicts the speed on Intel CPU. Dense performs the best speed for
smaller matrices as expected due to huge L3 size. However, for huge matrices all
other matrix multiplication algorithms perform better speed compensating the in-
creased number of operations with lower average access time per matrix element.
We can conclude that all three other algorithms have constant speed. Our proposed
hybrid matrix multiplication algorithm provides the same speed as 2D blocking, and
the modified hybrid matrix multiplication algorithm is worse.

We can conclude that cache associativity problem does not impact directly on
Intel CPU. However, the results do not confirm our hypothesis that our new 2D/1D
will be better than 2D blocking. After deep analysis we give the following expla-

68 8 Matrix Multiplication Algorithm Improvements

Fig. 8.4 The execution time for sequential execution on Intel CPU [53]

Fig. 8.5 The speed for sequential execution on Intel CPU [53]

nation. The L1 cache is occupied also from operating system. Cache misses appear
from the operating system and the whole cache line is replaced.

8.6 Summary 69

8.5.2 The Results on AMD CPU

Figure 8.6 depicts the execution time for the same four algorithms on AMD CPU.
For smaller matrices the execution time is similar for all algorithms, but for greater
matrices both our algorithms outperform the 2D blocking and dense.

Fig. 8.6 The execution time for sequential execution on AMD CPU [53]

Figure 8.7 depicts the speed for better presentation and analysis. As depicted,
Dense is the leader in front of 2D blocking, hybrid and modified hybrid for small
matrices. However, increasing the matrix size N, the order is opposite: modified
hybrid achieves best performance in front of hybrid, 2D blocking and Dense.

Only our modified hybrid algorithm retains the speed regardless of N. It is prone
to the cache associativity problem. All other algorithms achieve drawbacks in par-
ticular N due to cache associativity problem. We see that our hybrid matrix multipli-
cation algorithm has similar performance as modified hybrid in points where there
aren’t cache associativity performance drawbacks [50].

8.6 Summary

The new hybrid 2D/1D blocking matrix multiplication algorithms provide similar
performance on Intel CPU as the 2D blocking matrix multiplication algorithm, and
better performance on AMD Phenom CPU. Using theoretical analysis of all cache
parameters that can impact the algorithm performance we modify the proposed algo-
rithm and even improved already better performance than 2D blocking matrix mul-

70 8 Matrix Multiplication Algorithm Improvements

Fig. 8.7 The speed for sequential execution on AMD CPU [53]

tiplication algorithm. Even more, the modified algorithm is prone to small cache set
associativity on AMD CPU caches. The experiments prove the theoretical analysis.

Chapter 9
Performance Drawbacks Using Set Associative
Cache

Abstract Performance drawbacks are commented in literature without detailed ex-
planation. Analyzing the interaction of different matrix multiplication algorithms
with the memory hierarchy, the authors in [154] present performance drawback for
different problem sizes. More detailed analysis of the effect of the cache and TLB is
done in [58] where the authors discovered execution time peaks for particular ma-
trix sizes and conclude that peaks occur more often for smaller cache. The authors
also conclude that the peaks in CPU execution time are due to increased number
of memory access conflicts. For the purpose of this thesis research the authors in
[120, 50, 123] analyze and model the performance drawbacks for particular prob-
lem sizes for sequential and parallel execution. Given theoretical proof of execution
time peaks when using set associative cache for cache intensive algorithms such as
matrix multiplication is presented in this chapter. Huge performance drawbacks are
observed and analyzed for speed in sequential execution. The authors conclude that
performance drawbacks appear due to increased number of generated cache misses
in last level L3 cache. For parallel execution also huge performance drawbacks are
observed for speedup beside those for speed.

9.1 Storing matrix elements in set associative cache

Most of modern processors use n-way associative cache where a block can be placed
in a restricted set of places in the cache [62]. There are S sets in the cache memory
and each set is a group of n blocks in the cache. A block is first mapped onto a set
and then the block can be placed anywhere within that set.

In this paper we analyze the organization how matrices are stored in the cache.
When the processor initiates an access to the element bk j from the memory this
action will result with transfer of the whole cache line (block) in the cache. This ac-
tivity will transfer all elements bk, j+1,bk, j+2 . . .bk, j+l−1 from the block to be loaded
and stored into the same cache line as shown in Figure 9.1.

71

72 9 Performance Drawbacks Using Set Associative Cache

If cbs is the cache block size in bytes and ME is the matrix element size (usually
8 bytes for double precision real numbers) then l is number of matrix elements that
can fit in a cache line expressed as an integer by (3.7).

If one element is accessed then the other l−1 elements from the same row will
be used without generation of cache misses. If the element bk j is accessed, such
that N− j < l, then N− j elements until the end of the row will be placed in the
cache, together with the first l− (N− j) elements from the next matrix row. This
organization enables efficient usage of matrix row elements and is desired when
the algorithm repeatedly uses matrix rows, for example, the matrix multiplication
algorithm.

However, this is not the case for matrix column elements. When the processor
initiates an access to the element bk j it will not load the desired matrix column
elements bk+1, j,bk+2, j, Two problems are initiated by this organization. The first
is known as matrix cache storage problem and the second is associated by the usage
of n-way associative cache. The matrix cache storage problem appears due to the
inefficient load of matrix elements that will not be used. In practice whenever a
matrix column element is required then l− 1 elements will be loaded in the same
cache line and possibly will never be used if the cache line is replaced by some other
least recently used.

This chapter analyzes the problem initiated by usage of n-way set associative
cache memory. A set will be fully loaded with n cache lines. Each cache line con-
tains consecutive matrix elements from a particular matrix row. Cache lines that
map on the same set will have a specific address pattern usually expressed as mod-
ulo function.

Denote by d the smallest number such that the elements bk, j and bk+d, j map onto
same set as shown in Figure 9.1. In this case d represents the address offset.

Lemma 9.1 defines the number of the blocks m necessary to store N matrix row
elements.

Lemma 9.1. The number m such that N matrix row elements will be stored in m
cache blocks is defined in (9.1).

m = dN/le= dN ·ME/cbse (9.1)

Proof. Since number l is the number of matrix elements that can fit in a cache line
expressed as an integer, the number of blocks m necessary to store N matrix row
elements in cache block can be calculated as m = dN/le. Using relation (3.7) proofs
the relation 9.1 and this lemma.

Next issue is to calculate the number of cache blocks required to store the matrix
column with N elements. We assume big sizes N >> l so we do not expect that two
matrix column elements will fit in the same cache block. In this case the requirement
is N different cache blocks.

9.2 Performance drawbacks in a n-way set associative cache 73

setS−1

...

setr

...

set0

...

...

...

...

...

bk, j bk, j+1 . . . bk, j+l−1

bk+d, j bk+d, j+1 . . . bk+d, j+l−1

bk+(n−1)d, j bk+(n−1)d, j+1 . . . bk+(n−1)d, j+l−1

block no.

n−1

...

1

0

n−1

...

1

0

n−1

...

1

0

Fig. 9.1 Storing column matrix B in a n-way set associative cache [120]

9.2 Performance drawbacks in a n-way set associative cache

Matrix multiplication algorithm defined in Section (4.1) has two points of possible
drawbacks. The first drawback appears if a cache block is replaced after a particular
element is accessed so the next access to this element will generate a cache miss.
This drawback impacts the elements of both matrices.

The second type of drawback refers to a situation where after an access to a
particular element there is an access to another element from the same block but in
meantime the block was replaced. This impacts only the elements of matrix B since
the elements of one cache block of matrix A are accessed consecutive. This is not the
case with matrix B. Once the whole matrix B column is accessed the cache blocks
also contain the consecutive columns. Replacing such cache block during the loop
execution will produce l−1 cache misses per block. In addition the first drawback
repeats since each matrix element is accessed N times [124].

We are interested in a situation where matrix column elements will be mapped
since there is a requirement to store N elements in at most S different sets. By
analyzing the pattern where the matrix column elements will be stored we will be

74 9 Performance Drawbacks Using Set Associative Cache

able to find out the cache space available for storage of matrix column and the
frequency of cache misses generation for the elements bk, j+1, ...,bk, j+l−1.

Theorem 9.1 [120] proves conditions for the case when the address pattern is
such that maps all column elements of the matrix B onto the same group of sets.
This situation will generate a lot of cache misses and it looks like we are using only
a small partition of the cache instead of the whole cache.

Theorem 9.1. Cache performance drawback in the matrix multiplication algorithm
generated due to matrix storage pattern in a n-way associative memory appears if
there exists an integer d such that

∃d > 0, d =
S · cbs
N ·ME

and d <
N
n

(9.2)

Proof. The relation shows how the address pattern d relates to the available S sets
and matrix size N. This pattern actually shows that the address pattern is such that
all the column elements will be stored in the same set.

To find the pattern how the addresses map onto cache we have to calculate d. The
matrix row is stored in consecutive memory addresses in row-wise main memory
and according to (9.1) each matrix row will require m cache blocks. We assume
that several matrix rows will be stored in different sets. The maximum possible
occupancy is valid if m · d = S. Therefore the equation (9.2) follows from (9.1) if
cbs is divisor of N.

The number of matrix column elements to be stored is N and the number of cache
blocks in a set is n meaning that the matrix column elements will be stored in at most
N/n sets, which represents the last part of the relation.

The number d has an interesting property as follows [120].

Corollary 9.1. d in Theorem 9.1 is the number of different sets used to store a matrix
column and indirectly shows the portion of cache used to store the matrix column.
If d = 1 then all the elements of a column are mapped in the same set and if d > 1
then exactly d sets will be used in the mapping process.

Proof. Normally this number is not bigger than the number of sets d ≤ S in the n
way associative cache. The proof can be constructed based on Dirichlet principle to
place objects into different places.

Corollary 9.2. The maximum drawback for Theorem 9.1 appears if d = 1.

Proof. Proof can be constructed upon conclusion of Corollary 9.1 and the smallest
available cache portion to store the matrix column leading to generation of most
cache misses. d = 1 yields m = S which means that the each block of the first row
of matrix B will be store in all S different sets, and based on Dirichlet principle next
element of the column will be placed in the same set as the element from the first
row and the same column.

9.2 Performance drawbacks in a n-way set associative cache 75

Corollary 9.3. Cache performance drawback in the matrix multiplication algorithm
appears due to matrix storage pattern in a n-way associative memory for

N =
CS

n ·d ·ME
(9.3)

Proof. The proof can be constructed from the relation that the number of sets is
S =CS/(n · cbs) and by equation for d in (9.2).

Example 9.1 (Opteron processor [165]). Matrix multiplication algorithm executed
on Opteron processor using a CS = 512KB 8-way L2 set associative cache with
cbs = 64B according to Corollary 9.3, will have performance drawback for matrix
sizes

N =CS/(n ·d ·ME) =
213

d
.

The conclusion is that performance drawbacks will appear when N is power of
2. Corollary 9.2 shows the maximum drawback and worst performance for matrix
size N = 213.

Theorem 9.2. Cache performance drawback in the matrix multiplication algorithm
generated due to matrix storage pattern in a n-way associative memory appears if
there exists an integer d such that

∃d > 0, d <

√
S · cbs
n ·ME

(9.4)

Proof. Proof can be constructed from (9.3) of Corollary 9.3 and the last part of the
(9.2) from Theorem 9.1.

Theorem 9.3. Cache performance drawback in the matrix multiplication algorithm
appears for matrix size N such that

N >

√
S · cbs ·n

ME
(9.5)

Proof. Proof can be constructed directly from both relations in equation 9.2 from
Theorem 9.1 S =CS/(n · cbs) and by equation for d in (9.2).

Corollary 9.4. Cache performance drawback in the matrix multiplication algorithm
appears if the size of matrix B is greater than CS.

N2 ·ME >CS (9.6)

Proof. The proof can be constructed from the relation 9.5 of Theorem 9.3 and that
the cache size is CS = S · cbs ·n.

Example 9.2 (Phenom processor [166]). Quad-Core AMD Phenom(tm) Processor
9550 has 4 cores each with its own dedicated 64 KB instruction and 64 KB data L1

76 9 Performance Drawbacks Using Set Associative Cache

Cache Type

L1 2-way associative 64 KB instruction + 64 KB data cache
L2 16-way set associative 512 KB cache
L3 32-way associative 2 MB cache

Table 9.1 Cache type [120]

Variable Value in L1 Value in L2 Value in L3

CS 64KB 512KB 2MB
n 2 16 32

ME 8B 8B 8B
cbs 64B 64B 64B

l 8 8 8
S 512 512 1024

N ·d 4096 4096 8192

Table 9.2 Cache variables for the experiments [120]

cache, dedicated 512KB L2 cache and share 2MB shared L3 cache. Tables 9.1 and
9.2 present cache behavior and calculated values.

According to Corollary 9.3 the matrix multiplication algorithm executed on this
processor using a 16-way L2 set associative cache with cbs = 64B will have perfor-
mance drawback for matrix sizes:

N =CS/(n ·d ·ME) =
212

d
.

Theorems 9.2 and 9.3 show that the maximum drawbacks and worst performances
for L2 cache are for d = 1,2,4,8,16 or matrix sizes N = 4096,2048,1024,512,256.
According to Corollary 9.2 the maximum drawback and worst performance is for
N = 212.

The hypotheses that are confirmed experimentally in [120] and more detailed in
[50] rely on theoretical results defined by theorems 9.1 to 9.3, i.e.:

• Expressive L1 cache associativity drawbacks appear for matrix sizes N = 4096,
2048, 1024, 512, 256 and 128;

• Expressive L2 cache associativity drawbacks appear for matrix sizes N = 4096,
2048, 1024, 512 and 256;

• Expressive L3 cache associativity drawbacks appear for matrix sizes N = 4096,
2048, 1024, and 512.

Nevertheless, smaller cache associativity drawbacks are possible for smaller N.

9.3 Experiments for Performance Drawbacks in Sequential Execution 77

9.3 Experiments for Performance Drawbacks in Sequential
Execution

The experiments are realized for problems that use matrix sizes where theoretical re-
sults show expectation of main drawbacks, and also in the area around these points,
for example, for the ten points -10, -9, -8, -7, -6, -5, -4, -3, -2, and -1 bellow the
expected drawbacks and for the ten po-ints +1, +2, +3, +4, +5, +6, +7, +8, +9, and
+10 above the expected drawback points. Each experiment executes the sequential
algorithm with and without profiler Valgrind [155] with its tool cachegrind. The ex-
ecution times and speeds for these areas are analyzed. We focus on L1 and L3 (last
level) data cache misses in order to prove their impact on performance drawbacks
appearance. We have not tested the behavior of L2 cache since Valgrind tests mea-
sure only first and last level caches. The X-axis in each figure in this section presents
the matrix size N.

9.3.1 Experiment 1 - range around N = 64

Experiment 1 covers the area of N = 64. Matrix B can be stored completely in L1
cache, but the elements of matrix A replace some of the cache blocks from matrix
B, thus producing cache misses and performance drawback. The drawback is not
visible enough for execution time depicted in Figure 9.2, but it is visible presenting
the speed in Figure 9.3. An important result is that speed has a positive trendline.

Fig. 9.2 Execution time in the area around N = 64 [120]

78 9 Performance Drawbacks Using Set Associative Cache

Fig. 9.3 Speed in the area around N = 64 [120]

Figures 9.4 and 9.5 depict the L1 and L3 data cache misses for the experiments
in the range around N = 64. There is only a small insufficient L1 cache associativity
drawback in N = 64. L3 associativity drawback does not appear in this area due to
this is L1 region. There are no other local extremes neither for L1 nor for L3 data
cache misses.

Fig. 9.4 L1 data cache misses in the area around N = 64 [50]

9.3 Experiments for Performance Drawbacks in Sequential Execution 79

Fig. 9.5 L3 data cache misses in the area around N = 64 [50]

9.3.2 Experiment 2 - range around N = 128

Experiment 2 covers the area of N = 128. Matrix B cannot be stored completely
in L1 cache and drawbacks appear due to insufficient L1 cache and L1 and L2
cache set associativity. The drawback is visible both for execution time and speed
in figures 9.6 and 9.7 correspondingly. Local extremes are near the main drawback
generated due to L1 cache set associativity. Speed in this region also has a positive
trendline, but lower than Experiment 1.

Figures 9.8 and 9.9 depict the L1 and L3 data cache misses for the experiments in
the range around N = 128. There is an expressive L1 cache associativity drawback
in N = 128. L3 associativity drawback does not appear in this area since this is L2
region and L3 works as full associative cache memory. There are local extremes
only for L1 data cache misses.

9.3.3 Experiment 3 - range around N = 256

Experiment 3 covers the area of N = 256. Matrix B cannot be stored completely in
L2 cache and drawbacks are generated due to L1, L2 and L3 cache set associativity.
The drawbacks are visible both for execution time and speed in figures 9.10 and
9.11 correspondingly. Local extremes are near the main drawback generated due to
L1, L2 and L3 cache set associativity. Another important result is that speed in this
region has a negative trend since the transition from L2 to L3 region.

Figures 9.12 and 9.13 depict the L1 and L3 data cache misses for the experiments
in the range around N = 256. There is an expressive L1 cache associativity drawback

80 9 Performance Drawbacks Using Set Associative Cache

Fig. 9.6 Execution time in the area around N = 128 [120]

Fig. 9.7 Speed in the area around N = 128 [120]

in N = 256. Another expressive cache associativity drawback but smaller than main
drawback is found for N = 256. L3 cache associativity drawback is also expressive.
Figure 9.13 depicts the huge growth of L3 cache data misses due to entrance in L3
region. There are local extremes for L1 data cache misses. L3 data cache misses
local extremes are found only in L2 region, i.e. for N < 256.

9.3 Experiments for Performance Drawbacks in Sequential Execution 81

Fig. 9.8 L1 data cache misses in the area around N = 128 [50]

Fig. 9.9 L3 data cache misses in the area around N = 128 [50]

9.3.4 Experiment 4 - range around N = 512

Experiment 4 covers the area of N = 512. Matrix B cannot be stored completely
neither in L2 nor L3 cache, and thus drawback is mainly due to their size and asso-
ciativity. The drawbacks are visible both for execution time and speed in figures 9.14
and 9.15 correspondingly. Local extremes which are more expressive than previous
experiments exist also near the main drawback. Another important result is that
speed in this region has a negative trend since the transition from L3 to L4 region.

82 9 Performance Drawbacks Using Set Associative Cache

Fig. 9.10 Execution time in the area around N = 256 [50]

Fig. 9.11 Speed in the area around N = 256 [50]

Figures 9.16 and 9.17 depict the L1 and L3 data cache misses for the experiments
in the range around N = 512. There are expressive L1 and L3 cache associativity
drawbacks in N = 512. Absolute values for drawbacks are similar, but L3 relative
drawback is greater than L1. There are other expressive local extremes only for L1
data cache misses in N = 503,505 and 517.

9.3 Experiments for Performance Drawbacks in Sequential Execution 83

Fig. 9.12 L1 data cache misses in the area around N = 256 [50]

Fig. 9.13 L3 data cache misses in the area around N = 256 [50]

9.3.5 Experiment 5 - range around N = 1024

Experiment 5 covers the area of N = 1024. Matrix B cannot be stored completely
in L3 cache and drawbacks appear mostly due to L3 cache size and associativity.
The drawbacks are visible both for execution time and speed in figures 9.18 and
9.19 correspondingly. Local extremes are found near the main drawback. Another
important result is that speed in this region has a positive trend.

84 9 Performance Drawbacks Using Set Associative Cache

Fig. 9.14 Execution time in the area around N = 512 [120]

Fig. 9.15 Speed in the area around N = 512 [120]

Figures 9.20 and 9.21 depict the L1 and L3 data cache misses for the experiments
in the range around N = 1024. There are expressive L1 and L3 cache associativity
drawbacks in N = 1024. Absolute values for drawbacks are similar, but L3 relative
drawback is greater than L1. There are other expressive local extremes only for L1
data cache misses in N = 1019,1021 and 1030.

9.3 Experiments for Performance Drawbacks in Sequential Execution 85

Fig. 9.16 L1 data cache misses in the area around N = 512 [50]

Fig. 9.17 L3 data cache misses in the area around N = 512 [50]

9.3.6 Experiment 6 - range around N = 2048

Experiment 6 covers the area of N = 2048. Matrix B cannot be stored completely
in L3 cache. and drawbacks appear mostly due to L3 cache size and associativity.
The drawbacks are visible both for execution time and speed in Figure 9.22 and
9.23 correspondingly. Local maximums and minimums are near the main drawback.
Another important result is that speed in this region has a positive trend.

86 9 Performance Drawbacks Using Set Associative Cache

Fig. 9.18 Execution time in the area around N = 1024 [120]

Fig. 9.19 Speed in the area around N = 1024 [120]

Figures 9.24 9.25 depict the L1 and L3 data cache misses for the experiments
in the range around N = 2048. The L1 and L3 data cache misses are similar in
point N=2048. There is expressive L3 cache associativity drawback in N = 2048.
Measured L1 cache misses are even smaller in this point than other points in this
area. Local extremes do not appear neither for L1 nor L3 data cache misses.

9.4 Experiments for Performance Drawbacks in Parallel Execution 87

Fig. 9.20 L1 data cache misses in the area around N = 1024 [50]

Fig. 9.21 L3 data cache misses in the area around N = 1024 [50]

9.4 Experiments for Performance Drawbacks in Parallel
Execution

In this section we present the results of series of experiments performed on the
same processor as previous Section 9.3 comparing algorithm executions with 1, 2
and 4 cores. The focus will be on the areas around the problem size for the main
drawbacks points as depicted in Figure 9.26.

88 9 Performance Drawbacks Using Set Associative Cache

Fig. 9.22 Execution time in the area around N = 2048 [120]

Fig. 9.23 Speed in the area around N = 2048 [120]

The experiments are realized for problems that use matrix sizes where theoreti-
cal results show expectation of main drawbacks, and also in the area around these
points, for example, for the three points -12, -8 and -4 bellow the expected draw-
backs and for the three points +4, +8 and +12 above the expected drawback points.
Each experiment executes the sequential algorithm on P = 1 processor (core) and
the parallel algorithm on 2 and 4 processors (cores).

We focus on Speed and Speedup both for sequential and parallel execution.
Speeds V (1), V (2) and V (4) are measured for execution on P = 1,2 and 4 pro-
cessor cores correspondingly. Also speedups S(2) and S(4) are measured for each

9.4 Experiments for Performance Drawbacks in Parallel Execution 89

Fig. 9.24 L1 data cache misses in the area around N = 2048 [50]

Fig. 9.25 L3 data cache misses in the area around N = 2048 [50]

parallel execution with 2 and 4 processor cores correspondingly. Additionally, L1
and L3 (last level) data cache misses are measured with Valgrind [155]. We have
not tested the behavior of L2 cache since Valgrind tests measure only first and last
level caches.

The X-axis presents the matrix size N in each figure.

90 9 Performance Drawbacks Using Set Associative Cache

Fig. 9.26 Achieved speed with executions on 1 and 4 cores for matrix multiplication [123]

9.4.1 Experiment 1 - range around N = 64

Experiment 1 covers the area of N = 64. Matrix B can be stored completely in L1
cache, but the elements of matrix A replace some of the cache blocks from matrix
B, thus producing cache misses and performance drawback. Table 9.3 presents the
results for execution time (T), Speed (V) in GFlops, cache misses (LM) and Speedup
(S).

N T(1) (ms) T(2) (ms) T(4) (ms) V(1) V(2) V(4) L1M L3M S(2) S(4)

52 0.246909 0.131249 0.0697805 1.1389 2.1426 4.0300 13,390 8,876 1.881 3.538
56 0.304647 0.164517 0.0842474 1.1529 2.1349 4.1691 13,930 9,042 1.852 3.616
60 0.371878 0.193712 0.101199 1.1617 2.2301 4.2688 14,449 9,221 1.920 3.675
64 0.455059 0.238113 0.125037 1.1521 2.2018 4.1931 21,457 9,409 1.911 3.639
68 0.531734 0.274807 0.141363 1.1827 2.2884 4.4486 15,808 9,613 1.935 3.761
72 0.629160 0.330113 0.167234 1.1865 2.2613 4.4638 16,729 9,830 1.906 3.762
76 0.735193 0.375798 0.192274 1.1942 2.3362 4.5662 18,026 10,055 1.956 3.824

Table 9.3 Results of the experiments in the area around N = 64 [123]

Figures 9.27 and 9.28 depict the speed and speedup for the experiments in the
range around N = 64. The speed drawback is more expressive for V (4) and V (2)
rather than sequential speed in point N = 64 as depicted in Figure 9.27. There is very
small speedup drawback for S(2) and S(4) where S(4)s drawback is more expressive
as depicted in Figure 9.28. An important result is that both speed and speedup have
a positive trend.

9.4 Experiments for Performance Drawbacks in Parallel Execution 91

Fig. 9.27 Speeds in the area around N = 64 [123]

Fig. 9.28 Speedups in the area around N = 64 [123]

9.4.2 Experiment 2 - range around N = 128

Experiment 2 covers the area of N = 128. Matrix B cannot be stored completely in
L1 cache and drawbacks appear due to insufficient L1 cache and L1 and L2 cache
set associativity. Table 9.4 presents the results for execution time (T), Speed (V) in
GFlops, cache misses (LM) and Speedup (S).

Figures 9.29 and 9.30 depict the speed and speedup for the experiments in the
range around N = 128.

92 9 Performance Drawbacks Using Set Associative Cache

N T(1) (ms) T(2) (ms) T(4) (ms) V(1) V(2) V(4) L1M L3M S(2) S(4)

116 2.62599 1.33599 0.675012 1.1888 2.3367 4.6248 216,566 13,075 1.966 3.890
120 3.14517 1.59416 0.803838 1.0988 2.1679 4.2994 237,796 13,454 1.973 3.913
124 3.2632 1.64937 0.833448 1.1686 2.3119 4.5753 317,133 13,829 1.978 3.915
128 6.73523 3.37483 1.691500 0.6227 1.2428 2.4796 2,152,896 14,282 1.996 3.982
132 3.91838 1.98356 0.996157 1.1739 2.3190 4.6177 386,298 14,705 1.975 3.933
136 4.58864 2.31338 1.167710 1.0964 2.1747 4.3084 339,248 15,419 1.984 3.930
140 4.58651 2.32819 1.172130 1.1966 2.3572 4.6821 388,402 16,043 1.970 3.913

Table 9.4 Results of the experiments in the area around N = 128 [123]

Fig. 9.29 Speeds in the area around N = 128 [123]

The speed drawback is expressive for each speed in point N = 128 as depicted
in Figure 9.29. It is bigger than previous experiments and increases when P grows.
Speedup drawback is not found neither for S(2) nor S(4) as depicted in Figure 9.30;
the speedup is even better for N = 128 rather than other points in the area.

An important result is that all speeds have positive trend. There is a positive
Speedup trendline until N = 128 and then it becomes negative. Local maximums and
minimums are near the main drawback generated due to L1 cache set associativity.
The Experiment 1 does not produce local minimums and maximums since the set
associative cache works as fully associative cache for small problem size N.

9.4 Experiments for Performance Drawbacks in Parallel Execution 93

Fig. 9.30 Speedups in the area around N = 128 [123]

9.4.3 Experiment 3 - range around N = 256

Experiment 3 covers the area of N = 256. Matrix B cannot be stored completely in
L2 cache and drawbacks are generated due to L1, L2 and L3 cache set associativity.
Table 9.5 presents the results for execution time (T), Speed (V) in GFlops, cache
misses (LM) and Speedup (S).

N T(1) (ms) T(2) (ms) T(4) (ms) V(1) V(2) V(4) L1M L3M S(2) S(4)

244 30.8041 15.1709 7.52547 0.9432 1.9151 3.8607 1,909,543 92,319 2.030 4.093
248 33.6237 17.2433 8.21905 0.9073 1.7691 3.7116 1,963,703 117,054 1.950 4.091
252 34.1971 17.2361 8.68687 0.9359 1.8569 3.6844 2,987,831 204,269 1.984 3.937
256 104.304 57.2151 27.0405 0.3217 0.5865 1.2409 17,021,258 1,326,929 1.823 3.857
260 38.8296 18.8008 9.64274 0.9053 1.8697 3.6454 3,335,444 821,196 2.065 4.027
264 41.788 20.0876 9.63306 0.8806 1.8320 3.8201 2,364,154 1,367,713 2.080 4.338
268 44.8336 21.5451 11.0572 0.8587 1.7868 3.4817 4,088,886 2,004,349 2.081 4.055

Table 9.5 Results of the experiments in the area around N = 256 [123]

Figures 9.31 and 9.32 depict the speed and speedup for the experiments in the
range around N = 256.

The speed drawback is expressive for each speed in point N = 256 as depicted
in Figure 9.31. It is bigger than previous experiments and increases when P grows.
There are speedup drawbacks both for S(2) and S(4) where S(4)s drawback is more
expressive as depicted in Figure 9.32. Superlinear speedup is found both for P = 2
and P = 4 processors since this area is in the superlinear region. This phenomenon

94 9 Performance Drawbacks Using Set Associative Cache

Fig. 9.31 Speeds in the area around N = 256 [123]

Fig. 9.32 Speedups in the area around N = 256 [123]

will be elaborated both theoretically and experimentally in the next Part III. Another
important result is that all speeds have negative trend since the transition from L2 to
L3 region.

9.4 Experiments for Performance Drawbacks in Parallel Execution 95

9.4.4 Experiment 4 - range around N = 512

Experiment 4 covers the area of N = 512. Matrix B cannot be stored completely
neither in L2 nor L3 cache, and thus drawback is mainly due to their size and asso-
ciativity. Table 9.6 presents the results for execution time (T) in miliseconds, Speed
(V) in GFlops, cache misses (LM) and Speedup (S).

N T(1) T(2) T(4) V(1) V(2) V(4) L1M L3M S(2) S(4)

500 465.907 257.429 116.141 0.5366 0.9711 2.1526 31,327,035 15,792,325 1.810 4.012
504 410.632 206.221 96.4347 0.6235 1.2416 2.6551 16,460,993 16,177,786 1.991 4.258
508 481.68 237.265 118.486 0.5443 1.1051 2.2129 31,937,134 16,559,469 2.030 4.065
512 1448.94 893.006 533.299 0.1853 0.3006 0.5033 135,154,085 135,137,152 1.623 2.717
516 599.456 277.324 138.58 0.4584 0.9908 1.9828 33,889,015 17,351,077 2.162 4.326
520 662.439 295.451 132.531 0.4245 0.9518 2.1219 18,887,514 17,763,756 2.242 4.998
524 643.795 322.384 163.302 0.4470 0.8926 1.7621 20,865,023 18,171,270 1.997 3.942

Table 9.6 Results of the experiments in the area around N = 512 [123]

Figures 9.33 and 9.34 depict the speed and speedup for the experiments in the
range around N = 512.

Fig. 9.33 Speeds in the area around N = 512 [123]

The speed drawback is expressive for each speed in point N = 512 as depicted in
Figure 9.33. It is bigger than previous experiments and increases when P grows. The
drawbacks for parallel execution are so expressive that V (2) and V (4) are similar as
other points in this area for sequential algorithm. The speedup drawbacks are found

96 9 Performance Drawbacks Using Set Associative Cache

Fig. 9.34 Speedups in the area around N = 512 [123]

both for S(2) and S(4) where S(4)s drawback is more expressive as depicted in
Figure 9.34. Superlinear speedup is also found in some points, especially expressive
in point N = 520. Another important result is that all speeds have negative trend
since the transition from L3 to L4 region.

9.4.5 Experiment 5 - range around N = 1024

Experiment 5 covers the area of N = 1024. Matrix B cannot be stored completely
in L3 cache and drawbacks appear due to L3 cache size and associativity. Table 9.3
presents the results for execution time (T) in seconds, Speed (V) in MFlops, cache
misses (LM) and Speedup (S).

N T(1) T(2) T(4) V(1) V(2) V(4) L1M L3M S(2) S(4)

1012 15.695 7.628 3.720 132.071 271.757 557.281 560,845,297 130,207,941 2.058 4.220
1016 15.275 7.572 3.844 137.321 277.002 545.700 489,187,519 131,755,327 2.017 3.974
1020 16.144 7.846 3.831 131.465 270.504 554.007 476,074,648 133,314,925 2.058 4.214
1024 25.26 15.33 10.51 85.005 140.129 204.394 1,077,440,805 1,077,424,512 1.648 2.404
1028 16.577 8.048 3.937 131.071 269.980 551.820 499,081,123 136,470,949 2.060 4.210
1032 16.155 8.005 4.040 136.072 274.616 544.154 537,036,472 138,067,471 2.018 3.999
1036 16.980 8.261 4.041 130.968 269.199 550.282 568,057,068 139,676,397 2.055 4.202

Table 9.7 Results of the experiments in the area around N = 1024 [123]

9.4 Experiments for Performance Drawbacks in Parallel Execution 97

Figures 9.35 and 9.36 depict the speed and speedup for the experiments in the
range around N = 1024.

Fig. 9.35 Speeds in the area around N = 1024 [123]

Fig. 9.36 Speedups in the area around N = 1024 [123]

The speed drawback is expressive for each speed in point N = 1024 as depicted in
Figure 9.35. It increases when P grows. The speed drawbacks for parallel execution
are so expressive that V (4) is similar as other points in this area for parallel execution

98 9 Performance Drawbacks Using Set Associative Cache

with P = 2 processors and V (2) is similar as other points in this area for sequential
execution. The speedup drawbacks are found both for S(2) and S(4) where S(4)s
drawback is so expressive that S(4) is similar to other points in this area for parallel
execution with P = 2 processors as depicted in Figure 9.36. Superlinear speedup is
also found in local maximums.

9.4.6 Experiment 6 - range around N = 2048

Experiment 6 covers the area of N = 2048. Matrix B cannot be stored completely
in L3 cache. Table 9.8 presents the results for execution time (T) in seconds, Speed
(V) in MFlops, cache misses (LM) and Speedup (S).

N T(1) T(2) T(4) V(1) V(2) V(4) L1M L3M S(2) S(4)

2036 141.68 69.71 34.804 119.142 242.138 484.993 9,512,432,234 1,057,585,355 2.032 4.071
2040 141.52 70.54 36.291 119.976 240.702 467.870 9,568,573,042 1,063,825,729 2.006 3.900
2044 141.12 69.45 34.820 121.024 245.921 490.508 9,624,934,306 1,070,090,603 2.032 4.053
2048 349.17 177.2 111.21 49.201 96.960 154.486 8,600,990,501 8,600,974,720 1.97 3.140
2052 145.15 70.71 35.106 119.051 244.386 492.242 9,738,321,967 1,082,696,101 2.053 4.135
2056 143.31 71.11 36.602 121.290 244.429 474.890 9,795,347,195 1,089,034,767 2.015 3.915
2060 148.69 73.90 36.616 117.583 236.600 477.484 9,852,592,562 1,095,396,059 2.012 4.061

Table 9.8 Results of the experiments in the area around N = 2048 [123]

Figures 9.37 and 9.38 depict the speed and speedup for the experiments in the
range around N = 2048.

The speed drawback is expressive for each speed in point N = 2048 as depicted in
Figure 9.37. It increases when P grows. The speed drawbacks for parallel execution
are so expressive that V (2) and V (4) are similar as other points in this area for
sequential algorithm.

The speedup drawbacks are found both for S(2) and S(4) where S(2)s drawback
is minimal while S(4)s drawback is more expressive as depicted in Figure 9.38.
Small superlinear speedup is also found in local maximums.

9.5 Summary

Cache hierarchy and organization can seriously affect performance. This chapter
proves that the cache associativity is another important performance parameter in
addition to the cache size.

