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Intrinsic Shape Property

of Global Attractors

in Metrizable Spaces

N. Shekutkovski, M. Shoptrajanov

This paper concerns the connection between shape theory and attractors for semidynamical
systems in metric spaces. We show that intrinsic shape theory from [6] is a convenient framework
to study the global properties which the attractor inherits from the phase space. Namely,
following [6] we’ll improve some of the previous results about the shape of global attractors in
arbitrary metrizable spaces by using the intrinsic approach to shape which combines continuity
up to a covering and the corresponding homotopies of first order.

Keywords: intrinsic shape, regular covering, continuity over a covering, attractor, proximate
net

1. Introduction

The pioneering work in the study of dynamical systems of Poincaré, later continued by
Morse, Smale and Conley, can be considered as landmarks in the study of dynamical systems
through their phase portraits, which are objects of a topological nature. This approach gave rise
to a whole new branch, where tools like homotopy theory, homology, and later on shape theory,
played a prominent role in the investigations of dynamical systems.

The use of shape theory in the study of dynamical systems was initiated by Hastings in [7].
Other authors showed how to apply shape theory to obtain global properties of attractors in
Refs. [9–11]. Shape theory was related to differential equations in [12] and it is the main tool
used in [13, 14] to define a Conley index for discrete dynamical systems.
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Initially the theory of shape was introduced by Borsuk [1] as a classification of compact
metric spaces which was coarser then homotopy type but which coincides with it on absolute
neighborhood retracts (ANR’s). His idea was to take into account the global properties of

compact metric spaces and neglect the local ones. Shape can be called C̆ech homotopy type and

its relationship to homotopy type is analogous to the relationship between C̆ech homology and
singular homology as mentioned by Dydak – Segal in [2].

Consider the following example. Let X denote the 1-sphere S1 and let Y denote the Warsaw

circle, i.e., the graph of the function x→ sin 1
x for 0 < x � 1

π including the limit segment on the

ordinate axis and an arc joining the endpoint of this segment to
(

1
π , 0
)

which is disjoint from

the graph except at its end points (see Fig. 4). Then X and Y are of different homotopy type,
but will turn out to be of the same shape. These spaces fail to be of the same homotopy type
because there are not enough maps (continuous functions) of X into Y due to the failure of Y to
be locally connected. Since any continuous image of X must be a locally connected continuum,
it must be an arc in Y and so any such map is homotopically trivial. In other words, local
difficulties prevent X and Y from being of the same homotopy type even though globally they
are very much alike (e.g., they both divide the plane into two components). Borsuk remedied
this difficulty by introducing the notion of fundamental sequence which is more general than
that of a mapping. This definition is quite appealing from the intuitive point of view, for it
shows a strong resemblance with some kind of limit in the sense of homotopy (see [1]).

Let Cpt denote the category of compact metrizable spaces and continuous mappings between
them. If (Pk)k∈N is a decreasing sequence of compact spaces, i.e., Pk+1 ⊆ Pk for every k ∈ N,
let us call P := ∩k∈NPk the limit of (Pk)k∈N.

Definition 1. Let F : Cpt → C be a functor. We say that F is continuous if, when-
ever (Pk)k∈N is a decreasing sequence of compact spaces with the property that if the inclusion
jk : Pk → P1 transforms into an equivalence under F , (i.e., F (jk) is an equivalence in the cate-
gory C) for every k ∈ N, then the same holds for the limit inclusion, i.e., the inclusion j : P → P1

transforms into an equivalence under F .

Example 1. The continuity theorem for C̆ech cohomology theory (see [3]) shows that the

latter is a continuous functor H̆ : Cpt→ Ab with values in the category of graded abelian groups.

If we denote by HCpt the category of compact spaces and homotopy classes of continuous
mappings between them, and let H : Cpt → HCpt be the functor taking each space to itself
and each continuous mapping to its homotopy class, it turns out that H is not continuous. This
issue can be overcome by replacing homotopy theory by shape theory, which can be thought of

as some kind of continuous (or C̆ech type) homotopy theory as previously mentioned.
The objects of the shape category of compact spaces SCpt are the same as those in HCpt

and Cpt, just compact metrizable spaces. The morphisms are, however, a bit more complicated.
Every continuous mapping f : X → Y induces a shape morphism Sh(f) : X → Y which depends
only on the homotopy class of f , but in general there may exist shape morphisms u : X → Y
that do not come from any continuous mapping. Thus SCpt contains representatives of all the
morphisms in HCpt plus some extra ones which account for its flexibility when it comes to
comparing its objects.

