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Abstract: The main aim of this paper is localization of the chain recurrent set in shape theoretical frame-
work.Namely, using the intrinsic approach to shape from [1] we present a result which claims that under
certain conditions the chain recurrent set preserves local shape properties. We proved this result in [2] using
the notion of a proper covering. Here we give a new proof using the Lebesque number for a covering and ver-
ify this result by investigating the symbolical image of a couple of systems of di�erential equations following
[3].
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Several authors have pointed out the connections between shape theory and topological dynamics based on
the approach to shape developed by Borsuk. When dealing with spaces with complicated local behaviour,
which often occurs in dynamical framework, shape theory turns out to be an appropriate tool.The use of
shape theory in the study of dynamical systems was initiated by Hastings in [4].Other authors have shown
how to apply shape theory to obtain global properties of attractors in the papers [5], [6], [7], [8]. Recently,
using the intrinsic shape (the approach to shape without use of external spaces) [1], [9], several results are
obtained showing the advantages of intrinsic approach to shape in some situations. Applying intrinsic shape
in dynamical systems seems very natural. The most natural application of intrinsic shape is for investigation
of objects that appear in dynamical systems, like attractors, limit sets or various types of recurrent sets.The
papers [2] and [10] are good examples of that.

In the paper [11] a weak form of recurrence called chain recurrence is introduced by Conley. When we
make computer simulation, calculating orbit of a point in each step we have rounding errors, so each timewe
obtain pseudo-orbit(ϵ -chain) instead of true orbit of observed point. So we will rather detect chain recurrent
points than periodic orbits in computer experiments.

Chain recurrent set of continuous dynamical systems on compact metric spaces has many interesting
properties. It is closed, �ow invariant and restriction of the �ow to chain recurrent set does not change chain
recurrent points.It is also well known that �ow restricted to limit set of any point in X is chain recurrent.

In this paper we give a theorem which shows that under certain conditions the shape of the chain recur-
rent set is locally invariant. An investigation of the symbolic image gives an opportunity to get a neighborhood
of the chain recurrent set and using the algorithm for localizing neighborhoods provided by Osipenko in [3]
we obtained a programming code which was successfully tested on a couple of systems of di�erential equa-
tions. Inwhat followswe assume that the phase space X in which all dynamics take place is always a compact
metric space.
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1 Intrinsic Shape
The �rst paper about intrinsic shape is [12] where a shape morphism between compact metric spaces has
been de�ned for the �rst time using the notion of V-continuity.

Wewill give a brief construction of the shape category using the intrinsic approach from [1]. The approach
follows the main steps of construction of homotopy theory.

Instead of f , g : X → Y continuous functionswe take (fn), (gn) : X → Y proximate sequences of functions
and de�ne a relation of homotopy (fn) ' (gn).

Like in homotopy theorywhere X and Y have the samehomotopy type if there exist a continuous function
f : X → Y with a homotopy inverse, X and Y have the same (intrinsic) shape if there exist a proximate
sequence (fn) : X → Y with a homotopy inverse.

Let’s start with some of the basic de�nitions: For collections U and V of subsets of X, U ≺ Vmeans that
U re�nes V, i.e., each U ∈ U is contained in some V ∈ V. By covering we understand a covering consisting of
open sets.

De�nition 1.1. LetX, Y be compactmetric spaces, andVbea�nite covering of Y . The function isV - continuous,
if for any x ∈ X, there exists a neighborhood U of x, such that f (U) ⊆ V, for some member V ∈ V.

(The family of all U, form a covering of X, and since X is compact there is a �nite subcovering. Shortly, we say
that f : X → Y is V- continuous, if there exists a �nite covering U such that f (U) ≺ V).

Let V is a �nite covering of Y and V ∈ V. The open set st(V) (star of V) is the union of allW ∈ V such that
W ∩ V = ̸ ∅. We form a new covering of Y, st(V) = {st(V)|V ∈ V}.

De�nition 1.2. The functions f , g : X → Y are V- homotopic, if there exists a function F : X × I → Y such that:
i) F : X × I → Y is st(V)- continuous,
ii) F : X × I → Y is V-continuous at all points of X × ∂I
iii) F(x, 0) = f (x), F(x, 1) = g(x).

The relation of homotopy is an equivalence relation and is denoted by f V
' g

The main notion for intrinsic de�nition of shape for compact metric spaces is the notion of proximate
sequence.

De�nition 1.3. The sequence (fn) of functions fn : X → Y is a proximate sequence from X to Y, if for some
sequence V1 � V2 � ... co�nal in the set of �nite coverings, for all indices m ≥ n, fn and fm are homotopic as
Vn - continuous functions (co�nal means that for any �nite covering V there exists Vn such that Vn ≺ V). In this
case we say that (fn) is a proximate sequence over (Vn).

We mention that if (fn) and (f ′n) are proximate sequences from X to Y, then there exists a sequence (Vn) of
�nite coverings, such that (fn) and (f ′n) are proximate sequences over (Vn).

Two proximate sequences (fn), (f ′n) are homotopic if for some sequence V1 � V2 � ... co�nal in the set of
�nite coverings, (fn) and (f ′n) are proximate sequences over (Vn), and for all integers n, fn and f ′n are homotopic
as Vn - continuous functions.

This is an equivalence relation and we denote (fn) ' (f ′n). The homotopy class is denoted by
[
(fn)
]
.

Let (fn) : X → Y be proximate sequence over (Vn), and let (gn) : Y → Z be a proximate sequence over
(Wn).For a coveringWn of Z, there exist a covering Vkn of Y such that g(Vkn ) ≺Wn . Then the composition of
these two proximate sequences is the proximate sequence (hn) = (gn fkn ) : X → Z. This proximate sequence
is unique up to homotopy.