We have provided theoretical analysis (published in [120] for the purpose of this
thesis research) why there are performance drawbacks and suggest to organize dense

9.5 Summary 99

Fig. 9.37 Speeds in the area around N = 2048 [123]

Fig. 9.38 Speedups in the area around N = 2048 [123]

matrix multiplication algorithms avoiding situations where mapping onto n-way set
associative cache will use only a small part of the cache instead of whole cache
capacity.

100 9 Performance Drawbacks Using Set Associative Cache

9.5.1 Summary for Drawbacks in Sequential Exectuion

This chapter presents the results of performed experimental research published in
[50] that approve the theoretical results from Chapter 9 showing real cases of per-
formance drawbacks. In addition to our theoretical performance analysis we have
also shown trends in performance behavior.

First and last level cache misses are also profiled. The overall dense matrix multi-
plication algorithm performance does not change despite the local L1 cache misses
maximums. The performance drawbacks appear mostly due to last level cache asso-
ciativity and capacity.

L1 cache associativity drawbacks appear for N = 64,128,256,512 and 1024 al-
though the drawback is small for N = 64. L3 cache associativity drawbacks appear
for N = 256,512,1024 and 2048. For N = 512,1024 and 2048 the L1 and L3 cache
associativity drawbacks are similar in absolute value, but L3 cache associativity
drawbacks are more expressive relative, i.e. L1 drawback is due to capacity prob-
lem rather than associativity problem and each L1 cache miss generates L3 cache
miss.

The speed drawback is more expressive for greater matrix size than smaller in
the critical points. Inconsiderable speed drawback is found for matrix size N = 64.
Significant speed drawback is found for matrix sizes N = 128,256,512,1024 and
2048.

9.5.2 Summary for Drawbacks in Parallel Exectuion

Six experiments are realized for different cache regions by the authors in [123] for
the purpose of this thesis research. Execution time, speed, cache misses and speedup
are measured for each experiment around the critical points found as theoretical
results for matrix sizes N = 64,128,256,512,1024 and 2048.

L1 cache associativity drawbacks appear for N = 64,128,256,512 and 1024 al-
though the drawback is small for N = 64. L3 cache associativity drawbacks appear
for N = 256,512,1024 and 2048. For N = 512,1024 and 2048 the L1 and L3 cache
associativity drawbacks are similar in absolute value, but L3 cache associativity
drawbacks are more expressive relative, i.e. L1 drawback is due to capacity prob-
lem rather than associativity problem and each L1 cache miss generates L3 cache
miss.

The speed drawback is more expressive for greater matrix size than smaller in
the critical points. Inconsiderable speed drawback is found for matrix size N = 64
both for sequential and parallel execution. Significant speed drawback is found for
matrix sizes N = 128,256,512,1024 and 2048.

Parallel algorithm executions result with speed drawbacks more than sequential.
They are expressive for the experiments executing on P = 4 processors where the
speed V (4) is smaller than the speed V (2). For N = 512 speed V (4) is similar as
speed V (1) in the observed points of the particular area. The speed drawbacks for

9.5 Summary 101

the experiments executing on P = 2 processors are also expressive. Speed V (2) is
similar or even smaller than speed V (1) in other points of the particular area.

Inconsiderable speedup drawback is found for matrix size N = 64 both for paral-
lel execution on 2 and 4 cores. For N = 128 we found even greater speedup than the
observed points in the area for both speedups. For each other N = 256,512,1024 and
2048 significant speedup drawback is found, especially for speedup S(4). The only
exception is the inconsiderable speedup drawback for parallel execution on P = 2
processors for matrix size N = 2048. Parallel speed and speedup drawbacks are in-
considerable for matrix sizes N = 64 and N = 128 since these are the points in L2
region dedicated per core. The quoted theorems are valid for parallel execution only
in the dedicated cache regions. Significant speed and speedup drawbacks is found in
L3 and L4 regions, especially for parallel execution on P= 4 cores. Further research
will include performance evaluation of parallel execution including the number of
processors P for shared cache.

Based on theoretical analysis and experimental research we have concluded how
n-way associative cache can seriously affect performance. We have analyzed and
found theoretically the points where the associativity causes performance drawbacks
and suggest organization of the matrix multiplication algorithm avoiding situations
where mapping onto n-way set associative cache will use only a small part of the
cache instead of whole cache capacity. The performed experimental research ap-
proved the results showing real cases of performance drawbacks in both sequential
and parallel executions.

Part III
Achieving Superlinear Speedup

Chapter 10
Superlinear Speedup in Matrix Multiplication
on Multiprocessor

Abstract Despite the Gustafson’s Law that maximum scaled speedup is p and
Shi’s limitation that superlinear speedup is only possible for Non Structure Persis-
tent algorithms, superlinear region is found and analyzed for parallel execution. This
chapter presents the analysis realized for the purpose of this thesis research by the
authors in [52]. The authors show theoretically that there is a region where the su-
perlinear speedup can be achieved. Theoretical proof of existence of a superlinear
speedup is given and boundaries of the region where it can be achieved are deter-
mined. The experiments confirm our theoretical results. The realization of modern
processors is based on an multicore architecture with increasing number of cores
per processor which is actually organized as a shared memory multiprocessor with
shared L2 cache and distributed L1 cache. Therefore these results will have impact
on future software development and exploitation of parallel hardware.

10.1 Sequential vs Parallel Cache Occupancy

Let’s analyze the cache occupancy by the given sequential and parallel implementa-
tions. A part of the cache is occupied by the OS for its requirements, usually a small
portion. In sequential execution the cache will not generate cache misses if all the
matrices A and B are both stored in the cache as presented in Figure 10.1 a).

Note that no space is required for matrix C, since the values are computed and
stored with write no allocation algorithm directly in main memory. If write alloca-
tion is used then a small space will be used in the cache but its dimension is small
in comparison to the need of storage of whole matrices A and B.

Suppose that matrices are stored in L1 cache. If matrix dimension increases then
there is a need for more space and cache misses generation starts provoking perfor-
mance degradation. The analysis continues with storage problems in the next level
of the caches L2, L3 and so on. The same situation with generation of cache misses
happens when L2 (L3) cache will be occupied by both matrices. The performance
degradation is presented in Fig. 10.2. Note that this degradation does not happen

105

106 10 Superlinear Speedup in Matrix Multiplication on Multiprocessor

Occupied by OS Occupied by OS

Matrix A Matrix B

Matrix Ai

Matrix B

a) sequential version b) parallel version

Fig. 10.1 Cache occupancy in sequential and parallel execution [52]

-

6

Cache Memory Requirements

Processor speed

sequential
parallel

�
�
�	

��
����

superlinear
L1 region

superlinear
L2 region

6

�
���

L1S

L2S

L3S

s
s

s

A
A
A
A

A
A
A
A

A
A
A
A

L1P

L2P

L3P

s
s

s

A
A
A
A

A
A
A
A

A
A
A
A

Fig. 10.2 Expected average processor speed with real cache [52]

ideally with horizontal and vertical lines, but in reality it should be a smooth curve
instead of straight line, but following the presented pattern. [121] shows theoreti-
cal foundation about real processor speed with caches and present simulation and
experimental diagrams of these curves.

The parallel algorithm (4.4) organizes computations by distribution to several
processors and storage requirements to their distributed caches. For each processor
there is a need only for a chunk Ai of matrix A to be stored in cache and whole
matrix B. Therefore there is more space for matrix B allowing greater size problems
to be stored without generation of cache misses, as shown in Figure 10.1 b).

The realization of this idea produces less cache misses for the same problem
size in parallel execution than in sequential. This will make increased processor
performance in comparison with sequential processing as presented in Fig. 10.2.

10.2 Speedup Analysis with Memory Behavior 107

Let’s define the points L1S, L2S and L3S for sequential and the points L1P, L2P
and L3P for parallel execution correspondingly to mark the regions where the pro-
cessor will perform the highest speed when working with L1, L2 or L3 cache [124].
Note that differences are mainly shown between sequential and parallel processing
due to distributed L1 and L2 caches and not for L3 cache which is mainly shared
for multicore implementations.

In these two regions there is higher average processor performance for parallel
execution and these regions are correspondingly marked as L1 and L2 superlinear
regions. L1 cache is small according to L2 and therefore we will concentrate to
analysis of the L2 superlinear region.

Further on we make theoretical analysis and determine the superlinear region,
i.e. the region where superlinear speedup is achieved.

10.2 Speedup Analysis with Memory Behavior

In this section we analyze the existing equations to calculate sequential and parallel
execution time, and thus the speedup.

For better presentation, we’ll use the abbreviations shown in Table 10.1 for vari-
ables defined in [62].

Abbreviation Variable

TS CPU Execution TimeSequential
tp CPU Execution TimeParallel

CCS CPU Clock CyclesSequential
CCP CPU Clock CyclesParallel
CT Clock Cycle Time
MCS Memory Clock CyclesSequential
MCP Memory Clock CyclesParallel
ME SizeO f (MatrixElement)
MS MemorySequential
MP MemoryParallel
CS2 L2 Cache size o f one core
CS3 L3 Cache size o f one core
OSS2 Size o f L2 Cache occupied by OS in Sequential
OSP2 Size o f L2 Cache per core occupied by OS in Parallel
OSS3 Size o f L3 Cache occupied by OS in Sequential
OSP3 Size o f L3 Cache per core occupied by OS in Parallel

Table 10.1 Variable abbreviations for better presentation [52]

Gustafson’s law [55] assumes that parallel execution time is fixed and defines
that maximum obtained speedup should be measured by scaling the problem to the

108 10 Superlinear Speedup in Matrix Multiplication on Multiprocessor

number of processors, i.e. it is linear equal to the number of processors P. Several
other assumptions are made to prove this, including:

• The number of parallel chunks of the application is multiple of the number of
processors.

• The performance of the parallel chunks never saturates.
• Creation / deletion of the parallel threads does not overhead.
• Sequential and parallel parts of the application run at the same rate.

Based on these assumptions the performance analysis should refer to both mem-
ory access and CPU execution times. The CPU execution times for sequential algo-
rithm ts and parallel algorithm tp are respectively defined in (10.1) and (10.2).

ts =CCS ·CT (10.1)

tp =CCP ·CT (10.2)

In Theorem 10.1 we express speedup relation in a new way as a function of both
the CPU and memory clock cycles.

Theorem 10.1. The speedup for parallel execution in a multiprocessor over sequen-
tial execution is equal to

Speedup =
CCS +MCS

CCP +MCP
(10.3)

Proof. Relations (10.1) and (10.2) do not include memory access which is very
important in the analysis since it can dominate the performance over the CPU ex-
ecution time even in cases with intensive computation. Real CPU execution time,
both for sequential and parallel, is defined in (10.4) and (10.5) according to [62].

ts = (CCS +MCS) ·CT (10.4)

tp = (CCP +MCP) ·CT (10.5)

Equation (10.3) is obtained from (2.9) by dividing (10.4) and (10.5).

Theorem 10.1 and the equation (10.3) is basics for our theoretical analysis of
existence of superlinear speedup.

10.3 How to Obtain Super-Linear Speedup

In this section we introduce a new methodology how to obtain a superlinear speedup
region for matrix multiplication. The idea is to determine when and how the super-
linear speedup is possible and what is the matrix size and algorithm organization to
obtain superlinear speedup for parallelized matrix multiplication on P processors.

10.3 How to Obtain Super-Linear Speedup 109

10.3.1 Existence of Superlinear Speedup

Let’s analyze the memory part of (10.3) in Theorem 10.1. The main idea is presented
next. Is it possible that memory access time in parallel system will be reduced more
than P times in comparison to memory access time when execution is sequential?
It will lead to superlinear speedup. This idea is mathematically specified in Theo-
rem 10.2.

Before we construct the proof of superlinear speedup existence, we introduce
several new definitions and properties and show how they affect the performance.

Lemma 10.1. For a given multiprocessor and its sequential and parallel executions
there exists a real number ε such that 0≤ ε ≤ P and

CCS =CCP · (P− ε). (10.6)

Proof. As presented in [55] the corresponding maximum speedup for P processors
is given in (10.7).

MaxSpeedup =
ts
tp
≤ P (10.7)

Further on we obtain equation (10.8) by dividing (10.1) and (10.2), and using (10.7).

CCS ≤CCP ·P (10.8)

The proof can be constructed if (10.8) is rewritten in (10.6).

Lemma 10.1 is used for the next theorem.

Theorem 10.2. Superlinear speedup in a shared memory multiprocessor with dis-
tributed cache memory per processor is possible if and only if

MCS > P ·MCP + ε ·CCP (10.9)

Proof. Let’s assume that (10.9) is true. Using (10.6) and (10.9), (10.3) becomes
(10.10), i.e. maximum speedup will be

MaxSpeedup >
(P− ε) ·CCP +P ·MCP + ε ·CCP

CCP +MCP
= P (10.10)

The inverse proof is analogue.

Our main idea to achieve superlinear speedup in a shared memory multiprocessor
with distributed cache specified by Theorem 10.2 will be elaborated in the next
section. We aim to verify existence of (10.9) and to find if it has a solution. If there
is a solution, the goal is to determine what is the value of N?

Different speeds of the processor-memory hierarchy are used for the purpose of
further analysis where the processor is the fastest component and the main memory
is the slowest component. (10.11) presents the relation among number of clock cy-
cles for operation in processor, and memory cycles for L1, L2 and L3 caches and
main memory.

110 10 Superlinear Speedup in Matrix Multiplication on Multiprocessor

CCCPU < MCL1 < MCL2 < MCL3 < MCMemory (10.11)

For example, usual behavior is that memory clock cycles for L2 cache is at least
100 times greater than CPU clock cycles. Therefore, the focus of the analysis is not
only to reduce the CPU clock cycles for parallel execution to obtain speedup, but
to analyze the correlation between matrix size and required cache memory space
per processor and to reduce the overall memory clock cycles as much as possible in
parallel.

10.3.2 Memory and Cache Requirements

Required memory space for the three matrices A, B and C is 3 ·N2 in shared memory.
But, more important is to calculate the cache space required for reading the matrices
A and B from the shared memory, since matrix C usually is not stored in cache with
no write allocation algorithm and only a small part will be stored if write allocation
algorithm is used for the cache.

Lemma 10.2. Cache memory storage requirements for sequential execution of the
matrix multiplication algorithm (4.4) on a uniprocessor with cache is

MS = 2 ·N2 ·ME (10.12)

Proof. Algorithm (4.4) is equivalent to (4.1) for sequential uniprocessor implemen-
tation as a compute intensive algorithm with O(N3) computations. In both algo-
rithms there is no need for cache memory storage requirements for 3 matrices like
in the main memory, since the product matrix C will be only stored after all nec-
essary computations will be performed in a local register and afterwards stored in
the memory. Therefore the only requirement for sequential execution on a single
processor is cache memory space for matrices A and B, each with N ·N elements.

The cache memory space for parallel execution is smaller than in Lemma 10.2
and is analyzed next.

Lemma 10.3. Cache memory storage requirements for parallel execution of matrix
multiplication algorithm (4.4) on a shared memory multiprocessor with dedicated
cache per processor is

MP = N2 · (1+ 1
P
) ·ME (10.13)

Proof. Each processor has its own CS2 cache. On P processors, such as N = q ·P
and according to the algorithm (4.4), the required cache memory space per core is
partition Ai with N ·N/P and also the whole matrix BN·N .

10.3 How to Obtain Super-Linear Speedup 111

10.3.3 A Superlinear Region for Matrix Multiplication

Lemmas 10.2 and 10.3 and relations (10.12) and (10.13) define the dependencies of
matrix size and cache memory storage requirements. Nowadays, processors possess
L1 cache size in Kilobytes, and L2 and L3 in Megabytes. Using double precision
with 8 bytes per matrix elements (ME = 8B), and matrix size N > 10, the L1 cache
cannot store the whole matrix. Therefore, both the sequential and the parallel exe-
cutions will need L2 cache, and our analysis will be focused there. Also, most of
today’s CPUs possess dedicated L2 cache per core. Thus, using P cores for parallel
execution assumes usage of P times L2 cache.

Our goal is to find if there is a matrix size range, and particularly Nmin and Nmax
sizes so that the whole MP memory can be stored in P caches, and in the same time
MS cannot be stored in 1 core cache? If this is possible, then MCP << MCS and
(10.9) will be satisfied, and thus, maximum speedup will be superlinear as shown in
Theorem 10.2.

Theorem 10.3. The range of matrix size N for which implementation of algorithm
(4.4) in a shared memory multiprocessor achieves superlinear speedup, where each
processor has distributed L2 cache with size of CS2 is given by calculating the ma-
trix size values of Nmin and Nmax

N ≥
√

CS2−OSS2

2 ·ME
= Nmin (10.14)

N ≤
√

CS2−OSP2

(1+ 1
P) ·ME

= Nmax (10.15)

Proof. Proof can be easily constructed from the equations (10.12) and (10.13) by
implementing the idea to find a range where cache memory storage requirements
will generate cache misses for sequential execution and not for parallel execution
- meaning that the cache space is small to store complete matrix B and complete
matrix A, but it can store complete matrix B and a chunk of matrix A.

The next theorem defines existence of a superlinear speedup.

Theorem 10.4. A superlinear speedup exists in a shared memory multiprocessor
with dedicated L2 cache per processor for execution of algorithm (4.4).

Proof. To prove this we use the results of Theorem 10.3. The condition Nmax ≥Nmin
is always valid, showing the existence of N if Nmax >Nmin. The processor uses small
part of its L2 cache for instructions, i.e. OSS2 << CS2 and OSP2 << CS2. Due to
the fact that OSP2 ≈ OSS2 one can conclude that CS2−OSP2 =CS2−OSS2. Using
this in (10.14) and (10.15) we obtain (10.16)

2≥ 1+
1
P

(10.16)

It is always true, due to P≥ 1.

112 10 Superlinear Speedup in Matrix Multiplication on Multiprocessor

Let’s explain in more details the condition in (10.16) for various values P. If
P = 1, then it is a sequential algorithm which stores whole matrices A and B on one
processor. If P→ ∞, then it is a parallel solution where small chunks of A and the
whole matrix B are stored on each processor cache.

Calculation of Nmin and Nmax in (10.14) and (10.15) correspondingly defines our
new methodology to determine a matrix size N for which the algorithm will obtain
maximum performance such as superlinear speedup.

However, using a shared memory L2 cache will not lead to a superlinear speedup,
as defined by the following theorem.

Theorem 10.5. The maximum speedup in a shared memory multiprocessor with
shared L2 cache among processors is always smaller than P.

Proof. Since there is no dedicated L2 cache per processor, then L2 is last level
shared cache and whole matrices A and B should be stored in it, both for sequential
and parallel execution. Therefore, MCS and MCP have same values and

MCS < P ·MCP. (10.17)

Using (10.7) and (10.17) in (10.3) it follows that

MaxSpeedup <
P ·CCP +P ·MCP

CCP +MCP
= P (10.18)

10.4 Determination of Superlinear Speedup Regions

A new idea to obtain superlinear speedup assuming that dedicated L2 is the pro-
cessor’s last level cache was elaborated in previous section. Next we continue with
details to determine matrix size N range, such that the maximum speedup can be
obtained in a real shared memory system.

We’ll analyze all 3 possible shared memory environments shown in Table 4.1. In
each case, different chunk of matrix A and whole matrix B is stored into L2 cache
per core, and the whole matrices A and B will be stored into L3 cache per chip. In a
sequential execution, the whole matrices A and B are stored in the cache to the only
one core.

We define a methodology to calculate best ranges for matrix size N in order to
obtain superlinear speedup in the next 3 sections, 10.4.1, 10.4.2 and 10.4.3.

10.4.1 Multi Chip-Multi Core

In this shared memory environment, matrix A is partitioned to P = s · c partitions Ai
with size N ·N/P. Each partition, together with matrix B is sent to a particular core
for calculations.

10.4 Determination of Superlinear Speedup Regions 113

Theorem 10.6. The range of matrix size N for which implementation of algorithm
(4.4) in a shared memory multiprocessor using multiple chips with shared L3 cache
of size CS3 and multiple cores per chip, where each core has distributed L2 cache
with size of CS2 is given by calculating the values of Nmin and Nmax for both L2 and
L3 caches.

N ≥
√

CS2−OSS2

2 ·ME
= Nmin(L2) (10.19)

N ≥
√

CS3−OSS3

2 ·ME
= Nmin(L3) (10.20)

N ≤
√

CS2−OSP2

(1+ 1
c·s) ·ME

= Nmax(L2) (10.21)

N ≤
√

CS3−OSP3

(1+ 1
c) ·ME

= Nmax(L3) (10.22)

Proof. The 4 relations for matrix size N are derived from (10.14) and (10.15).
Dedicated L2 cache should be able to store one partition of matrix A and whole

matrix B and this leads to (10.21). Shared L3 cache should be able to store c parti-
tions of matrix A and whole matrix B leading to (10.22).

For sequential execution, L2 and L3 caches should not store the whole matrices
A and B as in (10.19) and (10.20), respectly, both obtained from (10.14).

10.4.2 Single Chip-Multi Core

This shared memory environment has the same characteristics for sequential execu-
tion as a Multi Chip-Multi Core. For parallel execution, matrix A is partitioned to c
partitions Ai with size N ·N/c. Each such partition, together with matrix B is sent to
a particular core for calculations.

Theorem 10.7. The range of matrix size N for which implementation of algorithm
(4.4) in a shared memory multiprocessor using single chip with L3 cache and mul-
tiple cores per chip, where each core has distributed L2 cache with size of CS2 is
given by calculating the values of Nmin in (10.19) and the following Nmax

N ≤
√

CS2−OSP2

(1+ 1
c) ·ME

= Nmax(L2) (10.23)

Proof. For L2 cache, this is a special case of Theorem 10.6 and proof can be con-
structed by setting s = 1. Dedicated L2 cache should be able to store one partition
of matrix A and whole matrix B leading to (10.23). Shared L3 cache should be able
to store the whole matrices A and B which is the same as sequential execution.

114 10 Superlinear Speedup in Matrix Multiplication on Multiprocessor

We must note that NMax(L3) does not exist if multiprocessor is single chip-multi
core. L3 cache is shared in this case and thus sub-linear speedup is achieved as
Theorem 10.5 by applying L3 instead of L2 cache.

10.4.3 Multi Chip-Single Core

This shared memory environment has the same characteristics for sequential exe-
cution as previous two cases. For parallel execution, matrix A is partitioned to s
partitions Ai with size N ·N/s. Each partition, together with matrix B is sent to a
particular chip (core) for calculations. In this case, L3 cache is irrelevant.

Theorem 10.8. The range of matrix size N for which implementation of algorithm
(4.4) in a shared memory multiprocessor using multiple chip with single core per
chip and L2 cache per core (chip) with size of CS2 is given by calculating the values
of Nmin in (10.19) and Nmax in

N ≤
√

CS2−OSP2

(1+ 1
s) ·ME

= Nmax(L2) (10.24)

Proof. For L2 cache, this is a special case of Theorem 10.6 and proof can be con-
structed by setting c = 1. Dedicated L2 cache should be able to store one partition
of matrix A and whole matrix B leading to (10.24).

10.5 Testing Methodology and Theoretical Results

In this section we present the theoretical results and hypotheses for different multi-
core / multiprocessor shared memory systems shown in Table 10.2.

Case Cpu Sock. Cores L2 Type L2 Size L3 Size

1 Opteron(tm) Quad 4 16 Ded. 512K 2MB
2 Phenom(tm) Quad 1 4 Ded. 512K 2MB
3 Xeon(TM) Virt. 2 2 Ded. 1M -
4 Athlon X4 Quad 1 4 Ded. 512K -
5 Core2Duo Mobile 1 2 Shared 3M -
6 Xeon(TM) Quad 1 4 Shared 12M -

Table 10.2 Test Case Environments [52]

A set of experiments will be performed measuring performance dependence on
the matrix size.

10.5 Testing Methodology and Theoretical Results 115

For each test case in Table 10.2 we calculate Nmax and Nmin according to (10.14)
and (10.15) with assumption that P is maximum number of cores for particular test
case and N = q ·P, where q≥ 1 is integer. Table 10.3 presents these calculated values
for matrix size assuming that matrix element to be double precision floating point
number, i.e. size is ME = 8B.

Case Cores Nmin Nmax Expected Speedup

1 16 362 458 Super-Linear
2 4 181 228.97 Super-Linear
3 2 256 295.6 Super-Linear
4 4 181 228.97 Super-Linear
5 2 362 362 sub-Linear
6 4 886.81 886.81 sub-Linear

Table 10.3 Calculated Matrix Size for Each Test Case [52]

Table 10.3 shows calculated values for N where a Super-Linear speedup can be
obtained for dedicated L2 cache shared memory system. For comparison purposes
we present in Table 10.3 also results for shared L2 cache. According to the Theo-
rem 10.5 when L2 cache is last level shared cache then there is limited maximum
speedup.

The test cases of Table 10.3 where superlinear speedup is calculated are analyzed
in details in the following sections.

10.5.1 Results for Multichip - Multicore systems

Using (10.19) - (10.22) and the values for test case 1 from Table 10.2, we can cal-
culate theoretical border values for matrix size N for maximum speedup shown in
Table 10.4.

Cache Nmin Nmax

L2 181 248
L3 362 458

Table 10.4 Theoretical values for maximum speedup for Case 1 [52]

Let’s explain the results. For each N < 181, both in sequential and parallel execu-
tion, L2 and L3 caches will be enough to store the matrices. For each 181 <= N <
248, speedup will rise, due to L2 cache will be small to store the necessary matrices
in sequential execution, but enough for parallel execution. L3 cache in this range is

116 10 Superlinear Speedup in Matrix Multiplication on Multiprocessor

also enough for both sequential and parallel. For each 248 <= N < 362, speedup
will rise slower, but still rise, due to L2 cache will not be enough, but L3 will be
enough for parallel execution. For N > 362 the speedup decreases, especially when
N > 458.

10.5.2 Results for Singlechip - Multicore systems

To achieve superlinear speedup we use (10.23) and the values for test case 2 from
Table 10.2. The obtained theoretical border values for matrix size N for maximum
speedup are shown in Table 10.5.

Cache Nmin Nmax

L2 181 229

Table 10.5 Theoretical values for maximum speedup for Case 2 [52]

As a conclusion L3 cache is shared and does not affect the performance. Only the
range of matrix size N between 181 and 229 can benefit with superlinear speedup
due to dedicated L2 cache.

10.5.3 Results for Multichip - Singlecore systems

The theoretical border values for matrix size N for maximum speedup is calculated
based on (10.24) and the values for case 3 from Table 10.2. The results are shown
in Table 10.6.

Cache Nmin Nmax

L2 256 296

Table 10.6 Theoretical values for maximum speedup for Case 3 [52]

The meaning is that superlinear speedup can be achieved for N within the given
range of 256 and 296.

10.6 Experimental Results 117

10.5.4 Results for Singlechip - Multicore dedicated cache systems

To achieve superlinear speedup we use (10.23) and the values for test case 4 from
Table 10.2. The obtained theoretical border values for matrix size N for maximum
speedup are shown in Table 10.7.

Cache Nmin Nmax

L2 181 229

Table 10.7 Theoretical values for maximum speedup for Case 4 [52]

As a conclusion only the range of matrix size N between 181 and 229 can benefit
with superlinear speedup due to dedicated L2 cache.

10.6 Experimental Results

This section presents the results of series of experiments performed on different
multicore / multiprocessor shared memory systems shown in Table 10.2.

The tests include experiments where the performance dependence is tested upon
different matrix sizes for the maximum usage of P processing elements. The results
for obtained maximum speedup are presented for all test cases where we theoreti-
cally calculated both superlinear and sublinear speedup.

10.6.1 Case 1: Multi Chip-Multi Core

The results of the theoretical analysis for possible superlinear speedup are presented
in Table 10.4. The practical experiments for case 1 are shown in Figure 10.3 and they
confirm our theoretical results.

There is a superlinear speedup in range 288 <= N <= 480, and maximum
speedup is more than 26 with 16 processors for N = 400.

10.6.2 Case 2: Single Chip-Multi Core

The results of the experiments for case 2 are depicted in Figure 10.4 and also confirm
our theory.

Superlinear speedup is obtained for range 192 <= N <= 736, and maximum
speedup is more than 5.6 with 4 processors for N = 400.

118 10 Superlinear Speedup in Matrix Multiplication on Multiprocessor

Fig. 10.3 Experimental Speedup for Test Case 1 [52]

Fig. 10.4 Experimental Speedup for Case 2 [52]

10.6.3 Case 3: Multiple Chip-Single Core

The theoretical border values for matrix size N for maximum speedup as calculated
by introduced methodology are presented in Table 10.6. The results of the experi-
mental research for case 3 are depicted in Figure 10.5 and also confirm our theory
with a little offset (a situation that appears due to the existence of operating system
code per each processor in the cache, so not all size is available to store matrix and
executed the algorithm).

10.6 Experimental Results 119

Fig. 10.5 Experimental Speedup for Case 3 [52]

Superlinear speedup is achieved only in range 240<=N <= 256. The maximum
speedup value is just a little above the linear with 2 processors for N = 240. Note that
these results differ from theoretical since the testing environment was virtualized
using VMware ESXi 4 [158] and there were only 2 processors without usage of L3
cache.

10.6.4 Case 4: Single Chip-Multi Core - Dedicated L2 Without L3

These experiments were performed on virtualized environment using Microsoft
Hyper-V Server 2008 R2 [90]. The results of the experiments for case 4 are de-
picted in Figure 10.6 and also confirm our theory.

Superlinear speedup is obtained for range 120 <= N <= 224. The maximum
speedup is more than 5.56 with 4 processors for N = 156.

10.6.5 Case 5: Single Chip-Multi Core - Shared Cache in
Core2Duo

The theoretical analysis for sublinear speedup in shared L2 cache is proved with the
experimental results depicted in Figure 10.7. Both the Theorem 10.5 and Figure 10.7
prove that the speedup in this case is always smaller than P.

120 10 Superlinear Speedup in Matrix Multiplication on Multiprocessor

Fig. 10.6 Experimental Speedup for Case 4 [52]

Fig. 10.7 Experimental Speedup for Test Case 5 [52]

10.6.6 Case 6: Single Chip-Multi Core - Shared Cache in
CoreQuad

The theoretical analysis for sublinear speedup in shared L2 cache is proved with the
experimental results depicted in Figure 10.8. Both the Theorem 10.5 and Figure 10.8
prove that the speedup in this case is always smaller than P.

10.7 Discussion 121

Fig. 10.8 Experimental Speedup for Test Case 6 [52]

10.7 Discussion

Superlinear speedup is achieved for test cases 1, 2, 3 and 4 of Table 10.2 due to
conditions of Theorems 10.4 and 10.2, i.e. the existance of distributed L2 cache
memory (and dedicated L3 cache in case 1) per processor and the cache memory
speed in sequential execution is huge enough compared to memory and processor
clocks in parallel execution. Furthermore, conditions of Theorem 10.2 are not sat-
isfied for test cases 5 and 6 since they are subject of Theorem 10.5 which proves
sub-linear speedup for these cases.

Although superlinear regions are achieved for expected test cases, they are not
completely in the regions as calculated theoretical results. There are many factors
with impact to speedup elaborated in the following sections.

10.7.1 Wider Superlinear Region

Although Theorems 10.4 and 10.2 prove the existence of a superlinear speedup,
it’s range determined experimentally is wider than the superlinear region calculated
theoretically, i.e. for N greater than L2P and L3P. Using dedicated cache per core
will generate smaller number of cache misses in corresponding cache rather than
sequential for the same problem size N.

122 10 Superlinear Speedup in Matrix Multiplication on Multiprocessor

10.7.2 Shared Memory Competition

Increasing the number of processors increases the competition for the same mem-
ory resources, which provides greater memory latency than sequential. Test case 1
executes on 16 cores in parallel, placed in 4 chips. All 16 cores access the same data
from main memory generating bottleneck for huge N after point L3P (Last level
cache) in Figure 10.2. This is the reason why test case 1 has smaller superlinear
region than test case 2.

As a prove we perform another test as a subtest of test case 1, i.e. executing
parallel on the same platform for test case 1 but on 4 processors instead of 16,
depicted in Figure 10.9.

Fig. 10.9 Experimental Speedup for Test Case 1 for P = 4 of 16 [52]

The superlinear range is similar as test case 2 which should be because the cache
sizes are same.

10.7.3 Cache Occupancy due to OS and Virtualization

Theoretical ranges for superlinear regions are calculated as the whole processor
cache is available for the algorithm. However, some part of cache memory is oc-
cupied by OS as depicted in Figure 10.1. Even more the cache is occupied by the
host OS in virtualized environment such as test case 3 where experimental NMin and
NMax are smaller than theoretical.

10.7 Discussion 123

10.7.4 What about 2D blocking Matrix Multiplication

This section describes the results of the experiments with more efficient matrix mul-
tiplication algorithm with 2D matrix blocking. The blocking algorithm is one of
the ten advanced optimization of CPU cache performance presented in [63]. Our
hypothesis is that existing superlinear regions for parallel execution presented in
previous Chapter 10 do not appear due to bad cache utilization of the basic matrix
multiplication algorithm described in Section 4.1, but due to distribution of work-
load to multiple processors and therefore smaller cache memory requirements for
distributed L1 cache using the shared L2 cache presented in Section 10.3.

We realize matrix multiplication with 2D blocking both sequential execution us-
ing 1 core and parallel execution using 4 cores in test case environment 2 shown in
Table 10.2. We use block submatrices of size 48x48 elements that can be placed in
L1 cache. The experiments range is from matrix size N = 96 to N = 2536 with step
P = 4.

Figure 10.10 depicts the experimental speedup of parallel execution. It proves
also existing of superlinear speedup starting from N = 1524 in some points, and in
all points for N > 1976. We must note that the speedup curve rises and falls down
because the block size is constant and is not a divisor of matrix size, thus reducing
the efficiency for parallel execution.

Fig. 10.10 Experimental Speedup S(4) for blocking matrices [52]

124 10 Superlinear Speedup in Matrix Multiplication on Multiprocessor

10.8 Summary

The theoretical analisys in this chapter for superlinear speedup in dense matrix mul-
tiplication algorithm as an example was realized by the authors in [52] for the pur-
pose of this thesis research. We tried to go beyond the limits specified in Gustafson’s
law not just finding examples of superlinear speedup for matrix multiplication but
also to provide theoretical analysis how to achieve it in a real shared memory sys-
tem. We show and provide a proof of its existence in a real multiprocessor system
that uses caches. The superlinear speedup is possible in cases where sequential ex-
ecution initiates more cache misses than for parallel execution. This happens for
example, in a shared memory multiprocessor with dedicated caches.

We have presented the theoretical background of superlinear existence and also
introduced a methodology how to achieve it, when and where it can be achieved.
We have also defined a testing methodology and realized a series of experiments to
provide evidence of superlinear speedup and unexpected high performance.

As a conclusion mathematical relations showed a possibility of superlinear
speedup and extensive experimental research approved the results showing real
cases of increased unexpected performance in a multiprocessor or multicore sys-
tem (or both), with dedicated cache per core and thus propose using such systems
in parallel computing.

The results and methodology can be used in the massive data computations with
high cache miss ratio. Dividing data into a smaller chunks with optimal size calcu-
lated with our methodology, reduces cache misses in parallel execution in the dedi-
cated cache per core system. Although we simplified our calculations, our method-
ology can be used in other similar high performance numeric computations.

The achieved high performance results and superlinear speedup is demonstrated
on the example of dense matrix multiplication algorithm. It is possible within a
range of values of matrix sizes, even if the environment is virtualized.

The results in this paper show superlinear speedup for some range of matrix size
N and prove the theoretical analysis. Another important result was obtaining super-
linear speedup in virtualized environment with two different hypervisors: Microsoft
Hyper-V and VMware ESX.