We shall say that two spaces X and Y have the same shape, and represent it
by Sh(X) = Sh(Y ), if there exist two shape morphisms u : X → Y and v : Y → X which
are inverses to each other, that is, v ◦ u = Sh(idX) and u ◦ v = Sh(idY ). Both u and v are
called shape equivalences.
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The following theorem collects some properties of shape theory relevant to this paper.

Theorem 1. Let Sh : Cpt→ SCpt denote the functor which takes every compact space to
itself and every continuous mapping to the shape morphism it induces.

i) If u : X → Y is a shape morphism between two spaces X and Y having the homotopy type of
finite simplicial complexes (in particular, if X and Y are compact manifolds), there exists
a continuous mapping f : X → Y such that Sh(f) = u.

ii) The shape functor Sh is continuous.

iii) Two spaces with the same shape have isomorphic C̆ech cohomology groups.

The first assertion in the previous theorem means that homotopy and shape theory are
equivalent when the underlying spaces have the homotopy type of finite simplicial complexes.
Thus, shape theory, while yielding a coarser classification of spaces than homotopy theory, is
still as good as it in distinguishing well-behaved spaces, but also enjoys the important continuity
property.

Let us note that homotopy theory enters the scene of dynamical systems in a quite straight-
forward way, since flows provide a natural means of constructing homotopy equivalences (see [18]
for more details). However, and in a spirit similar to that which motivated our previous discus-
sion, we would like to be able to pass to the limit, in some sense.

Suppose that M is a positively invariant compact set. The flow induces retractions
rt : M → Φ(M, t) given by rt(p) := Φ(p, t), and homotopies H(p, τ) = Φ(p, τ), τ ∈ [0, t] such
that idM � rt for every t � 0. In particular, the assertion:

(HE)t : The inclusion jt : Φ(M, t) →M is a homotopy equivalence

is true for every t � 0.
Now the question is whether the same still holds on letting t→ ∞, that is, whether:

(HE)∞ : The inclusion j : ω(M) = Φ(M,+∞) →M is a homotopy equivalence

holds true. As we mentioned previously, the homotopy functor is not continuous, but the shape
functor is. So for compact metric spaces the shape category enables us to pass to the limit, and
conclude that the inclusion is a shape equivalence.

The main aim of this paper is to show how the new intrinsic approach to shape, introduced
by Shekutkovski in [6], can be used to study the topological structure of a global attractor
compared to that of the phase space in noncompact spaces.

The main theorem of this paper holds for arbitrary metric spaces. Similar results were
proved by Hastings, Bogatyi and Gutsu, Sanjurjo, Kapitanski and Rodnianski in [7, 9, 16, 17]
with additional assumptions on the phase space and the flow.

A result similar to this has been established in the paper by Kapitanski and Rodnianski,
but under additional assumptions of completeness and using the exterior approach to shape.

2. Intrinsic shape for paracompact spaces

Shape theory was introduced by Borsuk [1] in order to study geometric properties of com-
pact metric spaces with not necessarily good local properties. Namely, homotopy theory turns
out to be an inappropriate tool for studying spaces with local pathology which appear in the
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mathematical formulation of many natural phenomena, for example, solenoids, attractors etc.
Hence, it is natural to look for another adequate tool for handling these problems. Shape theory
takes the role in this context because it manages to smooth out local pathologies while pre-
serving global properties. Besides, shape theory does not modify homotopy theory in the good
framework.

Initially, the external approach to shape due to Borsuk requires external elements (ambient-
AR, ANR-expansions) in which the original space is embedded. Later on, a question was raised
regarding the intrinsic description of shape, i.e., construction without external spaces.

The first intrinsic approach to shape is given in Refs. [19] and [20]. In Ref. [15], using the
notion of a proximate sequence over cofinal sequences of finite coverings, intrinsic shape category
is constructed for compact metric spaces. For paracompact spaces the notion of a proximate
sequence is replaced by a proximate net indexed by locally finite coverings from the set of all
coverings CovX.

We shall follow the construction given in [6] for paracompact spaces using the notion of
V-continuity.