Compact metric spaces and homotopy classes of proximate sequences form the category whose isomor-
phisms induce classi�cation which coincide with the standard shape classi�cation, i.e., isomorphic spaces
in this category have the same shape.
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2 Basic notions and theorems about dynamical systems
One approach to dynamical systems introduced by Poincare and followed by Morse and Conley can be de-
scribed as follows: First of all a �nite family of invariant sets {Mi}ni=1 is located such that the �ow in the
complement set X\

⋃n
j=1Mj is fairly simple. Then some kind of local analysis is performed around those sets(

local means that only the �ow in arbitrary small neighborhoods is involved). Finally this local information is
put together in some way involving the global topology of the phase space. Trivial examples of such sets are
�nitely many critical points p1, p2, ..., pn which contain all limit sets on a compact manifold. This approach
leads to introduction of a Morse decomposition.

Before introducing the concept of these sets we shall give a brief review of the basic notions from dynam-
ical system theory.

A �ow in a metric space (X, d) is a continuous map φ : X ×R→ X satisfying the following two condition:
i) φ(x, 0) = x for all x ∈ X
ii) φ(φ(x, t), s) = φ(x, t + s) for all x ∈ X and t, s ∈ R
If we replace the set R with R+ we get the corresponding notion of semi-dynamical system. The map φ is
called a phase map, and the corresponding space X a phase space.

One of the important problems in dynamical systems concerns the asymptotic behavior of trajectories as
time goes to plus or minus in�nity. Limit sets are fundamental tools for this problem.

Positive limit set for arbitrary subset N ⊆ X is the set:

ω(N) = {x ∈ X|∃xn ∈ N, tn →∞, φ(xn , tn)→ x}

Analogously, negative limit set for arbitrary subset N ⊆ X is the set:

α(N) = {x ∈ X|∃xn ∈ N, tn → −∞, φ(xn , tn)→ x}

A set M is invariant if φ(M, t) ⊆ M, for all t ∈ R. If we replace the set R with R+ or R−, we get the
corresponding notion of positive and negative invariance. If φ(x, t) = x, for all t ∈ R, the point x is called rest
point.

A set M is stable if every neighborhood U of M admits a positively invariant neighborhood V of M such
that V ⊆ U .

A compact invariant set Y ⊆ X is called an attractor if it admits a neighborhood U such that ω(U) = Y .
Analogously, a compact invariant set Y ⊆ X is called an repellor if it admits a neighborhood U such that

α(U) = Y .
It is known that every attractor is a stable set (for example [13]).

De�nition 2.1. Let K = {Kj | j ∈ J} be a family of disjoint compact invariant subsets of the phase space X. A
Lyapunov function for K is a continuous function τ : X → R such that:
i) τ(φ(x, t)) < τ(x), ∀t > 0, ∀x /∈

⋃
j∈J Kj

ii) τ(Kj) = cj , ∀j ∈ J, (cj ≠ ci for i ≠ j).

De�nition 2.2. Letφ be a continuous �owonametric space X. An isolated invariant set is a subset S ⊆ Xwhich
is the maximal invariant set in a compact neighborhood of itself. Such a neighborhood is called an isolating
neighborhood.

De�nition 2.3. Morse decomposition for S is a collection {Mi}ni=1, where eachMi is an isolated invariant subset
of S and for all x ∈ S\

⋃n
j=1Mj, there exist i, j ∈ {1, 2, ..., n} such that i > j, α(x) ⊆ Mi and ω(x) ⊆ Mj.
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Example 2.1.

Consider the following di�erential equation on the compact interval X = [0, 3]:

ẋ = x(x − 1)(x − 2)2(x − 3)

This system has the following Morse decompositions:
{{0}, [1, 3]}, {{0}, {1}, [2, 3]}, {{0}, {3}, [1, 2]} and others. Obviously it is not unique. But there is a unique
�nest Morse decomposition {{0}, {1}, {2}, {3}}.
By decomposing Morse sets into attractor-repellor pairs, Morse decompositions can be re�ned. While many
systems have a �nest Morse decomposition, there are systems which have (countably) in�nitely many
attractor-repellor pairs and hence no �nest Morse decomposition. The process of extracting all attractor-
repellor pairs leads to the chain recurrent set CR(φ) introduced by Conley [14].

De�nition 2.4. Let (x, y) ∈ X × X and ε > 0, t > 0. (ε, t, φ)-chain from x to y is a collection {x =
x1, x2, ..., xn , xn+1 = y; t1, t2, ..., tn} such that for all i ∈ {1, 2, ..., n}, ti ≥ t and d

(
φ(xi , ti), xi+1

)
< ε.

P(φ) = {(x, y)|∀ε, t > 0, there exists (ε, t, φ)-chain from x to y}.

Now CR(φ) = {x|(x, x) ∈ P(φ)}.

Example 2.2.

Consider the complete metric space S1, the 1- dimensional sphere, which we identify here with R�2π. On
S1 the di�erential equation ẋ = sin2(x) de�nes a dynamical system. In this case we have CR(φ) = S1 which
is easily proved.
The following lemma is proved in [2]

Lemma 2.1. Arbitrary Morse decomposition {Mn
i=1} for a compact metric space (X, d) with a �ow φ, admits a

Lyapunov function.

From [15] are the following two results: 1) Every two element Morse decomposition {M1,M2} is in fact an
attractor-repellor pair 2) For arbitrary Morse decomposition M = {M1,M2,M3, .....,Mn} the �rst member
M1 is an attractor and the last one Mn is a repellor.
The next result is proved in [8].

Theorem 2.1. Every global attractor A of a semi-dynamical system de�ned on a compact metric space X has
the same shape as the phase space, i.e. Sh(A) = Sh(X).

Using the results previously stated we proved in [2] also the following theorem:

Theorem 2.2. Every two element Morse decomposition {M1,M2} has corresponding compact neighborhoods
U1, U2 such that Sh(Ui) = Sh(Mi) , i = 1, 2.