Chapter 11
Superlinear Speedup in Matrix Multiplication
on GPU

Abstract In previous chapters 10 and ?? we present teoretically and experimentally
how to achieve superlinear speedup for matrix multiplication algorithm on specific
multiprocessors. In this chapter we present the analysis and the experiments of the
research realized by the authors in [33] for the purpose of this thesis. The authors
theoretically analyzed and experimentally achieved superlinear speedup for GPU
devices, which are also categorized as SIMD. We implement a structure persis-
tent algorithm which efficiently exploits the shared cache memory and avoids cache
misses as much as possible.

11.1 How to Achieve Superlinear Speedup in GPU

In this section we present the theoretical analysis that was performed by the authors
to determine how to achieve superlinear speedup in GPU for matrix multiplication
algorithm.

11.1.1 Superlinear regions

Cache memory occupancy for sequential execution is greater than the cache mem-
ory occupancy for parallel execution since, smaller chunks of data are stored, thus
allowing larger size problems to be stored without generation of cache misses. As
described in Section 4.5 if the cache memory requirements fit in L1 cache, then we
expect the highest processor speed and call this region L1 region. In L2 region data
does not fit in L1, but fits in the L2 cache generating cache misses in L1, but not for
L2.

The theoretical expectations for performance are presented in Figure 11.1. Cache
occupancy for the sequential execution is defined by the points L1S and L2S and
for the parallel execution by the points L1P and L2P. Due to different dedicated L1

125

126 11 Superlinear Speedup in Matrix Multiplication on GPU

cache occupancy in dedicated L1 cache there is difference between L1 regions for
sequential and parallel execution. We expect better performance for parallel execu-
tion in case when the sequential execution generates cache misses for L1 and L2
still does not generate cache misses, and in case of parallel execution L1 does not
generate cache misses. This region is called superlinear region since it leads to a
possible superlinear speedup [124].

L1S

L2S

L1P

L2 Region

Sp
e

e
d

Cache Memory Requirements

V(1)

V(P)

L1 Superlinear
Region

Fig. 11.1 Expected speed with real cache [33]

11.1.2 Analysis of Memory Utilization

Based on the SIMD architecture as described in Section 4.5, the L1 cache memory
is shared among all 32 threads that run per single SM. However, we are interested
only in scenarios where each core has its own dedicated cache memory, in order
to test our assumption presented in Section 11.1.1. Hence, L1 cache is dedicated
only per SM. On one hand we can control how many threads to run per threadblock,
but on the other hand, there is no specified way to control how many threadblocks
can be run per SM. Nevertheless, there are limitations regarding active threadblocks
per SM, so by allocating maximum shared memory we can ensure that only one
threadblock is running per SM. Thus, if the threadblock is defined by one thread,
we ensure that one thread is running per SM.

A sequential implementation of our algorithm that runs one thread per only one
active SM, occupies the L1 cache memory as presented in Fig. 11.2, where the
accessed memory blocks are denoted with gray color.

11.2 Testing Methodology 127

 SM (0)

L1 cache (0)

P0

...

L2 cache (768KB)

Global Memory (up to 6GB)

P1 PN-1...

 SM (1)

L1 cache (1)

P0 P1 PN-1...

 SM (N-1)

L1 cache (N-1)

P0 P1 PN-1...

Fig. 11.2 Memory utilization of the sequential implementation [33]

The cache memory occupancy for the parallel implementation is depicted in
Fig. 11.3. In this implementation several SMs are used such that each SM uses
only one thread and full L1 cache. L2 cache in this implementation is shared among
all SMs.

 SM (0)

L1 cache (0)

P0

...

L2 cache (768KB)

Global Memory (up to 6GB)

P1 PN-1...

 SM (1)

L1 cache (1)

P0 P1 PN-1...

 SM (N-1)

L1 cache (N-1)

P0 P1 PN-1...

Fig. 11.3 Memory utilization of the parallel implementation [33]

11.2 Testing Methodology

The testing methodology is based on 2 experiments which show speedup depen-
dence on problem size (cache memory requirements) and on the number of process-
ing elements.

128 11 Superlinear Speedup in Matrix Multiplication on GPU

11.2.1 Testing data

Since, the L1 cache of the GPU device is configurable, and additionally we can con-
figure the cache line sizes at compile time, we can obtain significant performance
discrepancy. There are many aspects about performance discrepancy [161] for dif-
ferent combinations presented in Table 11.1. Hence, to obtain the most optimized
implementation, all combinations need to be tested upon in order to decide the op-
timal L1 cache memory size and the caching vs. non-caching load operations.

L1 size Cache lines

16KB 128bit
16KB 32bit
48KB 128bit
48KB 32bit

Table 11.1 Combinations of L1 cache memory sizes and cacheline sizes [33]

11.2.2 Testing Environment

We have performed our tests with the GPU device specified in Table 11.2. All ex-
periments were performed on the same hardware infrastructure (Intel i7 920 CPU
at 2.67GHz, with 12GB RAM at 1333MHz) and Linux OS Ubuntu 10.04 LTS. The
implementations were compiled with the NVIDIA compiler nvcc from the CUDA
4.2 toolkit.

GPU Feature Value

Cores 448
Number of SPs per SM 32

Number of SMs 14
L1 cache / Shared Memory (KB) 16/48

L2 cache Memory (KB) 736
DRAM (GB) 6

Table 11.2 GPU Device Specifications of Tesla C2070 [33]

11.3 Results 129

11.3 Results

11.3.1 Speed and Speedup vs Cache Requirements

The results of our first experiment for the matrix multiplication is presented in fig-
ures 11.4 and 11.5. Figure 11.4 depicts the speed, where V(1) stands for the speed
of the sequential execution. In order to better depict the Figure 11.4 for parallel exe-
cution on 14 cores, we have normalized the speed per core, therefore V(14) presents
the average speed per processing element. Accordingly, the speedup S(14) is de-
noted for the parallel execution on 14 cores for the same experiment in Figure 11.6.
Thus, it is easy to notice that there is an existence of a superlinear region, and an
appropriate superlinear speedup.

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 50 100 150 200 250 300 350

G
F

lo
ps

Cache Memory Requirements

V(1)
V(14)

Fig. 11.4 GPU speed for sequential execution (1 active SM) and the average normalized speed per
core (14 active SMs) in parallel execution [33]

11.3.2 Speedup vs SMs

In our second experiment we are testing the dependency of the speedup and the
number of processing elements. For this experiment, we select 2 problem sizes from
the superlinear L1 region and L2 as presented in Figure 11.6. We have performed
matrix multiplication on different number of processing elements (in our case SMs).

130 11 Superlinear Speedup in Matrix Multiplication on GPU

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 50 100 150 200 250 300 350

S
pe

ed
up

Cache Memory Requirements

S(1)
S(14)

Fig. 11.5 GPU speedup for the parallel execution (14 active SMs) [33]

The results depicted in Figure 11.6 confirm the existence of superlinear speedup for
each parallel execution with 2, 4, 6, 8, 10, 12 and 14 SM in the superlinear region.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14

S
pe

ed
up

Processing elements (P)

Linear
Superlinear

L2

Fig. 11.6 GPU speedup for the second experiment [33]

11.4 Summary 131

11.4 Summary

This chapter presents the results for achieved superlinear speedup in GPU devices
realized by the authors in [33]. The experiments have confirmed the theoretical anal-
ysis about existence of superlinear regions of the problem size for matrix multiplica-
tion using GPU devices, where the normalized performance per processing element
for parallel execution is better than in sequential execution. Thus, we have obtained
a superlinear speedup beyond the limits specified in Gustafson’s law. However, we
have only obtained superlinear speedup in the superlinear region where the cache
memory requirements of the problem fit in L2 for parallel execution and generate
L2 cache misses for sequential execution.

Based on the experiments, we have presented further proof that there is existence
of superlinear speedup for SIMD architecture processors with dedicated caches,
more particular GPU devices.

The speedup performance is directly dependent on cache performance and gen-
eration of cache misses. The experiments prove that superlinear speedup is possible
for particular number of SMs in for particular problem size in superlinear speedup
region.

Part IV
Performance Analysis of Cache Intensive

Algorithms in Cloud Computing

Chapter 12
Virtualization Impact on Cache Intensive
Algorithm Performance

Abstract Cache intensive algorithms performance depends mostly of cache param-
eters. The program should be executed slower in cloud virtual environment com-
pared to traditional server due to additional virtualization layer. There is also a
hypothesis that the speedup in cloud virtual environment for parallel execution is
smaller than in sequential. However, there is a region with particular problem size
for matrix multiplication where the program runs faster in virtual environment. In
this chapter we will describe the results of the experiments published by the authors
in [48] for the purpose of this thesis research.

12.1 Testing Environment

The experiments are performed on two same HP Proliant DL380 G7 servers, each
with 2 x Intel(R) Xeon(R) CPU X5680 @ 3.33GHz GHz [168] and 24GB RAM.
The processor has 6 cores, each with 32 KB 8-way set associative L1 cache dedi-
cated per core, and 256 KB 8-way set associative L2 cache dedicated per core. All
6 cores share 12 MB 16-way set associative L3 cache.

The first server is installed with Linux Ubuntu 10.10 as traditional host OS on
one real hardware machine. The second server uses Linux Ubuntu 10.10 installed
as guest OS with all resources dedicated to the virtual machine using VMware ESX
Server 5i [159].

Execution time is measured for the matrix multiplication algorithm on both tra-
ditional and virtual servers during the test experiments.

The test experiments have two goals. The first goal is to model the multipro-
cessor’s behavior, i.e. speed and speedup in computationally and memory intensive
matrix multiplication algorithm on both environments as a baseline. The second
goal is to model the performance drawbacks due to virtualization implementation
on the second server compared to traditional server.

Matrix multiplication algorithm described in Section 4.1 and its parallel imple-
mentation from Section 4.3.1 are used as test data.

135

136 12 Virtualization Impact on Cache Intensive Algorithm Performance

All test cases are executed using different matrix size N for different number of
processing elements from 1 to 12. Tests are performed by unit incremental steps for
matrix size and number of processors.

12.2 Parallel Matrix Multiplication in Traditional Environment

This Section presents the result of the baseline experiments in traditional environ-
ment. Figure 12.1 presents the speed expressed in gigaflops versus matrix size N
for each test case with different number of processing elements P = 1,2, · · · ,12.
Figure 12.1 presents huge performance degradation when N > 512. This is the en-
trance in L4 region, i.e. the region where the matrix elements do not fit in last level
L3 cache generating cache misses in L3 cache. In this region the matrix elements
should be loaded from the main memory, instead of L3 cache, which is time con-
suming operation.

Fig. 12.1 Speed in Traditional (T) Operating System [48]

Figure 12.2 depicts the speedup as a function of matrix size N for each test case
with different number of processing elements P = 1,2, · · · ,12. The speedup curves
satisfy Gustafson’s Law [55] and saturate below maximum speedup P besides the
speed degradation in L4 region.

12.3 Parallel Matrix Multiplication in Virtual Environment 137

Fig. 12.2 Speedup in Traditional (T) Operating System [48]

12.3 Parallel Matrix Multiplication in Virtual Environment

This Section presents the result of the baseline experiments in virtual environment.
The speed graph expressed in gigaflops versus matrix size N is shown in Figure 12.3
for P = 1,2, · · · ,12 processing elements. Figure 12.3 also presents huge perfor-
mance degradation when N > 512 similar to the traditional environment.

Fig. 12.3 Speed in Virtualized (v) Operating System [48]

138 12 Virtualization Impact on Cache Intensive Algorithm Performance

Figure 12.4 depicts the speedup as a function of matrix size N for P= 1,2, · · · ,12
processing elements. The difference in this environment is the existence of a super-
linear L4 region, which is emphasized for P > 6. This happens due to existence of
a superlinear region when using the second L3 cache compared to the experiments
performed only on one chip with one L3 cache.

Fig. 12.4 Speedup in Virtualized (v) Operating System [48]

12.4 Traditional vs Virtual Environment

This Section compares the performance of traditional and virtual environments us-
ing the performance baseline presented in Sections 12.2 and 12.3.

12.4.1 Speed Comparison

Comparing Figures 12.1 and 12.3 one can conclude that the curves are nearly identi-
cal. All L1, L2, L3 and L4 regions are expressed in the same range of N for particular
P. But, there is a difference for speed values in different regions. Figures 12.5 and
12.6 correspondingly present the speed difference between traditional and virtual
environment for odd and even number of processing elements P.

The figures present that the virtual environment performs with discrepancies. On
contrary to our hypothesis, virtual environment provides better performance in L1
and L2 regions compared to traditional as number of processors P increases. In

12.4 Traditional vs Virtual Environment 139

Fig. 12.5 Speed comparison for odd processing elements [48]

Fig. 12.6 Speed comparison for even processing elements [48]

L3 region both environments provide similar performance. But virtual environment
provides huge performance drawback in L4 region compared to traditional depicted
in Figure 12.7.

140 12 Virtualization Impact on Cache Intensive Algorithm Performance

Fig. 12.7 Speed comparison in L4 region for better presentation [48]

12.4.2 Speedup Comparison

Speedup comparison is depicted in Figures 12.8 and 12.9. On contrary to our hy-
pothesis, one can conclude from both figures that speedup in virtual environment is
greater than speedup in traditional environment.

Fig. 12.8 Speedup comparison for odd processing elements [48]

12.4 Traditional vs Virtual Environment 141

Fig. 12.9 Speedup comparison for even processing elements [48]

The performance drawback in virtual environment compared to traditional is ex-
posed in the L4 region. Figures 12.10 and 12.11 present the relative performance
expressed as percentage via ratio of achieved speeds in virtual and traditional envi-
ronments for odd and even number of processing elements P. It is assumed that the
speed in traditional environment is 100%.

Fig. 12.10 Relative Performance for odd processing elements [48]

Using any processors P from 3 to 12, the virtual environment provides better
performance than traditional in L1, L2 and L3 regions. For L4 region, there is a

142 12 Virtualization Impact on Cache Intensive Algorithm Performance

Fig. 12.11 Relative Performance for even processing elements [48]

huge performance drawback in virtual environment compared to traditional, despite
the performance drawback in both solutions in this region, compared to regions L1,
L2 and L3.

12.4.3 Performance Comparison in Cache Regions

Table 12.1 presents the average performance ratio between virtual and traditional en-
vironment for regions L1, L2 and L3 as a group where virtual environment provides
better performance, as well as for L4 region where virtual environment provides
huge performance drawback compared to traditional. All performance percentages
are given for each processing element P from 1 to 12.

The maximum performance as shown in Table 12.1 for virtual environment is
14.62% better than traditional in L1-L3 region. The results show average 5.65%
better performance than traditional before L4 region, but only 66.58% of perfor-
mance that the traditional environment provides in L4 region. It also means that in
this region the performance is 33.42% worse than traditional.

12.5 Discussion

The experimental results seem very discrepant. Our hypothesis that programs will
run slower in virtual environment compared to traditional server failed in many test
cases. The similar situation is also shown for speedup when executing in parallel.

12.6 Summary 143

P L1-L3 Regions L4 Region

1 98.02% 64.88%
2 99.72% 66.51%
3 101.54% 66.27%
4 104.29% 65.79%
5 105.62% 66.42%
6 114.62% 67.07%
7 110.00% 66.79%
8 98.26% 67.82%
9 111.42% 66.75%
10 109.30% 65.28%
11 105.80% 67.14%
12 109.23% 68.26%

Avg 105.65% 66.58%

Table 12.1 virtual vs traditional average speed performance [48]

Figures 12.10 and 12.11 present that for each number i of processing elements
(i = 2,3, ...,P−1) virtualization provides better performance than traditional in L1
and L2 regions. One can conclude that virtualization handles better in distributed
environment rather than shared memory.

As additional confirmation to conclusion, L3 cache is ”semi-shared semi-distributed”,
i.e. it is shared but not for all data. In L3 region virtualization and traditional envi-
ronment provide similar performance.

The huge performance drawback in L4 region that virtual environment provides
can be explained due to sharing the last level cache - shared memory, despite both
test environment create evenly number of cache misses.

12.6 Summary

We performed detailed experiments and concluded a huge performance discrep-
ancy in virtualized environment. Virtualization provides almost equal performance
of 98% as traditional for sequential execution on compute, memory and cache inten-
sive matrix multiplication algorithm. Using parallelization it provides even greater
speed of almost 15% for particular number of processing elements in L1 and L2
regions.

The virtualization loses the battle in L4 region when a lot of costly cache misses
appear. Its performance is 33.42% worse than traditional in this region.

Despite the hypothesis, the experimental results prove that virtualization per-
formance is even better than traditional for distributed memory, rather than shared
where there is a huge performance drawback.

Chapter 13
PaaS Impact on Cache Intensive Algorithm
Performance

Abstract Different runtime environment also impacts the performance. Opposite to
the hypothesis that Linux based runtime environment provides better performance,
the results of the experiments show that Windows based runtime environment runs
up to 2.5 times better than Linux, especially for problem size that can be placed in
cache and will not generate a lot of cache misses. Both environments are hosted in
Windows Azure Cloud. In this chapter we will describe the results of the experi-
ments realized by the authors in [51] for the purpose of this thesis research.

13.1 Testing Methodology

This section describes the testing methodology based on 2 different platforms and 4
test cases for each platform.

13.1.1 Testing Algorithm

Matrix multiplication algorithm described in Section 4.1 and its parallel implemen-
tation from Section 4.3.2 are used as test data.

13.1.2 Testing Environments

The experiments are realized in Microsoft Windows Azure Cloud. Details about
Windows Azure Platform, its components and architecture are given in [109]. Two
different platforms are analyzed as testing environments using the same runtime
environment hosted in the same hardware infrastructure.

145

146 13 PaaS Impact on Cache Intensive Algorithm Performance

Hardware Infrastructure is the same for each test case. It consists of Windows
Azure Extra Large virtual machine instance with 2 processors AMD Opteron 4171
HE and total 8 CPU cores. The processor has 6 cores, but only 4 cores are dedicated
per virtual machine instance. Each core possesses 64 KB L1 data and instruction
caches dedicated per core, 512KB L2 dedicated per core. L3 cache with total 5 MB
is shared per chip.

13.1.3 Test Platforms

Two different platforms are used:

• Windows Server 2008 is used on the instance. C# is used with .NET framework
4 using threads for parallelism.

• Linux Ubuntu Server 12.04 is used for the instance. C++ uses OpenMP as API
for parallelism.

13.1.4 Test Cases

Four groups of test cases are realized:

• sequential execution on only one core
• parallel execution with two threads on two cores
• parallel execution with four threads on four cores
• parallel execution with eight threads on eight cores

We realize the experiments in each test case by varying the matrix size to analyze
performance behavior upon different platforms, overload and variable cache storage
requirements.

Speed V and Speedup S are measured in each test case. Relative speed R of
Windows compared to the Linux platform is measured by (13.1), where indexes W
and L denote the speed correspondingly Windows and Linux platforms.

R =VW/VL (13.1)

13.2 Experimental Results

This section presents the results of the experiments performed on both platforms to
determine speed and speedup in particular platform.

13.2 Experimental Results 147

13.2.1 Speed

Fig. 13.1 depicts the results of the experiments on Linux platform. V(1) identifies
the curve for speed of sequential execution and V(2), V(4) and V(8) identify speed
of parallel execution on Linux platform with 2, 4 and 8 threads correspondingly. As
depicted, greater number of threads provides better performance.

Fig. 13.1 Speed achieved on Linux platform [51]

Fig. 13.2 depicts the results of the experiments on Windows platform. The curves
are identified similar as the speedup curves of Linux platform. As depicted, usage of
greater number of threads provides better performance. The speed curves are similar
as Linux’s.

Greater problem size fulfills the caches faster, and therefore generates more cache
misses and degrades the performance in both the Linux and Windows platforms.

13.2.2 Speedup

Speedup defined in relation (2.9) is calculated for each test case.
Fig. 13.3 depicts the results of the experiments on Linux platform. S(2), S(4)

and S(8) identify speedup of parallel execution on Linux platform with 2, 4 and 8
threads correspondingly. As depicted, speedup satisfies Gustafson’s law for scaled
speedup.

Fig. 13.4 depicts the results of the experiments on Windows platform. The curves
are identified similar as the speedup curves of Linux platform. As depicted, there are

148 13 PaaS Impact on Cache Intensive Algorithm Performance

Fig. 13.2 Speed achieved on Windows platform [51]

Fig. 13.3 Speedup achieved on Linux platform [51]

superlinear speedup regions for each number of threads. The superlinearity is more
emphasis for greater number of threads.

13.3 Performance Comparison of Linux and Windows platforms 149

Fig. 13.4 Speedup achieved on Windows platform [51]

13.3 Performance Comparison of Linux and Windows platforms

This section presents the results of the experiments performed on both platforms to
determine which platform provides better performance with particular number of
threads.

13.3.1 Speed

Fig. 13.5 compares the speeds of both platform for particular number of threads.
V(1)L and V(1)W identify the speed curves for sequential execution on Linux and
Windows platform correspondingly. Analogue, V(2)L, V(4)L and V(8)L identify
the speed curves of parallel execution on Linux platform with 2, 4 and 8 threads
correspondingly. V(2)W, V(4)W and V(8)W identify the speed curves of parallel
execution on Windows platform with 2, 4 and 8 threads correspondingly. As de-
picted, Windows platform provides much better performance than Linux for each
number of threads and for each problem size N.

Fig. 13.6 depicts the relative performance ratio of Windows compared to Linux
platform, calculated according to (13.1). R(1), R(2), R(4) and R(8) identify the ratio
of speeds (relative speedup) on Windows and Linux platforms when executing with
1, 2, 4 and 8 threads correspondingly. As depicted, Windows provides better per-
formance than Linux platform, especially in L1-L3 regions, i.e. the regions where
the data can be placed in the caches which are dedicated per core. In L4 region,
i.e. where data does not fit in cache memory, but can be placed in RAM memory,
Windows also provides better performance, but comparable to Linux platform.

150 13 PaaS Impact on Cache Intensive Algorithm Performance

Fig. 13.5 Speed comparison of Linux and Windows platforms [51]

Fig. 13.6 Relative Speed comparison of Windows and Linux platforms [51]

The results of the experiments are discrepant and contrary to the hypothesis show
that the Windows platform with its .NET framework 4 and C# runtime environment
for parallelization provides better performance than Linux platform with C++ and
OpenMP for parallelization.

13.4 Summary 151

13.3.2 Speedup

Speedup is determined by (2.9) and calculated for each test case.
Fig. 13.7 compares the speeds of both platform for particular number of threads.

S(2)L, S(4)L and S(8)L identify the speedup curves of parallel execution on Linux
platform with 2, 4 and 8 threads correspondingly. S(2)W, S(4)W and S(8)W iden-
tify the speedup curves of parallel execution on Windows platform with 2, 4 and
8 threads correspondingly. Comparing the curves with the same number of threads
for both platforms, we can conclude that Linux provides better speedup for L1-L3
regions. However, Windows provides better speedup (even superlinear) in the L4
region for each number of threads. It means that sequential processing using the
Linux platform is slower beyond the expectations.

Fig. 13.7 Speedup comparison of Linux and Windows platforms [51]

13.4 Summary

The experimental research in this chapter by the authors in [51] for the purpose of
this thesis research shows several conclusions testing execution compute intensive
and cache memory demanding algorithm on different platforms in Azure cloud.

Better performance is achieved using Windows than Linux platform. The mea-
sured speeds for the same algorithm on Windows is greater than on Linux achieving
up to 2.5 times better performance especially in L1-L3 regions. The behavior in L4
region is comparable, but still Windows platform achieves better performance.

152 13 PaaS Impact on Cache Intensive Algorithm Performance

The main contribution of this paper is based on experimental proof and recom-
mendation to use the Windows platform while using Azure cloud for cache intensive
problems, like dense matrix multiplication algorithms.

Chapter 14
IaaS Performance Impact on Cache Intensive
Algorithm

Abstract CSPs offer scalable resources to their customers. The price for renting the
resources is linear, i.e. the customer pays exactly double price for double resources.
However, not always all offered resources of virtual machine instances are most
suitable for the customers. Some problems are memory demanding, others are com-
pute intensive or even cache intensive. The same amount of resources offered by the
cloud can be rented and utilized differently to speedup the computation. One way
is to use techniques for parallelization on instances with more resources. Other way
is to spread the job among several instances of virtual machine with less resources.
This chapter describes the results of the experiments realized by the authors in [131]
for the purpose of this thesis research. The authors analyze which is the best way to
scale the resources to speedup the calculations and obtain best performance for the
same amount of money needed to rent those resources in the cloud.

14.1 Testing Methodology

This section describes the testing methodology based on 4 different infrastructures
with same platform.

14.1.1 Testing Algorithm

Matrix multiplication algorithm described in Section 4.1 and its parallel implemen-
tation from Section 4.3.2 are used as test data.

153

154 14 IaaS Performance Impact on Cache Intensive Algorithm

14.1.2 Testing Environments

Testing environment is hosted in Windows Azure. The authors in [109] presents
Windows Azure Platform, its components and architecture in details. We use the
same platform environment in each test case with different resource allocation. Win-
dows 2008 Server is used as operating system in each VM instances. Runtime envi-
ronment consists of C# with .NET framework 4 and threads for parallelization.

We use the same total hardware resources organized in different Windows Azure
VMs:

• 1 x Extra Large VM with total 8 CPU cores;
• 2 x Large VM with total 4 CPU cores per VM;
• 4 x Medium VM with total 2 CPU cores per VM;
• 8 x Small VM with total 1 CPU core per VM.

AMD Opteron 4171 HE processor(s) is used in each VM. It has 6 cores, but
maximum 4 of 6 cores are dedicated per VM instance. Each core possesses 64 KB
L1 data and instruction caches dedicated per core, 512KB L2 dedicated per core. L3
cache with total 5 MB is shared per chip.

14.1.3 Test Cases

By four test cases are performed for sequential and parallel execution of matrix
multiplication algorithm. We realize the experiments in each test case by varying the
matrix size to analyze performance behavior upon different VM resources, overload
and variable cache storage requirements. The following test cases are realized for
sequential and parallel execution:

• Test Case 1: 1 VM with 1 process with 8 (max) threads per process on total 8
cores: In this test case one Windows Azure Extra Large VM is activated allocated
with 8 cores as depicted in Figure 14.1 a). One process in VM executes matrix
multiplication with 8 parallel threads. Each thread runs on one core multiplying
a row block of matrix AN·N/8 and the whole matrix BN·N .

• Test Case 2: 2 concurrent VMs with 1 process per VM with 4 threads per
process on total 8 cores: In this test case two concurrent Windows Azure Large
VMs are activated allocated with 4 cores per VM as depicted in Figure 14.1 b).
One process in each VM executes matrix multiplication concurrently with 4 par-
allel threads per process (VM). Each process (in separate VM) multiplies the half
of matrix AN·N divided horizontally, i.e. a row matrix AN·N/2 and the whole ma-
trix BN·N . Each thread multiplies a quarter of half matrix AN·N/2, i.e. AN·N/8 and
the whole matrix BN·N .

• Test Case 3: 4 concurrent VMs with 1 process per VM with 2 threads per
process on total 8 cores: In this test case four concurrent Windows Azure

14.1 Testing Methodology 155

Fig. 14.1 Test Cases 1 (a) and 2 (b) [131]

Medium VMs are activated allocated with 2 cores per VM as depicted in Fig-
ure 14.2 a). One process in each VM executes matrix multiplication concurrently
with 2 parallel threads per process (VM). Each process (in separate VM) mul-
tiplies the quarter of matrix AN·N/4 divided horizontally and the whole matrix
BN·N . Each thread multiplies a half of quarter of matrix AN·N/4, i.e. AN·N/8 and
the whole matrix BN·N .

Fig. 14.2 Test Cases 3 (a) and 4 (b) [131]

• Test Case 4: 8 concurrent VMs with 1 process per VM with 1 thread per
process on total 8 cores: In this test case eight concurrent Windows Azure Small
VMs are activated allocated with 1 core per VM as depicted in Figure 14.2 b).
One process in each VM executes matrix multiplication concurrently with 2 par-
allel threads per process (VM). Each process (in separate VM) multiplies the
quarter of matrix AN·N/4 divided horizontally and the whole matrix BN·N . Each
thread multiplies a half of quarter of matrix AN·N/4, i.e. AN·N/8 and the whole
matrix BN·N .

• Test Cases 5-8: sequential execution on only one core: Test cases 5-8 execute
matrix multiplication sequentially on the testing environments as test cases 1-4
correspondingly. Only one core is used in each of these test cases and all other
seven cores are unused and free. The process runs on one core multiplying the
whole matrix AN·N with the whole matrix BN·N .

156 14 IaaS Performance Impact on Cache Intensive Algorithm

14.1.4 Test Data

Speed V and Speedup S are measured for each test case. Average execution time of
all processes per test case is measured.

Additionally we measure relative speed Ri for sequential and parallel test cases.
The relation (14.1) defines the relative speedup of sequential execution in smaller
VMs compared to the Extra Large, i.e. test cases 6, 7 and 8 compared to test case
5. Analogue, the relation (14.2) defines the relative speedup of parallel execution in
smaller VMs compared to the Extra Large, i.e. test cases 2, 3 and 4 compared to test
case 1. The index i denotes the corresponding test case.

RiSeq =Vi/V5 (14.1)

RiPar =Vi/V1 (14.2)

14.1.5 Tests Goal

The test experiments have two goals:

• To determine the speedup that particular infrastructure provides; and
• To determine which hardware resource allocation among tenants and threads pro-

vides best performance for HPC application in Windows Azure.

Different sets of experiments are performed by varying the matrix size changing
the processor workload and cache occupancy in the matrix multiplication algorithm.

14.2 The Results of the Experiments

This section presents the results of the experiments that run test cases. We measure
the average speed and speedup for each test case and analyze their dependencies of
different hardware resource allocation, that is, we compare the results of test cases
1 and 5, 2 and 6, 3 and 7, and 4 and 8 as described in Section 16.1.3.

14.2 The Results of the Experiments 157

14.2.1 Test Cases 1 and 5

Figure 14.3 depicts the speed of test cases 1 and 5 for different matrix size N. We
determine two main regions with different performance. For N < 572 (L3 region)
the whole matrices can be placed in L3 cache and performance are much better than
for N > 572 (L4 region) where L3 cache misses are generated.

Fig. 14.3 Speed for test cases 1 and 5 [131]

The same regions are depicted for speedup depicted in Figure 14.4. A superlinear
speedup is determined in some points of L4 region due to doubled size L3 cache for
parallel execution than sequential.

14.2.2 Test Cases 2 and 6

Figure 14.5 depicts the speed of test cases 2 and 6 for different matrix size N. The
same regions with different performance are found also.

Figure 14.6 depicts the speedup of test cases 2 and 6 for different matrix size
N. We found that the whole L4 region is superlinear region since only half matrix
A is stored in L3 cache for parallel execution rather than the whole matrix A for
sequential execution.

158 14 IaaS Performance Impact on Cache Intensive Algorithm

Fig. 14.4 Speedup for test cases 1 and 5 [131]

Fig. 14.5 Speed for test cases 2 and 6 [131]

14.2.3 Test Cases 3 and 7

Figure 14.7 depicts the speed of test cases 3 and 7 for different matrix size N. As we
can see, there is a huge performance discrepancy in L3 region among the processes
and the average speed.

Figure 14.8 depicts the speedup of test cases 3 and 7 for different matrix size
N. We also found that the whole L4 region is superlinear region. This infrastructure
provides even greater speedup than test case 2.

14.2 The Results of the Experiments 159

Fig. 14.6 Speedup for test cases 2 and 6 [131]

Fig. 14.7 Speed for test cases 3 and 7 [131]

14.2.4 Test Cases 4 and 8

Figure 14.9 depicts the speed of test cases 4 and 8 for different matrix size N. We
also found a performance discrepancy but more emphasized in L1 and L2 regions
which are dedicated per process and thread in test case 4 since each process has
only one thread, each VM has only 1 core and L1 and L2 caches are dedicated per
that core.

160 14 IaaS Performance Impact on Cache Intensive Algorithm

Fig. 14.8 Speedup for test cases 3 and 7 [131]

Fig. 14.9 Speed for test cases 4 and 8 [131]

Figure 14.10 depicts the speedup of test cases 4 and 8 for different matrix size
N. The important result here is the superlinear speedup in L2 region since each VM
has only one core which has dedicated L1 and L2 cache per core and in this case
per VM. Entering the L3 and L4 regions multi-tenancy provides more cache misses
replacing the blocks that other VMs need from shared L3 cache. Therefore speedup
in L4 region is almost linear although we found superlinear speedup for some N.

14.3 Which Hardware Infrastructure Orchestration is Optimal for HPC 161

Fig. 14.10 Speedup for test cases 4 and 8 [131]

14.3 Which Hardware Infrastructure Orchestration is Optimal
for HPC

This section describes the results of testing the performance impact of hardware in-
frastructure orchestration. We analyze the results to understand if single-tenant with
multi-threading, or multi-tenant with multi-threading or multi-tenant with single-
threading the optimal environment to achieve maximum performance for matrix
multiplication algorithm, expressed as faster execution and greater speedup.

14.3.1 Hardware Infrastructure impact on Sequential Execution

The performance of sequential execution is measured in test cases 5 to 8. Fig-
ure 14.11 depicts the results of test cases 5 to 8 in absolute difference for differ-
ent matrix size N. We clearly observe three regions with different performance: L2
with maximum speed in front of L3 and L4 region. Speed retains the value with in
particular region in each test case.

Figure 14.12 depicts the relative difference of test cases 6 to 8 with test case 5
for different matrix size N.

Relative difference comparison also presents interesting conclusion. We can con-
clude that relative speeds are stable in L2 and L4 regions rather than L3 region. matrix
multiplication algorithm algorithm best runs sequentially on Extra Large in front of
Large, Medium and Small in L2 region. However, Extra Large and Small VMs lead
in front of Large and Medium in L4 region.

162 14 IaaS Performance Impact on Cache Intensive Algorithm

Fig. 14.11 Speed V for sequential execution [131]

Fig. 14.12 Relative speedup R for sequential execution [131]

14.3.2 Hardware Infrastructure impact on Parallel Execution

The performance of parallel execution is measured in test cases 1 to 4. Figure 14.13
depicts the absolute difference for different matrix size N.

We also observe the same three regions L2, L3 and L4 but with different results.
The speed increases in L2 region for the test cases with multi-threading, i.e. test
cases 1, 2 and 3. The speed saturates in L3 region and also in L4 region with de-
creased value for all test cases.

14.3 Which Hardware Infrastructure Orchestration is Optimal for HPC 163

Fig. 14.13 Speed V for parallel execution [131]

Figure 14.14 depicts the relative difference of test cases 2 to 4 with test case 1
for different matrix size N.

Fig. 14.14 Relative speed R for parallel execution [131]

We can conclude that matrix multiplication algorithm best runs parallel on 8 x
Small instances in front of 4 x Medium, 2 x Large, and 1 x Extra Large in L2 and L3
regions. The order is retained in L4 region where for huge matrices all environments
provide similar performance and other algorithms should be used.

164 14 IaaS Performance Impact on Cache Intensive Algorithm

The speedup achieved for matrix multiplication algorithm is presented in Fig-
ure 14.15 for different matrix size N executing on one, two, four and eight VM
using total 8 threads on all 8 cores.

Fig. 14.15 Speedup comparison for test cases 1 to 4 [131]

Analyzing the performance behavior we can conclude that the environment de-
fined by test case 4 is the leader in the speedup race in front of the test cases 3, 2
and 1 in L2 region, and the environment for test case 3 is the leader for the speedup
race in front of the test cases 2, 4 and 1 in regions L3 and L4.

14.4 Summary

This chapter analyzes the performance of dense matrix multiplication algorithm in
Windows Azure Cloud using the same hardware resources but differently spreaded
among virtual machines. The experiments are realized by the autors in [131] for the
purpose of this thesis research.