By a covering we understand a covering consisting of open sets and the set of all coverings
is denoted by CovX. For technical reasons a covering containing an empty set will be considered
the same with the covering without an empty set.

Let us start with some of the basic definitions:

For collections U and V of subsets of X, U ≺ V means that U refines V, i.e., each U ∈ U is
contained in some V ∈ V.

Definition 2. Suppose V is a covering of Y . A function f : X → Y is V-continuous at
a point x ∈ X if there exists a neighborhood Ux of x and V ∈ V, such that:

f(Ux) ⊆ V.

A function f : X → Y is V-continuous if it is V -continuous at every point x ∈ X. In this
case, the family of all Ux forms a covering of X.

According to this, f : X → Y is V-continuous if there exists a covering U of X such that
for any x ∈ X there exists a neighborhood U of x, and V ∈ V such that f(U) ⊆ V . We denote
shortly: there exists U , such that f (U) ≺ V.

If f : X → Y is V-continuous, then f : X → Y is W-continuous for any W such that V ≺ W.

If V is a covering of Y and V ∈ V, the open set st(V ) (star of V ) is the union of all W ∈ V
such that W ∩ V �= ∅. We form a new covering of Y , st(V) = {st(V )|V ∈ V}.

Definition 3. The functions f , g : X → Y are V-homotopic if there exists a function
F : X × I → Y such that:

i) F : X × I → Y is st(V)-continuous,

ii) F : X × I → Y is V-continuous at all points of X × ∂I,

iii) F (x, 0) = f(x), F (x, 1) = g(x).

The relation of V-homotopy is denoted by f
V� g. This is an equivalence relation.

Definition 4. A proximate net (fV) : X → Y is a family f = (fV | V ∈ CovY ) of V-conti-
nuous functions fV : X → Y such that, if V � W, then fV and fW are V-homotopic.
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Remark 1. If V is a covering of Y and M ⊆ Y , then by V ∩M we denote the following covering
of M :

V ∩M = {V ∩M |V ∈ V}.
If a proximate net (fV) : X → Y satisfies fV(X) ⊆M and if for V � W , fV and fW are V-homotopic

in M , then we can define a proximate net (fW) : X →M in the following way:
For a covering W of M we choose a covering V of Y such that V ∩M = W .
Then the function fW : X →M is defined by

fW(x) = fV(x), for x ∈ X.

Then (fW) : X →M is a proximate net.
We say that the proximate net (fW) : X → M is inherited from (fV) : X → Y , and denote the

inherited proximate net by (fV∩M |V ∈ CovY ).

Two proximate nets (fV) : X → Y and (gV) : X → Y are homotopic if fV and gV are
V-homotopic for all V ∈ CovY , which we denote by (fV)∼(gV). This is an equivalence relation.

If (fV) : X → Y and (gW ) : Y → Z are proximate nets, then for a covering W ∈ CovZ
there exists a covering V ∈ CovY such that gW(V) ≺ W. Then the composition of these two
proximate nets is a proximate net (hW) : X → Z defined by (hW ) = (gWfV) : X → Z.

Paracompact spaces and homotopy classes of proximate nets [(fV)] form a category whose
isomorphisms induce classifications which coincide with the standard shape classification, i.e.,
isomorphic spaces in this category have the same shape.

At the end of this section we give two lemmas that will be used in the sequel. The proof is
given in [21] and [6].

Definition 5. Let V be a covering of Y . Two functions f , g : X → Y are V-near if for
any x ∈ X there exists V ∈ V such that f(x), g(x) ∈ V .

Lemma 1. If V is a covering of Y and f , g : X → Y are V-near and V-continuous, then
f and g are V-homotopic.

Lemma 2. Suppose V is a finite covering of Y , X = X1 ∪ X2, Xi closed, i = 1, 2 and
fi : Xi → Y , V-continuous functions, i = 1, 2 such that f1(x) = f2(x), for all x ∈ X1 ∩X2. We
define a function by

f(x) = fi(x), for x ∈ Xi, i = 1, 2.

Then

1) If x ∈ IntX1 or x ∈ IntX2, then f : X → Y is V-continuous at x.

2) If x ∈ ∂X1 or x ∈ ∂X2, then f : X → Y is st(V)-continuous at x.

3. Basic notions about dynamical systems

Before proceeding further we will recall some elementary concepts from [4].