In the next section we shall prove a more general form of this theorem using the following result also known
as Keesling’s reformulation of Beck’s theorem, [16].
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Theorem 2.3. Let X be a metric space and let φ : X × R → X be a �ow on X with S as set of �xed points.Then
for any closed set S

′
containing S one can construct a new �ow φ

′
: X × R → X with S

′
as set of �xed points.

Moreover, for any x ∈ X\S
′
with trajectory o(x) under φ, the trajectory of x under φ

′
is just the set of points

which can be joined to x by an arc in o(x)\S
′
.

3 Shape of the Chain Recurrent Set
In the paper [2] we introduced the notion of a proper covering V and de�ned a retraction rV adjoint to V.
Also we invoked previous results from theory of retracts and Non-continuous Topology in order to answer the
question that is naturally imposed by theorem 2.2 about the shape ofmembers of aMorse decompositionwith
more than two elements. Here we give a new proof only using the notion of a Lebesque number for a covering
which enables us to state the claim about the local shape properties of the chain recurrent set CR(φ). We use
the following notation: T(x, ε)-open ball centered at x and radius ε, S(x, ε) sphere centered at x and radius
ε.

Theorem 3.1. Let (X, d) be a compact metric space with a �ow φ. For arbitrary Morse decomposition for X,
which admits Lyapunov function τ : X → R such that τ−1(ci) = Mi, there exist compact neighborhoods Ui of
Mi,such that Sh(Ui) = Sh(Mi).

Proof. First let us note that we can suppose that the �ow on the set
⋃n
i=1Mi is stationary. Namely, if this is

not the case then using Theorem 2.3 with the choice S
′
=
⋃n
i=1Mi we will get a new �ow in which this is the

case. Also let us emphasize thatM = {M1,M2,M3, ...,Mn} is also a Morse decomposition for the new �ow. It
is enough to consider sets Mi such that 2 ≤ i ≤ (n − 1), since the result about attractor and repelor is already
proved. So let us pick arbitrary setMi,2 ≤ i ≤ (n−1).We denote τ(Mi) = ci, and form the setsU+ = τ−1[ci, ci+ε]
and U− = τ−1[ci − ε, ci], where ϵ > 0 is su�ciently small such that the following holds:

(M1 ∪M2 ∪ ...Mi−1 ∪Mi+1 ∪ ... ∪Mn)
⋂

(U+ ∪ U−) = ∅

Now let’s consider the semi-dynamical systems (U+, φ|U+ ) and (U−, φ|U− ). This is possible because the sets
U+ = τ−1[ci, ci + ε] and U− = τ−1[ci − ε, ci] are positively and negatively invariant, respectively. We will show
this assumption.

Namely, if x ∈ U+ = τ−1[ci, ci + ε] then τ(x) ∈ [ci , ci + ϵ], so for arbitrary t > 0 using the property of
Lyapunov function, we have τ(φ(x, t)) < τ(x) ≤ ci + ϵ. Of course the possibility x ∈ Mi is trivial so we assume
that x /∈ Mi. Let us assume that τ(φ(x, t)) < ci . Then using continuity of φ and τ from τ(φ(x, t)) < ci < τ(x)
we get that a real number t* > 0 exists such that τ(φ(x, t*)) = ci which means that φ(x, t*) ∈ Mi. Now
using the fact that Mi is invariant, we get x ∈ Mi, which is a contradiction. So τ(φ(x, t)) ≥ ci, from where
we get that φ(x, t) ∈ U+. Similarly, U− is negatively invariant. Now we shell prove that for the �rst semi-
dynamical system (U+, φ|U+ ) Mi is an attractor, i.e. ω(U+) = Mi, and for the second one (U−, φ|U− ) a repelor,
i.e. α(U−) = Mi. Namely, for the �rst one it is clear that ω(U+) ⊇ Mi. If we assume that z ∈ ω(U+) then from
the invariance of the limit set ω(U+) as well as from ω(U+) ⊆ U+, we have that φ(z, R) ⊆ U+ which means
that α(z) ⊆ U+, ω(z) ⊆ U+, but from the fact that all limit sets of points are contained in

⋃n
i=1Mi, we get that

α(z)∪ω(z) ⊆ Mi fromwhere we have that z ∈ Mi. The proof for the second semi-dynamical system is similar.
Now it easily follows from de�nitions of limit sets that for arbitrary ϵ > 0, ∃t0 ∈ R+ such that ∀t ≥ t0,

∀u ∈ U+ , φ(u, t) ∈ T(Mi , ε). Similarly, we have that for every ϵ > 0, ∃t0 ∈ R− such that ∀t ≤ t0, ∀u ∈
U−, φ(u, t) ∈ T(Mi , ε).

We are ready to de�ne a map a : (U+ ∪ U−) × R+ → Mi in the following way: For points (x, t) ∈ U+ × R+,
we go with the �ow until the point φ(x, t), then we measure the distance d(φ(x, t),Mi) which by compact-
ness of the set Mi is achieved in some point mt

x ∈ Mi, that is d(φ(x, t),Mi) = d(φ(x, t),mt
x). Of course

this point may not be unique but never the less we can pick any such point. So we de�ne a(x, t) = mt
x, for

(x, t) ∈ U+ × R+. For points (x, t) ∈ U− × R+: we go with the �ow until the point φ(x, −t), then we measure



18 | M. Shoptrajanov

the distance d(φ(x, −t),Mi) which by compactness of the set Mi is achieved in some point mt
x ∈ Mi, that is

d(φ(x, −t),Mi) = d(φ(x, −t),mt
x). Of course this point may not be unique but never the less we can pick any

such point. So we de�ne a(x, t) = mt
x, for (x, t) ∈ U− ×R+.

Let us note that this map is well de�ned on Mi × R+ because the following holds: a(x, t) = φ(x, t) = x =
φ(x, −t), ∀(x, t) ∈ Mi ×R+, of course having in mind that the �ow on Mi is stationary.

