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A dynamical approach to shape
Martin Shoptrajanov

Abstract. In this paper we will discuss a dynamical approach to an open
problem from shape theory. We will address the problem in compact metric
spaces using the notion of Lebesgue number for a covering and the intrinsic
approach to strong shape.

Анотація. В роботі обговорюється підхід з точки зору динамічних си-
стем до однієї відкритої проблеми теорії шейпів. Ця проблема вивчається
для компактних метричних просторів з використанням поняття числа
Лебега покриття та внутрішнього підхіду до сильних шейпів.

1. INTRODUCTION
The purpose of shape theory is the same as that of homotopy theory.

However, for investigation of spaces that are not locally nice-like many ob-
jects that appear in dynamical systems, shape theory is a more convenient
tool. The ability to smooth out local pathology makes it a good instrument
for the study of the global properties of spaces which have very complicated
local topological behavior. Besides, shape theory does not modify homo-
topy theory in the good framework. The use of shape theory in the study
of dynamical systems was initiated by Hastings in [12]. He proved a kind of
generalized Poincare-Bendixson theorem in higher dimensions by replacing
a geometric description of an invariant set M by a description of its shape.
The result of Hastings was the first one of a series of papers by different au-
thors (for example [11,19]) who analyzed similar situations. In these papers
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useful connection has been established between shape theory and topologi-
cal dynamics based on the approach to shape developed by K. Borsuk [3].
Ideas from shape theory were also important in the investigations in finite-
dimensional dynamics on global attractors in [18]. Using shape theoretical
methods and the Conley index an important results about robustness of
global attractors were established in [17]. In the paper [8] the authors es-
tablished a new connection between shape and dynamics by adopting a
different point of view. The theory of dynamical systems is used here to
give a new interpretation of shape.

The aim of this paper is to show how the theory of dynamical systems
can be used as a tool for shape theoretical problems. The main motiva-
tion comes from an open problem in topology ([23, Problem 741]) which
plunges into the question: Is every shape equivalence a strong shape equi-
valence? We will give a dynamical perspective of this problem for compact
metric spaces using the intrinsic approach to strong shape from [21] which
combines continuity up to a covering and the corresponding homotopies
of second order. We will only use the notion of a Lebesgue number for a
covering.

2. ATTRACTORS IN METRIC SPACES
The main reference for the elementary concepts of dynamical systems

will be [1] but we also recommend [14–16]. Let us recall some of the basic
notions from this theory. Let X be a metric space. A flow in X is a
continuous map Φ : X ˆ R Ñ X such that satisfies the following two
conditions Φ(x, 0) = x, Φ(Φ(x, t), s) = Φ(x, t+s) for all x P X and t, s P R.

The triplet (X,R,Φ) forms a dynamical system (flow) with phase map
Φ and phase space X. If we replace the set R with R+ we get the corres-
ponding notion of a semi-dynamical system. The trajectory of a point x
is the set γ(x) = tΦ(x, t) | t P Ru. By replacing the set R with R+ Y t0u
or R´ Y t0u we obtain the corresponding notions of positive and negative
semi trajectory. We denote by γ+(x) and γ´(x) correspondingly. For every
t P R we will consider the map Φt : X Ñ X defined by Φt(x) = Φ(x, t).

Definition 2.1. We say that a given subset M Ď X is invariant under the
flow Φ whenever Φ(M, t) Ď M , for all t P R. If we replace the set R with
R+ or R´, we obtain the corresponding notions of positively and negatively
invariant set.

We introduce positive limit set of a given subset M Ď X with the follow-
ing:

ω(M) = tx P X | Dxn P M, tn Ñ 8, Φ(xn, tn) Ñ xu.
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Similarly we define negative limit set α(M). If M is an invariant set,
its region of attraction A(M) is the set of all points x P X such that
H ‰ ω(x) Ă M . We say that M is an attractor if A(M) is a neighborhood
of M .

Before introducing the concept of a global attractor we need the following
definition:

Definition 2.2. A set M Ď X attracts a set C Ď X if for every neighbor-
hood U of M there exists T P R such that Φt(C) Ď U , for every t ě T .

Definition 2.3. Let (Φt) be a semi-dynamical system on a metric space
X. A compact positively invariant set M Ď X is said to be a global attractor
if it attracts all compact sets.