Definition 6. Let (X, d) be a given metric space. A flow in X is a continuous map
Φ: X × R → X such that it satisfies the following two conditions:

Φ(x, 0) = x, Φ(Φ(x, t), s) = Φ(x, t + s) for all x ∈ X and t, s ∈ R.

The triplet (X,R,Φ) forms a dynamical system (flow) with phase map Φ and phase space X.
If we replace the set R with R+, we get the corresponding notion of semidynamical system.

For every t ∈ R we will consider the map Φt : X → X defined by Φt(x) = Φ(x, t).
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Definition 7. We say that a given subset M ⊆ X is invariant under the flow Φ if
Φ(M, t) ⊆M , for all t ∈ R. If we replace the set R with R+ or R−, we obtain the corresponding
notions of positively and negatively invariant set.

Definition 8. A compact invariant set M is stable if every neighborhood U of M admits
a positively invariant neighborhood V of M such that V ⊆ U .

The trajectory of a point x is the set γ(x) = {Φ(x, t)|t ∈ R}. By replacing the set R

with R+ ∪ {0} or R− ∪ {0} we obtain the corresponding notions of positive and negative semi-
trajectory. We denote them by γ+(x) and γ−(x), respectively. We introduce the positive limit
set of a given subset M ⊆ X with the following:

ω(M) = {x ∈ X | ∃xn ∈M, tn → ∞, Φ(xn, tn) → x}.

Analogously, we define the negative limit set by α(M). If M is an invariant set, its region
of attraction A(M) is the set of all points x ∈ X such that ∅ �= ω(x) ⊂ M . We say that M is
an attractor if A(M) is a neighborhood of M . Stable attractors are called asymptotically stable
sets. Before introducing the concept of a global attractor, we need the following definition:

Definition 9. A set M ⊆ X attracts a set C ⊆ X if for every neighborhood U of M there
exists T ∈ R such that Φt(C) ⊆ U , for every t � T .

Definition 10. Let (Φt) be a semidynamical system on a metric space X. A compact
positively invariant set M ⊆ X is said to be a global attractor if it attracts all bounded sets and
is minimal with respect to this property.

Remark 2. In the paper by Kapitanski – Rodnianski [17] there is no requirement of positive in-
variance. There is a result in the paper by V. Chepyzhov and M. Conti [22] that under the additional
condition of completeness the attractor must be positively invariant.

The following result is known as Keesling’s reformulation of Beck’s theorem [24].

Theorem 2. Let X be a metric space and let Φ: X × R → X be a flow on X with S

as a set of fixed points. Then for any closed set S
′
containing S one can construct a new flow

Φ
′
: X×R → X with S

′
as a set of fixed points. Moreover, for any x ∈ X\S′

with trajectory γ(x)

under Φ, the trajectory of x under Φ
′
is just the set of points which can be joined to x by an

arc in γ(x)\S′
.

Remark 3. Keesling’s reformulation of Beck’s theorem can be seen to hold also for semidynamical
systems.

4. Shape of global attractors in arbitrary metric spaces

In this paper we apply the theory of intrinsic shape to deduce a result for global attractor
properties compared with the properties of the phase space in terms of shape theory.

In order to prove the main theorem, we need the following:

A covering V of M in X is called regular if it satisfies the following conditions:

1) If V ∈ V, then V ∩M �= ∅.

2) If U , V ∈ V and U ∩ V �= ∅, then U ∩ V ∈ V.
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For a covering V of M we introduce the notation |V| =
⋃
V ∈V V .

For a finite regular covering V we define a function rV : |V| →M in the following way:
For points y ∈M we put rV(y) = y
For points y ∈ |V|\M , by induction we can choose the smallest member V ∈ V such that

y ∈ V , then choose a fixed point yV ∈ V ∩M and put rV(y) = yV .
The function rV is V-continuous.

Lemma [21]. If V � W, then rW : |W| → M and rV : |W| → M (the restriction of
rV : |V| →M to |W|) are V-near and so V-homotopic by a homotopy rVW : |W| × I →M .

Lemma [23]. i ◦ rV : |V| → |V| and 1V : |V| → |V| are V-homotopic by a homotopy
RV : |V| × I → |V| such that RV(x, t) = x, for x ∈M .

We proceed by showing how a semidynamical system (Φt : X → X) in a bounded metric space X
with a global attractor M induces a shape morphism X →M in a natural way.