Let (Vn) be a co�nal sequence of coverings for Mi. We shall de�ne a sequence of real numbers tn ∈ R+,
such that the maps fn : U→Mi de�ned by fn(x) = a(x, tn) are Vn-continuous.

Construction of the sequence (tn): We choose ε = λn
8 where λn ≤ 1 is the Lebesque number of the

covering Vn. There exist strictly monotonically increasing sequences t+n , t−n −→ ∞ such that the following
conditions are satis�ed:

φ(u, t+n) ∈ T
(
Mi ,

λn
8

)
, ∀u ∈ U+; φ(u, −t−n) ∈ T

(
Mi ,

λn
8

)
, ∀u ∈ U−

. Let αn = min
{
τ(x)|x ∈ S

(
Mi , λn/8

)
∩ U+}, βn = max

{
τ(x)|x ∈ S

(
Mi , λn/8

)
∩ U−

}
. Wewill choose the time

sequences in suchaway to satisfy the following inequality, namely t−n ≥
ci − βn
αn − ci

·t+n. Finallywemake the choice

for tn =
t−n

ci − βn
(tn ≥ t+n , t−n for su�ciently large n).

Lemma 3.1. The maps fn , fm : U −→ Mi, for m ≥ n are Vn -homotopic.

Proof. We de�ne the following map Hn : U × I −→ Mi by:

Hn(x, t) = a(x, (1 − t)tn + ttm).

Let us note that the connecting relations are obvious. We shall prove that Hn is Vn-continuous homotopy.
Let x0 ∈ intMi, t0 ∈ I. The �ow is stationary on Mi so we get Hn(x0, t0) = x0. There exists neighborhood

W0 of x0 such thatW0 ⊆ Mi andW0 of t0 such that Hn(x, t) = x, for all x ∈ W0, t ∈ W0. But this means that
Hn is continuous in (x0, t0), so is Vn as well.

Now, let x0 ∈ ∂Mi, t0 ∈ I. Let us note that hn,m(t) = (1 − t)tn + ttn ≥ tn. For the points x ∈ U+\Mi, t ∈ I
is valid: d

(
a(x, hn,m(t), φ(x, hn,m(t)

)
< λn8 . Let ε < 3λn

8 . There exists neighborhoodW1 of x0 ∈ ∂Mi andW1

of t0 ∈ I such that d
(
φ(x, hn,m(t)), φ(x0, hn,m(t0))

)
< ε, for all x ∈ W1, t ∈ W1. Now, for x ∈ W1 ∩

(
U+\Mi

)
,

t ∈ W1:
d
(
a(x, hn,m(t)), φ(x0, hn,m(t0))

)
≤ d
(
a(x, hn,m(t)), φ(x, hn,m(t))

)
+d
(
φ(x, hn,m(t)), φ(x0, hn,m(t0))

)
< λn2 .

Now Hn
(
W1 ∩ U+\Mi ,W1) ⊆ T(Hn(x0, t0), λn/2), which means that there exists Vn ∈ Vn such that

Hn
(
W1 ∩ U+\Mi ,W1) ⊆ Vn. Analogously, there exists neighborhoods W2 of x0 and W2 of t0 such that

Hn
(
W2 ∩ U−\Mi ,W2) ⊆ T(Hn(x0, t0), λn/2), so for the same Vn ∈ Vn is valid Hn

(
W2 ∩ U−\Mi ,W2) ⊆ Vn.

Moreover, let us note that there exists neighborhoodsW3 of x0 andW3 of t0 such that the following inclusion
is valid: Hn

(
W3 ∩Mi ,W3) ⊆ Vn. Finally we choose neighborhoodW1 ∩W2 ∩W3 for x0 and neighborhood

W1 ∩W2 ∩W3 for t0. Hence

Hn
(
W1 ∩W2 ∩W3,W1 ∩W2 ∩W3

)
⊆ Vn .

Now, we shall discuss the points x0 ∈ U+\Mi, t0 ∈ I. First let us note that Hn(x0, t0) = a(x0, (1 − t0)tn +
t0tn). Now, for arbitrary ε > 0 there exists neighborhoodW0 of x0 andW0 of t0 such that d

(
φ(x, hn,m(t)), φ(x0, hn,m(t0))

)
<

ε, for all x ∈ W0, t ∈ W0, where hn,m(t) = (1 − t)tn + ttn. Again, having in mind that hn,m(t) ≥ tn, we obtain
the following estimates:

d
(
a(x, hn,m(t)), a(x0, hn,m(t0))

)
≤ d
(
a(x, hn,m(t)), φ(x, hn,m(t))

)
+d
(
φ(x, hn,m(t)), φ(x0, hn,m(t0))

)
+ d
(
φ(x0, hn,m(t0)), a(x0, hn,m(t0))

)
< λn8 + ε + λn8 ,
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for all x ∈ W0, t ∈ W0. Now,making the choice for ε < λn/4,weobtain thatHn(W0,W0) ⊆ T
(
Hn(x0, t0), λn/2

)
.

Hence, there exists Vn ∈ Vn such that Hn(V0, V0) ⊆ Vn.
The case for the point x0 ∈ U−\Mi, t0 ∈ I, is analogous to the previous discussion.

According to the previous lemma, we can con�rm that there exists a shape morphism [(fn)] : U −→ Mi.

Proposition 3.1. The shape morphism [(fn)] is a shape deformation retract. Consequently Sh(Mi) = Sh(Ui),
i = 1, 2, ..., n.

Proof. Namely, let us note that it is enough to prove that the following composition is valid [(in)] ◦ [(fn)] =
[(1U)], where [(in)] is the shape morphism induced by the i = in : Mi −→ U. Let (Vn) be a co�nal sequence of
coverings of U such that (fn) is proximate sequence over (Vn ∩ Mi) with Lebesque number λ′n ≤ λn. (λn is the
Lebesque number of Vn).