The results of the experiments are as expected for sequential execution. As ex-
pected, Extra Large VM achieves maximum speed in front of Large, Medium and
Small in L2 region. However, Small VM achieves similar speed as Extra Large VM
and they lead in front of Large and Medium VMs in L4 region.

Parallel execution provides even more strange results. Dense matrix multipli-
cation algorithm achieves maximum speed when executed parallel on 8 x Small
instances, in front of 4 x Medium, 2 x Large, and 1 x Extra Large in L2 and L3 re-
gions, and almost all observed L4 region. This means that the best performance can
be achieved if dense matrix multiplication algorithm is granulated on 8 chunks and

14.4 Summary 165

each chunk to be executed on 8 concurrent processes with one thread in Small Win-
dows Azure VM. The same environment achieves maximum speedup in L2 region.
In L3 and L4 region maximum speedup is achieved if dense matrix multiplication
algorithm is granulated on 4 chunks and each chunk to be executed on 4 concurrent
processes with two threads in Medium Windows Azure VM.

Chapter 15
Multitenancy Impact on Cache Intensive
Algorithm Performance

Abstract Multi-tenant cloud computing enables isolation of tenants in one or more
instances of virtual machines and sharing the hardware resources. Since modern
multi-core multiprocessors also share the last level cache among all cores on one
chip, the goal is to enable an optimal resource allocation by avoiding cache misses
as much as possible, since this will lead to performance increase. In this chapter we
will describe the results of the experiments published by the authors in [49] for the
purpose of this thesis research, i.e. the performance of single and multi-tenant envi-
ronments in cloud environment installed on a single chip multi core multiprocessor
with different resource allocation to the tenants. Although one might think that vir-
tualization and clouds include software overhead, the results show how and when
cloud computing can achieve even better performance than traditional environment,
both in a single-tenant and multi-tenant resource allocation for certain workload.

15.1 The Workload Environments

This section describes the testing methodology and defines the workload environ-
ments for experiments. Matrix multiplication algorithm described in Section 4.1 and
its parallel implementation from Section 4.3.3 are used as test data. For all different
environments, we use the same hardware and operating system. The only difference
is inclusion of VMs and enabling cloud environment.

15.1.1 Traditional On-premise Environment

This environment consists of Linux Ubuntu Server 11.04 installed on Dell Optiplex
760 with 4GB DDR2 RAM and Intel(R) Core(TM)2 Quad CPU Q9400 @ 2.66GHz
[167]. The multiprocessor has 4 cores, each with 32 KB 8-way set associative L1

167

168 15 Multitenancy Impact on Cache Intensive Algorithm Performance

cache dedicated per core and 8-way set associative L2 cache with total 6 MB shared
by 3MB per two cores.

Fig. 15.1 depicts the three different parallel executions that are defined as test
cases 1.1, 1.2 and 1.3 in this environment:

• Case 1.1: 1 process with 4 (max) threads on total 4 cores. In this test case
the matrix multiplication is executed by one process using 4 parallel threads as
presented in Fig. 15.1 a). Each thread runs on one core multiplying the whole
matrix AN·N and a column block of matrix BN·N/4.

• Case 1.2: 2 different processes with 2 threads per process on total 4 cores. In
this test case two concurrent processes execute matrix multiplication. Each pro-
cess uses two parallel threads as shown in Fig. 15.1 b). Each process multiplies
the whole matrix AN·N and a half of matrix BN·N/2 divided vertically. Each thread
multiplies matrix AN·N and half of BN·N/2, i.e., BN·N/4.

• Case 1.3: 4 different processes with 1 thread per process (sequentially) on
total 4 cores. In this test case 4 concurrent processes execute matrix multiplica-
tion as depicted in Fig. 15.1 c). Each process multiplies the whole matrix AN·N
and a quarter of matrix BN·N/4 divided vertically.

Fig. 15.1 Test Cases in Traditional Environment [49]

15.1.2 Virtual Environment

This environment consists of the same hardware and operating system as described
in Section 15.1.1. Additionally new VM is installed with same Linux Ubuntu Server
11.04 using VirtualBox and Kernel-based Virtual Machine virtualization standard
(KVM). All available resources (4 cores) are allocated to the only one VM for par-
allel execution and only one core for sequential execution.

15.1 The Workload Environments 169

Case 2.1: 1 VM with 1 process with 4 (max) threads on total 4 cores. In this
test case one process executes matrix multiplication by 4 parallel threads, all in the
VM. Each thread runs on one core multiplying the whole matrix AN·N and a column
block of matrix BN·N/4.

15.1.3 Cloud Virtual Environment

Cloud virtual environment is developed using OpenStack Compute project [106]
deployed in dual node as depicted in Fig. 15.2. KVM virtualization standard is also
used for VMs. One Controller Node and one Compute Node are used.

Fig. 15.2 OpenStack dual node deployment [105]

This cloud virtual environment consists of the same hardware and operating sys-
tem as described in Section 15.1.1 for Compute Node server. Virtual Machine de-
scribed in Section 15.1.2 is instantiated in one or more instances for the four test
cases that are performed in this environment.

Figure 15.3 depicts the three test cases 3.1, 3.2 and 3.3 that are performed as
parallel executions in this environment:

• Case 3.1: 1 instance of VM with 1 process with 4 (max) threads per process
on total 4 cores. This case is similar as cases 1.1 and 2.1, i.e., one instance of
VM is activated in the Cloud allocated with all 4 cores as depicted in Fig. 15.3 a).
One process in VM executes matrix multiplication with 4 paralllel threads. Each
thread runs on one core multiplying the whole matrix AN·N and a column block
of matrix BN·N/4.

• Case 3.2: 2 concurrent instances of VM with 1 process per VM with 2
threads per process on total 4 cores. In this test case two concurrent instances
of same VM are activated in the Cloud allocated with 2 cores per instance as
depicted in Fig. 15.3 b). One process in each VM executes matrix multiplication

170 15 Multitenancy Impact on Cache Intensive Algorithm Performance

concurrently with 2 parallel threads per process (VM). Each process (in sepa-
rate VM) multiplies the whole matrix AN·N and a half of matrix BN·N/2 divided
vertically. Each thread multiplies matrix AN·N and half of BN·N/2, i.e., BN·N/4.

• Case 3.3: 4 concurrent instances of VM with 1 process per VM with 1 thread
per process (sequentially) on total 4 cores. In this test case, 4 concurrent in-
stances of same VM are activated in the Cloud allocated with 1 core per instance
as depicted in Fig. 15.3 c). Each process (in separate VM) multiplies the whole
matrix AN·N and a column block of matrix BN·N/4.

Fig. 15.3 Test Cases in Cloud Virtual Environment [49]

15.1.4 Test Goals

The test experiments have two goals:

• The first goal is to determine if the additional virtualization layer in cloud draw-
backs the performances compared to traditional or virtualized operating system
when all the resources are dedicated to only one tenant and multi-threading is
used.

• The second goal is to determine which resource allocation among tenants and
threads provides best performance in the traditional environment and in the
cloud.

Different sets of experiments are performed by varying the matrix size changing
the processor workload and cache occupancy in the matrix multiplication algorithm.

15.2 Environment Performance Comparison with all Resources Allocated 171

15.2 Environment Performance Comparison with all Resources
Allocated

This Section presents the results of the experiments performed on three workload
environments when all the resources (CPU cores) are rented to one tenant, i.e., test
cases 1.1, 2.1 and 3.1 as described in Section 15.1.

Fig. 15.4 depicts the speed in gigaflops that matrix multiplication achieves for
different matrix size N when executing one process concurrently using 4 threads
on 4 cores on three same hardware resources, but different system environments as
described in Section 15.1. The curves are identified by V(4)T for traditional envi-
ronment, V(4)V for environment with virtual and V(4)C with cloud environment.
Fig. 15.5 shows only the differences of achieved speeds in Fig. 15.4 using relative
presentation of the ratio to the default speed value obtained by traditional environ-
ment.

Fig. 15.4 Speed comparison for traditional / virtual machine allocated with all hardware resources
(4 threads) [49]

Two regions with different performance for all three test cases are clearly de-
picted in Fig. 15.4; the left one with higher speed and the right one with lower
speed. The first region is the L2 region as defined in [48] (the region for such matrix
size N that will enable storage of all memory requirements in L2 cache and avoid
generation of cache misses for reusing the same data on L2 level). The second re-
gion is the region where the matrices can not be stored completely in the L2 cache
and many L2 cache misses will be generated due to re-using of data, but memory
requirements will fit in the L3 cache (if it exists). This region is called the L3 region.
We must note that those matrices that fit in L1 region are too small to produce higher
speed.

172 15 Multitenancy Impact on Cache Intensive Algorithm Performance

Analyzing the performance by comparing the three curves in figures 15.4 and
15.5, we can conclude that cloud virtualization performs the algorithm better than
other two environments in the L2 region. Virtualization also performs better than
traditional environment in the same L2 region, but produces worse performance
in points where performance drawbacks appear due to cache set associativity de-
scribed in [120]. Cloud and traditional environments provide similar performance
in L3 region, i.e., shared main memory, much better than virtual environment. The
conclusion is that in this region virtualization provides the worst performance and
cloud environment achieves the best performance.

Fig. 15.5 Relative speed comparison for Fig. 15.4 [49]

Another important conclusion is the fact that the speed increases in the L2 region
where the cache memory is dedicated per core (group of 2 cores) for virtual and
cloud environments. However, the speed decreases in the shared memory L3 region
when matrix size N increases demanding more memory requirements, generating
higher cache miss penalty and increasing the overall memory access time.

Based on results of these experiments, we can conclude that cloud virtual envi-
ronment achieves better performance compared to traditional environment for cache
intensive algorithms in the L2 region using dedicated L2 cache per core and shared
L3 cache and main memory. The authors in [49] describes the causes for this phe-
nomenon.

15.3 Multiprocess, Multithread and Multitenant Performance 173

15.3 Multiprocess, Multithread and Multitenant Performance

This section presents the results of the experiments that run test cases 3.1, 3.2 and
3.3 described in Section 15.1 with different resource allocation per tenant in cloud
virtual environment.

The speed achieved for the matrix multiplication algorithm is presented in
Fig. 15.6 for different matrix size N of the matrix multiplication executing on one,
two and four VM using total 4 threads on all 4 cores on the same cloud virtual en-
vironment. The curves are identified by V(4)C for test case 3.1, V(2x2)C for test
case 3.2 and V(4x1)C for test case 3.3. The relative differences to the default speed
V(4)C are presented in Fig. 15.7.

Fig. 15.6 Speed comparison for virtual machine(s) in cloud allocated with different resources per
machine and per thread [49]

Fig. 15.6 presents that the same two regions L2 and L3 can be identified by
different performance for all 3 test cases.

Analyzing the performance behavior presented in figures 15.6 and 15.7 we can
conclude that the environment defined by test case 3.3 is the leader in the speed
race in front of the test cases 3.2 and 3.1 for the left part of the L2 region, and the
environment for test case 3.2 is the leader for the speed race in front of the test
cases 3.3 and 3.1 in the right part of the L2 region. All test cases provide similar
performance in the L3 region with test 3.1 as a leader.

We can also conclude that the speed increases in the L2 region where cache mem-
ory is dedicated per core (group of 2 cores) for all three test cases. However, the
speed decreases for all test cases in the shared memory L3 region when the matrix
size N is increased enough and higher cache miss penalty is generated increasing
the overall memory access time.

174 15 Multitenancy Impact on Cache Intensive Algorithm Performance

Fig. 15.7 Relative speed comparison for Fig. 15.6 [49]

Dividing the problem in separate concurrent VMs is the best solution for cache
intensive algorithms in the L2 region for dedicated L2 caches. The best solution for
the L3 region with shared main memory is to allocate all the resources to one process
(VM) to be executed concurrently with maximum threads as number of cores.

15.4 Summary

Several experiments including parallel executions are performed with different re-
source allocation in traditional, virtual and cloud environments on the same mul-
tiprocessor. The testing methodology addresses each environment with full utiliza-
tion to all CPU cores with different techniques: mono-process with multi-threading,
multi-processes with multi-threading and multi-processes with single threads.

The performed experiments address several virtual machine instances in a cloud
system using different number of CPUs (assuming all cores are utilized). Each ex-
periment orchestrates the CPU cores differently. The contribution of the paper can
be summarized as:

• The experiments prove that there is a region (L2 region) where cloud environment
achieves better performance than traditional and virtual environment, both for
parallel and sequential process execution, and

• The experiments prove that cloud computing provides better performance in a
multi-VM environment, rather than allocating all the resources to only one VM.

The best resource allocation for traditional environment for cache intensive al-
gorithms is the usage of multiple processes with single threads. Multiple VMs with

15.4 Summary 175

single threads is the best resource allocation for cloud environment. Comparing the
environments, cloud computing provides the best performance.

Chapter 16
Superlinear Speedup in Cloud Virtual
Environment

Abstract CPU cache is used to speedup the execution of memory intensive algo-
rithms. Usage of greater cache memory sizes reduces the cache misses and overall
execution time. Different cache occupancy for sequential and parallel execution can
lead to superlinear speedup. In this chapter we will describe the results of the ex-
periments published by the authors in [130] for the purpose of this thesis research.
The testing methodology and experiments for this research are applied also to cloud
environment. The results show that cloud environment can also achieve superlinear
speedup for execution of cache intensive algorithms when high performance com-
puting is used in virtual machines allocated with more than one processor (core).

16.1 Testing Methodology

This section describes the testing methodology based on 3 different environments
and 3 test cases for each environment.

16.1.1 Testing Algorithm

Matrix multiplication algorithm described in Section 4.1 and its parallel implemen-
tation from Section 4.3.3 are used as test data.

16.1.2 Testing Environments

Three different platforms are analyzed as testing environments using the same run-
time environment hosted in the same hardware infrastructure as described in Sec-
tion 15.1.

177

178 16 Superlinear Speedup in Cloud Virtual Environment

16.1.3 Test Cases

Three groups of test cases are realized with different resource allocation:

• sequential execution with one thread on one core
• parallel execution with two threads on two cores
• parallel execution with four threads on four cores

We realize a series of experiments in each test case by varying the matrix size
to analyze performance behavior upon different overload and variable cache storage
requirements.

16.1.4 Test Goals

Our plan is to provide answers to the following hypotheses:

• is there a superlinear region for virtual and cloud environment, and
• is there a region where cloud environment achieves better speedup than tradi-

tional and virtual environment

16.2 Experimental Results

This section presents the results of the experiments performed on three environ-
ments to determine if superlinear speedup can be achieved for parallel execution
with two and four threads compared to sequential execution.

The results prove superlinear speedup region existence in all three platforms for
parallel execution with 2 and 4 threads.

16.2.1 Speedup Analysis in Traditional Environment

Figure 16.1 depicts the speedup for parallel execution with two and four threads
in traditional environment. The curves are identified by S(4)T for parallel execu-
tion with four threads and S(2)T for parallel execution with two threads. Note that
there are performance drawbacks due to usage of set associative cache memory as
explained in [120].

The obtained results prove our hypothesis of superlinear existence in the regions
424≤N≤ 992 for two threads and 504≤N≤ 872 for four threads. The experiments
also prove that the speedup increases until N = 628 for both parallel execution and
then starts to drop down.

16.2 Experimental Results 179

Fig. 16.1 Speedup in traditional environment [130]

16.2.2 Speedup Analysis in Virtual Environment

Figure 16.2 depicts the speedup for parallel execution with two and four threads in
virtual environment. The curves are identified by S(4)V for parallel execution with
four threads and S(2)V for parallel execution with two threads.

Fig. 16.2 Speedup in virtual environment [130]

180 16 Superlinear Speedup in Cloud Virtual Environment

The obtained results also prove our hypothesis of superlinear existence in the
regions 508 ≤ N ≤ 936 for two threads and 564 ≤ N ≤ 752 for four threads. The
speedup increases until N = 704 for both parallel execution and then starts to drop
down.

16.2.3 Speedup Analysis in Cloud Environment

Figure 16.3 depicts the speedup for parallel execution with two and four threads in
cloud environment. The curves are identified by S(4)V for parallel execution with
four threads and S(2)V for parallel execution with two threads.

Fig. 16.3 Speedup in cloud environment [130]

The results also prove the existence of superlinear region 420≤ N ≤ 992 for two
threads and 508 ≤ N ≤ 848 for four threads. The speedup increases until N = 672
for both parallel execution and then starts to drop down.

16.2.4 Speedup Comparison for two threads

Figure 16.4 depicts the speedup for parallel execution with two threads in all three
environments. The curves are identified by S(2)T for speedup in traditional envi-
ronment, S(2)V for speedup in virtual environment and S(2)C for speedup in cloud
environment for parallel execution with two threads. Figure 16.4 presents that su-

16.2 Experimental Results 181

Fig. 16.4 Speedup comparison for two threads [130]

perlinear speedup is achieved in each environment for parallel execution with two
threads.

Figure 16.5 shows the relative speedup expressed as percentage via ratio of
achieved speedups in virtual and cloud environments to traditional environment for
parallel execution with two threads. It is assumed that the speedup in traditional
environment is 100%.

Fig. 16.5 Relative speedup comparison for Figure 16.4 [130]

182 16 Superlinear Speedup in Cloud Virtual Environment

Comparing the curves in Figure 16.5 we can conclude that cloud virtualiza-
tion performs better than traditional environment until L2 starts to generate cache
misses when the traditional environment achieves better speedup. Virtual environ-
ment achieves the best speedup for small N but the performance is worse than other
two environments when L2 cache misses start to generate.

Table 16.1 presents the analytical comparison for characteristic environment val-
ues. We can conclude that traditional and virtual environment have wider super-

Parameter Tradit. Virtual Cloud

Superlinear region [424, 992] [508, 936] [420, 992]
Max. speedup Smax 2.34 2.39 2.37
Nmax (Smax point) 628 704 672

Table 16.1 Environment Comparison for two threads [130]

linear speedup region than virtual, and virtual environment achieves the maximum
speedup S(2)max.

16.2.5 Speedup Comparison for four threads

Figure 16.6 presents the speedup for parallel execution with four threads in all three
environments. The curves are identified by S(4)T for speedup in traditional envi-
ronment, S(4)V for speedup in virtual environment and S(4)C for speedup in cloud
environment for parallel execution with four threads.

Superlinear speedup is achieved in each environment for parallel execution with
four threads, as shown in Figure 16.6.

Figure 16.7 presents the relative speedup expressed as percentage via ratio of
achieved speedups in virtual and cloud environments to traditional environment for
parallel execution with four threads. It is assumed that the speedup in traditional
environment is 100%.

Analyzing the curves in Figure 16.7 we can conclude that the virtual environment
achieves smaller speedup than other environments. Cloud virtualization achieves the
best speedup until L2 cache misses start to generate when the traditional environ-
ment performs better.

Table 16.2 presents the analytical comparison for characteristic environment val-
ues. We can conclude that the widest superlinear speedup region is achieved for
traditional environment. Cloud environment achieves the maximum speedup value
S(2)max.

16.3 Summary 183

Fig. 16.6 Speedup comparison for 4 threads [130]

Fig. 16.7 Relative comparison for Figure 16.6 [130]

16.3 Summary

The experiments presented in this chapter are published by the authors in [130]
for the purpose of this thais research prove our hypotheses. The speedup begins
to increase for those matrices A and B that do not fit in available L2 cache for
sequential execution, i.e. half of L2 total cache, but in the same time fit in the whole
L2 cache which is available for parallel execution with two or four threads on two
or four cores, correspondingly. The speedup increases until N = 628 determined
theoretically for traditional environment when L2 cache misses begin to appear.
There are also a speedup turnover points for virtual and cloud environment greater

184 16 Superlinear Speedup in Cloud Virtual Environment

Parameter Tradit. Virtual Cloud

Superlinear region [504, 872] [564, 752] [508, 848]
Max. speedup Smax 4.62 4.54 4.63
Nmax (Smax point) 628 704 672

Table 16.2 Environment Comparison for four threads [130]

than theoretical value since virtualization provides better performance for parallel
execution rather than sequential in shared memory [48].

Our second hypothesis is also proved, i.e. virtual and cloud environments achieve
better speedup for dedicated cache and the best performance is achieved by the
cloud environment. After the L2 region, where the L2 cache misses are generated,
the traditional environment performs better in comparison to the cloud environment.
Virtual environment achieves the worst speedup when the algorithm requires a lot
of accesses to shared main memory.

We prove that superlinear speedup is possible for cache intensive algorithm
even in the virtualized and cloud environment.

The experiments show different speedup range. The widest superlinear speedup
range is present at traditional environment, while the thinest is found at the virtual
one. Cloud and virtual environments have wider superlinear speedup range for par-
allel execution with two rather than four threads because the last level cache is ded-
icated per core which is the case where virtualization provides better performance
then shared memory [48]. The range is shortened up to 3 times from the right size
(for great values of N) compared to the left region (smaller values of N). The range
in traditional environment shortens 80 from the left side and 120 from the right side
of the range. In virtual environment it shortens 56 and 184, and in cloud environment
88 and 144 for left and right side correspondingly. Virtual environment’s superlin-
ear range is the most shortened while the superlinear speedup region in traditional
environment shortens the least.

Part V
Performance Analysis of Web Services in

Cloud Computing

Chapter 17
Web Service Performance in the Cloud

Abstract Additional layer that virtualization adds in the cloud decreases the per-
formance of the web services. The goal is to test the performance of compute and
memory intensive web services on both on-premises and cloud environments. In
this chapter we will describe the results of the experiments realized by the authors
in [138] for the purpose of this thesis research. Series of experiments are realized
to analyze the web services performance and compare what is the level of degra-
dation if the web services are migrating from on-premises to cloud using the same
hardware resources. The results show that there is a performance degradation on
cloud for each test performed varying the server load by changing the message size
and the number of concurrent messages. The cloud decreases the performance to
71.10% of on-premise for memory demand and to 73.86% for both memory de-
mand and compute intensive web services. The cloud achieves smaller performance
degradation for greater message sizes using the memory demand web service, and
also for greater message sizes and smaller number of concurrent messages for both
memory demand and compute intensive web services.

17.1 The Testing Methodology

This section describes testing methodology including identification of environment,
infrastructure and platform, test plan and design implementation details. Several
steps were performed to create efficient and effective tests and results.

17.1.1 Test Environment Identification

The experiments are realized on traditional client-server architecture on the same
hardware infrastructure but different platform. Two same web servers are used as
hardware infrastructure with Intel(R) Xeon(R) CPU X5647 @ 2.93GHz with 4 cores

187

188 17 Web Service Performance in the Cloud

and 8GB RAM. The other server with the same hardware infrastructure is used as
a client. Linux Ubuntu 64 bit Server 11.04 is installed on the machines on both the
server and the client side. Apache Tomcat 6.0 is used as web server where RPC style
web services are being deployed. SOAPUI [143] is used to create various server load
tests. Client and server are in the same LAN segment to exclude the network impact
shown in [82].

Two different platforms are deployed. On-premise platform environment consists
of traditional Linux operating system installed as host. Cloud environment is devel-
oped using OpenStack Compute project deployed in dual node [105]. We use one
Controller Node and one Compute Node. KVM virtualization standard is used for
instancing virtual machine. The cloud consists of the same hardware and operating
system as previously described.

17.1.2 Performance Criteria Identification

We measure response time for various experiments with different number and sizes
of concurrent requests for both platforms. Client is on the same VLAN as the web
server, with network response time smaller than 1 ms, and none of the packets are
lost during the test. This means that we can assume that the response time measured
with SOAPUI is the same as the server response time.

17.1.3 Test Data

The basic goal is to measure the performance drawbacks caused by migration of
web services in the cloud.

Test data consists of Concat and Sort web services. The Concat web service ac-
cepts two string parameters and returns a string which is concatenation of the input.
This is a memory demand web service that depends on the input parameter size M
with complexity O(M). The Sort web service also accepts two string parameters and
returns a string that is concatenation of the two input strings which is then alphabet-
ically sorted using sort function in [14]. This is also a memory demand service that
depends on the input parameter size M. In addition it is a computational intensive
web service with complexity O(M · log2M).

Experiments are repeated for parameter sizes M that change values from 256B,
768B, 1280B, 1792B, 2304B to 2816B. The generated SOAP messages have the
following sizes 786B, 1810B, 2834B, 3858B, 4882B and 5908B correspondingly.
The server is loaded with various number of messages (requests) N in order to retain
server normal workload mode, that is, 500, 1000, 1500 and 2000 requests per second
for each message size.

17.2 The Results and Analysis 189

17.1.4 Test Plan

The first part of the experiment consists of series of test cases that examine the
impact of increasing the message size to the server response time. The second part of
the experiment consists of series of test cases that examine the impact of increasing
the number of concurrent messages to the server response time. All test cases are
performed on: 1) web services hosted on-premise; and 2) web services hosted in the
cloud.

Each test case runs for 60 seconds, N messages are sent with M bytes each, with
variance 0.5. The accent is put on server response time in regular mode, and neither
burst nor overload mode.

We expect that response time will be increased while increasing the number of
messages and their size. We would like to determine which parameter impacts the
server performance most? Is it the number of concurrent messages or message sizes
and has the platform any influence if it is on-premise or in the cloud?

Monitors are checked before each test. All server performance parameters are
examined if their status is returned to nominal state after execution of each test. If
not, the server is restarted and returned into it’s nominal state. Network latency is
measured to ensure proper response time results during the tests.

17.2 The Results and Analysis

This section describes the results of testing the performance impact of cloud virtu-
alization layer. We also analyze the results to understand the performance impact of
different message sizes and number of concurrent messages on both web services
described in 17.1.3.

17.2.1 Web Service Performance Hosted On-premise

The performance of web services is measured while hosted on-premise with differ-
ent payload: 1) different message size for constant number of concurrent messages
and 2) different number of concurrent messages for a constant message size.

Figure 17.1 depicts the response time of Concat web service hosted on-premise.
We can conclude that both input factors are important for Concat web service per-
formance, i.e. response time increases when message size or number of concurrent
messages increase.

Response time of Sort web service hosted on-premise is presented in Figure 17.2.
We can conclude that only input factor message size is important for Sort web ser-
vice performance. That is, response time increases only if message size increases
regardless of number of concurrent messages.

190 17 Web Service Performance in the Cloud

Fig. 17.1 Concat web service response time while hosted on-premise [138]

Fig. 17.2 Sort web service response time while hosted on-premise [138]

17.2.2 Web Service Performance Hosted in the Cloud

We measure the performance of web services hosted in the cloud with different
payload: 1) different message size for constant number of concurrent messages and
2) different number of concurrent messages for constant message size.

The results for response time of Concat web service hosted in the cloud is shown
in Figure 17.3. Both input factors are important for Concat web service perfor-
mance, i.e. response time increases for greater message sizes or number of con-

17.2 The Results and Analysis 191

current messages. However, there are performance drawbacks due to additional vir-
tualization layer and cloud software, and small response time in ms comparable to
network latency which will be the subject in our further research.

Fig. 17.3 Concat web service response time while hosted in the cloud [138]

Figure 17.4 presents the response time of Sort web service hosted in the cloud.
Only the message size impacts its performance (the response time increases as mes-
sage size increases regardless of the number of concurrent messages).

Fig. 17.4 Sort web service response time while hosted in the cloud [138]

192 17 Web Service Performance in the Cloud

17.2.3 On-Premise vs Cloud Performance Comparison

The performance of both web services (hosted on-premise and in the cloud) are
compared with different payload depending on different message sizes and different
number of concurrent messages.

Figure 17.5 depicts the Cloud vs on-premise relative response time comparison
for Concat web service. The results show that cloud environment provides worse
response time than traditional on-premise environment for each message size and
for each number of concurrent messages. An interesting conclusion is that the cloud
provides smaller penalties for greater messages. However, we found a local extreme.
We believe that it appears due to communication time impact for small response
time and the effect of the virtualization and cloud software which is part our further
research.

Fig. 17.5 Cloud vs on-premise relative response time for Concat web service [138]

Table 17.1 presents the relative performance for each test case and average for
Concat web service. As in previous conclusions, the cloud performance average
penalties depend only on the message size. The cloud provides smaller performance
penalties for greater message sizes achieving an average performance of 82.42%
and 83.99% correspondingly for parameters sizes of 4608 and 5632 bytes.

The relative response time comparison for Sort web service for cloud vs on-
premise is shown in Figure 17.6. The results also show that cloud provides worse
response time than on-premise for each message size and for each number of concur-
rent messages. The cloud provides smaller penalties for greater number of messages
regardless of number of concurrent messages. The number of concurrent messages
impacts the cloud performance for smaller messages.

17.3 Summary 193

Number / Size 512C 1536C 2560C 3584C 4608C 5632C AVG

500 58.71% 56.71% 65.89% 77.96% 58.14% 87.91% 67.55%
1000 89.39% 56.58% 75.57% 53.44% 72.56% 86.19% 72.29%
1500 72.41% 62.16% 64.84% 91.17% 95.75% 77.45% 77.30%
2000 62.16% 59.55% 37.40% 56.88% 103.24% 84.41% 67.27%
AVG 70.67% 58.75% 60.93% 69.86% 82.42% 83.99% 71.10%

Table 17.1 Cloud relative performance compared to on-premise for Concat web service [138]

Fig. 17.6 Cloud vs on-premise relative response time for Sort web service [138]

The relative performance of cloud vs. on-premises for Sort web service is shown
numerically in Table 17.2. The worst performance the cloud provides for smaller
parameters size, i.e. total 512B and 1536B for average 66.58% and 53.92% from on-
premise performance. The cloud provides smaller performance penalties for greater
messages for average 86.67% and for smaller number of concurrent messages, i.e.
for 500 messages/sec. It provides on average 76.41% from on-premise performance.
For huge number of concurrent messages it provides greater performance penalties,
i.e. for 2000 messages/sec. it provides average 66.61% from on-premise perfor-
mance.

17.3 Summary

Two web services were tested for different loads varying the main input factors: the
message size and the number of messages. The experiments are realized on the same
web services hosted on-premise and in the cloud on the same hardware and runtime
environment.

194 17 Web Service Performance in the Cloud

Number / Size 512C 1536C 2560C 3584C 4608C 5632C AVG

500 78.90% 57.80% 84.07% 72.00% 79.40% 86.29% 76.41%
1000 80.93% 56.14% 81.88% 75.21% 81.29% 89.39% 77.47%
1500 65.26% 62.87% 79.70% 75.21% 80.66% 86.01% 74.95%
2000 41.22% 38.88% 80.87% 72.37% 81.35% 84.99% 66.61%
AVG 66.58% 53.92% 81.63% 73.70% 80.68% 86.67% 73.86%

Table 17.2 Cloud relative performance compared to on-premise for Sort web service [138]

The results of the experiments show that the performance directly depends on
input message size especially for both memory demand and compute intensive web
service regardless of the platform as depicted in figures 17.7 and 17.7. This is not
emphasized for memory only demand web service.

Fig. 17.7 Response time for constant message size but different number of concurrent messages
for Sort web service hosted on-premise [138]

We also defined quantitative performance indicators to determine the risk of mi-
grating the services in the cloud for various message size and number of concurrent
messages. The conclusion is that the performance is decreased to 71.10% of on-
premise for memory demand and to 73.86% for both memory demand and compute
intensive web service if it is migrated on the cloud. The cloud provides the small-
est penalties for greater message sizes regardless of number of concurrent messages
for memory demand web service. However, the smallest penalties for both memory
demand and compute intensive web service migrated in the cloud are provided for
smaller number of concurrent messages and for greater message sizes.

17.3 Summary 195

Fig. 17.8 Response time for constant message size but different number of concurrent messages
for Sort web service hosted in the cloud [138]

Chapter 18
A Middleware Strategy to Improve Web Service
Performance in the Cloud

Abstract CSPs offer infinite scalable hardware resources to their customers. How-
ever, instances of VMs are often manually initiated by cloud clients producing
degradation of service availability and service latency in peak loads. In this chapter
we will present a solution that handles the compute peak loads dynamically for web
services hosted in cloud proposed by the authors in [133] for the purpose of this the-
sis research. The solution introduces a middleware layer between clients and server.
The middleware layer will instantiate additional VMs dynamically on demand as
service load reaches defined minimum performance level and will forward the mes-
sages across VMs. The additional VMs will be shut down when service load returns
to defined nominal value.

18.1 Middleware Architecture

This Section describes the web services that are used in the experiments. They are
deployed in a virtual machine image and on the Controller Node in the testing envi-
ronment described in Section 20.1.1.

The architecture using middleware layer is depicted in Figure 18.1. Standard
endpoint web service is deployed in one active instance of VM on the Compute
Node. Additional middleware web service is deployed in the same instance logically
between the endpoint web service(s) and clients. New infrastructure web service is
deployed in the Controller Node to instantiate / shut down the additional instance(s)
of virtual machine. The additional instances can be instantiated with arbitary CPU,
RAM and HDD resources.

The following sections describe closely all web services deployed in the cloud
workload environment.

197

198 18 A Middleware Strategy to Improve Web Service Performance in the Cloud

Fig. 18.1 Middleware web service client server model in cloud [133]

18.1.1 The Endpoint Web Service

The endpoint web service is developed in Java EE and communicates with clients
using SOAP messages. It receives two input strings and returns to the clients the
concatenated string in SOAP message.

The endpoint web service is deployed in the VM. One active instance of the VM
is activated with deployed endpoint web service. The same endpoint web service is
deployed also in the additional instance of the VM that is instantiated automatically
by the middleware when peak load occurs.

18.1.2 The Middleware Web Service

The Middleware is also a web service developed in Java EE and deployed in the
same active instance of virtual machine as the endpoint web service. It intercepts
the requests from the clients and forwards to the endpoint web service if it is in
the normal mode. If the middleware works in the peak mode, then it forwards the
particular request randomly either to the endpoint web service hosted on the same
active instance or to the endpoint web service hosted on additional instance of vir-
tual machine. The transitions between the two modes are described in details in
Section 18.2.

After the middleware layer gets the response from some of the endpoint web
services, it forwards the concatenated string to the client. The response time of the
middleware layer is measured for each client’s request.

18.2 Middleware Strategy 199

18.1.3 The Infrastructure Web Service

This is also a web service in Java EE and deployed in the Controller Node. It’s job
is to start or shut down the additional instance of the virtual machine when it is
invoked by the middleware web service.

18.2 Middleware Strategy

18.2.1 Traditional Scenario

This scenario is the standard client server concept where the clients directly invoke
the endpoint service. The response time is measured for each client’s request for
different test cases.

18.2.2 Middleware Scenario

This scenario is our new middleware strategy and has two sub scenarios: normal and
peak. The flag is set for peak mode and unset for normal mode. The clients in this
scenario always invoke the middleware web service instead of endpoint web service.
The middleware then checks the flag to determine the mode in which it should work.

In normal mode it forwards the particular request to the endpoint web service on
the same machine measuring the response time of the endpoint service. If the re-
sponse time of the endpoint web service exceeds the threshold, then the middleware
sets the flag that the peak mode is reached. In the same time it invokes the infras-
tructure web service to instantiate the additional virtual machine. The middleware
forwards back the response to the client after it gets from the endpoint.

If the middleware layer realizes that a peak mode is reached, then it sends dummy
request to the additional endpoint web service. It sets the flag for the peak mode
when the additional endpoint web service is started, i.e. the additional instance of
the virtual machine is started. Otherwise the middleware layer still forwards the
requests to the active endpoint web service deployed on the same machine.

If a peak mode is activated then the middleware web service uses random func-
tion to determine where to forward the requests, i.e. on endpoint web service on the
same machine or to the additional for which it concludes that is already active.