Let us note that there exists a sequence of finite regular coverings (Vn) of the compact M
in X which is cofinal in the set of all coverings of X.
For V1 we consider the set of coverings of X:

N1 = {V|V1 ≺ V}.
There exists t1 such that Φ(X, (t1,∞)) ⊆ |V1|. We put tV = t1 for all V ∈ N1.
For V2 we consider the set of coverings of X:

N2 = {V|V2 ≺ V}\N1.

There exists t2 � t1 such that Φ(X, (t2,∞)) ⊆ |V2|. We put tV = t2 for all V ∈ N2.
By induction we define the set of coverings of X:

Nn = {V|Vn ≺ V}\
n−1⋃
i=1

Ni.

There exists tn � tn−1 such that Φ(X, (tn,∞)) ⊆ |Vn|. We put tV = tn for all V ∈ Nn.
Hence, we have defined a net of positive real numbers (tV |V ∈ CovX ) such that the following

property holds:
tV → ∞ and V � W ⇒ tW � tV . (4.1)

Namely, if n is minimal such that V � Vn and m is minimal such that W � Vm, then from
V � W � Vm we conclude that m � n. Hence, from tV = tn and tW = tm we obtain (4.1).

Construction of the proximate net

We choose an arbitrary covering V of X.
There exists n ∈ N such that V � Vn. We choose n to be minimal with respect to this property.
Hence, V ∈ Nn.
We mention that, since rVn , RVn are Vn-continuous, they will be V-continuous.
For x ∈ X and t ∈ [tV ,∞) we define:

kV(x, t) = rVn(Φ(x, t)).

Note that the function is Vn-continuous and hence V-continuous.
Let us also mention that, using Beck’s theorem 2 from the previous section for points x ∈ M ,
the following holds:

kV(x, t) = rVn(Φ(x, t)) = rVn(x) = x.
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Now we define fV : X → X by

fV(x) = rVn(Φ(x, tV)) = rVn(Φ(x, tn)).

The composition is well defined (see Fig. 1). Since V � Vn, the function fV is V-continuous.

Fig. 1. The composition of fV .

In this way the required proximate net (fV) is defined such that fV(X) ⊆M .
We are ready to state our main theorem:

Theorem 3. Let X be an arbitrary metric space and let (Φt : X → X| t ∈ R+) be a semi-
dynamical system with a global attractor M . Then the inclusion i : M → X induces a shape
equivalence.

Proof. We will prove the theorem in two stages.
(i) First we will assume that the metric space X is bounded. Then we can use the previous

construction of a family of functions fV : X → X with fV(X) ⊆M to formulate the following:

Lemma 3. The net of functions fV : X → X is a proximate net.

Proof. We need to prove that, if V � W, then fV and fW are V-homotopic. We will define
a homotopy rVW : X × I → X in the following manner:

We defineRVW : X×I → X by RVW(x, t) = kV(x, (1−t)tV +ttW). Then RVW(x, 0) = fV(x)
and RVW(x, 1) = kV(x, tW). From kV(x, tW) = rVΦ(x, tW) and kW(x, tW ) = rWΦ(x, tW) it
follows that the two functions fW , l : X → X defined by

l(x) = kV(x, tW ) and fW(x) = kW(x, tW )

are V ∩M -near and by Lemma 1 are V ∩M -homotopic, say by a homotopy hV . By V ∩M we
denote shortly the covering of M defined by V ∩M = {V ∩M |V ∈ V} (see Remark 1). Then
the concatenation of the homotopies rVW = RVW ∗ hV is the required V-homotopy satisfying
rVW(x, 0) = fV(x) and rVW(x, 1) = fW(x). �

Lemma 4. Suppose X is a metric space and M a compact subset of X. If there is a prox-
imate net (fV) : X → X such that fV(X) ⊆ M , for all coverings V, and for V � W, the
functions fV and fW are V-homotopic in M and there is a homotopy HV : X×I → X such that:

1) HV(x, 0) = x,HV(x, 1) = fV(x).

2) HV(M × I) ⊆M .