There exists a sequence γn < 1 such that Un = τ−1[ci − γn , ci + γn] ⊆ T(Mi , λn/8). In the contrary a se-
quence zm ∈ Um = τ−1[ci − 1/m, ci + 1/m] would exists, such that τ(zm) −→ ci and zm ∉ T(Mi , λn/8). The
space is compact sowe can suppose that the sequence is convergent i.e. zm −→ z, but from τ(zm) −→ τ(z) = ci
we obtain that z ∈ Mi which is a contradiction with zm ∉ T(Mi , λn/8), ∀m.

According to the previous de�nition of composition of shape morphism we have that [(in)] ◦ [(fn)] =
[(in ◦ fkn )]where for the subsequence kn we will impose additional condition, namely to satisfy the following
inequality:

tknγn ≥ max{t+n , t−n}.

Now we are ready to de�ne a map

Hn : (U+ ∪ U−) × I −→ U+ ∪ U−,

which will be a homotopy candidate between (i ◦ fkn ) and (1U) by:

Hn(x, t) =

 i
(
a
(
x, |2ttkn (τ(x) − ci)| + tkn (1 − 2t)

))
, 0 ≤ t ≤ 12 ,

φ
(
x, tkn (τ(x) − ci)(2 − 2t)

)
, 1

2 < t ≤ 1.

The connection relation is obvious. Let us check how close this map is to continuous:
i) For points (x0, t0), x0 ∈ U, t0 > 1/2 themap is continuous because the phasemap and the Lyapunov function

are actually such.
ii) Let x0 ∈ intMi, t0 < 1/2. There exists a neighborhood W0 of x0 and W0 of t0 such that Hn(x, t) =

φ
(
x, tkn (1 − 2t)

)
, ∀x ∈ W0, ∀t ∈ W0, so the continuity follows.

iii) Let us discuss the points (x0, t0), x0 ∈ intMi, t0 = 1/2. We shall de�ne the following map hn : I −→ R by

hn(t) =
{
tkn (1 − 2t), 0 ≤ t ≤ 1/2,
0, 1/2 < t ≤ 1

which is continuous. There exist neighborhoods W0 ⊆ Mi of x0 and

W0 of t0 such that Hn(x, t) = φ
(
x, hn(t)

)
= x, ∀x ∈ W0, ∀t ∈ W0, so we obtain continuity in this case as well.

iv) Consider the points (x0, t0), x0 ∈ ∂Mi, 0 ≤ t0 < 1/2. Hn(x0, t0) = φ
(
x0, tkn (1 − 2t0)

)
. We choose arbitrary

neighborhood Q of this point (Hn(x0, t0)). There exist neighborhoodsW0 of x0 andW0 ⊆ [0, 1/2) of t0 such
that Hn(W0 ∩ Mi ,W0) ⊆ Q. There exists ε > 0 such that T(Hn(x0, t0), ε/2) ⊆ T(Hn(x0, t0), ε) ⊆ Q. Let us
consider the following map hn(x, t) =

∣∣2ttkn (τ(x) − ci)∣∣ + tkn (1 − 2t) which is continuous. There exist neigh-
borhoodsW1 of x0 andW1 of t0 such that ∀x ∈ (U+\Mi) ∩W1, ∀t ∈ W1:

d
(
φ(x, hn(x, t)), a(x, hn(x, t))

)
< ε2 , φ

(
x, hn(x, t)

)
∈ T(Hn(x0, t0), ε/2).

Analogously, there exist neighborhoodsW2 of x0 andW2 of t0 such that ∀x ∈ (U−\Mi) ∩W2, ∀t ∈ W2:

d
(
φ(x, −hn(x, t)), a(x, hn(x, t))

)
< ε2 , φ

(
x, −hn(x, t)

)
∈ T(Hn(x0, t0), ε/2).

We choose W0 ∩W1 ∩W2 = W* as a neighborhood of x0 andW0 ∩W1 ∩W2 = W* as a neighborhood of t0.
Hence Hn(W*,W*) ⊆ Q, so the continuity is con�rmed in this case as well.
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v) Let’s consider the case for the points (x0, t0) such that x0 ∈ ∂Mi, t0 = 1/2.

Hn(x0, 1/2) = a(x0, tkn (1 − 2 · 1/2)) = x0.

We choose arbitrary neighborhood Q of Hn(x0, 1/2). There exist neighborhoodsW0 of x0 andW0 of t0 = 1/2
such that Hn(W0,W0 ∩ (1/2, 1]) ⊆ Q. From the previous case there exist neighborhoods W1 of x0 and W1

of t0 = 1/2 such that Hn(W1,W1 ∩ [0, 1/2]) ⊆ Q. We choose W* = W0 ∩ W1 as a neighborhood for x0
and W* = W0 ∩ W1 as a neighborhood for t0 = 1/2. From the previous discussion we obtain the following
inclusion Hn(W*,W*) ⊆ Q and the continuity in these points follows.

vi) Let us consider the points (x0, t0), t0 < 1/2 and such that |τ(x0) − ci| > γn. We suppose that x0 ∈ U+. We
consider the function hn : X ×R −→ R de�ned by hn(x, t) =

∣∣2ttkn (τ(x) − ci)∣∣+ tkn (1−2t). Note that hn(x, t) ≥
max{t+n , t−n}. Namely, hn(x, t) > 2ttknγn + tkn (1 − 2t) (in a neighborhood of the point x0) and the right side of
the inequality if we treat it as a linear map on the segment [0, 1/2] it obtains its minimum at t = 1/2 so:

hn(x, t) > tknγn ≥ max{t+n , t−n}.

There exist neighborhoodsW0 of x0 andW0 of t0 such that

d
(
φ(x, hn(x, t)), a(x, hn(x, t))

)
≤ λn8 , ∀x ∈ W0, ∀t ∈ W0.

Specially d
(
φ(x, hn(x, t)), a(x0, hn(x0, t0))

)
≤ λn/8. Now, from the continuity of the phase map φ and a

choice for ε < λn/4 there exist neighborhoodsW1 of x0 andW1 of t0 such that

d
(
φ(x, hn(x, t)), φ(x0, hn(x0, t0))

)
< ε, ∀x ∈ W1, ∀t ∈ W1.