200 18 A Middleware Strategy to Improve Web Service Performance in the Cloud

18.2.3 Configuration Parameters

The threshold time in this scenario is set to 50ms and the flag is set in the next five
minutes and after that automatically unset. The random function is set to evenly
balance the forwarding to the particular endpoint service. All these configuration
can be configured differently according to cloud platform environment and IT and
Quality managers’ decisions.

18.3 The Experiments and the Results

This section presents the results of the experiments realized to determine the perfor-
mance impact of the middleware introduction in the cloud environment.

18.3.1 Middleware Additional Latency

At the beginning we measure the nominal performance of traditional scenario and
the additional latency that middleware produces without instantiating additional in-
stance. The response time and their average for particular parameter size of 14.5KB
in normal web service load is depicted in Figure 18.2.

Fig. 18.2 Latency for simple web service after introduction of middleware [133]

We repeat the experiments for different parameter sizes of 100B, 1KB, 10KB and
the average response time and the comparison of the two scenario are presented in
Table 18.1.

18.3 The Experiments and the Results 201

Parameter size Traditional Middleware Latency Relative

100 B 4.32 10.24 5.92 137.0%
1 KB 4.99 9.74 4.75 95.4%

10 KB 6.43 14.85 8.42 131.0%

Table 18.1 Comparing the nominal performance [133]

Columns Traditional and Middleware present the average response time in
miliseconds for the corresponding scenario. Column Latency presents the latency
that middleware introduces and column Relative the relative increase of the response
time in middleware scenario compared to traditional.

Table 18.1 presents that the traditional scenario provides better performance than
middleware.

In the following sections we analyze the web services’ behavior both with and
without load balancing for increased memory load, i.e. we increase the parameter
size by 64B each, starting from 64B to 14.5KB.

18.3.2 Middleware without Load Balancing

In this experiment the clients invoke the middleware layer which works only in nor-
mal mode without load balancing. Figure 18.3 depicts the results of the experiments
realized in traditional and middleware scenario without load balancing.

Fig. 18.3 Scenario comparison for middleware without load balancing [133]

202 18 A Middleware Strategy to Improve Web Service Performance in the Cloud

The average response time for traditional scenario is 5.84ms and for middleware
scenario without load balancing is 15.03ms. We can conclude that traditional sce-
nario also provides better performance than middleware for increased memory load.
Even more, the middleware scenario produces many peaks in response time, a lot
more compared to the traditional scenario.

18.3.3 Middleware with Load Balancing and Peak Mode

In this experiment the clients invoke the middleware layer which works with load
balancing in both modes. Figure 18.4 depicts the results of the experiments realized
in traditional and middleware scenario with load balancing.

Fig. 18.4 Scenario comparison for middleware with load balancing [133]

The average response time for traditional scenario is similar to previously exper-
iment, i.e. 5.78ms and for middleware scenario with load balancing is much lower
than middleware without load balancing, i.e. 11.96ms. Traditional scenario also pro-
vides better performance than middleware for increased memory load even with load
balancing. Also the middleware scenario makes many peaks in response time, much
more than traditional scenario.

We can conclude that introducing load balancing in the middleware improves the
overall performance, but still not enough as traditional endpoint web service.

18.3 The Experiments and the Results 203

18.3.4 Why (or when) to Introduce Middleware Layer?

The experiments from the previous section show that introducing middleware with
load balancing for string concatenation provides worse performance compared to
traditional client server concept. Then why to introduce the middleware strategy
when it degrades the performance? Or maybe the more important issue is if there is
any kind of web services and some payload such that introducing the middleware
and additional resources will improve the overall web service performance?

We set a hypothesis that the additional latency that middleware produces can
be compensated if the web service and its payload utilizes the server’s processing
unit, i.e. a huge part of the response time is due to the execution of web service
methods rather than the invoke itself (the case for compute intensive calculations
where computational time is dominant in comparison to the communication).

For this purpose in the string concatenation example, we develop another end-
point web service that sorts the input strings before concatenation. Figure 18.5 de-
picts the results of these experiments. Introducing middleware layer for this web
service reduces average latency improving the overall performance compared to the
same traditional endpoint web service.

Fig. 18.5 Scenario with Overall Improvement introducing middleware [133]

Figure 18.5 clearly depicts that for this scenario the overall response time in-
creases for bigger parameter size. Also middleware response time has two different
response points, i.e. one similar to the traditional endpoint web service and the other
is small response time.

Figure 18.6 depicts the responses from the traditional endpoint and from each
middleware endpoint.

As depicted in Figure 18.6 the additional endpoint response time is much better
than the endpoint on the active instance because the middleware is deployed there.

204 18 A Middleware Strategy to Improve Web Service Performance in the Cloud

Fig. 18.6 Each endpoint responses

18.4 Pros and Cons

This section presents the pros and cons of our proposed middleware strategy.

18.4.1 Middleware Cons

The main deficiency of the middleware strategy is introducing additional latency
in overall response time. The results show that introducing middleware layer even
doubles the response time compared to traditional endpoint web service. We can
conclude that introducing middleware achieves bad performance for web services
with small response time comparable to additional latency that middleware pro-
duces. This happens for web services where communication costs are dominant in
comparison to the computational.

Another deficiency is the middleware layer bottleneck which is not examined.

18.4.2 Middleware Pros

Several benefits can be achieved from introducing a middleware layer between the
clients and endpoint web service in a cloud environment:

• Better Performance - Smaller Average Response Time. Our solution provides
better performance for a web services when huge part of the response time is
spent on web service methods execution rather than the invoke itself, such as the
web service for string concatenation and sorting explained in Section 18.3.4. Fig-

18.5 Summary 205

ure 18.7 depicts the average response time of the two scenarios for compute in-
tensive web services. Comparing the two trend lines we can conclude that the av-
erage response time when introducing middleware with load balancing is smaller
than the traditional endpoint web service.

Fig. 18.7 Better performance introducing middleware [133]

• Load Balanced Server Utilization. Our solution provides load balanced server
utilization for a compute intensive web services. Figure 18.6 clearly depicts that
the two endpoint services in middleware scenario are less utilized than traditional
endpoint web service. Even more, the load balancing can be reconfigured if the
additional instance has less or more resources than the active instance.

• Increased Service Availability. Introducing middleware can greatly improve the
web service availability. The single point of failure in traditional endpoint web
service is improved in this scenario. If the additional instance of virtual machine
fails to instantiate or becomes unavailable, then the middleware web service will
not forward the requests in that direction.

18.5 Summary

Reducing the cost and improving the performance simultaneously is the imperative
for each IT and quality manager. Our strategy proposed in this paper can provide it
along with cost reduction that cloud computing paradigm offers.

We propose a middleware strategy to survive compute peaks loads in the cloud
environment. Despite the latency for simple web services, the experiments prove
that the middleware improves the performance of commute intensive web services

206 18 A Middleware Strategy to Improve Web Service Performance in the Cloud

(where huge part of the response time is spent for service calculations). We believe
that web services with implemented web service security standards, such as XML
Signature and XML Encryption, are most promising for implementation of middle-
ware strategy.

Chapter 19
Message Transformation for Better Web Service
Performance in Cloud Computing

Abstract On-premise server performance depends on several parameters. Server’s
hardware resources, OS and runtime environment are persistent during server and
service life cycle; they provide constant performance for even server payload. This
feature changes if the server migrates in a dynamic multi-tenant cloud. The server’s
hardware resources usually are shared among several tenants which impacts server
overall performance. For the purpose of this thesis research the authors in [132]
analyzed what runtime environment and OS achieve the best performance for web
services in cloud PaaS layer for peak loads, particularly when the increased load
happens due to huge number of small messages or by huge message sizes. We pro-
pose a middleware strategy to survive the peak loads of huge number of small mes-
sages and also a model to transform huge messages into smaller chunks and send to
the server as separated sub messages.

19.1 Cloud Testing Environment

The experiments are realized in cloud testing environment using OpenStack Com-
pute project Cactus [106]. It is deployed in dual node as depicted in Figure 19.1, i.e.
two servers connected with two networks.

Server1 is Controller Node that controls the network and volumes, and schedules
instances. Server2 is Compute Node that runs the instances of virtual machines.
Server1 has also Compute service as a backup.

Eth0 is public network where the activated instances of virtual machine commu-
nicate with the outside world. Eth1 network interfaces are a part of the private or
service network where the virtual machines communicate among each other. Net-
work and Port address translation is used to spare the IP addresses, i.e. private IP
addresses are used for a network on Eth0 interfaces although it is public network.

207

208 19 Message Transformation for Better Web Service Performance in Cloud Computing

Fig. 19.1 Cloud Testing Environment [108]

19.1.1 The Infrastructure

Hardware Infrastructure consists of two servers. Server1 is HP Server ML110 G6
with 4GB RAM. Server2 is Dell Optiplex 760 with 4GB RAM and Intel Core(TM)2
Quad CPU Q9400 @ 2.66GHz.

The network consists of public and bridged private network as depicted in Fig-
ure 1.3. IP addresses of public pool are dedicated to virtual machine instances.

19.1.2 The Platform

Linux Ubuntu Server 11.04 64 bit is installed on both servers. One image of virtual
machines is installed also with Linux 11.04 and another image of virtual machines
is installed with Windows 2008 Server R2 Enterprise.

Apache Tomcat is installed as a runtime for web services both on the servers and
in the virtual machines.

19.1.3 The Client

SoapUI is used to load web services with different message size and different num-
ber of concurrent messages.

19.3 New Solutions for Peak Loads 209

19.2 The Message Transformation Algorithm

This section presents the message transformation algorithm that can gain better per-
formance. It also presents which web services can use this algorithm to gain better
performance with less resources.

Traditional client web service server model is described in Section 5.2.1. The ar-
bitrary number of clients invoke in the same time one or more web services hosted
on a web server installed in one instance of virtual machine in the cloud. This solu-
tion is not prone to peak loads. Either web server should be underutilized during the
most of the time or there will be nosedive drawback in the performance of the web
service and web server.

The proposed message transformation algorithm with middleware is depicted in
Figure 19.2. Instead of renting one instance of virtual machine with more CPU and
RAM resources at the beginning, we propose to rent one web server instance with
minimum resources that cloud service provider offers and such that will satisfy the
required performance. A middleware layer will be installed on this web server. It
will receive all the requests from the customers and will forward the requests to
the endpoint web service deployed in the same server. The operating system and
runtime environment will be selected to provide the best performance for a nominal
load as measured during the process of learning.

Fig. 19.2 The Message Transformation Algorithm [132]

19.3 New Solutions for Peak Loads

Besides the existing instance of virtual machine we propose a new solution that will
rent additional server during the peak loads from different images with different
platforms according peak load type. Peak load occurs when a high throughput is
sent to the server. The high throughput can be produced by a huge number of con-

210 19 Message Transformation for Better Web Service Performance in Cloud Computing

current messages or by huge messages, or even both. We propose a solution for each
scenario in the following sections.

19.3.1 Peak load with huge number of concurrent messages

This scenario is more probable rather than the scenario in Section 19.3.2. Increasing
the total number of users can often provide this peak. Even more, the peak is more
weighty for compute or memory intensive web services. E-testing or E-voting are
typical representatives of this scenario where a huge majority of users in the same
time will load the web service. Only in short period of time the clients concurrently
are taking the exams or they vote. Thus the web service will be overloaded with
huge number of concurrent small sized messages. This scenario utilizes the web
server’s processor rather than occupying the memory.

We already proposed a solution for this scenario for compute intensive web ser-
vices in previous Chapter 18, i.e. introducing a middleware layer between the clients
and endpoint web service. The middleware starts and shuts down the instances if a
peak load occurs.

We extend and even improve this solution. If the load of the middleware server
reaches its limit then additional instance with web server will be started. Our new
idea is what type of virtual machine image should be started? The authors in [119]
found that Microsoft Windows OS provides better performance than Linux Ubuntu
OS for messages above 10KB, i.e. huge messages. Opposite, Linux Ubuntu OS
provides better performance than Microsoft Windows OS for huge number of con-
current messages and for small messages.

Therefore, we propose the middleware web server to be installed with Linux
server based operating system. Further on, we extend the solution in two directions.
That is, if the number of concurrent messages increases but the messages are small
sized and the performance reaches its limits, then the additional web server that
should be instantiated should be also installed with Linux as it performs better for
huge number of small sized messages. Otherwise, if the messages are above 10K
then additional server with Windows Server based operating system should be in-
stantiated.

19.3.2 Peak load with huge messages

This scenario does not depend directly on the total number of users but depends on
the message size and type that clients send to the web service. Implementing web
service security standards always increases the original message size. The authors
in [137] determine the message overhead increment both for XML Signature and
XML Encryption. The size of signed SOAP message with XML Signature is always
greater than the original message by a constant value regardless the size of the origi-

19.4 The Performance Analysis and Discussion 211

nal message. The size of encrypted SOAP message with XML Encryption increases
linearly compared to the size of the original message for each message size. This
scenario utilizes the web server’s memory rather than the processor.

A huge size message can be provided if the message has a lot of parameters or
the input parameters are huge. We focus for the latter case.

We propose a solution based on middleware strategy to improve the web service
performance in this scenario. At the begging we propose the middleware layer to be
implemented on front-end web server installed with Linux server based operating
system. In normal mode the middleware layer forwards the requests to the endpoint
deployed on the same server. If the load of the middleware server reaches it’s limit
then additional instance with web server will be started. If the middleware is invoked
with a huge message then the middleware splits it to smaller chunks and forwards
them to the endpoint web service. The middleware layer thus will create a connec-
tion to the endpoint only once to send all parts of the original request and will not
cause a big latency to create a connection for each part of the original message.

This solution doesn’t rent additional resources but transforms the original mes-
sage to smaller chunks that web server with Linux server based operating system
handles better.

19.4 The Performance Analysis and Discussion

This Section analyzes if our solution provides better performance than the same
endpoint web service on one platform.

19.4.1 Peak load with huge number of concurrent messages

Figure 19.3 depicts the response time comparison for peak load with small messages
of 0.2KB, for example, a message with two parameters, 3 bytes each. Both operat-
ing systems provide similar performance, Linux in front of Windows, for up to 500
messages per second. Increasing the load, Windows’s performance reduces more
than Linux’s. For load of 1000 messages per second, Windows provides average
response time of 162.74ms compared to Linux’s 26.26ms. Our new proposed solu-
tion produces smaller latency compared to traditional endpoint, thus implementing
middleware will provide better performance than traditional endpoint on Windows
for peak loads with small messages.

212 19 Message Transformation for Better Web Service Performance in Cloud Computing

Fig. 19.3 Response time for peak load with small messages of 0.2KB [119]

19.4.2 Peak load with huge messages

Figure 19.4 depicts the response time comparison for peak load with huge mes-
sages of 1MB. Windows operating systems provides better performance than Linux
for huge message of 1MB. The Linux’s performance reduces more than Linux’s
increasing the number of messages per second. For example, for load of 5 mes-
sages per second, Windows provides average response time of 110.83ms compared
to Linux’s 470.76ms.

Fig. 19.4 Response time for peak load with huge messages of 1MB [119]

19.5 Summary 213

If we compare the results of Figures 19.3 and 19.4 we can conclude that our so-
lution for this scenario has two benefits. Those messages that will be divided and
forwarded to the same web server as middleware will use the better performance
that Linux provides compared to Windows for peak load with small messages. The
messages forwarded to the other instance of virtual machine with Windows oper-
ating system will use the better performance that Windows provides compared to
Linux for peak load with huge messages.

19.5 Summary

This chapter describes solutions for two possible peaks in web service response
time, peaks that appear due to increased number of concurrent requests and peaks
with increased load due to huge message size. For the former peaks we propose
a middleware based solution that will dynamically instantiate and shut additional
instances. The middleware should be deployed on the same machine as the endpoint
web service on Linux server based OS since it provides better performance than
Windows OSs for small load. When peak load occurs, the middleware forwards the
client requests among two endpoint web services, the first deployed on the same
machine as the middleware and the other on the additional instance.

The middleware based solution for peak loads with huge message size will for-
ward the requests from the clients to the endpoint web service deployed on the same
machine. We assume that Linux server based OS will be installed for small number
of huge messages. If the response time increases beyond the threshold, then the mid-
dleware strategy will split the input parameters into smaller chunks that Linux OS
can process faster rather than the whole message. If the peak is even bigger, then the
middleware will start additional instance installed with Windows Server based OS
and forwards the client requests among two endpoint web services, the whole mes-
sages to Windows Server based OS and the messages divided into smaller chunks
on Linux Server based OS.

Therefore, the additional latency that the middleware produces will be compen-
sated with faster response from the endpoint web services. This solution will provide
better performance for both peak loads and sometimes even with smaller resources
for peak load with huge messages.

Part VI
Cloud Computing Security Challenges and

Evaluation

Chapter 20
Web Service Performance when Introducing
Security

Abstract Attaching signature and encryption headers to SOAP messages outcomes
with message overhead. It requires complex cryptographic operations for each mes-
sage and additionally parsing the increased XML message. This chapter presents
the results of the experiments focused on understanding the performance impact of
XML Signature and XML Encryption on Windows and Linux OS. The authors in
[135, 137, 136] for the purpose of this thesis research. Increasing message size and
the number of concurrent messages degrades server performance for services with
and without security implementation. We continue the analysis to determine the op-
timal input parameters to obtain maximum throughput and web service performance
drawbacks produced by XML Signature and XML Encryption varying server load.

20.1 The Testing Methodology

This section describes testing methodology including identification of environment,
infrastructure and platform, test plan and design implementation details. Several
steps were performed to create efficient and effective tests and results.

20.1.1 Test Environment Identification

The experiments are realized on traditional client-server architecture on the same
hardware infrastructure but different platform. Two same web servers are used as
VMs of with 1GB RAM and 2 CPU cores. Windows Server and Linux Ubuntu are
installed on the VMs correspondingly. Eclipse Jetty is used as web server. SOAPUI
[143] is used to create various server load tests. Client and server are in the same
LAN segment to exclude the network impact shown in [82].

217

218 20 Web Service Performance when Introducing Security

20.1.2 Test Plan

The test experiment basic goal is to measure the performance cost of implementing
signature and encryption to SOAP messages. For that purpose, Concat web service
defined in Section 17.1.3 will be used as a test data. The first part of the experiment
consists of series of test cases to examine the impact of increasing the message size
to the server response time. The second part of the experiment consists of series of
test cases to examine the impact of increasing the number of concurrent messages
to the server response time.

All test cases are performed (1) using regular SOAP messages; (2) signed mes-
sages; and (3) both signed and encrypted messages.

Every test case is run on this way: in a time of 60 seconds, N messages are sent
with M bytes each, with variance 0.5. Parameters N and M are changed from test
case to test case.

Response time is measured for various number and size of concurrent requests
for various message types providing end-to-end security.

20.1.3 Test Environment Configuration

The sizes in kilobytes of the original (regular) SOAP messages sent in test cases
are approximately: 0.2, 2, 10, 20, 60, 70, 100, and 1000. The server is loaded with
various number of messages (requests) in order to retain server normal workload
mode, that is, from minimum 1 to maximum to 1000 requests per second depending
of message type and size.

20.2 Cost of Message Overhead

In this section we present the analysis for the cost of message overhead that the
authors published in [137] for the purpose of this thesis research.

We measured the message overhead when creating (1) XML message without
any security, (2) signed XML message, and (3) signed XML message and then en-
crypted. To compute the overhead, we extracted the message sizes for each secu-
rity mechanism. Figure 20.1 depicts the message overhead in kilobytes for different
message types.

We can conclude that security mechanisms that do not use encryption add a con-
stant amount of bytes to the regular parameters. The mechanisms with encryption
included add a linear amount of bytes comparing to parameters size. Signed and
then encrypted messages add linear overhead not only to original SOAP message,
but also to signed messages, which means that adding the encryption to regular or
signed message adds a linear overhead.

20.3 The Results on Windows OS 219

Fig. 20.1 Message overhead in kilobytes [137]

20.3 The Results on Windows OS

This section presents the results of the experiment realized on Windows OS for the
three different web services varying server load with different message size and
number of concurrent messages.

20.3.1 Web Service without Security

Figure 20.2 depicts the results of the experiments for Concat web service without
implemented any security.

We can conclude that both input factors impact to the web service performance.
Increasing the number of messages or message size increase the total amount of data
sent to the service and thus increases the execution time to serve them. However, we
can conclude that the number of concurrent messages degrades the performance
more than their size.

20.3.2 Web Service with XML Signature

Figure 20.3 depicts the results of the experiments for Concat web service with XML
Signature implemented.

We can conclude that both input factors impact to the web service performance,
i.e. increasing the number of messages or message size increase the total amount
of data sent to the service and thus increases the execution time to serve them.

220 20 Web Service Performance when Introducing Security

Fig. 20.2 Concat web service response time without security while hosted on Windows

Fig. 20.3 Concat web service response time with XML Security while hosted on Windows

However, we can conclude that also the number of concurrent messages degrades
the performance more than their size.

Comparing with the results for Concat web service without security we can con-
clude that adding security provides huge performance drawback.

20.4 The Results on Linux OS 221

20.3.3 Web Service with XML Signature and XML Encryption

Figure 20.4 depicts the results of the experiments for Concat web service with both
XML Signature and XML Encryption implemented.

Fig. 20.4 Concat web service response time with both XML Security and XML Encryption while
hosted on Windows

We can conclude that also both input factors impact similar to the web service
performance, i.e. increasing the number of messages or message size increase the
total amount of data sent to the service and thus increases the execution time to serve
them. Also we can conclude that also the number of concurrent messages degrades
the performance more than their size.

Comparing with the results for Concat web service with XML Signature we can
conclude that adding additional encryption to already signed message provides even
greater performance drawback than implementing only XML Signature.

20.4 The Results on Linux OS

This section presents the results of the experiment realized on Linux OS for the three
different web services varying server load with different message size and number
of concurrent messages.

222 20 Web Service Performance when Introducing Security

20.4.1 Web Service without Security

Figure 20.5 depicts the results of the experiments for Concat web service without
implemented any security.

Fig. 20.5 Concat web service response time without security while hosted on Linux

We can conclude that both input factors impact to the web service performance.
Increasing the number of messages or message size increase the total amount of data
sent to the service and thus increases the execution time to serve them. However, we
can conclude that the message size degrades the performance more than number of
concurrent messages, even for 10 messages starting for 20K original message size.

20.4.2 Web Service with XML Signature

Figure 20.6 depicts the results of the experiments for Concat web service with XML
Signature implemented.

We can conclude that both input factors impact to the web service performance,
i.e. increasing the number of messages or message size increase the total amount
of data sent to the service and thus increases the execution time to serve them.
However, we can conclude that the message size degrades the performance more
than number of concurrent messages.

Comparing with the results for Concat web service without security we can con-
clude that adding security provides huge performance drawback.

20.4 The Results on Linux OS 223

Fig. 20.6 Concat web service response time with XML Security while hosted on Linux

20.4.3 Web Service with XML Signature and XML Encryption

Figure 20.7 depicts the results of the experiments for Concat web service with both
XML Signature and XML Encryption implemented.

Fig. 20.7 Concat web service response time with both XML Security and XML Encryption while
hosted on Linux

We can conclude that also both input factors impact similar to the web service
performance, i.e. increasing the number of messages or message size increase the

224 20 Web Service Performance when Introducing Security

total amount of data sent to the service and thus increases the execution time to serve
them. Also we can conclude that also the number of concurrent messages degrades
the performance more than their size.

Comparing with the results for Concat web service with XML Signature we can
conclude that adding additional encryption to already signed message provides even
greater performance drawback than implementing only XML Signature.

20.5 How to Measure Maximum Throughput

The throughput is defined as the amount of data processed in a particular time. It is
measured in bytes per second. In this case the same amount of data can be realized
differently, i.e. increasing the number of concurrent messages but decreasing their
size and the opposite. We want to determine which server load will provide best
server throughput and thus to maximize the server efficiency.

We analyzed the real vs theoretical throughput for each test case, and found the
intersection of each two curves, as deppicted in Figure 20.8.

Fig. 20.8 The intersection of theoretical and real throughput for message 2K without security on
Linux OS [119]

For smaller number of concurrent messages the server serves all the messages
and even more than theoretical. Increasing the load, the server serves smaller num-
ber of messages. Thus, we use the intersection dot of each test as maximum through-
put. This feature characterizes all the test cases we measured. Next sections presents
the results of the evaluations for all web services on both OSs.

20.5 How to Measure Maximum Throughput 225

20.5.1 Max. Throughput without Security

This section analyzes the results of the experiments realized on both OSs for Concat
web service without security for varying server load with different message size and
number of concurrent messages.

Table 20.1 presents the measured maximum throughputs for particular message
size on both OSs for Concat web service without security. We can conclude that
Windows OS provides better maximum throughput than Linux for greater messages
(≥ 10KB), and Linux for smaller messages (≤ 2KB).

Size (KB) Conc. Mess. Win. Max. Throughput Win. Conc. Mess. Lin. Max. Throughput Lin.

0.2 1063 12.44 2085 24.39
2 933 122.5 1344 176.52
10 800 489.16 621 379.98
20 415 502.81 397 480.56
60 155 561.34 109 393.45
70 118 512.59 84 362.22
100 87 534.93 59 363.74
1000 7 416.09 1 37.44

Table 20.1 Maximums for different message size without security on Windows and Linux OS
without security implementation [135, 137]

Figure 20.9 depicts the maximum throughput comparison for a various message
size on Windows and Linux OS.

Fig. 20.9 Maximum throughput comparison for a various message size on Windows and Linux
OS

226 20 Web Service Performance when Introducing Security

We can conclude that the server provides the best throughput when it is loaded
with medium number of concurrent messages with medium size for both OSs.

20.5.2 Max. Throughput with XML Signature

This section analyzes the results of the experiments realized on both OSs for Concat
web service with XML Signature for varying server load with different message size
and number of concurrent messages.

Table 20.2 presents the measured maximum throughputs for particular message
size on both OSs for Concat web service with XML Signature. We can conclude
that both OSs provide similar maximum throughput for small messages with Linux
as a leader. Windows OS provides better maximum throughput for message size
between 10K and 60K, and Linux for greater messages provides much better maxi-
mum throughput.

Size (KB) Conc. Mess. Win. Max. Throughput Win. Conc. Mess. Lin. Max. Throughput Lin.

0.2 118 13.1 126 13.97
2 117 27.03 121 27.91
10 80 56.67 73 51.67
60 21 81.27 18 69.39
70 14 63.3 18 79.65
100 1 1.53 14 84.05
1000 0 0 1 37.8

Table 20.2 Maximums for different message size on Windows and Linux OS using XML Signa-
ture [135, 137]

Figure 20.10 depicts the maximum throughput comparison for a various message
size on Windows and Linux OS.

We can also conclude that the server provides the best throughput when it is
loaded with medium number of concurrent messages with medium size for both
OSs.

20.5.3 Max. Throughput with XML Signature and XML
Encryption

This section analyzes the results of the experiments realized on both OSs for Concat
web service with both XML Signature and XML Encryption for varying server load
with different message size and number of concurrent messages.

Table 20.3 presents the measured maximum throughputs for particular message
size on both OSs for Concat web service with both XML Signature and XML En-

20.5 How to Measure Maximum Throughput 227

Fig. 20.10 Maximum throughput comparison for a various message size on Windows and Linux
OS using XML Signature

cryption. We can conclude that Windows OS provides better maximum throughput
for message size between 2K and 10K, and Linux provides much better maximum
throughput for small and greater messages.

Size (KB) Conc. Mess. Win. Max. Throughput Win. Conc. Mess. Lin. Max. Throughput Lin.

0.2 61 14.31 51 20.24
2 60 23.74 19 19.72
10 50 52.14 15 27.56
60 10 51.84 11 55.81
100 1 9.21 4 30.57
1000 0 0 1 28.4

Table 20.3 Maximums for different message size on Windows and Linux OS using both XML
Signature and XML Encryption [135, 137]

Figure 20.11 depicts the maximum throughput comparison for a various message
size on Windows and Linux OS.

We can also conclude that the server provides the best throughput when it is
loaded with medium number of concurrent messages with medium size for both
OSs.

228 20 Web Service Performance when Introducing Security

Fig. 20.11 Maximum throughput comparison for a various message size on Windows and Linux
OS using both XML Signature and XML Encryption

20.6 Web Server Performance when Increasing Number of
Requests

This section describes the results of the performed tests to measure the response
time dependency of the message size and a given number of requests, for three
implementations of Concat web service as defined in Chapter 20 and hosted on
Windows OS.

Figure 20.12 depicts the response time for a given number of requests per second
for different message size for the three Concat web service implementations.

20.6.1 Response Time Overhead without Security

For small sized messages without security, the web service has better response time
when loaded with 10 or 100 messages per second, For bigger messages (over 30K),
the system performance is as expected, that is, higher response time for a huge
payload and bigger messages.

20.6.2 Response Time Overhead with XML Signature

For small sized signed only messages (smaller than 35K), the system has better
performance when loaded with 10, instead of loaded with 1. For a load with 100

20.7 Web Server Performance for Different Message Security Type 229

Fig. 20.12 Response time for a given number of requests in a second and message type, depending
of message size [136]

messages per second, the system performance is as expected, that is, higher response
time for a huge payload and bigger messages.

20.6.3 Response Time Overhead with Signature and Encryption

The results for signed and encrypted messages are similar as signed only messages.
That is, for small sized messages (smaller than 25K), the system has better per-
formance when loaded with 10, instead of loaded with 1. For a 100 messages per
second, the system performance is as expected.

20.7 Web Server Performance for Different Message Security
Type

This section describes the results of the performed tests to measure the response
time overhead of the security implementation, for a given number of requests and
various message size for three implementations of Concat web service as defined in
Chapter 20 and hosted on Windows OS.

230 20 Web Service Performance when Introducing Security

20.7.1 Response Time Overhead Implementing Security

In this section we analyze the response time overhead implementing signature to
the different sized messages, compared to the same unsigned message for different
payload of 1, 10 and 100 messages per second.

Figure 20.13 depicts the response time when implementing signature and both
signature and encryption to the unsigned messages, for a given number of requests,
and different message size for the three Concat web service implementations.

Fig. 20.13 Response time overhead (ratio) for implementing security for a given number of re-
quests, depending of message size [136]

We can conclude that adding signature increases the response time ratio con-
stantly, near linear, growing slowly when increasing message size, but only for a
small number of requests, because for a huge number (100), the baseline payload
(without security) has huge response time. Implementing both signature and encryp-
tion creates similar overhead to the no security messages.

20.7.2 Response Time Overhead Adding Encryption

In this section we analyze the response time overhead adding encryption to the sig-
nature for different sized messages, compared to the same signed only message for
different payload of 1, 10 and 100 messages per second.

Figure 20.14 depicts the response time ratio when implementing both signature
and encryption to signature only messages, for a given number of requests, and
different message size.

20.8 Summary 231

Fig. 20.14 Response time overhead (ratio) for adding encryption to the signature [136]

We can conclude that adding encryption to the signature increases the response
time ratio constantly, near linear, but only for a message size above 10K, growing
slowly when increasing message size. The ratio decreases at the range of a huge
messages and especially huge number of requests due to huge response time of
signed messages only.

20.8 Summary

This chapter analyzes the correlation of the two input factors, message size and
number of concurrent messages on implementing XML Signature and both XML
Signature and XML Encryption. The results show that increasing both parameters
degrade the web service performance.

Platform environment is also analyzed. Linux OS handles better the number of
concurrent messages and Windows the opposite, i.e. it handles better greater mes-
sages.

We analyze the maximum throughput via web services implementing different
security-level mechanisms based on WS-Security, i.e. implementing XML Signa-
ture and both XML Signature and XML Encryption. We compare both platform and
determine that Linux OS provides better throughput than Windows OS for small
number of messages with and without security implementation. When implement-
ing security Linux also provides better performance for huge messages. Windows
provide better performance for middle sized messages.

Chapter 21
Cloud Security Standardization

Abstract Cloud computing providers and customers services are exposed to new
security risks due to multi-tenancy, outsourcing the application and data, and vir-
tualization, besides existing security risks that appear on-premise. Therefore, both
the cloud providers and customers must establish even better information security
system and trustworthiness each other, as well as end users. This chapter overviews
main international and industrial standards targeting information security and ana-
lyzes their conformity with cloud computing security challenges. Almost all main
cloud service providers are ISO 27001:2005 certified, at minimum [126]. As a result,
an extension to the ISO 27001:2005 standard is proposed with new control objective
and two controls about virtualization management, to retain generic, regardless of
companys type, size and nature, that is, to be applicable for cloud systems, as well,
where virtualization is its baseline.

21.1 General Security Standards and Audit and Assessment
Guidance

This section presents the overview of main international and industrial standards
targeting information security published by the authors in [127] for the purpose of
this thesis research.

Many international standards, guidance, and best practices cover security issues.
We overview their domain and comment their conformity to cloud computing secu-
rity challenges.

21.1.1 NIST’s 800-53 R3 Security Controls

The NIST’s special publication 800-53 R3 [100] refers to Security Controls for Fed-
eral Information Systems and Organizations as another security control based guid-

233

234 21 Cloud Security Standardization

ance. It provides guidelines for selecting and specifying security controls for infor-
mation systems (ISs) supporting the executive agencies of the federal government
to meet the requirements of FIPS 200 [40]. The guidance defines total of 205 con-
trols grouped in 17 families of security controls for an information system and one
family of program management controls to manage information security programs.

The standard focuses on managing risks aroused from information systems with
risk management at the organizational level incorporated in NIST’s Special Publi-
cation 800-39 [99].

21.1.2 ISO 27000 Standard series

ISO 27000 is series of standards specifically reserved for information security mat-
ters:

• ISO 27001:2005. ISO 27001:2005 [73] certification for information security
management system (ISMS) can be considered as best solution for securing in-
formation assets and also to establish customer’s trust in CSP’s services. Mi-
crosoft proves that information security is central to its cloud operations [89]. The
standard adopts the ”Plan-Do-Check-Act” model applied to structure all ISMS
processes. The model ensures that ISMS is established, implemented, assessed,
measured where applicable, and continually improved. The standard defines 133
controls grouped into 39 control objectives and 11 clauses. These controls shall
be selected as part of the process to establish ISMS suitable to cover the iden-
tified requirements. They are not exhaustive and additional control objectives or
controls may also be selected, or some can be excluded, but the prospective can-
didate must justify the exclusion.

• ISO 27002:2005. ISO 27002:2005 [74] is complementary to ISO 27001:2005.
It is a practical guideline for developing organizational security standards and
effective security management practices and to help build confidence in inter-
organizational activities.

• ISO 27005:2011. ISO 27005:2011 [75] provides guidelines for Information Se-
curity Risk Management (ISRM) in organization supporting the requirements
of ISMS. ISRM process consists of context establishment, risk assessment, risk
treatment, risk acceptance, risk communication and risk monitoring and review.

21.1.3 Audit and Assessment Standards and Guidance

A company must perform internal and external audits prior certification to obtain
ISO 27001:2005 Certificate. There are several guidance and certifications for this
purpose.

21.2 Efforts in Cloud Security Standardization 235

COBIT 4.1. COBIT [71] developed by ISACA provides a set of 34 high-level
control objectives, one for each of the IT processes, grouped into four domains:
Plan and Organize, Acquire and Implement, Deliver and Support, and Monitor and
Evaluate. The structure covers all aspects of information and the technology that
supports it. By addressing these 34 high-level control objectives, the business pro-
cess owner can ensure that an adequate control system is provided for the IT envi-
ronment. COBIT version 5 is the newest release.