Then the inherited proximate net (fV∩M) : X →M induces a shape equivalence with the inclusion
i : M → X as a shape inverse.
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Intrinsic Shape Property of Global Attractors in Metrizable Spaces 189

Proof. We consider the proximate net (iV) : M → X induced by the inclusion i : M → X.
First, iV ◦ fV∩M(x) = fV(x) and by 1) , HV connects iV ◦ fV∩M and the identity map 1X . On
the other hand, fV∩M ◦ iV(x) = fV∩M(x) and by 2), HV |M connects fV∩M ◦ iV and the identity
map 1M . �

Proposition 1. The shape morphism [(fV∩M)] : X → M is a shape equivalence. Conse-
quently, Sh(M) = Sh(X).

Proof. We choose an arbitrary covering V of X. As mentioned above, during the definition
of the proximate net (fV) there exists a sequence of regular and finite coverings (Vn) of M in X
which is cofinal in the set of all coverings of X. Hence, there exists n ∈ N such that V � Vn.
We choose the natural number n to be minimal with respect to this property. For simplicity we
put Vn = W.

We mention that, since rW , RW are W-continuous, they will be V-continuous as well. We
will define a homotopy HV : X × I → X as a concatenation of three homotopies. The first is
a continuous map F : X × I → X, defined by

F (x, s) = Φ(x, stV).

This map satisfies

F (x, 0) = x, F (x, 1) = Φ(x, tV).

The third is a function G : X × I → X defined by

G(x, s) = rWΦ(x, tV).

The composition rWΦ is V-continuous and this map satisfies

G(x, 0) = rWΦ(x, tV), G(x, 1) = rWΦ(x, tV) = fV(x).

The middle homotopy Q : X × I → X is defined by

Q(x, s) = RW(Φ(x, tV), s),

where RW is the homotopy from Lemma [23]. This homotopy satisfies

Q(x, 0) = F (x, 1) = Φ(x, tV), Q(x, 1) = G(x, 0) = rWΦ(x, tV)

since

F (x, 1) = Q(x, 0) and Q(x, 1) = G(x, 0).

We can define the concatenation of the three defined homotopies and finally define the
required homotopy HV : X × I → X by HV = G ∗Q ∗ F and

HV(x, 0) = x, HV(x, 1) = fV(x).

Since F (x, s) = x for x ∈ M and the same holds for Q and G, we deduce that the same
holds for the homotopy HV , i.e., HV(x, s) = x, for any x ∈M . �

(ii) Now let us discuss the second case. We assume that the metric space X is unbounded.
Using the standard technique of primitive Lyapunov functions, we get a deformation retract
from X to a bounded and positively invariant neighborhood K of M .
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Namely, let τ(x) = supt�0 dist(Φ(x, t),M). We define the function

L(x) =

∞∫
0

exp−t τ(Φ(x, t)) dt

which is a primitive Lyapunov function for the semidynamical system (X,R+,Φ). We choose
0 < ε < supx∈X L(x) and define the set

K = {x ∈ X|L(x) � ε}
which is positively invariant and bounded. Moreover, the set M is a global attractor for the
semidynamical system (K,R+,Φ). Hence, the inclusion i : M → K is a shape equivalence. For
arbitrary x ∈ X \K there is a unique t = tx such that L(Φ(x, tx)) = ε.

We define the following map:

m(x) =

{
tx, if x ∈ X \K,
0, otherwise.

(The map is continuous). Finally, we define a map r : X → K by

r(x) = Φ(x,m(x)).

Hence, K is a deformation retract of X. �

Example 2. The Warsaw circle, i.e., the graph of the function x → sin 1
x for 0 < x � 1

π
including the limit segment on the ordinate axis and an arc joining the endpoint of this segment

to
(

1
π , 0
)

is an attractor of a flow on R2, as mentioned by Hastings [7, Example 3.3]. But

according to our theorem, the Warsaw circle cannot be a global attractor for any flow on the
plane, having nontrivial shape.

Example 3. Consider a three-dimensional solid torus P ⊆ R3 and a necklace M ⊆ int P
consisting of infinitely many solid balls, tangent to each other and centered at the core circumfer-
ence of P , which we shall denote by L. It is not difficult to construct a differentiable flow Φ which
enters P transversally through its boundary ∂P and has M as a stable attractor. If we define
a semiflow {Φt| t ∈ R+} on P using the flow Φ, it is easily seen that M will be a global attractor
for the semidynamical system (P,Φt). Hence, according to our theorem, Sh(M) = Sh(P ).

5. Applications of intrinsic shape in dynamical systems

The first papers concerning intrinsic shape were focused on proving the equivalence with
the original Borsuk approach.