3. INTRINSIC SHAPE AND STRONG SHAPE
Shape theory was introduced by Borsuk, [3, 5], in order to study geo-

metric properties of compact metric spaces with not necessarily good local
properties. Namely, homotopy theory turns out to be inappropriate tool
for studying spaces with local pathology which appear in the mathematical
formulation of many natural phenomena, for example solenoids, attractors
etc. Hence, it is natural to look for another adequate tool for handling these
problems. Shape theory takes the role in this context because manages to
smooth out local pathologies while preserving global properties. Also, shape
theory does not modify homotopy theory in the good framework. Initially,
the external approach to shape from Borsuk requires external elements
(ambient-AR, ANR-expansions) in which the original space is embedded.
Later on, a question was raised regarding the intrinsic description of shape,
i.e., construction without external spaces.

The first intrinsic approach to shape is given in the papers [6] and [20].
In the paper [21] using the notion of a proximate sequence over cofinal
sequences of finite coverings intrinsic strong shape category is constructed
for compact metric spaces.

We shall follow the construction given in [21] for compact metric spaces
using the notion of V-continuity. By a covering we understand a covering
consisting of open sets. Let’s start with some of the basic definitions:

For collections U and V of subsets of X, U ă V means that U refines V,
i.e., each U P U is contained in some V P V.

Definition 3.1. Suppose V is a covering of Y . A function f : X Ñ Y is
V-continuous at a point x P X, if there exists a neighborhood Ux of x and
V P V such that: f(Ux) Ď V .
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A function f : X Ñ Y is V-continuous if it is V-continuous at every point
x P X. In this case, the family of all Ux form a covering of X.

According to this f : X Ñ Y is V-continuous if there exists a covering
U of X such that for any x P X, there exists a neighborhood U of x and
V P V such that f(U) Ď V . We denote shortly: there exists U such that
f (U) ă V.

If f : X Ñ Y is V-continuous, then f : X Ñ Y is W-continuous for any
W such that V ă W.

If V is a covering of Y and V P V the open set st(V ) (star of V ) is the
union of all W P V such that W X V ‰ H. We form a new covering of Y ,
st(V) = tst(V ) | V P Vu.
Definition 3.2. Two maps f, g : X Ñ Y are V-homotopic, if there exists a
map F : X ˆ I Ñ Y such that:

(i) F : X ˆ I Ñ Y is st(V)-continuous;
(ii) F : X ˆ I Ñ Y is V-continuous at all points of X ˆ BI;
(iii) F (x, 0) = f(x), F (x, 1) = g(x).

The relation of V-homotopy is denoted by f
V» g. This is an equivalence

relation.

3.3. Intrinsic shape. We will give a brief construction of the shape cate-
gory using the intrinsic approach from [21]. The approach follows the main
steps of construction of homotopy theory.

Instead of taking continuous functions f, g : X Ñ Y we take proximate
sequences of functions (fn), (gn) : X Ñ Y and define a relation of homotopy
(fn) » (gn).

Like in homotopy theory where X and Y have the same homotopy type
if there exist a continuous function f : X Ñ Y with a homotopy inverse, X
and Y have the same (intrinsic) shape if there exist a proximate sequence
(fn) : X Ñ Y with a homotopy inverse.

Definition 3.4. A sequence (fn) of functions fn : X Ñ Y is a proximate
sequence from X to Y , if for some sequence V1 ą V2 ą . . . cofinal in the
set of finite coverings, for all indices m ě n, fn and fm are homotopic
as Vn-continuous functions, (“cofinal” means that for any finite covering
V there exists Vn such that Vn ă V). In this case we say that (fn) is a
proximate sequence over (Vn).

We mention that if (fn) and (f 1
n) are proximate sequences from X to Y ,

then there exists a sequence (Vn) of finite coverings such that (fn) and (f 1
n)

are proximate sequences over (Vn).
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Two proximate sequences (fn), (f 1
n) are homotopic if for some sequence

V1 ą V2 ą . . . cofinal in the set of finite coverings, (fn) and (f 1
n) are proxi-

mate sequences over (Vn), and for all integers n, fn and f 1
n are homotopic

as Vn-continuous functions.
This is an equivalence relation and we denote it by (fn) » (f 1

n). The
homotopy class is denoted by [(fn)].