LetW* = W0∩W1 andW* = W0∩W1 are the neighborhoods for x0 and t0 correspondingly. Note the following
inequality:

d
(
a(x, hn(x, t), a(x0, hn(x0, t0))

)
≤ d
(
a(x, hn(x, t), φ(x, hn(x, t))

)
+d
(
φ(x, hn(x, t)), φ(x0, hn(x0, t0))

)
+ d
(
φ(x0, hn(x0, t0)), a(x0, hn(x0, t0))

)
< λn8 + λn4 + λn8 = λn2 , ∀x ∈ W*, ∀t ∈ W*.

Now, for arbitrary x1, x2 ∈ W* and t1, t2 ∈ W*, we obtain that:

d
(
a(x1, hn(x1, t1)), a(x2, hn(x2, t2))

)
< λn ,

which is exactly Vn-continuity in the point (x0, t0). Similarly for the points (x0, t0), t0 < 1/2, |τ(x0) − ci| > γn
and x0 ∈ U−.

vii) Now let us consider the points (x0, t0), t0 < 1/2, |τ(x0) − ci| ≤ γn, x0 ∈ U+\Mi. Note that Un = τ−1(ci − γn −
δ, ci + γn + δ) ⊆ T(Mi , λn/8), for su�ciently small δ > 0. Let hn(x, t) =

∣∣2ttkn (τ(x) − ci)∣∣ + tkn (1 − 2t). From
the assumption x0 ∈ Un. We shall prove that the set τ−1(ci , ci + γn + δ) is positively invariant. Namely, if
p ∈ τ−1(ci , ci + γn + δ) then for arbitrary t > 0 we have

ci < τ
(
φ(p, t)

)
< τ(p) < ci + γn + δ.

We shell explain only the �rst inequality ci < τ
(
φ(p, t)

)
. In the contrary ci ≥ τ

(
φ(p, t)

)
then p ∈ Mi which

is a contradiction. Now, from x0 ∈ τ−1(ci , ci + γn + δ) there exists a neighborhood W0 of x0 such that W0 ⊆
τ−1(ci , ci + γn + δ). LetW0 is a neighborhood of t0 such thatW0 ⊆ [0, 1/2). Then

d
(
φ(x, hn(x, t)), a(x, hn(x, t))

)
< λn8 , ∀x ∈ W0, ∀t ∈ W0.

Specially, for x = x0 and t = t0 we have that

d
(
φ(x0, hn(x0, t0)), a(x0, hn(x0, t0))

)
< λn8 .
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Now, from the continuity of the phase map for a choice of ε < λn/4 there exist neighborhoods W1 of x0 and
W1 of t0 such that

d
(
φ(x, hn(x, t)), φ(x0, hn(x0, t0))

)
< ε, ∀x ∈ W1, ∀t ∈ W1.

Again, for a choice W* = W0 ∩ W1 as a neighborhood of x0 and W* = W0 ∩ W1 as a neighborhood of t0 we
obtain

d
(
a(x, hn(x, t)), a(x0, hn(x0, t0))

)
≤ d
(
a(x, hn(x, t)), φ(x, hn(x, t))

)
+d
(
φ(x, hn(x, t)), φ(x0, hn(x0, t0))

)
+ d
(
φ(x0, hn(x0, t0)), a(x0, hn(x0, t0))

)
< λn8 + λn4 + λn8 = λn2 , ∀x ∈ W*, ∀t ∈ W*,

which means that we have Vn-continuous in this point as well. The discussion about the points (x0, t0), t0 <
1/2, |τ(x0) − ci| ≤ γn, x0 ∈ U−\Mi is similar.

viii)The points (x0, 1/2), x0 ∈ U\Mi are remained for discussion. First let us suppose that x0 ∈ U+. We shell make
another assumption, namely τ(x0) < αn. We shell prove that τ(x) < αn, x ∈ U+ implies x ∈ T(Mi , λn/8). In
the contrary there exists t ≥ 0 such that φ(x, t) ∈ S(Mi , λn/8), because the trajectory segments are compact
connected sets, whichmeans that τ(x) ≥ τ

(
φ(x, t)

)
≥ αn. This is a contradiction. There exists a neighborhood

W0 ⊆ U+\Mi of x0 such that τ(x) < αn for all x ∈ W0. Note that Hn(x0, 1/2) = a(x0, tkn (τ(x0) − ci)). Let
ε = λn/4. There exist neighborhoodsW1 of x0 andW1 of 1/2 such that:

d
(
φ(x, 2ttkn (τ(x) − ci) + tkn (1 − 2t)), φ(x0, tkn (τ(x0) − ci))

)
< λn4 , ∀x ∈ W1, ∀t ∈ W1.

Let W* = W0 ∩ W1 and W* = W1. Also, let hn(x, t) = 2ttkn (τ(x) − ci) + tkn (1 − 2t). Note that, ∀x ∈ W* and
t ∈ W* ∩ [0, 1/2], we have that αn > τ(x) ≥ τ

(
φ(x, hn(x, t))

)
which means that φ

(
x, hn(x, t)

)
∈ T(Mi , λn/8).

Now, for arbitrary x ∈ W* and t ∈ W* ∩ [0, 1/2] we have the following estimate:

d
(
a(x, hn(x, t)), a(x0, hn(x0, 1/2))

)
≤ d
(
a(x, hn(x, t)), φ(x, hn(x, t))

)
+d
(
φ(x, hn(x, t)), φ(x0, hn(x0, 1/2))

)
+ d
(
φ(x0, hn(x0, 1/2)), a(x0, hn(x0, 1/2))

)
< λn8 + λn4 + λn8 = λn2 .