The papers [8, 21], and [23] contain explicit applications of intrinsic shape from [15] to
dynamical systems and show the advantage of the intrinsic approach to shape when dealing
with dynamical systems.

The papers contain new theoretical approaches and new methodologies based on the use of
intrinsic shape to dynamical systems.

In [21], for flows defined on a compact manifolds with or without boundary, it is shown that
the connectivity components of a chain recurrent set possess a stronger connectivity known as
joinability (or pointed 1-movability in the sense of Borsuk). As a consequence, the Van Dantzig –
Vietoris solenoid cannot be a component of the chain recurrent set, although the solenoid appears
as a minimal set of a flow [5].
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Theorem 4. Suppose ϕ is a flow on a compact manifold (with or without boundary). Then
the components of the chain recurrent set are joinable.

Example 4. By the last theorem, a Hawaiian earring (Fig. 2) can be a component of the
chain recurrent set (Example 6). This is not the case with the solenoid (Fig. 3) since it is not
joinable.

Fig. 2. Hawaiian earring.

Fig. 3. T2 twice twisted and embedded in T1.

Example 5. The Van Dantzig – Vietoris solenoid is the intersection of members of the
sequence T1 ⊇ T2 ⊇ . . . ⊇ Tn . . .. The first member of the sequence T1 is a solid torus.
Each next member of this sequence, Ti, is a solid torus twice twisted and embedded in the
previous Ti−1.

It is obvious by the Lebesgue lemma that for any sequence of finite coverings V1 � V2 � . . .,
between two points of the solenoid there is a sequence of Vn-continuous paths (kn), kn : [0, 1] → Y .
However, there is no proximate path between two points from different arc components (see [21]
and [6] for more details).

In [10], using the concept of topological transitivity, Günther and Segal raised problems
involving the characterization of topologically transitive attractors on arbitrary manifolds for
continuous and discrete dynamical systems.

In [25] V. Jiménez López and J. Libre gave a nice topological characterization of the ω-limit
set for analytic plane flows. Using this result, a partial answer to the problems involving the
characterization of topologically transitive attractors for plane flows is given in [8]. Also, a new
proof of the well-known theorem [10] is presented which provides a very elegant characterization
of attractors on a topological manifold:

Theorem 5. Every attractor of a flow on a manifold has the shape of a finite polyhedron.

The proof is based on the Conley index theory and the new intrinsic shape methods
from [15].
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Fig. 4. Warsaw circle and circle with an approaching orbit.

By shape theory, both the Warsaw circle (Fig. 4) and a circle with an approaching orbit
(Fig. 4) have the shape of a circle — a finite topological polyhedron (see Corollary 1 of our
theorem). So, according to the characterization from [10], the Warsaw circle can be realized as
an attractor for a suitably defined plane flow. A nice example of this fact is given by Hastings
in [7].

On the other hand, the Hawaiian earring (Fig. 2), being a union of infinite many circles,
is not a finite polyhedron and could not be an attractor. The solenoid (Fig. 3) is not a finite
polyhedron either.

Example 6. Consider a dynamical system defined in the cylinder D × I, where D stands
for the unit disk. The points in the Hawaiian earring H =

⋃∞
n=1 S((1/2n, 0, 1/2), 1/2n) are

stationary points. All the points in D × {0, 1} are also stationary. The trajectories of the rest
of the points are vertical straight lines joining two stationary points. The Hawaiian earring is
a Morse set (hence a component of the chain recurrent set) which is not a shape retract of any
of its neighborhoods. This shows that Theorem 3 does not hold in general for Morse sets.

Corollary 1. Let M be a compact minimal set of the flow Φ: X×R → X. Then for every

x ∈ A(M), Sh(γ+(x)) = Sh(M).

Proof. If x ∈ M , then γ+(x) = M and the claim follows. If x /∈ M , then since x ∈ A(M),
we have that ω(x) ⊆ M and by the minimality of M , ω(x) = M . Moreover, x is not periodic

since x /∈ ω(x). Hence, γ+(x) = γ+(x) ∪M with γ+(x) ∩M = ∅. Now we can define a semidy-
namical system ϕ on γ+(x) ∪M induced by Φ. Let us note that M is a global attractor for ϕ.
Hence, the claim follows from Theorem 3. �

Remark 4. Let us note that in general M and γ+(x) are not of the same homotopy type. For
example, let us consider the following system of differential equations in polar coordinates:

ṙ = r(1 − r),

θ̇ = 1.