SAS 70 (Audit) Type II. SAS 70 [2], developed by AICPA, does not specify a
pre-determined set of control objectives or control activities that CSP must achieve,
but it provides guidance to enable an independent auditor to issue an opinion on a
CSP’s description of controls through a Service Auditor’s Report. SAS70 Type II
certifies that CSP had an in-depth audit of its controls (including control objectives
and control activities), which should relate to operational performance and security
to safeguard customers data. This helps the CSP to build trust with its custoomers.
Customers, on the other hand, with the Service Auditor Report from their CSP(s),
obtain valuable information regarding the CSP(s) controls and the effectiveness of
those controls. The standard SAS70 is now divided into parts and replaced by two
new standards: (1) SSAE No. 16 for Service Auditors and (2) Clarified Auditing
Standard for User Organizations. We have analyzed SAS 70 since many CSPs have
SAS 70 compliance.

There are other security standards that cover specific areas. HIPAA [24] ad-
dresses the security and privacy of health data and intends to improve the efficiency
and effectiveness of the health care system by encouraging the widespread use of
electronic data interchange. PCI DSS V2.0 [111] is developed to encourage and en-
hance cardholder data security and facilitate the broad adoption of consistent data
security measures globally. At high level it has 12 requirements to protect cardholder
data, which may be enhanced with additional controls and practices to further miti-
gate risks at acceptable level.

21.2 Efforts in Cloud Security Standardization

This section presents the analysis of Cloud Security Standardization efforts pub-
lished by the authors in [126] for the purpose of this thesis research.

Although general security standards can help CSPs in implementing information
security system, there is a need for more efforts for cloud security standardization.
CSA identified top threats to cloud computing in [30]. In order to mitigate the risks
of threats ENISA identified and assessed the risk level as a function of the business
impact and likelihood of the incident scenario [18].

NIST discusses the threats, technology risks, and safeguards for public cloud
environments and provides the insight needed to make informed IT decisions on
their treatment [97]. The main emphasis is set on security and data privacy.

The CSA’s initial report V2.1 [29] contains a different sort of taxonomy based
on 15 different security domains and the processes that need to be followed in an

236 21 Cloud Security Standardization

overall cloud deployment. New candidate domains are proposed for version 3 [28]
and are of the greatest interest to experienced industry consumers and security pro-
fessionals. Core functionalities, optional features, services, addressed threats, and
the challenges to be focused on are addressed for each candidate domain.

CSA puts a lot of efforts in its CSA GRC project [27]. A list of 98 controls
grouped into 11 groups is defined in [26]. Each control is mapped into compliant
control of other security standards or best practices.

21.2.1 Appropriate Standard for Cloud Security Challenges

The best solution for CSP’s information security system is to cover and meet both
the ISO standard and NIST guidance controls. But, it is not so simple. NIST’s 800-
53 [100] shows that a small number of controls are not covered in the other standard.
Also, neither NIST’s 800-53 security control subsumes ISO 27001:2005, nor oppo-
site. There are many security controls with similar functional meaning, but with
different functionality. Other security controls with similar topics are addressed in
the same control objective (ISO) or family (NIST), but has different context, per-
spective, or scope. Another problem is that some controls from one standard are
spread in several controls in the other standard.

The standards differ in their purpose and applicability, as well. While ISO
27001:2005 is general purpose and applies to all types of organizations, NIST’s
800-53 is applicable for information systems supporting the executive agencies of
the federal government.

The main concern here is: are the controls of both standards applicable to CSP
and all cloud service layers? Do they cover all the traditional security challenges, as
well as newly opened security issues in cloud? Are there any security challenges in
cloud computing not covered with these controls?

ISO 27001:2005 is a general purpose standard and therefore, its control objec-
tives are conformable to CSP. But the question remains: Are they enough for CSP’s
ISMS? Our further research is going into two directions: first, we measure the CC
efforts to be taken for each ISO 27001:2005 control objective if their services are
hosted on-premise or in the cloud. And second, we analyze if there should be any
other security control to be included in the ISO 27001:2005 controls.

21.2.2 CSPs’ Efforts towards Security

We continue with overview of the existing CSPs security certification and accred-
itations, as well as their security features. Table 21.2.2 presents the evaluation of
the security standards certification that existing CSPs have, as well as their security
features.

21.3 ISO 27001:2005 (in)Compliance for Cloud Computing 237

CSP Amazon Salesforce Microsoft Google IBM

Security
Compliance

PCI DSS Level
1, ISO 27001,
SAS 70 Type II,
HIPAA

ISO 27001,
SysTrust, SAS
70 Type II

PCI DSS, HIPAA,
SOX, ISO 27001,
SAS 70 TYPE 1
and II

SAS 70
Type II,
FISMA

ISO 27001

Security
Features

AWS IAM,
AWS MFA, Key
Rotation

System status,
Management
Commitment
for privacy

Access control,
segmenting cus-
tomer data

2-step
verifica-
tion

Rational App-
Scan OnDe-
mand, Security
Services for
compliance

Table 21.1 Existing CSPs Security Certification and Accreditation, as well as Security Features
[126]

As shown, all CSPs have one or many security certificates or compliances for
their infrastructure. In addition, many CSPs not only they implement security fea-
tures in their cloud systems, but they also offer security features to their customers
to assess whether their services hosted in the CSP cloud are compliant to particular
security standard.

21.3 ISO 27001:2005 (in)Compliance for Cloud Computing

In this section we present the analysis of the ISO 27001:2005 requirements’ con-
formity to cloud computing security challenges published in [127] for the purpose
of this thesis research. The authors analyze particularly new cloud computing secu-
rity challenges, such as customer isolation, insider attacks, and security integra-
tion [44], due to cloud computing multi-tenancy, virtualization, and outsourcing
the customers’ data and applications. We evaluated that almost all main CSPs are
ISO 27001:2005 certified. Due to new security challenges we analyze if CSP’ ISO
27001:2005 Certificate will be enough to generate trust for customers that are se-
cured in the rented infrastructure, platform or software.

21.3.1 Security Challenges due to Virtualization

Traditional on-premise data-centers security solutions do not comply with virtual-
ized environment, because of the complex and ever-dynamic nature of cloud com-
puting [67]. The virtualization by itself does not affect the security if it is used on-
premise in a physical, logical and environmental isolated secured environment. IDS
and IPS systems can secure the internal virtual and physical machines from the ex-
terior environment, if they are into one autonomous system, that is, under same ad-

238 21 Cloud Security Standardization

ministrative governance. Figure 21.1 depicts multitenant environment where cross
VM attacks is possible.

Fig. 21.1 Virtualized Multi-tenant Environment in IaaS and PaaS [29]

In cloud computing, especially in IaaS and PaaS, the resources are shared and
rented to the different customers. Even more, the same physical machine can be
shared to many different customers. The current virtualization is weak and can be
easily attacked [1]. The security solutions for some flaws are found, but new secu-
rity threats and vulnerabilities arise day by day. Thus, CSPs’ security perimeter is
broken from inside, making their IDS and IPS helpless. Therefore, CSPs must intro-
duce effective isolation among the customers, although allowing physical resource
sharing.

Multitenancy exists In SaaS cloud service layer, as well. There are three degrees
of data isolation for SaaS applications presented in Figure 21.2. In Isolated environ-
ment each tenant has its own database. Tenants in Semi-shared environment share
the database using a separate schema and in Shared environment share both the
database and the schema.

Fig. 21.2 Virtualized Multi-tenant Environment in SaaS [151]

21.3 ISO 27001:2005 (in)Compliance for Cloud Computing 239

We found several security solutions for virtualization challenges. The authors in
[59] propose SEC2 solution which enables users to customize their security policy
settings the same way they control their on-premise network. Virtualization-Aware
Security Solution CloudSec which monitors volatile memory to detect and prevent
for the kernel data rootkits is proposed in [68].

Analyzing ISO 27001:2005 requirements and their controls we concluded that
there is no control for virtualization. Clause 11 that covers access control and also
many standard controls, even the whole control objective, assume that operating
systems are on separate real machines. But in the reality, issues such as trusting
the VM image, hardening hosts, and securing inter-host communication are critical
areas in IaaS [149]. Therefore, we propose to include a new control objective for
virtualization management, with two controls: virtualization and virtual machines
control. For the former we propose: Information involved in virtual machines shall
be appropriately protected and for the latter: Virtual machines shall be adequately
managed and controlled, in order to be protected from internal and external threats,
and to maintain information security in transit. In addition to this, NIST defines
the control SC-30 Virtualization Techniques in [100], which is not mapped to any
control of ISO 27001:2005. NIST’s control is far from enough to cover all security
flaws due to multi-tenant virtualization in cloud computing.

21.3.2 Security, Data Protection and Privacy as-a-Service

Business does not fully accept cloud infrastructure, platform and software due to
security, data protection and privacy, as well as trust issues. Combining the advan-
tages of secured cloud storage and software watermarking through data coloring
and trust negotiation, the authors in [65] propose reputation system to protect data-
center access at a coarse-grained level and secure data access at a fine-grained file
level.

Such systems and solutions supersede and subsume the traditional security sys-
tems, and thus CSPs should implement them. Therefore, offering Security-as-a-
Service (SECaaS) and Data protection and privacy-as-a-Service will speed up cloud
market growth, both for the providers’ offers and clients, as well as cloud trustwor-
thiness. CSA offers 10 candidate domains for SECaaS [28].

Data privacy is treated in two controls in ISO 27001:2005 requirements. The
control 6.2.3 requires the client data privacy (for cloud customers) and the control
15.1.4 requires from the CSP to ensure data privacy. These two controls obligate
both the customers and the CSPs to manage the data privacy with higher importance.

As shown in Table 21.2.2, many CSPs are not only complained to some secu-
rity standards, but they offer services to customers to help them in their security
standard compliance, as well. Thus, the risks that arise from multi-tenancy and vir-
tualization will be mitigated, and mutual trustworthiness will be established among
CSPs, cusotmers and end users.

240 21 Cloud Security Standardization

21.3.3 Performance challenges

All cloud computing security solutions and techniques, and many other as well, de-
grade cloud services performance. Implementing identity and access management,
web and email security, intrusion management [28], as well as monitoring systems,
data coloring, and other traditional security services, such as web service security
produce data overhead and system latency which must be considered due to their
negative impact to server performance, and thereby to the system availability.

21.4 Summary

Business managers know that risks exist in spite of all the benefits of each new
technology or business model offers. There are a lot of regulatory violation, security,
trust and privacy issues. Thus, each company that dives ahead using the benefits of
cloud computing, should evaluate the risks found if moving its services into the
cloud, compare to if retain to the traditional solutions.

This chapter overviews main international and industry standards towards se-
curity, and analyze their conformity to cloud computing. There are many different
cloud security threats, vulnerabilities and control definitions, best practices, in order
to standardize cloud security, as well.

ISO 27000 series (27001:2005, 27002:2005, and 27005:2011) of standards are
defined as generic and they cover not only the technical solutions to technically
identified threats and vulnerabilities, but take into account the operational, organiza-
tional and management vulnerability, as well. Due to its generality, as well as many
open cloud security challenges, ISO 27001:2005 is not fully conformal with cloud
information security system. Therefore, we propose a new control objective in ISO
27001:2005 requirements, virtualization management, with two controls covering
virtualization and virtual machines control.

Chapter 22
Cloud Computing Security in Business
information systems

Abstract This chapter presents the research published by the authors in [129] and
[127] for cloud computing security challenges in business information systems.
Cloud computing becomes the best offer in ICT for data storage and processing,
offering flexible and scalable computing processing capacity. But, cloud comput-
ing may produce different risks with different impact to client company business
than traditional IT solutions. CSPs must implement effectively information secu-
rity management to reduce the security risks improving the cloud customer business
continuity. With high-level risk-based approach this chapter addresses the risks of
the security challenges in the cloud in order to improve the client company business
continuity if migrates its services into cloud. The comparative analysis of main se-
curity benefits and detriments of the cloud that impacts the business continuity was
not performed in the literature so far. The benefits that cloud computing offers to
business continuity are presented in order to depreciate the risks to acceptable level.

22.1 Security Challenges Moving into Cloud

This section presents the security challenges for the company when moving into
cloud published by authors in [129] for the purpose of this thesis research.

The security objectives of a company are a key factor to make decision about out-
sourcing their IT services, especially data and applications to a public cloud comput-
ing environment [97]. But, in some cases, cloud computing offers enhanced security
benefits to the companies; for small companies with limited qualified IT adminis-
trators and security officers, and lack of business growth, it provides opportunity for
overall security improvement.

Many organizations arent comfortable storing their data and applications on sys-
tems that reside outside of their on-premise datacenters [19]. This might be the sin-
gle greatest fear of cloud clients. One approach to security challenges in the cloud is
technical approach. Thus, [81] focuses on technical security issues arising from the

241

242 22 Cloud Computing Security in Business information systems

usage of cloud services and especially by the underlying technologies used to build
these cross-domain Internet-connected collaborations.

[97] provides an overview of the security and privacy challenges pertinent to pub-
lic cloud computing and points out considerations organization should take when
outsourcing data, applications, and infrastructure to a public cloud environment. The
advantages and disadvantages (in the context of data security) of using a cloud com-
puting environment are presented in [68]. It also analyzes the data security risks and
vulnerabilities which are present in current cloud computing environments. [149]
illustrates the unique issues of cloud computing that exacerbate security and privacy
challenges in clouds and discusses various approaches to address these challenges
and explore the future work needed to provide a trustworthy cloud computing envi-
ronment. [21] makes a step forward and proposes to extend control measures from
the enterprise into the cloud through the use of Trusted Computing and applied
cryptographic techniques to alleviate much of todays fear of cloud computing.

We found nice high-level approach of security management in cloud computing
in [117] where the authors provide an overall security perspective with the aim to
highlight the security concerns that should be properly addressed and managed to
realize the full potential of cloud computing. Different cloud delivery and deploy-
ment models are matched up against some of the information security requirements.

However, so far there are no papers that analyze how cloud security vulnerabili-
ties and threats impact to both the clients and providers business continuity and it is
our challenge and main topic in this paper.

22.2 Risk-based Approach

This section presents the risk-based approach for the company when moving into
cloud published by authors in [129] for the purpose of this thesis research.

Business managers know that risks exist in spite of all the benefits of every new
technology or business model offers. Also, many issues like regulatory violation,
security, trust and privacy appear. Thus, each company that dives ahead using the
benefits of cloud computing, should evaluate the risks found if moving into the
cloud, as well as if stay to the traditional solutions.

The main challenge when moving into cloud is security. Outsourcing data and
application, virtualization and hypervisors, heterogeneity, lost security perimeter are
some of the issues that should be addressed at least. The client company should
define risk assessment mechanism to define levels of risk and make it part of the
system development life cycle. Without preparation of risk assessment, it would be
impossible to evaluate whether company systems are candidates for operating in the
cloud and to assess the potential CSPs for their risk management practices. When
this process is accomplished, the company systems and projects can have their risk
assessments mapped with the CSP and a decision can be reached about whether
moving into cloud is appropriate for the systems.

22.2 Risk-based Approach 243

This risk assessment should not be a static one, but a dynamic, in order to meet
the latest standards and trends. Both the cloud client and provider should evaluate
the risks for the cloud services according the providers cloud design and the users
service risk assessment. Also, hypothetically and eventually leaving the cloud, that
is, moving back to the traditional solutions, should be covered in the risk assessment.

It is often possible for cloud clients to transfer the risks to the cloud provider, if
applicable. However, neither always nor all risks can be transferred to the provider.
If some risk leads to the incident scenario with business failure, serious damage to
reputation or legal implications, it is hard or even impossible for any other party to
compensate for this damage. Ultimately, you can outsource responsibility but you
can’t outsource accountability [18]. Therefore, the motivation of this research is
to address the main security challenges in the cloud, especially those that can be
disastrous to the cloud client business, and have impact to the business continuity.

22.2.1 Information Security Risk Management

Cloud features, such as scalability and flexibility, impacts both positive and negative
to the security [18]. The massive concentrations of data, applications, servers and
resources in the cloud provoke the hacker efforts to attack, but on the other hand,
cloud-based defenses can be more robust, scalable, etc, offering better protection as
the cost for traditional solutions defenses. Therefore, both the client and provider
should perform the information security management.

The potential cloud clients should establish metrics and standards for measuring
performance and effectiveness of information security management before moving
into the cloud. Therefore, the risks of using cloud computing should be assessed
and compared to the risks of staying with in-house solutions [18]. CSPs should also
include metrics to assist customers in implementing their Information Risk Man-
agement requirements. The potential cloud clients should understand their current
metrics and how they will change when operations are moved into the cloud, where
a provider may use different (potentially incompatible) metrics [29].

A formal risk assessment process, as a part of the security risk management pro-
cess, should be established that allocates security resources linked to clients busi-
ness continuity and to compare the risks of using cloud computing with the risks of
staying with traditional solutions.

22.2.2 Risk Assessment Process

Security risk assessment is activity where the risks are identified, quantified or qual-
itatively described, and prioritized against risk evaluation criteria and objectives rel-
evant to the organization. This activity should be the main sub process during the
Security Risk Management, because all the assets in cloud are exposed neither to

244 22 Cloud Computing Security in Business information systems

the same risks, nor to the same risk level as before moving into cloud. The same
assumption can be made in the eventually reverse process, which is, moving back
from the cloud to the traditional solutions.

Security risk assessment is critical process which helps the company identify-
ing, selecting / excluding security controls during the process of establishing the
ISMS for ISO 27000 certification candidates, or during the processes of reviewing
ISMS and its improvement. Lack of attention in risk assessment when migrating
into cloud, can increase the information security audit findings. Even more, some
of the risks can be unidentified or remain untreated. This motivated us to deeper
explore the effects of risk in business continuity when moving into cloud.

Besides the protection of information assets, detailed and technical security risk
assessments in the form of threat modeling should be applied to applications and
infrastructure as well, due to their outsourcing.

The risk evaluation is the next activity after the risk identification and estima-
tion [75]. For each asset, the relevant vulnerabilities and their corresponding threats
should be considered, and if there is vulnerability without a corresponding threat, or
a threat without corresponding vulnerability, there is presently no risk (but precau-
tion should be taken if the situation is changed eventually).

Also, other important issue is the business impact of the incident, as well as the
likelihood to happen. [30] provides needed context to assist organizations in making
educated risk management decisions regarding their cloud adoption strategies.

A matrix for risk quantification to successful risk measurement in a scale of 0-8
is defined in [75], annex E. The risks are rated as low (scale 0-2), medium (scale
3-5) and high risk (scale 6-8) as shown on Figure 22.1.

Fig. 22.1 The risk level as a function of the business impact and probability of incident scenario
[75]

With these rating, business managers can evaluate the risks before and after even-
tually moving into cloud, and they can measure whether the risks are acceptable and
treated as planned.

22.3 Business Continuity vs Cloud 245

22.3 Business Continuity vs Cloud

This section presents the business continuity challenges for the company when mov-
ing into cloud published by authors in [129] for the purpose of this thesis research.

This section briefly describes why Business Continuity and Disaster Recovery
Planning is important and points the security benefits and detriments that impact
to the cloud client business continuity. It also introduces proposals which minimize
the impact to business continuity and the probability of incident scenario for each
detriment. These main risks can be assessed appropriately and mitigated to the ac-
ceptable level by applying recommendations in these proposals according to matrix
for risk level as a function of the business impact and probability of incident scenario
[75].

22.3.1 Why Business Continuity and Disaster Recovery Planning?

The main goal of every company is to make the business growth. To achieve business
growth, the company must have plans in place that will allow business continuity.
The purpose of every business continuity / disaster recovery planning is to min-
imize the impact of any predictable / unpredictable interruption event on business
processes. Business continuity and resiliency services helping businesses avoid, pre-
pare for, and recover from a disruption. The cloud client business continuity and dis-
aster recovery plan should include scenarios for loss of the cloud providers services,
and even for the providers loss of its third party services and third party-dependent
capabilities [29]. In BCP, cloud client must determine who to contact if security in-
cident occurs, or other events that require investigation, identification, notification,
reaction, or even eventually legal actions. This plan should be tested periodically
together with the cloud provider. As the cloud provider becomes an external party
the client relies, the cloud provider has to develop and approve BCP, mapped to
the international standards, such as [75, 73]. The CSP must supply the client with
providers:

• Documentation for assets and resources are assessed and audited, as well as the
frequency of the assessments and audits.

• Incident management, business continuity and disaster recovery plans, policies,
and processes and procedures

• Review of co-location and back-up facilities, if applicable
• Providers critical services, key performance indicators (KPIs), and the way they

are measured

In order to make a decision if the business migrate the services from traditional
solutions to the cloud, business managers should complete and sustain the risk as-
sessment, establish risk acceptance and measure the security risks in both solutions,
especially the situation if they impact to the business continuity. Table 22.3.1 as

246 22 Cloud Computing Security in Business information systems

pointed out in [3] lists many events which could have impact to the cloud client
business continuity, some of them potentially disastrous.

Avalanche Flood Shooting

Severe Weather (heat, cold,
blizzard, etc.)

Natural Gas Leak Fuel Shortage (usually associated
with a loss of main electrical power)

Biological Hazard Heating Ventilation or Air
Conditioning Failure

Bomb Threat

Civil Disorder Hostage Situation Kidnapping
Telecom Outage Acts of Terrorism Theft
Robbery Train Crash or Derailment Lightning Strike
Computer/Software Failure,
Virus or Destruction

Employee/Union strike Acts of Vandalism

Pandemic Picketing Power Outage
Fire Damage Water Damage Radiological Hazard

Table 22.1 Potentially Disastrous Events [3]

22.3.2 Business Continuity Benefits from the Cloud

This section presents the business continuity benefits for the company when moving
into cloud published by authors in [129] for the purpose of this thesis research.

Several papers [81, 21, 18, 29, 149, 97] have mentioned many security vulner-
abilities and threats, but this section summarizes all relevant efforts and introduces
another dimension. Despite the security challenges and risks appeared to the busi-
ness continuity if moving into cloud, we address several benefits that cloud com-
puting has over traditional business continuity, as well. These benefits improve the
clients BCP and depreciate the impact of the incidents to the clients business.

Eliminating downtime. SaaS offers advantages over traditional computing, for
example, in the email services. Thus, SaaS ensures that email messages are never
lost and makes the system outages virtually invisible to end users no matter what
happens to your employees or infrastructure.

Better Network and Information Security Management. Company can outsource
noncritical applications and its data to cloud, where they can run with better perfor-
mance, which allows the company IT department to focus on critical applications.
This also improves company network security and user access management.

Disaster Recovery Backup Management. The successful recover from a disaster
depends mainly of the quality and the frequency of backups. Cloud offers much
better layered backup strategy. This feature offers to have a better Recovery Point
Objective (RPO).

Disaster Recovery Geographic Redundancy. Cloud Providers offer a built-in
geographic redundancy in the form of regions and availability zones. This feature

22.3 Business Continuity vs Cloud 247

offers to decrease the Recovery Time Objective (RTO). We must note that many of
the events in Table 1 are geographically related.

Avoid or eliminate disruption of operations. Some clouds expose a hash (Ama-
zon S3 generate an MD5 hash) when store an object, thus eliminating the need for
forensic image verification time.

Increased Availability. The scalability feature of cloud computing facilities al-
lows for greater availability. Redundancy exists all over the cloud environments and
on-demand resource capacity increases service availability.

DoS Attack Depreciation. Redundancy and on-demand resource scalability also
provide better resilience when facing distributed denial of service attacks, as well as
for quicker recovery from serious incidents.

22.3.3 Business Continuity Detriments

This section presents the business continuity detriments for the company when mov-
ing into cloud published by authors in [127] for the purpose of this thesis research.

Cloud computing produces many open security issues to be assessed. Migrating
company services into cloud moves their data and applications outside of the com-
pany security perimeter. This outsourcing opens new security issues and amplifies
existing, thus increasing the company’s security overall risk. Multi-tenancy, sup-
ported by virtualization, is another important security flaw producing new threats
and vulnerabilities from inside, the co-tenants. The current isolation facility within
clouds i.e. virtualization is weak and can be easily attacked [1]. The problem is even
worse in the case of tenants are hosted on the same physical hardware. Thus, CSPs
and customers must ensure the customer data and applications are ”really” secured
and the risks are mitigated to the customer’s acceptable level.

Business continuity and Disaster recovery are only one domain of all the domains
for CSA’s SECaaS [28]. In this section we analyze the security detriments cloud
computing offers and are aware that some benefits will also produce detriments. We
overview some of the main risks that impact the business continuity together with
some solutions that mitigates the risks to acceptable level:

• Multi-tenant environment. Although the cloud can offer better protection and
defense for the same cost than traditional solutions it has a detriment as well.
Different cloud tenants are serious potential threat in shared and multi-tenant
environment and especially in the public clouds. This is not the case in the tra-
ditional in-house solution even if virtualization techniques are used. Each CSP
should develop a methodology to evaluate the tenants and categorize them into
categories with trustfulness purposes. This is especially important for IaaS and
PaaS where a client can impact more to its own security, but also is threat to other
tenants.

• Heterogeneity, Complexity, Interoperability. Business continuity depends not
only on the effectiveness and correctness of system components, but also on the

248 22 Cloud Computing Security in Business information systems

interactions among them. Subsystem component heterogeneity leads to difficult
interoperability. Number of possible interactions between components increases
the system failure probability. Complexity typically relates inversely to secu-
rity, with greater complexity giving rise to vulnerabilities [97]. Defining security
standards for adapters, wrappers, transducers, and data transformation, as well as
performance analysis can offer stable system solution and mitigate the risks.

• Regulatory and Standards Compliance. A CSP must provide an evidence that
meets the standards and regulatory a company needs. Each CSP should permit
the regular audits by the customers. A cloud customer should assess the risks
and include them into risk acceptance plan if acceptable. If not, the services with
unacceptable risks should stay in-house. ISO 27001:2005 covers these issues
well in several controls.

• Loss of Control. A company must transfer some control of the assets, appli-
cation, etc. to the CSP. Cloud customers must assure that their CSP can meet
SLA requirements, and if not, they must assess the risks and include them into
BCP. Also, we suggest to CSPs regulatory to obligate cloud customers to concern
about security in SLA agreement.

• Disaster Recovery - RPO and RTO. Although the cloud can offer better RPOs
and RTOs [129] we assume that maybe CSP had not defined these objectives or if
defined they are worse than cloud customers would expect. The cloud customers
must be ensured that CSP’s RPOs and RTOs are defined in compliance with its
own, as well as the CSP can satisfy such defined requirements.

• Performance challenges. All cloud computing security solutions and techniques
degrade cloud services’ performance. Implementing identity and access manage-
ment, web and email security, intrusion management, [28], as well as monitor-
ing systems, data coloring, and other traditional security services, such as web
service security produce data overhead and system latency. They must be consid-
ered due to their negative impact to server performance and thereby to the system
availability.

• Data Protection, Privacy and Location. Although replication produces secu-
rity benefits in Disaster Recovery and system availability, it produces a security
detriment. Thus, along with virtualization, it complicates the access control man-
agement and data privacy. Outsourcing only noncritical applications and its data
to cloud, if applicable, shall provide the client company with even better data
protection and management compared to traditional solutions. CSPs must ensure
cloud customers into their operations and privacy assurance. Privacy-protection
mechanisms must be embedded in all security solutions [149]. This risk directly
impacts the regulatory compliance risk and company business reputation. Au-
diting and logging tenant’s activities can reduce the risk of incidents, as well as
including obligations in the SLA agreements. ISO 27001:2005 defines controls
for audit and logging, but CSP must also include new controls we propose. In
some cases the applications and data might be stored in countries where their
judiciary concern and lead to regulatory incompliance. Keeping them in-house
or in a hybrid cloud with the appropriate SLA can mitigate the risk.

22.4 Summary 249

22.4 Summary

No paper so far has presented business continuity aspects in detail of cloud comput-
ing and it challenged us to address the cloud computing model security detriments
that depreciate the cloud customer business continuity: data privacy and protection,
regulatory and standards compliance, loss of control, data location, heterogeneity,
complexity, and interoperability, multi-tenant environment, and disaster recovery -
RPO and RTO compliance and effectiveness.

We address cloud computing model security beneficial that improves the business
continuity: eliminating downtime, better network and information security manage-
ment, disaster recovery with both backup management and geographic redundancy.
It also avoids or eliminates disruption of operations, increases service availability
and DoS attack.

This chapter introduces proposals which minimize the impact to business conti-
nuity and the probability of incident scenario for each detriment. These main risks
can be assessed appropriately and mitigated to the acceptable level by applying rec-
ommendations in these proposals according to matrix for risk level as a function of
the business impact and probability of incident scenario [75].

Chapter 23
New Methodologies for On-premise vs Cloud
Security Evaluation

Abstract The main question at the beginning was if the cloud concept can become
basic ICT choice for the companies. Nowadays the main question is when the cloud
will become basic ICT choice for the companies. However, not all companies will
migrate their services in the public cloud. Some will keep the services on-premise
and others will migrate into their own private clouds. Several security challenges
migrating in the cloud are described in Section 22.1. This chapter presents the new
methodologies that were published by the authors in [127] and [126] for security
evaluation of the security on-premise or in the cloud and cloud service layers. ISO
27001:2005 control objectives are taken as a baseline for the evaluation.

23.1 ISO 27001:2005: On-Premise vs Cloud

This section presents the new methodology that was published by the authors in
[127] for security evaluation of the security on-premise or in the cloud.

The first dilemma for IT security and business managers is what is the risk of
moving into the cloud. Since previous sections in this part present that all CSP’s are
at minimum ISO 27001:2005 certified, this section evaluates it and proposes a model
to measure the ISO 27001:2005 control objectives importance for both on-premise
and cloud solutions. We assess and assign a quantitative metric for each control
objective importance. With the qualitative and quantitative analysis we compare
the applicability and importance of ISO 27001:2005 control objectives as a general
purpose standard, and the fact that the cloud techniques subsume the on-premise
ones.

251

252 23 New Methodologies for On-premise vs Cloud Security Evaluation

23.1.1 Metric Definition

As the CSP becomes an external party that cloud customer relies, the cloud costomer
must transfer some security issues to CSP, but also to increase the domain in SLAs.
We define three possible values for the importance of each control objective in ISO
27001:2005, both for on-premise and in the cloud. Table 23.1 shows the explana-
tion of each importance. We omit particular control objectives that has no effect if
the services are hosted on-premise or in the cloud, i.e. operational or management
control objectives.

Description

-1 Transfered partially to SLA and remain as Control Objective
0 Same importance

+1 Control Objective with increased importance

Table 23.1 Control objective importance metrics [127]

23.1.2 Evaluation of Control Objectives Importance

Comparison of the differences among cloud computing versus traditional on-premises
computing can be carried through deducing which resources or services are executed
by cloud customer or CSP. Such comparison is given in [22]. The responsibilities
for all parts of the IT services hosted on-premises are on the resource owner, i.e.
the customer. Going from IaaS, through Paas to SaaS cloud service layer, more and
more responsibilities are transferred from the cloud customer to the CSP.

We evaluate each control objective importance on-premise and in cloud using the
comparison and metric definitions in Table 23.1. According to control classification
in [100] for control objectives, management and operational control objectives do
not depend if the company services are hosted on-premise or in cloud. For example,
the company must define security policy, no matter of information systems’ size and
type.

23.1.3 Analysis of Control Objectives Importance

The results of the evaluation are presented in Table 23.2. 18 control objectives de-
preciate their importance, 2 control objectives increase the importance and 7 control
objectives retain the importance. We must emphasize that importance depreciation
does not mean that a given control objective meaning is decreased or even irrelevant

23.1 ISO 27001:2005: On-Premise vs Cloud 253

or that particular control objective should be excluded, but the control objective obli-
gations are somehow be transferred to the CSP, and should be integrated (partially or
all controls of a given control objective) into SLA agreement signed between CSP
and cloud customer. During the processes of establishing or reviewing ISMS and
its improvement, the prospective cloud customer can use this evaluation to select /
exclude the controls and control objectives to cover the identified requirements, and
to put more effort to control objectives with higher importance.

Control Objective Value

External parties +1
Third party service delivery management +1
Responsibility for assets -1
Information classification -1
Secure areas -1
Equipment security -1
System planning and acceptance -1
Protection against malicious and mobile code -1
Back-up -1
Network security management -1
Media handling -1
Electronic commerce services -1
Monitoring -1
User access management -1
Network access control -1
Mobile computing and teleworking -1
Security of system files -1
Technical Vulnerability Management -1
Reporting information security events and weaknesses -1
Compliance with security policies and standards, and technical compliance -1
Operating system access control 0
Application and information access control 0
Cryptographic controls 0
Management of information security incidents and improvements 0
Information security aspects of business continuity management 0
Compliance with legal requirements 0
Security in development and support processes 0

Table 23.2 Evaluation of ISO 27001:2005 Control Objectives [127]

Fig. 23.2 presents the percentages of control objectives that increase, decrease
or retain the level of importance in cloud solution compared to on-premise. We
conclude that 2/3 of control objectives are with depreciated importance in cloud
and only 7.41% increased the importance when moving into the cloud. Also, the
number of control objectives with depreciated importance is 9 times greater than
the one with increased importance.

254 23 New Methodologies for On-premise vs Cloud Security Evaluation

Fig. 23.1 Control objective comparison: On-premises computing versus cloud [127]

23.2 ISO 27001:2005 Evaluation in All Cloud Computing Service
Layers

This section presents the new methodology that was published by the authors in
[126] for security evaluation of the security on-premise or particular cloud service
layers and their average.

In this Chapter we propose a model to measure the ISO 27001:2005 con-
trol objectives importance for both on-premise and cloud solutions, due to ISO
27001:2005’s generality and because of almost all main CSPs’ are ISO 27001:2005
Certified (Table 21.2.2). We assess and assign a quantitative metric for each control
objective importance, with details in IaaS, PaaS and SaaS cloud service layers. With
the qualitative and quantitative analysis we compare the applicability and impor-
tance of ISO 27001:2005 control objectives as a general purpose standard, and the
fact that the cloud techniques subsume the on-premise ones.

23.2.1 Metric Definition

We define 6 possible values for the importance of each control objective. Table 23.3
shows the explanation of each importance. We put value ”-” if particular control
objective has no effect if the services are hosted on-premise or in the cloud, e.g.
some operational or management control objectives. Values from 1 to 5 mean that
particular control objective has different importance if the services are hosted on-
premise or cloud, with given explanation for each importance value.

23.2 ISO 27001:2005 Evaluation in All Cloud Computing Service Layers 255

Importance

- Irrelevant if service is hosted on-premise or cloud
1 Minimal importance (most part moved to SLA)
2 Partial importance
3 Important
4 High importance (almost always)
5 Highest importance (important for each company / IS)

Table 23.3 Control objective importance metrics [126]

23.2.2 Control Objectives Importance Evaluation

Comparing the differences among three service layers of cloud computing versus
traditional on-premises computing can be carried through deducing which resources
or services are executed by cloud customer and CSP. We can see such comparison
on Fig. 1.2 [84]. The resources and services in responsibility of the CSP are shown
in green boxes, while those in responsibility of the cloud customer are shown in
red. Fig. 1.2 shows that SaaS solution may be used from anywhere and at any time,
provided a client (web browser) and internet connection. These features make SaaS
software most attractive for SMEs, and require no additional expensive and complex
resources and hardware on customer’s part.

In Fig. 1.2 is clearly presented that the responsibilities for all parts of the IT
services hosted on-premises are on the resource owner, the customer in our case.
Going from IaaS, through Paas to SaaS service layer in the cloud computing, more
and more responsibilities are transferred from the cloud customer to CSP. Therefore,
cloud customers should transfer the security responsibilities to CSP, as well, and
thus, most part of ISO 27001:2005 control objectives shall depreciate their values
going from On-premise, to Iaas, Paas or SaaS.