There exists an element Vn ofVn such that Hn(W*,W*∩ [0, 1/2]) ⊆ Vn is valid. For gn(x, t) = tkn (τ(x)− ci)(2−
2t)and ε = 3λn/16 there exist neighborhoodsW2 of x0 andW2 of1/2 such that d

(
φ(x, gn(x, t)), φ(x, gn(x, 1/2))

)
<

3λn/16. Analogously there exists neighborhoodW3 of x0 such that: d
(
φ(x, gn(x, 1/2)), φ(x0, gn(x0, 1/2))

)
<

3λn
16 . Let W** = W0 ∩W2 ∩W3 is a neighborhood of x0 and W** = W2 a neighborhood of 1/2. We obtain the
following estimates:

d
(
φ(x, gn(x, t)), a(x0, gn(x0, 1/2))

)
≤ d
(
φ(x, gn(x, t)), φ(x, gn(x, 1/2))

)
+d
(
φ(x, gn(x, 1/2)), φ(x0, gn(x0, 1/2))

)
+ d
(
φ(x0, gn(x0, 1/2)), a(x0, gn(x0, 1/2))

)
< 3λn

16 + 3λn
16 + λn8 = λn2 .

This means that there exists V*n ∈ Vn such that Hn(W**,W** ∩ (1/2, 1]) ⊆ V*n. Also, let us note that the
following inclusion Hn(W**,W** ∩ [1/2, 1]) ⊆ V*n. Namely, the neighborhoodW** can be chosen su�ciently
small such that:

d
(
φ(x1, tkn (τ(x1) − ci)), φ(x2, tkn (τ(x2) − ci))

)
< λn16 , ∀x1, x2 ∈ W**.

Having this in mind for the points (x1, 1/2), (x2, 1/2), x1, x2 ∈ W** we have that the following holds:

d
(
Hn(x1, 1/2), Hn(x2, 1/2)

)
≤ d
(
Hn(x1, 1/2), φ(x1, gn(x1, 1/2)

)
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+d
(
φ(x1, gn(x1, 1/2), φ(x2, gn(x2, 1/2)

)
+ d
(
φ(x2, gn(x2, 1/2)), Hn(x2, 1/2)

)
< λn8 + λn16 + λn8 < λn .

Similarly, for the points (x1, 1/2), (x2, t2), x1, x2 ∈ W**, t2 > 1/2 we have :

d
(
Hn(x2, t2), Hn(x1, 1/2)

)
≤ d
(
Hn(x2, t2), φ(x2, gn(x2, 1/2))

)
+d
(
φ(x2, gn(x2, 1/2), a(x2, gn(x2, 1/2))

)
+ d
(
a(x2, gn(x2, 1/2)), a(x1, gn(x1, 1/2))

)
< 3λn

16 + λn8 + 2λn
8 + λn16 < λn .

Hence, V*n ∩ Vn = ̸ ∅. But this implies that we have st(Vn)-continuity in this points.
Now, we shall discuss the points τ(x0) ≥ αn. From the inequality τ(x0) − ci ≥ αn − ci we obtain that

(τ(x0) − ci)tkn ≥ (τ(x0) − ci)tn ≥
t+n

αn − ci
· (τ(x0) − ci) ≥ t+n ,

but φ(u, t+n) ∈ T(Mi , λn/8), ∀u ∈ U+ we have φ
(
x0, tkn (τ(x0) − ci)

)
∈ T(Mi , λn/8).

Now, from the inequality tn ≥ t+n we obtain that:

hn(x, t) = 2ttkn (τ(x) − ci) + tkn (1 − 2t) > 2ttkn (αn − ci) + tkn (1 − 2t)

≥ 2ttn(αn − ci) + tn(1 − 2t) ≥ 2tt+n + t+n(1 − 2t) = t+n , ∀t ∈ [0, 1/2]

, which implies that φ
(
x, 2ttkn (τ(x) − ci) + tkn (1 − 2t)

)
∈ T(Mi , λn/8). So we have st(Vn)-continuity in this

points as well.
Nowwe shall assume that x0 ∈ U−\Mi, which is the remaining case. Wemake additional assumption τ(x0) >
βn. We shall prove that τ(x) > βn, x ∈ U− implies that x ∈ T(Mi , λn/8). On the contrary, there exists t > 0
such that τ

(
φ(x, −t)

)
∈ S(Mi , λn/8). But, this would imply that

βn < τ(x) ≤ τ
(
φ(x, −t)

)
≤ βn ,

which is a contradiction. Now, from the inequality:

τ
(
φ(x0, tkn (τ(x0) − ci))

)
≥ τ(x0) > βn ,

we have that φ(x0, tkn (τ(x0) − ci)) ∈ T(Mi , λn/8). According to the previous discussion, similarly we obtain
st(Vn)-continuity in this points. It remains the case when τ(x0) ≤ βn. Note the inequality τ(x0) − ci ≤ βn − ci
in which all the values are negative. This implies that

(τ(x0) − ci)tkn ≤ (βn − ci)tn = (βn − ci) ·
t−n

ci − βn
= −t−n .

Again, from φ(x0, −t−n) ∈ T(Mi , λn/8) we have φ
(
x0, tkn (τ(x0) − ci)

)
∈ T(Mi , λn/8), which implies that we

have st(Vn)-continuity in this points as well.
The proof is complete.

Let us note that the condition imposed on the Lyapunov function is essential in theorem 3.1 as shown in the
following example:

Example 3.1.

Consider a dynamical system de�ned in the cylinder D × I, where D stands for the unit disk. The points in the
Hawaiian earring H =

⋃∞
n=1 S((1/2n, 0, 1/2), 1/2n) are stationary points. All the points in D × {0, 1} are also

stationary. The trajectories of the rest of the points are vertical straight lines joining two stationary points.
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The Hawaiian earring is a Morse set which is not a shape retract of any of its neighborhoods. This shows that
theorem 3.1 does not hold for general Lyapunov functions.

Now, we are ready to consider the shape of chain recurrent set CR(φ).
We shall use the following theorem of Conley [14].