The unit circle M is a minimal compact set. If x is a point in A(M) with x /∈ M , then γ+(x)

is the union of M and a ray spiralling to M (Figure 4). Obviously, γ+(x) and M are not homotopically
equivalent.

Corollary 2. Let Φ: X × R → X be a flow on a metric space X and let M be an asymp-
totically stable attractor of Φ. Then the inclusion i : M → A(M) is a shape equivalence.

Proof. Let us note that the region or basin of attraction A(M) is a positively invariant
set. Hence, we can define a semiflow ϕ on A(M) induced by Φ. The set M is a global attractor
for ϕ. The claim follows from Theorem 3. �
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Another interesting corollary of Theorem 3 is the following claim.

Corollary 3. Let Φλ : X × R → X, λ ∈ I be a parametrized family of flows defined
on a locally compact ANR, X. If M is an attractor of Φ0, then for every neighborhood V
of M contained in the basin of attraction of M there exists a λ0, with 0 < λ0 � 1, such that
for every λ � λ0 there exists an attractor Mλ ⊂ V of the flow Φλ with Sh(Mλ) = Sh(M).
Moreover, V is contained in the basin of attraction of Mλ.

Example 7. Consider the family of ordinary differential equations defined on the plane

ṙ = −r(r2 − λ),

θ̇ = 1.

The picture on the left in Fig. 2 describes the phase portrait of the above equations when the
parameter λ = 0. We see that in this case the origin is a globally attracting fixed point and the
orbit of any other point spirals towards it.

Fig. 5. Phase portrait of the family of equations.

The picture on the right describes the phase portrait of the above equations when λ > 0. In
this case we see that the origin is not a global attractor anymore since, for each λ > 0, the circle

centered at the origin and radius
√
λ is a periodic trajectory which attracts uniformly all the

points of the unbounded component of its complement and the origin repels all the points of the
bounded one (unstable spiral and a stable limit cycle are born, hence we have a supercritical Hopf
bifurcation). Notice that nevertheless for every neighborhood V of M = (0, 0) there exists λ0
with 0 < λ0 � 1, such that for every 0 < λ � λ0 the disk Mλ centered at the origin and radius

√
λ

is a global attractor contained in V with the shape of a point. Hence, Sh(Mλ) = Sh(M).

References

[1] Borsuk, K., Theory of Shape, Monogr. Matem., vol. 59, Warsaw: PWN, 1975.

[2] Dydak, J. and Segal, J., Shape Theory: An Introduction, Lecture Notes in Math., vol. 688, Berlin:
Springer, 1978.

[3] Spanier, E. H., Algebraic Topology, New York: McGraw-Hill, 1966.

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2020, 16(1), 181–194



194 N. Shekutkovski, M. Shoptrajanov
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[9] Bogatÿı, S. A. and Gutsu, V. I., On the Structure of Attracting Compacta, Differ. Uravn., 1989,
vol. 25, no. 5, pp. 907–909, 920 (Russian).

[10] Günther, B. and Segal, J., Every Attractor of a Flow on a Manifold Has the Shape of a Finite
Polyhedron, Proc. Amer. Math. Soc., 1993, vol. 119, no. 1, pp. 321–329.

[11] Giraldo, A. and Sanjurjo, J. M. R., On the Global Structure of Invariant Regions of Flows
with Asymptotically Stable Attractors, Math. Z., 1999, vol. 232, no. 4, pp. 739–746.

[12] Rogers, J. T., Jr., The Shape of a Cross-Section of the Solution Funnel of an Ordinary Differential
Equation, Illinois J. Math., 1977, vol. 21, no. 2, pp. 420–426.

[13] Mrozek, M., Shape Index and Other Indices of Conley Type for Local Maps on Locally Compact
Hausdorff Spaces, Fund. Math., 1994, vol. 145, no. 1, pp. 15–37.

[14] Robbin, J. W. and Salamon, D., Dynamical Systems, Shape Theory and the Conley Index, Ergodic
Theory Dynam. Systems, 1988, vol. 8∗, Charles Conley Memorial Issue, pp. 375–393.

[15] Shekutkovski, N., Intrinsic Definition of Strong Shape for Compact Metric Spaces, Topology Proc.,
2012, vol. 39, pp. 27–39.
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