Using this comparison, and according to defined metrics in Table 23.3, we evalu-
ate each control objective importance on-premise and in IaaS, PaaS and SaaS cloud
service layers. At the beginning, using control classification in [100] for control
objectives, that is, (1) Management, (2) Operational and (3) Technical class, we
grouped the ISO 27001:2005 control objectives. For (1), management control ob-
jectives, we expect that their importance do not depend if the company services are
hosted on-premise or in cloud. For example, the company must define security pol-
icy, no matter of information systems’ size, type, hosting and number. For (2), Op-
erational control objectives, we expect that their importance should be depreciated
if hosted in cloud, due to cloud benefits, such as redundancy, scalability, geographic
spread, etc. For (3), Technical control objectives, we also expect that their impor-
tance should be depreciated if services are hosted in cloud, due to technical benefits
offered by the cloud.

The summary results of the evaluation are presented on Table 23.4. The first two
columns are the control objectives with their codes, as defined in ISO 27001:2005.

256 23 New Methodologies for On-premise vs Cloud Security Evaluation

The presented values in Table 23.4 are achieved on our evaluation of ISO 27001:2005s
control objective importance factor, both for on-premise and the three cloud service
layers, i.e. IaaS, PaaS and SaaS. Details of the evaluation are presented in 23.3. As
we can see, many control objectives depreciate their importance, but also, few other
control objectives increase. We must emphasize that importance depreciation does
not mean that a given control objective meaning is decreased or even irrelevant or
that particular control objective should be excluded, but the control objective obli-
gations are somehow be transferred to the CSP, and should be integrated (partially
or all controls of a given control objective) into SLA agreement signed between
particular CSP and cloud customer. During the processes of establishing the ISMS
for ISO certification candidates, or during the processes of reviewing ISMS and its
improvement, the prospective cloud customer can use this evaluation to select / ex-
clude the controls and control objectives to cover the identified requirements, and to
put more effort and resources to control objectives with higher importance.

We must address that the evaluation is made for a SMEs, having their own in-
formation system, network and hardware equipment, since EU industry is mainly
composed by SMEs [18].

23.2.3 Control Objectives Importance Analysis

After the evaluation, we proceed to qualitative and quantitative analysis on the re-
sults of the evaluation. In the quantitative analysis, we analyze the number of con-
trol objectives which importance increased / decreased for on-premise, as well as
for each cloud computing service (IaaS, PaaS, SaaS) and their average. From the
results shown in Fig. 23.2, we conclude that for each cloud computing service, the
number of control objectives with depreciated importance for each cloud service
layer (IaaS, PaaS, SaaS) is four to ten times greater than the number of the control
objectives with increased importance when moving into the cloud.

In the qualitative analysis, we analyze the sum of control objectives importance
value for each cloud service layer and the average, compared to the sum of the im-
portance value of the same control objectives when hosted the services on-premise.
From the results, shown in Fig. 23.3, we conclude that for each cloud computing
service layer, total sum of control objective importance values into the cloud depre-
ciates compared to on-premise, that is, before moving into the cloud. The percent-
ages of the importance value depreciation are 7.76%, 18.10%, 47.41%, 18.10% for
SaaS, IaaS, PaaS and Average, respectively.

We can conclude that both quantitative and qualitative analysis result in the con-
trol objectives importance depreciation, in all three cloud service layers, as well as
in their average. The depreciation percentages show some paradox, that is, the dis-
tribution of control objective importance is not equal to the responsibilities of CSP
and cloud customer, especially for SaaS, where it is expected to downgrade the im-
portance near to zero. This is due to generality of ISO 27001:2005 and the fact that

23.2 ISO 27001:2005 Evaluation in All Cloud Computing Service Layers 257

Control Objective On-premise SaaS IaaS PaaS Avg

5.1 Information security policy - - - - -
6.1 Internal organization - - - - -
6.2 External parties 1 5 5 5 5
7.1 Responsibility for assets 5 4 4 3 4
7.2 Information classification 5 4 4 3 4
8.1 Prior to employment - - - - -
8.2 During employment - - - - -
8.3 Termination or change of employment - - - - -
9.1 Secure areas 4 2 2 2 2
9.2 Equipment security 4 3 3 3 3
10.1 Operational procedures and responsibilities - - - - -
10.2 Third party service delivery management 1 5 5 5 5
10.3 System planning and acceptance 4 3 2 1 2
10.4 Protection against malicious and mobile code 4 4 3 1 3
10.5 Back-up 5 4 3 1 3
10.6 Network security management 5 2 2 1 2
10.7 Media handling 5 4 4 3 4
10.8 Exchange of information - - - - -
10.9 Electronic commerce services 5 4 3 1 3
10.10 Monitoring 5 4 3 1 3
11.1 Business requirement for access control - - - - -
11.2 User access management 5 4 3 2 4
11.3 User responsibilities - - - - -
11.4 Network access control 5 4 3 1 3
11.5 Operating system access control 5 5 5 1 5
11.6 Application and information access control 5 5 5 5 5
11.7 Mobile computing and teleworking 4 5 4 1 3
12.1 Security requirements of information systems - - - - -
12.2 Correct processing in applications - - - - -
12.3 Cryptographic controls 3 4 4 1 3
12.4 Security of system files 5 4 3 1 3
12.5 Security in development and support processes 4 4 4 1 4
12.6 Technical Vulnerability Management 4 3 2 1 3
13.1 Reporting information security events and weaknesses 4 3 2 1 2
13.2 Management of information security incidents and im-

provements
5 5 5 5 5

14.1 Information security aspects of business continuity
management

5 5 5 5 5

15.1 Compliance with legal requirements 5 5 5 5 5
15.2 Compliance with security policies and standards, and

technical compliance
4 3 2 1 2

15.3 Information systems audit considerations - - - - -

Table 23.4 Existing CSPs’ Security Certification and Accreditation, as well as Security Features
[126]

258 23 New Methodologies for On-premise vs Cloud Security Evaluation

Fig. 23.2 Comparison between On-premises computing versus cloud service layers - IaaS, PaaS
and SaaS [126]

Fig. 23.3 Qualitative analysis on ISO 27001:2005 control objectives when moving into each cloud
service layer [126]

23.3 ISO 27001:2005 Quantification 259

cloud customers will still have information and assets on-premise, employees, legal
issues, etc.

23.3 ISO 27001:2005 Quantification

Table 23.5 presents the details of importance factor evaluation for each ISO 27001:2005
control objective. The importance factor depends on fact whether the company ser-
vices are hosted on-premise or in cloud.

Control Objective

5.1 Information security policy: The organization must define security policy,
no matter if the services are hosted on-premise or in cloud. Therefore this
control objective is not evaluated.

6.1 Internal organization: The information security must be managed within
the organization for both solutions. Therefore this control objective is not
evaluated.

6.2 External parties: The organizations information and information processing
facilities are accessed, processed, communicated to, or managed by external
parties in each cloud service layer and we evaluate each cloud service layer
with 5. For on-premise hosting the organization does not use external party
services and we evaluate with 1.

7.1 Responsibility for assets: The organization must manage appropriate pro-
tection of organizational assets on-premise regardless of company type (eval-
uate with 5). In Iaas and PaaS the organization transfers some of the assets
(reduced to importance 4), and in SaaS most of the application data are com-
pletely transferred (reduced to importance 3, as data field is green in Figure
1). However, many other assets like mobile phones, paper accounting docu-
ments, usbs, etc the organization must manage.

7.2 Information classification: Each organization shall perform an appropriate
level of protection to information on-premise (importance is 5). Some of
the procedures for information handling are transferred to CSP for IaaS and
PaaS, and more for SaaS as data field is green for SaaS.

8.1 Prior to employment: The organization must ensure that employees, con-
tractors and third party users understand their responsibilities, and are suit-
able for the roles they are considered for, and to reduce the risk of theft, fraud
or misuse of facilities for both solutions. Therefore this control objective is
not evaluated.

8.2 During employment: Similar to 8.1 this control objective is not evaluated.
8.3 Termination or change of employment: Similar to 8.1 this control objective

is not evaluated.

260 23 New Methodologies for On-premise vs Cloud Security Evaluation

9.1 Secure areas: The organization must prevent unauthorized physical access,
damage and interference to the organizations premises and information.
Some organizations are tenants in secured areas and therefore we evaluate
on-premise with 4. The organization transfers most of this facility to CSP
(Networking, Storage and Servers are green in Figure 1) and the importance
factor is 2 for all cloud service layers.

9.2 Equipment security: Similar to 9.1, but some equipment stays on premise
and thus the equipment security is important in all cloud service layer.

10.1 Operational procedures and responsibilities: The organization must se-
cure the information processing facilities for both solutions. Therefore this
control objective is not evaluated.

10.2 Third party service delivery management: This control objective is very
important for cloud solution as the CSP is external party and in many cases
customer depends on third party service delivery (CSPs external parties like
CSPs Internet service providers, power supply, etc). A customer must imple-
ment the control objective requirements into its BCP. Importance factor for
on-premise is evaluated with 1 and for cloud with 5 since the external parties
on-premise become third party in each cloud solution.

10.3 System planning and acceptance: For this control objective we put 4 for on-
premise due to standard generality, i.e. not all organizations possess informa-
tion systems or update them. Going from IaaS to SaaS the organization shall
transfer to CSP with SLA the risk of systems failures. In IaaS the hardware
resources are transferred to CSP, in PaaS operating systems and runtime, as
well, and in SaaS the applications. Therefore we decrease the importance
factor starting from 1 for on-premise and going from IaaS to SaaS.

10.4 Protection against malicious and mobile code: Same as 10.3 the impor-
tance factor is evaluated to 4 for on-premise due to standard generality. Pro-
tection level of the integrity of software and information for On-premise and
IaaS solutions is the same. In PaaS solution CSP shall have some procedures
to protect the customer (decreased importance by -1), and in SaaS CSP have
the full responsibility of the operating systems and the applications (trans-
ferred in SLA, i.e. importance factor is 1).

10.5 Back-up: Similar evaluation as 10.4, except for on-premise where each or-
ganization regardless of its nature, type and size must perform backup on
some assets (Legal requirements, Archive, Accounting etc).

10.6 Network security management: The organization in on-premise solution
must ensure the protection of information in networks and supporting infras-
tructure (importance factor is 5). IaaS and PaaS are evaluated with 2 as the
organization transfers more of the responsibility to CSP (there is network
traffic, such as VPN or remote control from the organization to CSP). SaaS
is evaluated with 1 solution the organization transfers the responsibility com-
pletely to CSP as defined in SLA.

23.3 ISO 27001:2005 Quantification 261

10.7 Media handling: Some media are unnecessary for cloud solution, such as
backup media. However, not all media are transferred to CSP; for IaaS and
PaaS the organization shall prevent smaller number of media than on-premise
(importance factor is high 4), and even less for SaaS (importance factor is 3).

10.8 Exchange of information: The security of information and software ex-
changed within an organization and with any external entity is not affected
if the services are on-premise or hosted in the cloud. Therefore this control
objective is not evaluated.

10.9 Electronic commerce services: The value of importance factor for on-
premise solution is 5 if the organization uses e-commerce services. The im-
portance in IaaS and PaaS decreases and for SaaS solution the CSP has com-
pletely responsibility, similar to 10.5.

10.10 Monitoring: The organization transfers the responsibility for monitoring to
CSP going from IaaS to SaaS, similar to 10.9

11.1 Business requirement for access control: This is high-level control objec-
tive and access control policy shall be established regardless the solution.
Therefore this control objective is not evaluated.

11.2 User access management: The organization transfers more of the responsi-
bility to CSP (in SLA) going from IaaS to SaaS similar to 10.5. The differ-
ence is in SaaS since we evaluate it with 2 because the organization has to
manage physical access.

11.3 User responsibilities: Users have the same responsibilities no matter where
the information is. Therefore this control objective is not evaluated.

11.4 Network access control: The organization transfers the responsibility for
monitoring to CSP going from IaaS to SaaS and therefore this control objec-
tive is evaluated similar to 10.5.

11.5 Operating system access control: For on-premise, IaaS and PaaS the orga-
nization has the responsibility for operating system access control (impor-
tance factor is 5). We evaluate the importance of SaaS solution with 1 as the
organization transfers the responsibility to CSP as depicted in Figure 1.

11.6 Application and information access control: For both the solutions it is
the responsibility to the organization for application and information access
control. Therefore we evaluate both solutions with importance 5.

11.7 Mobile computing and teleworking: Hosting the services in IaaS increases
the importance of this control objective. We evaluate this control objective
with maximum importance 5 for IaaS. For PaaS CSP transfers come of the
responsibilities to CSP and we decrease the importance. For SaaS this control
objective shall be included in SLA and therefore we evaluate with 1.

12.1 Security requirements of information systems: Security must be an inte-
gral part of information systems regardless of the solution. Therefore this
control objective is not evaluated.

12.2 Correct processing in applications: The organization must prevent errors,
loss, unauthorized modification or misuse of information in applications re-
gardless of the solution. Therefore this control objective is not evaluated.

262 23 New Methodologies for On-premise vs Cloud Security Evaluation

12.3 Cryptographic controls: We evaluate on-premise with 3 due to standard
generality. We evaluate IaaS and PaaS with increased importance 4 as the
organization must implement cryptography to protect the confidentiality, au-
thenticity or integrity of information. For SaaS the CSP has the responsibility.

12.4 Security of system files: Similar to 11.4
12.5 Security in development and support processes: Similar to 11.5
12.6 Technical Vulnerability Management: The organization transfers the re-

sponsibility to CSP going from IaaS to SaaS, similar to 10.3.
13.1 Reporting information security events and weaknesses: Similar to 12.6
13.2 Management of information security incidents and improvements: For

both the solutions it is the responsibility to the organization for management
of information security incidents with highest importance factor 5.

14.1 Information security aspects of business continuity management: There
are many business continuity benefits and detriments that the organization
must evaluate in its BCP. Therefore both the solutions are evaluated with
maximum importance factor 5.

15.1 Compliance with legal requirements: For both the solutions it is the max-
imum responsibility to the organization to comply with the legal require-
ments. Both the solutions are evaluated with maximum importance 5.

15.2 Compliance with security policies and standards, and technical compli-
ance: The organization transfers the responsibility to CSP going from IaaS
to SaaS for compliance with security policies and standards, and technical
compliance, similar to 13.1.

15.3 Information systems audit considerations: This is a high level organiza-
tional control objective and therefore this control objective is not evaluated.

Table 23.5: Details of ISO 27001:2005 Control objectives importance
evaluation [126]

23.4 Summary

This chapter defines a methodology to quantify the ISO 27001:2005 Requirements
grouped in control objectives, comparing on-premise and cloud environments. The
evaluation and analysis of ISO 27001:2005 standard result in the importance transfer
from cloud customer to CSP. Simultaneously cloud customer must provide a huge
effort to implement all control objectives with decreased importance in SLA with
its CSP.

We also define a methodology to quantify the ISO 27001:2005 Requirements
grouped in control objectives, for on-premise and different cloud service layers. We
evaluate that moving into cloud, 12 of 39 control objectives are for management, and
are not affected if the services are on-premise or in cloud. Importance factor doesnt

23.4 Summary 263

change on average seven Control Objectives, depreciates on 18, and increases on
only two of them. Thus, moving into cloud, cloud customers (SME) transfer the
importance of the security to its CSP, and expect that their data and applications to
be secured. Therefore, and due to emergent security challenges that cloud computing
produces, cloud customers must re-evaluate their BCPs.

Chapter 24
New Methodology for Open Source Cloud
Security Evaluation

Abstract After the decision to migrate its services in the cloud the company must
select on which type of cloud to migrate. The expected dilemma is either the migra-
tion to be realized in the public or private, or both and develop hybrid cloud? Further
on, should either the migration to be realized in the closed commercial public cloud
or in open source cloud solutions. Several open source cloud software solutions of-
fer a possibility to build own private cloud or even a hybrid cloud since many open
source cloud solutions offer interfaces to commercial public clouds services. This
chapter presents the cloud security challenges evaluation of OpenStack and other
open source clouds realized by the authors in [128, 122].

24.1 OpenStack Security Assessment

In this section we present the assessment of the information security challenges in
open source cloud softwares focusing on OpenStack cloud solution that the authors
published in [128] for the purposes of this thesis research.

Tsai et al. address the system security, networking security, user authentication,
and data security as information security issue of cloud computing in [153]. We add
and analyze additional security issues in the security assessment.

24.1.1 User Access Management

User access management is based on Role Based Access Control (RBAC) in Open-
Stack. Each role has predefined set of permitted operations. Then roles are assigned
to each user. The roles can be assigned when the user is created or editing the exist-
ing user profile.

Administrator is a project based role and has a privilege to add or remove an
instance, to remove an image and to add a key. IT security is global role that per-

265

266 24 New Methodology for Open Source Cloud Security Evaluation

mits role holders to quarantine instances. Project Manager is default role for project
owners and permits the role holders to add or revoke roles to users of the project,
to manage network and all the privileges that Administrator role has. Network Ad-
ministrator role allows particular user to allocate and assign publicly accessible IP
addresses, and to create and modify firewall rules. Developer role is a global role
that is assigned to users by default and user assigned with this role can create and
download keys.

OpenNebula has the similar RBAC policy. Eucalyptus and CloudStack have more
features such as LDAP integration and X.509 certificates.

24.1.2 Network Access Management

OpenStack Nova supports three kinds of networks: Flat Network Manager, Flat
DHCP Network Manager, and VLAN Network Manager. The first two kinds of
network assign the IP addresses of the subnet that is specified by the user with net-
work administrator role. Therefore this control objective is not satisfied with these
two kinds of networks.

In VLAN Network mode, Nova creates a VLAN and bridge for each project.
Each project gets a range of private IP addresses that are only accessible from inside
the VLAN. Each project gets its own VLAN, Linux networking bridge, and subnet
in this mode.

A special VPN instance needs to be created in order for a user to access the
instances of the virtual machine in their project. Certificate and key are generated to
access the VPN which provides private network segment for instances of the project.

Berger et al. [15] develop a trusted virtual datacenter (TVDc) technology to ad-
dress the need for strong isolation and integrity guarantees in virtualized, cloud
computing environments. It clearly splits the management responsibilities between
the cloud and tenant administrators.

All analyzed open source solutions have integrated firewall rules within the con-
troller.

24.1.3 Operating System Access Control

Operating systems of the instances are controlled by the users. Those on the Open-
Stack physical servers are managed by the system administrator. The volumes, im-
age and storage data are secured with project keys.

OpenNebula offers three authentication for the images: user-password scheme,
x509 certificates based authentication and EC2. CloudStack has LDAP based au-
thentication and Eucalyptus has LDAP and secret keys based authentication.

24.1 OpenStack Security Assessment 267

24.1.4 Application and Information Access Control

OpenStack has the application Dashboard for image, volume and instance manage-
ment. The access is controlled via username and password. Khan et al. [83] propose
and implement OpenlD-Authentication-as-a-Service APIs that allows users to use
their OpenID Identifiers to log into the OpenStack Dashboard.

Other analyzed open source solutions have integrated LDAP and X.509 certifi-
cates.

24.1.5 Mobile Computing and Teleworking

OpenStack ensures information security when using mobile computing and tele-
working facilities if it is configured in VLAN Network mode and if a special VPN
instance is created by network administrator.

CloudStack has an option for creating VPN, Eucalyptus can create remote desk-
top, but without establishing VPN. OpenNebula can not create VPN.

24.1.6 Cryptographic Controls

OpenStack does not use cryptographic controls by default. Using OpenID can in-
crease OpenStack overall security [83]. Neverthless, all OpenStack services does
not use any SSL / TLS.

Other analyzed solutions provide different usage of cryptography.

24.1.7 Security of System Files

OpenStack ensures the security of customers’ system files with instance access keys.
The customer data is deleted after instance is shut-downed. The data saved in vol-
umes is protected with access keys as well.

Other analyzed open source solutions have similar features.

24.1.8 Information Security Incident Management

Despite the fact that OpenStack allows cloud service providers to audit logs it pro-
vides, it does not possess some internal tool to manage the logs for incident man-
agement. However, there are additional tools that provide resource monitoring to

268 24 New Methodology for Open Source Cloud Security Evaluation

help in incident management. Nice tool is Zenoss [170] which manages OpenStack
cloud servers, images, instances etc.

All other analyzed open source solutions have the systems for monitoring, both
for users and administrators.

24.1.9 Backup and Disaster Recovery Procedure

OpenStack allows cloud service providers easily to create a snapshot of instances
to store the customers data that are in the instances. It has a well designed disaster
recovery procedure in case of a disk crash, a network loss, a power cut, etc.

All open source solutions have interfaces to Amazon’s AWS providing good so-
lution to backup and disaster recovery.

24.2 Open source Cloud Solution Security Evaluation with
OpenStack

This section evaluates the security for open source cloud solutions described in Sec-
tion 1.4 and compared to the OpenStack solution. The basics of security assess-
ment is explained in Section 24.1 and the evaluation is based on assessment of ISO
27001:2005 [73] control objectives as a guideline for security evaluation.

24.2.1 Security Evaluation Metric Definition

In this section we define the metrics for security evaluation of the open source cloud
solutions compared to OpenStack. Table 24.1 describes the metrics used in the eval-
uation. This assessment addressees only relative measures and is not attended to
benchmark all solutions, but rather to analyze the OpenStack solution and its secu-
rity in comparison to the other open source cloud computing solutions.

The suggested metrics include evaluation with 0 if the same level of security
is found compared to the OpenStack solution, and correspondingly 1 or -1 if the
security level is better or worse than OpenStack.

24.2.2 Security Evaluation

Open source cloud solutions are evaluated in comparison to OpenStack solution
according to the metrics presented in Table 24.1. The evaluation is based on security

24.2 Open source Cloud Solution Security Evaluation with OpenStack 269

Description

0 The security level is the same as OpenStack
-1 The solution security level is better than OpenStack
+1 The solution security level is worse than OpenStack

Table 24.1 Metrics for security evaluation in comparison to OpenStack solution [128]

assessment in Section 24.1 and assessing each ISO 27001:2005 control objectives
that depend of cloud solution.

The results are analyzed by calculation of the average of obtained values for each
control objective and the average value of each analyzed open source cloud solution.

Table 24.2 presents the results of the evaluation. Column ON identifies Open-
Nebula, CS identifies CloudStack and Eu identifies Eucalyptus opensource cloud
solution.

Control Objective ON CS Eu Avg

10.5 Back-up 0 0 0 0
10.6 Network security management 0 0 0 0
10.7 Media handling 0 0 1 0.33
10.10 Monitoring 0 0 0 0
11.2 User access management 0 1 1 0.67
11.4 Network access control 0 0 0 0
11.5 Operating system access control 0 0 0 0
11.6 Application and information access control 1 1 1 1
11.7 Mobile computing and teleworking -1 0 -1 -0.67
12.3 Cryptographic controls 1 1 1 1
12.4 Security of system files 0 0 0 0
13.1 Reporting information security events and weaknesses 1 1 1 1
14.1 Information security aspects of business continuity management 0 0 0 0

Average security level evaluation compared to OpenStack 2 4 4 3.33

Table 24.2 Security evaluation of open source cloud solutions [128]

24.2.3 Security Evaluation Analysis

Only 13 out of 39 or exactly 1/3 of the ISO 27001:2005 control objectives depend
on cloud solutions. These are presented in Table 24.2.

Figure 24.3 depicts the results of our qualitative analysis of the security evalu-
ation. CloudStack and Eucalyptus achieve the best security with 4 security points
ahead of OpenStack, meaning that in 4 out of 13 analyzed relevant control objec-

270 24 New Methodology for Open Source Cloud Security Evaluation

tives (30.77%) they achieve better security. OpenNebula achieves 2 security points,
i.e. achieves better security in 2 out of 13 control objectives (15.4%) ahead of Open-
Stack.

Fig. 24.1 The qualitative analysis of the security evaluation of other open source cloud solutions
compared to OpenStack [128]

The conclusion is that OpenStack has the worst level of security.
Figure 24.2 presents another view on the security evaluation comparing open

source solutions to OpenStack. It shows the average results of each solution accord-
ing to the security evaluation compared to the OpenStack security level.

OpenStack achieves equal security level with other open source cloud computing
solutions in 7 out of 13 analyzed relevant control objectives (53.85%) and worse
security level in 5 relevant control objectives (38.46%).

Only in 1 out of all 13 analyzed relevant control objectives (7.69%) OpenStack
achieves better security level than other open source cloud computing solutions. It
concerns Mobile computing and teleworking.

24.3 OpenStack security pros and cons

This section presents pros and cons of OpenStack security as a result of our security
assessment. A comparison with the other open source cloud solutions is presented.

24.3 OpenStack security pros and cons 271

Fig. 24.2 The average of the security evaluation [128]

24.3.1 OpenStack Pros

Positive aspects of security that we found during the security assessment of Open-
Stack are:

• OpenStack manages user access securely with role based access control;
• OpenStack manages network access securely only if it is deployed in VLAN

Network mode;
• OpenStack manages operating system access securely;
• OpenStack ensures information security when using mobile computing and tele-

working facilities if it is configured in VLAN Network mode;
• OpenStack ensures the security of customers’ system files;
• OpenStack provides log files for incident management but not the tools to process

them in real time; and
• OpenStack provides disaster recovery procedure in case of disk crash, network

loss a power cut etc.

Comparing with the other open source solutions we can conclude that OpenStack
has better security level than CloudStack and Eucalyptus (same security level as
OpenNebula) for mobile computing and teleworking facilities if it is configured
in VLAN Network mode because it can configure VPN to the instances of virtual
machines. For all the other OpenStack security pros the other open source cloud
solutions provide equal or even better security level.

272 24 New Methodology for Open Source Cloud Security Evaluation

24.3.2 OpenStack Cons

Despite the advantages and security benefits, the OpenStack provides several secu-
rity detriments, such as that OpenStack:

• can be configured in Flat Network Manager or Flat DHCP Network Manager
where all instances of all projects are assigned IP addresses from one subnet,
which does not provide segregation in networks and is incompliant with ISO
27001:2005;

• does not use cryptographic controls for its web services neither for authentication
of web GUI for administration - OpenStack Dashboard; and

• does not provide a tool to monitor the system which is necessary for information
security incident management.

Comparing the other open source solutions we can conclude that all of them
handles better the security issues that are cons for OpenStack. Even more, for the last
two cons all other solutions have better security level (Table 24.2) than OpenStack.

24.4 Security Evaluation of Open Source Clouds

This section evaluates the security assessment realized by the authors in [122] for
the purpose of this thesis research based on ISO 27001:2005 [73] control objectives.

24.4.1 Metrics Definition

This section defines the metrics for security evaluation of the open source cloud
solutions. Table 24.3 describes the metrics used in the evaluation. The suggested
metrics include evaluation with - if the particular control objective does not depend
of cloud solution, with -1 if particular solution is not compliant, with 0 or 1 cor-
respondingly if particular solution is partially compliant or partially compliant that
can be upgraded to compliant, and with 2 for fully compliant solution.

24.4.2 Security Evaluation and analyses

Open source cloud solutions are evaluated according to the metrics presented in
Table 24.3. The evaluation is performed for the purpose of this thesis research based
on security assessment in [122] assessing each ISO 27001:2005 control objective.
The results are analyzed by calculation of the average value of each analyzed cloud.

Table 24.4 presents the results of the evaluation. Column OS identifies Open-
Stack, ON identifies OpenNebula, CS identifies CloudStack and Eu identifies Euca-

24.4 Security Evaluation of Open Source Clouds 273

Description

- The particular control objective does not depend of the particular cloud solution
-1 The solution is not compliant with particular control objective
0 The solution is partially compliant with particular control objective
1 The solution is partially compliant but can be upgraded to be compliant with particular con-

trol objective
2 The solution is fully compliant with particular control objective

Table 24.3 Metrics for security evaluation [122]

lyptus cloud solution. Only 11 out of 39 or 28.2% of the ISO 27001:2005 control
objectives depend on cloud solutions presented in Table 24.4.

Figure 24.3 depicts the results of qualitative analysis of the security evaluation.
CloudStack earns average 2 security points, i.e. conforms with all 11 control objec-
tive. Eucalyptus and OpenNebula achieve average 1.82 and 1.73 average security
points, i.e. more than 1.5 security points, and OpenStack achieves average 1.45.

Fig. 24.3 The qualitative analysis of the security evaluation [122]

The conclusion is that CloudStack is the best solution to ISO 27001:2005 con-
formity ahead of Eucalyptus and OpenNebula. OpenStack is the worst for ISO
27001:2005 conformity.

Figure 24.4 presents another, quantitative view of the security evaluation. It de-
picts the comparison of security points distribution. As depicted, CloudStack earns
11 times 2 security points and nothing else. Eucalyptus earns 10 times 2 security
points and only one 0 security point. OpenNebula has 9 times 2 security points and

274 24 New Methodology for Open Source Cloud Security Evaluation

Control Objective OS ON CS Eu

5.1 Information security policy - - - -
6.1 Internal organization - - - -
6.2 External parties - - - -
7.1 Responsibility for assets - - - -
7.2 Information classification - - - -
8.1 Prior to employment - - - -
8.2 During employment - - - -
8.3 Termination or change of employment - - - -
9.1 Secure areas - - - -
9.2 Equipment security - - - -
10.1 Operational procedures and responsibilities - - - -
10.2 Third party service delivery management - - - -
10.3 System planning and acceptance - - - -
10.4 Protection against malicious and mobile code - - - -
10.5 Back-up 2 2 2 2
10.6 Network security management 2 2 2 2
10.7 Media handling - - - -
10.8 Exchange of information - - - -
10.9 Electronic commerce services - - - -
10.10 Monitoring 1 2 2 2
11.1 Business requirement for access control - - - -
11.2 User access management 1 1 2 2
11.3 User responsibilities - - - -
11.4 Network access control 2 2 2 2
11.5 Operating system access control 2 2 2 2
11.6 Application and information access control 1 2 2 2
11.7 Mobile computing and teleworking 2 0 2 0
12.1 Security requirements of information systems - - - -
12.2 Correct processing in applications - - - -
12.3 Cryptographic controls 0 2 2 2
12.4 Security of system files 2 2 2 2
12.5 Security in development and support processes - - - -
12.6 Technical Vulnerability Management - - - -
13.1 Reporting information security events and weaknesses 1 2 2 2
13.2 Management of information security incidents and improvements - - - -
14.1 Information security aspects of business continuity management - - - -
15.1 Compliance with legal requirements - - - -
15.2 Compliance with security policies and standards, and technical compli-

ance
- - - -

15.3 Information systems audit considerations - - - -

Table 24.4 Security evaluation of open source cloud solutions [122]

24.5 Summary 275

by one times 0 and 1. OpenStack achieves only 6 times 2 security points, 4 times 1
point and only one 0 security points. No one solution gets -1 security point.

Fig. 24.4 The quantitative analysis of the security evaluation [122]

The same ranking is obtained in this analysis, i.e. CloudStack is the best solution
in front of Eucalyptus, OpenNebula and the worst OpenStack solution.

24.5 Summary

IT quality managers have always a dilemma which platform should they select,
commercial or open source, on which to drive their services. Both platforms have
advantages and detriments. Commercial platforms usually offer more stable, tested,
reliable, trusted and less riskiness solutions. However, usually they are more ex-
pensive than open source. Open source platforms usually offer acceptable stable
solutions. Those solutions are not tested properly and a lot of new versions and sub
versions are released in a short period of time. The main advantage of this platform
is the small amount of money or even totally free for many products and services.
Another huge advantage is the source code that can be used by the customer to
redevelop the solution to its requirements.

Both commercial and open source platforms provide solutions to build a private
cloud. Almost all commercial and some of the open source provide a solution to
build new or interfaces to existing public clouds.

All key commercial cloud providers possess some security certificate as a com-
pany. Additionally all of them offer some security services to their customers [126].

276 24 New Methodology for Open Source Cloud Security Evaluation

Open source solutions provide a small number of security services to the clients or
generally do not provide any.

Neither security assessment nor comparative security analysis of the cloud were
not performed in the literature so far. We have analyzed the security issues that
OpenStack cloud software possess and what other security tools can be integrated to
improve its overall security. The evaluation of the security was realized by assessing
the relevant control objectives defined by ISO 27001:2005 and comparing it to the
other open source cloud computing solutions.

The results of our assessment show that Eucalyptus and CloudStack have inte-
grated the maximum security level in front of OpenNebula. OpenStack has inte-
grated the least security compared to others solutions.

General conclusion of the evaluation is that all open source clouds take care
about some level of security. The results of the evaluations show that CloudStack is
the best choice of all open source clouds to migrate the services and integrated the
maximum security level in its architecture. It conforms with all ISO 27001:2005 11
control objectives that depends of the cloud solution. Eucalyptus and OpenNebula
has also reached far in security. OpenStack is worst solution to migrate the services
in the manner of security.

Although open source clouds heed the security, the company still have other 28
technical requirements, organizational and management requirements that should
be conformed. Also, ISO 27001:2005 defines general requirements, i.e.management
responsibility and establishing, managing, reviewing and improving the information
security management system.

Glossary

AICPA American Institute of Certified Public Accountants.

COBIT Control Objectives for Information and Related Technology.

DHCP Dynamic Host Configuration Protocol.

ENISA European Network and Information Security Agency.

HIPAA Health Insurance Portability and Accountability Act.

ISACA Information Systems Audit and Control Association.

ISO International Organization for Standardization.

LDAP Lightweight Directory Access Protocol.

NIST National Institute of Standards and Technology.

PCI DSS PCI Data Security Standard.

REST Representational State Transfer (REST) is a style of software architecture
for distributed systems.

SOAP Simple Object Access Protocol for exchanging XMLs between Web Ser-
vices.

X.509 An ITU-T standard for a public key infrastructure (PKI).