Theorem 3.2. Let (X, d)bea compactmetric spacewith a �owφ. Then there exists a unique familyM = {Mj|j ∈
J} of disjoint, compact and invariant sets which admits Lyapunov function and is maximal with this property.
The set ∪j∈JMj is actually CR(φ), which is compact and Mj are its connected components.

Corollary 3.1. Arbitrary chain recurrent set with �nitely many connected components satisfying the condi-
tions of the previous theorem 3.1 admits compact neighborhood U with the same shape as CR(φ), i.e. Sh(U) =
Sh(CR(φ)).

Proof. From the previous theorem of Conley, the connected components of CR(φ), M = {CRj(φ)|j ∈ J},
form a Morse decomposition. According to the previously proven theorem, each of this components admits a
compact neighborhoodUi with the same shape as CRi(φ), i.e. Sh(Ui) = Sh

(
CRi(φ)

)
and such that is disjoint

from the others. Now, if we choose U = ∪ni=1Ui, we get that

Sh(U) = Sh
(
∪ni=1Ui

)
= Sh

(
∪ni=1CRi(φ)

)
= Sh

(
CR(φ)

)
.

In the section that follows we shall verify this result on a couple of systems of di�erential equations by in-
vestigating the symbolic image (an oriented graph) with respect to a given covering. We used the algorithm
suggested by Osipenko in [3] to get a sequence of embedded neighborhoods which converges to the chain
recurrent set by writing a programming code inMathematica.

4 Symbolical analysis of the Chain Recurrent Set
The theoretical background of the symbolical images and the constructive methods which are applied on
them were described in detail by Osipenko in [17]. The main idea is construction of a directed graph which
represents the structure of the state space for the investigated dynamical system. This graph is called the
symbolical image of the focused system and can be seen as approximation of the system �ow. Valuable in-
formation about the global structure of the system may come from the analysis of this symbolic image. From
the computation point of view the usage of such a graph has the advantage that once it is constructed, all
investigations are matters of graph analysis which provides an opportunity among other things in it’s pallet
an algorithmic way of thinking.

Hence basic operations on the symbolical image gives an opportunity to obtain a sequence of neighbor-
hoodswhich localize invariant sets, or in our case of interest, the chain recurrent set. Numerical computations
are performed for several dynamical systems in order to verify our theoretical result.

Let us consider a discrete dynamical system governed by a homeomorphism f de�ned on a compact
manifold M.

We use the following algorithm from [3] based on which a programming code in "Mathematica" is suc-
cessfully obtained and tested on couple of systems of di�erential equations:

Step1. Starting with an initial covering C, the symbolical image G = (T, R) of themap f is found. The cells
of the initial covering may have arbitrarily large diameter d0 .

Step2. The recurrent vertices ik of the graph G are recognized. Using the recurrent vertices, a closed neigh-
borhood P =

⋃
ik M(ik) of the chain recurrent set CR(f ) is obtained.

Step3. The cells corresponding to the recurrent vertices i.e. {M(ik)| ik is recurrent} are partitioned. For
example, the largest diameter of the cells may be divided with 2. Thus the new covering is de�ned.
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Step4. The symbolic image G = (T, R) is constructed for the new covering. It should be noted that the new
symbolic image may be constructed on the set P =

⋃
ik M(ik). In other words, the cells corresponding to non

recurrent vertices do not participate in the construction of the new covering and the new symbolic image.
Step5. Go back to step2.
Repeating this partitioning process we obtain a sequence of neighborhoods P0,P1,P2, ... of the chain

recurrent set CR(f ).
Before giving some examples of system of di�erential equations we shall discuss the transition from dis-

crete to continuous phase maps. Namely, the idea is quite simple, discretization of systems continuous in
time. Let a system of di�erential equations be given by ˙x(t) = F(x(t)). What we need is some kind of mapping
which transforms an orbit continuous in time into one discrete in time. A shift operator along trajectories is
needed. Such a mapping has the form f (x) = φ(x, t), with φ(x, 0) = x. It can be calculated by solving the
equation. If we �x a value for t = t0 we obtain the required discretization.

Example 4.1.

Consider the following system of di�erential equations:

ẋ = −y + x(1 − x2 − y2)
ẏ = x + y(1 − x2 − y2).

In polar coordinates we have:

ṙ = r(1 − r2)
θ̇ = 1.

with initial values r(0) = r0 and θ(0) = θ0. The �rst equation can be solved either as a Bernoulli equation
or as a separable di�erential equation. The solution is given by:

r(t, r0) = (1 + ( 1r20 − 1)e
−2t) −12 and θ(t, θ0) = t + θ0

Nowwe easily obtain the required discretization by choosing a value for t = 10 for example. (The value of
t is important for practical purposes above all because it determines the speed with which the non recurrent
cells are being erased but only user experience and heuristic testing can lead to the most proper setting of t).
We input this map in the programming code and obtain the following neighborhoods of CR(f ):

Figure 1: �rst iteration
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Figure 2: second iteration

Figure 3: third iteration fourth iteration

Figure 4: �fth iteration

Consider the following system of di�erential equations:

ẋ = y
ẏ = −x + y cos(x).

In this system we cannot obtain our discretization map like in the previous example by integrating the
system, but using the built in function NDSOLVE in the programming package "Mathematica" we obtain ap-
proximation of it.
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These are the results:

Figure 5: �rst iteration

Figure 6: second iteration third iteration

Figure 7: fourth iteration

Let us consider the following system of di�erential equations in a polar form:

ṙ = r2 sin(10r )
θ̇ = 1

Initially we isolate the point (0, 0) by a square box.
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Here are the results:

Figure 8: �rst iteration

Figure 9: second iteration third iteration

Figure 10: fourth iteration

A computer program realizing the algorithm described above has been made at St.Cyril and Methodius
University, Institute for Mathematics, by I. Jovceski and the author.
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