277

278 Glossary

References

1. Afoulki, Z., Bousquet, A., Rouzaud-Cornabas, J.: A security-aware sched-
uler for virtual machines on iaas clouds. Tech. Rep. RR-2011-08 (????),
http://www.univ-orleans.fr/lifo/rapports.php?lang=
en&sub=sub3

2. AICPA: SSAE 16 (Sep 2011), http://www.aicpa.org/Research/
Standards/AuditAttest/Pages/SSAE.aspx

3. Alexander, P.: Information security: a managers guide to thwarting data thieves
and hackers. PSI Business Security (2008)

4. Alharkan, T., Martin, P.: Idsaas: Intrusion detection system as a service in
public clouds. In: Proceedings of The 3rd International Conference on Cloud
Computing, GRIDs, and Virtualization (CLOUD COMPUTING 2012). pp.
11–17 (2012)

5. Amazon: Amazon elastic block store (Apr 2012), http://aws.amazon.
com/ebs/

6. Amazon: Aws (2012), http://aws.amazon.com/ec2/
7. Amdahl, G.M.: Validity of the single-processor approach to achieving large

scale computing capabilities. In: AFIPS Conference Proceedings. vol. 30, pp.
483–485. AFIPS Press, Reston. Va., Atlantic City, N.J. (Apr 18-20 1967)

8. An, B.S., Yum, K.H., Kim, E.J.: Scalable and efficient bounds checking for
large-scale cmp environments. In: Proceedings of the 2011 International Con-
ference on Parallel Architectures and Compilation Techniques. pp. 193–194.
PACT ’11, IEEE Computer Society, Washington, DC, USA (2011)

9. Anchev, N., Gusev, M., Ristov, S., Atanasovski, B.: Optimal cache replace-
ment policy for matrix multiplication. In: to be published in ICT Innovations
2012. Springer Berlin / Heidelberg (2012)

10. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A.,
Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud
computing. Commun. ACM 53(4), 50–58 (Apr 2010)

11. Atanasovski, B., Ristov, S., Gusev, M., Anchev, N.: Mmcachesim: A highly
configurable matrix multiplication cache simulator. In: to be published in ICT
Innovations 2012, Web Proceedings, Skopje, Macedonia (2012)

12. Ballard, G., Demmel, J., Holtz, O., Lipshitz, B., Schwartz, O.:
Communication-optimal parallel algorithm for strassen’s matrix multi-
plication. In: Proceedinbgs of the 24th ACM symposium on Parallelism in
algorithms and architectures. pp. 193–204. SPAA ’12, ACM, NY, USA (2012)

13. Baun, C., Kunze, M., Nimis, J., Tai, S.: Cloud Computing: Web-Based Dy-
namic IT Services. Springer Publishing Company, Incorporated, 1st edn.
(2011)

14. Bentley, J.L., McIlroy, M.D.: Engineering a sort function. Softw. Pract. Exper.
23(11), 1249–1265 (Nov 1993)

15. Berger, S., Cáceres, R., Goldman, K., Pendarakis, D., Perez, R., Rao, J.R.,
Rom, E., Sailer, R., Schildhauer, W., Srinivasan, D., Tal, S., Valdez, E.: Se-

References 279

curity for the cloud infrastructure: trusted virtual data center implementation.
IBM J. Res. Dev. 53(4), 560–571 (Jul 2009)

16. Buyya, R., Sukumar, K.: Platforms for building and deploying applications for
cloud computing. CoRR abs/1104.4379 (2011)

17. Castillo, P.A., Bernier, J.L., Arenas, M.G., Guervós, J.J.M., Garcı́a-Sánchez,
P.: Soap vs rest: Comparing a master-slave ga implementation. CoRR
abs/1105.4978 (2011)

18. Catteddu, D., Hogben, G.: Cloud computing risk assessment (2009), http:
//www.enisa.europa.eu/publications/position-papers/
position-papers-at-enisa/act/rm/files/deliverables/
cloud-computing-risk-assessment

19. Chen, Y., Paxson, V., Katz, R.H.: Whats new about cloud computing security?
Tech. Rep. UCB/EECS-2010-5, EECS Department, University of Califor-
nia, Berkeley (Jan 2010), http://www.eecs.berkeley.edu/Pubs/
TechRpts/2010/EECS-2010-5.html

20. Chen, Y.T., Cong, J., Reinman, G.: Hc-sim: a fast and exact l1 cache simulator
with scratchpad memory co-simulation support. In: Proceedings of the sev-
enth IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis. pp. 295–304. CODES+ISSS ’11, ACM, New York,
NY, USA (2011)

21. Chow, R., Golle, P., Jakobsson, M., Shi, E., Staddon, J., Masuoka, R., Molina,
J.: Controlling data in the cloud: outsourcing computation without outsourcing
control. In: Proceedings of the 2009 ACM workshop on Cloud computing
security. pp. 85–90. CCSW ’09, ACM, New York, NY, USA (2009)

22. Clayton, C.: Standard cloud taxonomies and windows azure (Sep 2011),
http://blogs.msdn.com/b/cclayton/archive/2011/06/
07/standard-cloud-taxonomies-and-windows-azure.aspx

23. CloudStack: Cloudstack opens source cloud computing (Apr 2012), http:
//cloudstack.org

24. CMS: HIPAA (Sep 2011), https://www.cms.gov/HIPAAGenInfo/
25. Conway, P., Kalyanasundharam, N., Donley, G., Lepak, K., Hughes, B.: Cache

hierarchy and memory subsystem of the amd opteron processor. IEEE Micro
30(2), 16–29 (Mar 2010)

26. CSA: Cloud Security Alliance Cloud Controls Matrix (CCM), V1.2
(Sep 2011), https://cloudsecurityalliance.org/research/
initiatives/cloud-controls-matrix/

27. CSA: CLOUD SECURITY ALLIANCE GROUP CSA-GRC Stack (Sep
2011), http://www.cloudsecurityalliance.org/grcstack.
html

28. CSA: Security as a Service V1.0 (Sep 2011), https://
cloudsecurityalliance.org/research/working-groups/
secaas/

29. CSA: Security Guidance for Critical Areas of Focus in Cloud Computing V2.1
(Sep 2011), https://cloudsecurityalliance.org/research/
initiatives/security-guidance/

280 Glossary

30. CSA: Top Threats to Cloud Computing (Sep 2011), http://www.
cloudsecurityalliance.org/topthreats/csathreats.v1.
0.pdf

31. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.:
Unraveling the web services web: An introduction to soap, wsdl, and uddi.
IEEE Internet Computing 6(2), 86–93 (Mar 2002)

32. DeFlumere, A., Lastovetsky, A., Becker, B.: Partitioning for parallel matrix-
matrix multiplication with heterogeneous processors: The optimal solution.
In: 21st International Heterogeneity in Computing Workshop (HCW 2012).
IEEE Computer Society, IEEE Computer Society, Shanghai, China (May 21,
2012 2012)

33. Djinevski, L., Ristov, S., Gusev, M.: Superlinear speedup in gpu devices. In:
to be published in ICT Innovations 2012. Springer Berlin / Heidelberg (2012)

34. Drevet, C.E., Islam, M.N., Schost, E.: Optimization techniques for small ma-
trix multiplication. ACM Comm. Comp. Algebra 44(3/4), 107–108 (2011)

35. Duong, N., Cammarota, R., Zhao, D., Kim, T., Veidenbaum, A.: SCORE: A
Score-Based Memory Cache Replacement Policy. In: Emer, J. (ed.) JWAC
2010 - 1st JILP Worshop on Computer Architecture Competitions: cache re-
placement Championship. Saint Malo, France (2010)

36. Edler, J., Hill, M.D.: Dinero iv trace-driven uniprocessor cache simulator
(2012), http://pages.cs.wisc.edu/˜markhill/DineroIV/

37. Eklov, D., Hagersten, E.: Statstack: Efficient modeling of lru caches. In: Per-
formance Analysis of Systems Software (ISPASS), 2010 IEEE International
Symposium on. pp. 55 –65 (march 2010)

38. Eucalyptus: Eucalyptus cloud (Apr 2012), http://www.eucalyptus.
com/

39. Faber, V., Lubeck, O., White, A.: Superlinear speedup of an efficient sequen-
tial algorithm is not possible. Parallel Computing 3, 259–260 (1986)

40. FIPS 200: Minimum Security Requirements for Federal Information
and Information Systems (Sep 2011), http://csrc.nist.gov/
publications/PubsFIPS.html

41. Fraguela, B.B., Doallo, R., Zapata, E.L.: Automatic analytical modeling for
the estimation of cache misses. In: Proceedings of the 1999 International
Conference on Parallel Architectures and Compilation Techniques. pp. 221–.
PACT ’99, IEEE Computer Society, Washington, DC, USA (1999)

42. Furht, B., Escalante, A.: Handbook of Cloud Computing. Springer Sci-
ence+Business Media, 233 Spring Street, New York, NY 10013, USA (2010)

43. Glaskowsky, P.: Nvidias fermi: the first complete gpu computing architecture.
Tech. rep., NVIDIA (2009), white Paper

44. Glott, R., Husmann, E., Sadeghi, A., Schunter, M.: Trustworthy clouds under-
pinning the future internet. In: et al, J.D. (ed.) The future internet. pp. 209–221.
Springer-Verlag, Berlin, Heidelberg (????)

45. Google: Google app engine (Apr 2012), https://developers.
google.com/appengine/

References 281

46. Google: Google cloud storage (Apr 2012), https://developers.
google.com/storage/

47. Gupta, R., Tokekar, S.: Proficient pair of replacement algorithms on l1 and l2
cache for merge sort. J. OF COMPUTING 2(3), 171–175 (Mar 2010)

48. Gusev, M., Ristov, S.: Matrix multiplication performance analysis in virtual-
ized shared memory multiprocessor. In: MIPRO, 2012 Proceedings of the 35th
International Convention, IEEE Conference Publications. pp. 264–269 (2012)

49. Gusev, M., Ristov, S.: The optimal resource allocation among virtual machines
in cloud computing. In: Proceedings of The 3rd International Conference on
Cloud Computing, GRIDs, and Virtualization (CLOUD COMPUTING 2012).
pp. 36–42 (2012)

50. Gusev, M., Ristov, S.: Performance gains and drawbacks using set associative
cache. Journal of Next Generation Information Technology (JNIT) 3(3) (31
Aug 2012)

51. Gusev, M., Ristov, S.: Superlinear speedup in windows azure cloud. Tech. Rep.
IIT:06-12, University Ss Cyril and Methodius, Skopje, Macedonia, Faculty of
Information Sciences and Computer Engineering (Jul 2012)

52. Gusev, M., Ristov, S.: A superlinear speedup region for matrix multiplication.
Tech. Rep. IIT:02-12, University Ss Cyril and Methodius, Skopje, Macedonia,
Faculty of Information Sciences and Computer Engineering (Jan 2012)

53. Gusev, M., Ristov, S., Velkoski, G.: Hybrid 2d/1d blocking as optimal matrix-
matrix multiplication. In: ICT Innovations 2012. Springer Berlin / Heidelberg
(2012)

54. Gustafson, J., Montry, G., Benner, R.: Development of parallel methods for a
1024-processor hypercube. SIAM Journal on Scientific and Statistical Com-
puting 9(4), 532–533 (July 1988)

55. Gustafson, J.L.: Reevaluating amdahl’s law. Communication of ACM 31(5),
532–533 (May 1988)

56. Gustafson, J.L.: Fixed time, tiered memory and superlinear speedup. In: Pro-
ceedings of the Fifth Distributed Memory Computing Conference. vol. 2, pp.
1256–1260 (1990)

57. Gustafson, J.L.: The consequences of fixed time performance measurement.
In: Proceedings of the Hawaii Int. Conf. on System Sciences. vol. 25, p. 113
(1992)

58. Hake, J.F., Homberg, W.: The impact of memory organization on the perfor-
mance of matrix calculations. Parallel Computing 17, 311–327 (June 1991),
http://dx.doi.org/10.1016/S0167-8191(05)80116-4

59. Hao, F., Lakshman, T.V., Mukherjee, S., Song, H.: Secure cloud computing
with a virtualized network infrastructure. In: Proc. of the 2nd conf. Hot-
Cloud’10. pp. 16–16. USENIX Ass., USA (2010)

60. Haque, M.S., Peddersen, J., Janapsatya, A., Parameswaran, S.: Dew: a fast
level 1 cache simulation approach for embedded processors with fifo replace-
ment policy. In: Proceedings of the Conference on Design, Automation and
Test in Europe. pp. 496–501. DATE ’10, European Design and Automation
Association, 3001 Leuven, Belgium, Belgium (2010)

282 Glossary

61. He, L., Sun, Y., Zhang, C.: Adaptive Subset Based Replacement Policy for
High Performance Caching. In: Emer, J. (ed.) JWAC 2010 - 1st JILP Worshop
on Computer Architecture Competitions: cache replacement Championship.
Saint Malo, France (2010)

62. Hennessy, J.L., Patterson, D.A.: Computer Architecture: a Quantitative Ap-
proach. Morgan Kaufmann, 4 edn. (2006)

63. Hennessy, J.L., Patterson, D.A.: Computer Architecture, Fifth Edition: A
Quantitative Approach (2012)

64. Hu, F., Qiu, M., Li, J., Grant, T., Tylor, D., McCaleb, S., Butler, L., Hamner, R.:
A review on cloud computing: Design challenges in architecture and security.
CIT 19(1), 25–55 (2011)

65. Hwang, K., Li, D.: Trusted cloud computing with secure resources and data
coloring. IEEE Internet Computing pp. 14–22 (2010)

66. IBM: Deep blue supercomputer (May 1997), http://www-03.ibm.
com/ibm/history/ibm100/us/en/icons/deepblue/

67. Ibrahim, A.S., Hamlyn-Harris, J., Grundy, J.: Emerging security challenges
of cloud virtual infrastructure. In: Proc. of the Asia Pacific Cloud Workshop
2010 (co-located with APSEC2010), Sydney (2010)

68. Ibrahim, A.S., Hamlyn-Harris, J.H., Grundy, J., Almorsy, M.: Cloudsec: A
security monitoring appliance for virtual machines in the iaas cloud model.
In: Samarati, P., Foresti, S., Hu, J., Livraga, G. (eds.) NSS. pp. 113–120. IEEE
(2011)

69. Intel: Inside intel core microarchitecture and smart memory access (Aug
2012), software.intel.com/file/18374/, white Paper

70. Iosup, A., Ostermann, S., Yigitbasi, M., Prodan, R., Fahringer, T., Epema, D.:
Performance analysis of cloud computing services for many-tasks scientific
computing. Par. and Dist. Syst., IEEE Trans. on 22(6), 931–945 (2011)

71. ISACA: Cobit 4.1 (Sep 2011), http://www.isaca.org/
Knowledge-Center/COBIT/Pages/Overview.aspx

72. Ishii, Y., Inaba, M., Hiraki, K.: Cache Replacement Policy Using Map-based
Adaptive Insertion. In: Emer, J. (ed.) JWAC 2010 - 1st JILP Worshop
on Computer Architecture Competitions: cache replacement Championship.
Saint Malo, France (2010)

73. ISO/IEC 27001:2005: Information security management systems - re-
quirements (2012), http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.htm?csnumber=42103

74. ISO/IEC 27002:2005: Code of Practice for Information Security Man-
agement (Sep 2011), http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.htm?csnumber=50297

75. ISO/IEC 27005:2011: Information security risk management (2012),
http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=56742

76. Jackson, K.R., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf,
J., Wasserman, H.J., Wright, N.J.: Performance analysis of high performance

References 283

computing applications on the amazon web services cloud. In: Proc. of the
IEEE CLOUDCOM ’10. pp. 159–168. IEEE Computer Society, USA (2010)

77. Jaleel, A., Cohn, R.S., Luk, C.K., Jacob, B.: Cmpsim: A pin-based on-the-fly
multi-core cache simulator. In: The Fourth Annual Workshop on Modeling,
Benchmarking and Simulation (MoBS), co-located with ISCA’2008 (2008)

78. Jaleel, A., Theobald, K.B., Steely, Jr., S.C., Emer, J.: High performance cache
replacement using re-reference interval prediction (rrip). SIGARCH Comput.
Archit. News 38(3), 60–71 (Jun 2010)

79. Janapsatya, A., Ignjatović, A., Peddersen, J., Parameswaran, S.: Dueling
clock: adaptive cache replacement policy based on the clock algorithm. In:
Proceedings of the Conference on Design, Automation and Test in Europe.
pp. 920–925. DATE ’10 (2010)

80. Jenks, S.: Multithreading and thread migration using mpi and myrinet. In:
Proc. of the Parallel and Distrib. Computing and Systems. PDCS’04 (2004)

81. Jensen, M., Schwenk, J., Gruschka, N., Iacono, L.L.: On technical security
issues in cloud computing. In: Proceedings of the 2009 IEEE International
Conference on Cloud Computing. pp. 109–116. CLOUD ’09, IEEE Computer
Society, Washington, DC, USA (2009)

82. Juric, M.B., Rozman, I., Brumen, B., Colnaric, M., Hericko, M.: Comparison
of performance of web services, ws-security, rmi, and rmi-ssl. J. Syst. Softw.
79(5), 689–700 (May 2006)

83. Khan, R., Ylitalo, J., Ahmed, A.: Openid authentication as a service in open-
stack. In: Information Assurance and Security (IAS), 2011 7th International
Conference on. pp. 372 –377 (dec 2011)

84. Kiroski, K., Gusev, M., Kostoska, M., Ristov, S.: Modifications and improve-
ments on cen/bii profiles. In: Kocarev, L. (ed.) ICT Innovations 2011, Ad-
vances in Intelligent and Soft Computing, vol. 150, pp. 395–404. Springer
Berlin / Heidelberg (2012)

85. Koh, Y., Knauerhase, R., Brett, P., Bowman, M., Wen, Z., Pu, C.: An analysis
of performance interference effects in virtual environments. In: Performance
Analysis of Systems Software, 2007. ISPASS 2007. IEEE International Sym-
posium on. pp. 200 –209 (april 2007)

86. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: Nvidia tesla: A unified
graphics and computing architecture. IEEE Micro 28(2), 39–55 (Mar 2008)

87. Lira, J., Molina, C., González, A.: Lru-pea: a smart replacement policy for
non-uniform cache architectures on chip multiprocessors. In: Proceedings of
the 2009 IEEE international conference on Computer design. pp. 275–281.
ICCD’09, IEEE Press, Piscataway, NJ, USA (2009)

88. Membrane: Load balancing http and web services (Jan 2012), http://www.
membrane-soa.org/soap-loadbalancing.htm

89. MICROSOFT: Information Security Management Sys-
tem for Microsoft Cloud Infrastructure (2010), http://
www.globalfoundationservices.com/security/
documents/InformationSecurityMangSysfor/
MSCloudInfrastructure.pdf

284 Glossary

90. Microsoft: Microsoft hyper-v server 2008 r2 (Jan 2012), http://www.
microsoft.com/en-us/server-cloud/hyper-v-server/

91. Microsoft: Microsoft live (Apr 2012), http://www.live.com/
92. Microsoft: Microsoft windows azure (Apr 2012), http://www.

windowsazure.com/en-us/
93. Mizouni, R., Serhani, M., Dssouli, R., Benharref, A., Taleb, I.: Performance

evaluation of mobile web services. In: ECOWS 2011. pp. 184 –191 (2011)
94. Moses, J., Aisopos, K., Jaleel, A., Iyer, R., Illikkal, R., Newell, D., Maki-

neni, S.: Cmpsched$im: Evaluating os/cmp interaction on shared cache man-
agement. In: Performance Analysis of Systems and Software, 2009. ISPASS
2009. IEEE International Symposium on. pp. 113 –122 (april 2009)

95. MSDN: Web service benefits (Mar 2012), http://msdn.microsoft.
com/en-us/library/cc508708.aspx

96. Nickolls, J., Dally, W.J.: The gpu computing era. IEEE Micro 30(2), 56–69
(Mar 2010)

97. NIST SP800-144: NIST DRAFT Guidelines on Security and Privacy
in Public Cloud Computing (Sep 2011), http://csrc.nist.gov/
publications/PubsSPs.html

98. NIST SP800-145: The NIST Definition of Cloud Computing (Jyl 2012),
http://csrc.nist.gov/publications/nistpubs/800-145/
SP800-145.pdf

99. NIST SP800-39: Managing Information Security Risk (Sep 2011), http:
//csrc.nist.gov/publications/PubsSPs.html

100. NIST SP800-53: REVISION 3 (Sep 2011), http://csrc.nist.gov/
publications/PubsSPs.html

101. NVIDIA: Cuda programming guide (Aug 2012), http://developer.
download.nvidia.com/compute/DevZone/docs/html/C/
doc/CUDA_C_Programming_Guide.pdf

102. NVIDIA: Nvidias next generation cuda compute architecture: Kepler gk110
(2012), white Paper

103. OpenMP: (2012), https://computing.llnl.gov/tutorials/
openMP/

104. OpenNebula: Opennebula cloud software (Apr 2012), http:
//Opennebula.org

105. Openstack: Openstack dual node (????), http://docs.stackops.
org/display/documentation/Dual+node+deployment, [re-
trieved: May, 2012]

106. Openstack: Openstack compute (Feb 2012), http://openstack.org/
projects/compute/

107. Openstack: Openstack network (Aug 2012), http://docs.
openstack.org/trunk/openstack-compute/admin/
content/libvirt-flat-networking.html

108. Openstack: Openstack setup (Aug 2012), http://docs.openstack.
org/cactus/openstack-compute/starter/content/
Introduction-d1e390.html

References 285

109. Padhy, R.P., Patra, M.R., Satapathy, S.C.: Windows Azure Paas Cloud: An
Overview. International Journal of Computer Application 1, 109–123 (Feb
2012)

110. Patti, D., Spadaccini, A., Palesi, M., Fazzino, F., Catania, V.: Supporting un-
dergraduate computer architecture students using a visual mips64 cpu simula-
tor. Education, IEEE Transactions on 55(3), 406 –411 (aug 2012)

111. PCI Security Standards: PCI DSS v2.0 (Sep 2011), https://www.
pcisecuritystandards.org/security_standards/

112. Pimple, M., Sathe, S.: Architecture aware programming on multi-core sys-
tems. International Journal of Advanced Computer Science and Applications
(IJACSA) 2, 105–111 (2011)

113. Playne, D.P., Hawick, K.A.: Comparison of gpu architectures for asyn-
chronous communication with finite-differencing applications. Concur-
rency and Computation: Practice and Experience 24(1), 73–83 (2012),
http://dblp.uni-trier.de/db/journals/concurrency/
concurrency24.html#PlayneH12

114. Pohorec, S., Zorman, M.: The challenges of the move from the desktop to the
cloud. In: Information Technology Interfaces (ITI), Proceedings of the ITI
2011 33rd International Conference on. pp. 119 – 124 (june 2011)

115. Qureshi, M.K., Jaleel, A., Patt, Y.N., Steely, S.C., Emer, J.: Adaptive inser-
tion policies for high performance caching. SIGARCH Comput. Archit. News
35(2), 381–391 (Jun 2007)

116. Rajan, S., Jairath, A.: Cloud computing: The fifth generation of computing.
In: Communication Systems and Network Technologies (CSNT), 2011 Inter-
national Conference on. pp. 665 –667 (june 2011)

117. Ramgovind, S., Eloff, M., Smith, E.: The management of security in cloud
computing. In: Information Security for South Africa (ISSA), 2010. pp. 1 –7
(aug 2010)

118. Ravindran, R., Moona, R.: Retargetable cache simulation using high level pro-
cessor models. Aust. Comput. Sci. Commun. 23(4), 114–121 (Jan 2001)

119. Ristov, S.: Analysis of Web Service Security and its Impact on Web Server
Performance. Master’s thesis, University Sts Cyril and Methodius, Faculty of
Electrical Engineering and Information Technologies, Macedonia (May 2011)

120. Ristov, S., Gusev, M.: Achieving maximum performance for matrix multipli-
cation using set associative cache. In: The 8th Int. Conf. on,Computing Tech-
nology and Information Management (ICCM2012), IEEE Conference Publi-
cations. ICNIT ’12, vol. 2, pp. 542–547 (2012)

121. Ristov, S., Gusev, M.: Evaluating a superlinear speedup for matrix multiplica-
tion. Tech. Rep. IIT:03-12, University Ss Cyril and Methodius, Skopje, Mace-
donia, Faculty of Information Sciences and Computer Engineering (Jan 2012)

122. Ristov, S., Gusev, M.: Open source cloud security audit. Tech. Rep. IIT:08-12,
University Ss Cyril and Methodius, Skopje, Macedonia, Faculty of Informa-
tion Sciences and Computer Engineering (Jul 2012)

123. Ristov, S., Gusev, M.: Performance gains and drawbacks in multiprocessor
using set associative cache. Tech. Rep. IIT:10-12, University Ss Cyril and

286 Glossary

Methodius, Skopje, Macedonia, Faculty of Information Sciences and Com-
puter Engineering (Jul 2012)

124. Ristov, S., Gusev, M.: Superlinear speedup for matrix multiplication. In: Infor-
mation Technology Interfaces, Proceedings of the ITI 2012 34th International
Conference on. pp. 499–504 (2012)

125. Ristov, S., Gusev, M., Kostoska, M.: Information security management system
for cloud computing. In: ICT Innovations 2011, Web Proceedings, Skopje,
Macedonia (2011)

126. Ristov, S., Gusev, M., Kostoska, M.: Cloud computing security in business
information systems. International Journal of Network Security & Its Appli-
cations (IJNSA) 4(2), 75–93 (2012)

127. Ristov, S., Gusev, M., Kostoska, M.: A new methodology for security evalua-
tion in cloud computing. In: MIPRO, 2012 Proc. of the 35th Int. Convention,
IEEE Conference Publications. pp. 1808–1813 (2012)

128. Ristov, S., Gusev, M., Kostoska, M.: Security assessment of openstack open
source cloud solution. In: Proceedings of the 7th South East European Doc-
toral Student Conference (DSC2012) (2012)

129. Ristov, S., Gusev, M., Kostoska, M., Kiroski, K.: Business continuity chal-
lenges in cloud computing. In: ICT Innovations 2011, Web Proceedings,
Skopje, Macedonia (2011)

130. Ristov, S., Gusev, M., Kostoska, M., Kjiroski, K.: Virtualized environments
in cloud can have superlinear speedup. In: ACM Proceedings of 5th Balkan
Conference of Informatics (BCI2012) (2012)

131. Ristov, S., Gusev, M., Osmanovic, S., Rahmani, K.: Optimal resource scaling
for hpc in windows azure. In: to be published in ICT Innovations 2012, Web
Proceedings, Skopje, Macedonia (2012)

132. Ristov, S., Gusev, M., Velkoski, G.: Message transformation to gain maximum
web server performance in cloud computing. In: Proceedings of the Confer-
ence of Informatics and Information Technology CiiT (2012)

133. Ristov, S., Gusev, M., Velkoski, G.: A middleware strategy to survive peak
loads in cloud. In: Proceedings of the Conference of Informatics and Informa-
tion Technology CiiT (2012)

134. Ristov, S., Stolikj, M., Ackovska, N.: Awakening curiosity - hardware edu-
cation for computer science students. In: MIPRO, 2011 Proceedings of the
34th International Convention, IEEE Conference Publications. pp. 1275 –1280
(may 2011)

135. Ristov, S., Tentov, A.: Performance comparison of web service security on
windows platform message size vs concurrent users. In: X International Con-
ference ETAI 2011 (2011)

136. Ristov, S., Tentov, A.: Security based performance issues in agent-based web
services integrating legacy information systems. In: CEUR Workshop Pro-
ceedings. WASA 2011, vol. 752, pp. 45–51 (2011)

137. Ristov, S., Tentov, A.: Performance impact correlation of message size vs.
concurrent users implementing web service security on linux platform. In:

References 287

ICT Innovations 2011. Advances in Intelligent and Soft Computing, vol. 150,
pp. 367–377. Springer Berlin / Heidelberg (2012)

138. Ristov, S., Velkoski, G., Gusev, M., Kjiroski, K.: Compute and memory in-
tensive web service performance in the cloud. In: to be published in ICT
Innovations 2012. Springer Berlin / Heidelberg (2012)

139. SalesForce: Salesforce sales cloud (Apr 2012), http://www.
salesforce.com/

140. Shi, Y.: Reevaluating amdahl’s law and gustafson’s law. Tech. Rep. MS:38-24,
Computer Sciences Department, Temple University (Oct 1996)

141. Site, S.: Top 500 (Aug 2012), http://www.top500.org/
142. So, B., Ghuloum, A.M., Wu, Y.: Optimizing data parallel operations on many-

core platforms. In: First Workshop on Software Tools for Multi-Core Systems
(STMCS). pp. 66–70 (2006)

143. SoapUI: Soapui functional testing tool for web service testing (Jan 2012),
http://www.soapui.org/

144. Srirama, S.N., Jarke, M., Prinz, W.: A performance evaluation of mobile web
services security. CoRR abs/1007.3644 (2010)

145. Stolikj, M., Ristov, S., Ackovska, N.: Challenging students software skills to
learn hardware based courses. In: Information Technology Interfaces (ITI),
Proceedings of the ITI 2011 33rd International Conference on. pp. 339 –344
(june 2011)

146. Sun, X.H., Ni, L.M.: Another view on parallel speedup. In: Proceedings of
Supercomputing ’90. pp. 324–333 (Nov 1993)

147. Sun, X.H., Ni, L.M.: Scalable problems and memory-bounded speedup. Jour-
nal of Parallel and Distributed Computing 19(1), 27–37 (1993)

148. Suzumura, T., Takase, T., Tatsubori, M.: Optimizing web services performance
by differential deserialization. In: Proc. of the IEEE Int. Conf. on Web Ser-
vices. pp. 185–192. ICWS ’05, IEEE Computer Society, USA (2005)

149. Takabi, H., Joshi, J.B.D., Ahn, G.: Security and privacy challenges in cloud
computing environments. IEEE J. of Security & Privacy 8(6), 24–31 (2010)

150. Tao, J., Kunze, M., Nowak, F., Buchty, R., Karl, W.: Performance advantage
of reconfigurable cache design on multicore processor systems. International
Journal of Parallel Programming 36(3), 347–360 (Jun 2008)

151. Taylor, M., Guo, C.J.: Data integration and composite business services,
part 3: Build a multi-tenant data tier with access control and security (Jan
2012), http://www.ibm.com/developerworks/data/library/
techarticle/dm-0712taylor/

152. Tripathi, S., Abbas, S.Q.: Performance comparison of web services under sim-
ulated and actual hosted environments. Int. J. of Computer Applications 11(5),
20–23 (Dec 2010), published By Foundation of Computer Science

153. Tsai, C.L., Lin, U.C.: Information security of cloud computing for enterprises.
AISS: Advances in Information Sciences and Service Sciences 3(1), 132–
142 (2011), http://www.aicit.org/aiss/global/ppl.html?
jname=AISS&yr=2011&vnidx=6

288 Glossary

154. Tsilikas, G., Fleury, M.: Matrix multiplication performance on commodity
shared-memory multiprocessors. In: International Conference on Parallel
Computing in Electrical Engineering, PARELEC 2004. pp. 13 – 18 (sept 2004)

155. Valgrind: Valgrind (????), http://valgrind.org/, [retrieved: May,
2012]

156. vmware: Virtualization basics (????), http://www.vmware.com/
virtualization/virtual-machine.html, [retrieved: May, 2012]

157. VMware: VMware and x86 virtualization (????), http://forums.
techarena.in/guides-tutorials/1104460.htm, [retrieved:
May, 2012]

158. VMware: VMware esxi 4 (Jan 2012), http://communities.vmware.
com/community/vmtn/server/vsphere/esxi

159. vmware: Vmware esxi 5.0 @ONLINE (Jan 2012), http://www.vmware.
com/products/vsphere/esxi-and-esx/overview.html

160. VMware: Vmware vcloud (Apr 2012), http://www.vmware.com/
products/vcloud/overview.html

161. Volkov, V.: Better performance at lower occupancy. In: Proceedings of GPU
Technology Conference (GTC 2010) (2010)

162. Voras, I., Mihaljevic, B., Orlic, M.: Criteria for evaluation of open source cloud
computing solutions. In: Information Technology Interfaces (ITI), Proceed-
ings of the ITI 2011 33rd International Conference on. pp. 137 –142 (june
2011)

163. W3C: Web services architecture (Aug 2012), http://www.w3.org/TR/
2004/NOTE-ws-arch-20040211/

164. Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., Demmel, J.: Opti-
mization of sparse matrix-vector multiplication on emerging multicore plat-
forms. Parallel Comput. 35(3), 178–194 (Mar 2009)

165. cpu world: Amd opteron(tm) 8347 @ONLINE (Jan 2012), http://www.
cpu-world.com/CPUs/K10/TYPE-Third\%20Generation\
%20Opteron.html

166. cpu world: Amd phenom(tm) x4 9550 @ONLINE (Jan 2012),
http://www.cpu-world.com/CPUs/K10/AMD-Phenom\%20X4\
%209550\%20-\%20HD9550WCJ4BGH\%20(HD9550WCGHBOX)
.html

167. cpu world: Intel(r) core(tm)2 quad cpu q9400 (May 2012), http://www.
cpu-world.com/sspec/SL/SLB6B.html, [retrieved: May, 2012]

168. cpu world: Intel(r) xeon(r) cpu x5680 (Jan 2012), http://www.
cpu-world.com/CPUs/Xeon/Intel-Xeon\%20X5680\%20-\
%20AT80614005124AA\%20(BX80614X5680).html

169. Xu, C., Chen, X., Dick, R.P., Mao, Z.M.: Cache contention and application
performance prediction for multi-core systems. In: ISPASS’10. pp. 76–86
(2010)

170. Zenoss: Zenoss service dynamics (Mar 2012), http://www.zenoss.
com/

References 289

171. Zhang, K., Wang, Z., Chen, Y., Zhu, H., Sun, X.H.: Pac-plru: A cache replace-
ment policy to salvage discarded predictions from hardware prefetchers. In:
Proceedings of the 2011 11th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing. pp. 265–274. CCGRID ’11, IEEE Computer
Society, Washington, DC, USA (2011)

172. Zwick, M., Durkovic, M., Obermeier, F., Bamberger, W., Diepold, K.: Mccc-
sim - a highly configurable multi core cache contention simulator. Tech. rep.,
Lehrstuhl fr Datenverarbeitung, TU Mnchen (2009)

Index

Address offset, 72
AMD, 146, 154
Amdahl’s law, 13
Apache Tomcat, 188, 208
associativity drawback, 78

BCP, 245
Business Continuity, 245

CaaS, 7
Cache Associativity, 23
Cache Associativity Problem, 24
Cache Intensive Algorithm, 18, 145, 167
Cache Line, 22
Cache miss, 77, 90, 182
Cache occupancy, 177
Cache Replacement Policy, 23
cache size, 75
Cache Storage Requirements, 20
Capacity Problem, 22
CAPEX, 3
CentOS, 8
Client-Server, 3
Cloud computing, 241
cloud computing, 10
CloudStack, 7, 9, 266, 272
COBIT, 235
Compute Intensive Algorithm, 17
Control, 239
Control objective, 252
Cost, 13
CPU, 19, 171
CSA, 235
CSA GRC project, 236
CSP, 236, 241, 245, 262
CUDA, 128

DaaS, 7
Dense matrix multiplication algorithm, 100
Dirichlet principle, 74
Disaster Recovery, 245

Efficiency, 12
ENISA, 235
Eucalyptus, 7, 9, 266, 273
Exclusive Cache, 24
Execution time, 90

FIFO, 23
FIPS, 234
First Level Cache Region, 21
Fortran, 28

GFLOPS, 12
GFlops, 90

HIPAA, 235
HPC, 41, 156
Hybrid Cloud, 5
Hyper-V, 8

IaaS, 5, 238
ICT, 241, 251
IDSaaS, 7
Inclusive Cache, 24
information Security Management System,

234
Information Security Risk Management, 234,

243
Intel, 20, 128, 135, 167, 187
Intel Smart Cache, 20, 24
Intel(R), 208
ISO, 236, 237, 239

KPI, 245

291

292 Index

KVM, 8, 168

Last Level Cache Region, 21
LDAP, 266
Linux, xv, xix, 28, 41, 67, 128, 135, 145, 146,

167, 188, 208, 210, 213, 217, 221
LRU, 23

Mainframe, 3
Matrix multiplication algorithm, 167, 177
matrix multiplication algorithm, 75
Medium Level Cache Region, 21
Middleware, 42, 197
MIPS, 12
MPI, 62
Multiprocess, 173
Multitenancy, 167, 238
Multithread, 173

NIST, 235, 239
NVIDIA, 128

On-premise, 167
OpenMP, 28, 31, 67, 146
OpenNebula, 7, 9, 266, 272
OpenStack, 7, 8, 169, 265, 272
OPEX, 3

PaaS, 5, 145, 238
Parallel Execution, 87
parallel execution, 95
PCI DSS, 235
Performance, 11, 145, 167
Performance Drawbacks, 71, 77
Plan-Do-Check-Act, 234
Private Cloud, 5
Public Cloud, 5

RedHat, 8
REST, 37
RESTful, 37

risk acceptance, 234
risk assessment, 234, 243
risk communication, 234
risk monitoring, 234
risk treatment, 234
row-wise, 74
RPO, 249
RTO, 249

SaaS, 6, 238
SAS 70, 235
scaled speedup, 13
SECaaS, 6
SLA, 262
SME, 263
SOAP, 37, 198, 210
Speed, 12, 88, 129, 138, 147
speed, 173
Speedup, 12, 88, 129, 140, 147, 180
SSAE, 235
Superlinear Speedup, 177

Thread, 182
Threading, 28

Ubuntu, xix, 67, 128, 135, 146, 167, 188, 208,
210, 217

UML, 8

Valgrind, 77, 89
Virtualization, 237
virtualization, 167

Web, 3
Windows, xv, xix, 28, 145, 146, 208, 210, 213,

217, 219, 228, 229
Windows Azure, xv, xvi, 29, 145, 165
WSDL, 37

Xen, 8