Let (fk) : X Ñ Y be a proximate sequence over (Vk) and let (gn) : Y Ñ Z
be a proximate sequence over (Wn). For a covering Wn of Z, there exist a
covering Vkn of Y such that gn(Vkn) ă Wn. Then the composition of these
two proximate sequences is the proximate sequence

(hn) = (gnfkn) : X Ñ Z.

This proximate sequence is unique up to homotopy.
Compact metric spaces and homotopy classes of proximate sequences

form the category whose isomorphisms induce classification which coincide
with the standard shape classification, i.e., isomorphic spaces in this cate-
gory have the same shape.

3.5. Intrinsic strong shape. The main notion for the intrinsic defini-
tion of strong shape for compact metric spaces is the notion of a strong
proximate sequence.

Definition 3.6. The sequence of pairs (fn, fn,n+1) of functions fn : X Ñ Y
and fn,n+1 : X ˆ I Ñ Y is a strong proximate sequence from X to Y , if there
exists a cofinal sequence of finite coverings, V1 ą V2 ą . . . of Y such that
for each natural number n, fn : X Ñ Y is a Vn-continuous function and
fn,n+1 : X ˆ I Ñ Y is a homotopy connecting Vn-continuous functions
fn : X Ñ Y and fn+1 : X Ñ Y . We say that (fn, fn,n+1) is a strong
proximate sequence over (Vn).

If (fn, fn,n+1) and (f 1
n, f

1
n,n+1) are strong proximate sequences from X

to Y , then there exists a cofinal sequence of finite coverings (Vn) such that
(fn, fn,n+1) and (f 1

n, f
1
n,n+1) are strong proximate sequences over (Vn).

Two strong proximate sequences
(fn, fn,n+1) : X Ñ Y, (f 1

n, f
1
n,n+1) : X Ñ Y

are homotopic if there exists a strong proximate sequence
(Fn, Fn,n+1) : X ˆ I Ñ Y

over st(Vn) such that:
(i) Fn : X ˆ I Ñ Y is a Vn-homotopy between Vn-continuous maps fn

and f 1
n,
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(ii) Fn,n+1 : X ˆ I ˆ I Ñ Y is a st2(Vn)-continuous function, at all points
from X ˆ BI2 is st(Vn)-continuous, Fn,n+1(x, t, 0) = fn,n+1(x, t), and
Fn,n+1(x, t, 1) = f 1

n,n+1(x, t).
The composition of strong proximate sequences is defined in the following

way.
Let (fn, fn,n+1) : X Ñ Y and (gk, gk,k+1) : Y Ñ Z be strong proximate

sequences. There exists a subsequence nk such that the sequence of pairs
of functions (hk, hk,k+1) defined as follows is a strong proximate sequence
(see [21]).

We put hk = gkfnk
and

hk,k+1(x, t) =

#
gkfnk,nk+1

(x, 2t), t P [0; 12 ],

gk,k+1(fnk+1
(x), 2t ´ 1), t P [12 ; 1].

where fnk,nk+1
= fnk,nk+1 ˚ ¨ ¨ ¨ ˚ fnk+1´1,nk+1

is the concatenation of ho-
motopies. The composition of strong proximate sequence is unique up to
homotopy (see [21]).

Homotopy classes of strong proximate sequences are morphisms of strong
shape category. Two spaces X and Y have the same strong shape, if they
are isomorphic in this category and we denote it by SSh(X) = SSh(Y ).

4. INTRINSIC STRONG SHAPE OF ATTRACTORS IN COMPACT METRIC
SPACES

Invariant sets are of crucial importance in the theory of dynamical sys-
tems. This is because that for a given dynamical system, they are the
carriers of much information on the longtime behavior of the system. Of
special interest are attractors. An attractor, if exists, is the depository
of “all” the dynamics of a system near the attractor. The attractor the-
ories in metric spaces were fully developed in the past decades for both
autonomous and non-autonomous systems. Here we are interested in the
shape theoretical insight of these rather intriguing objects.

Several authors have established interesting results, [2,7,9,11,13], where
properties of attractors are compared with properties of the phase space
in terms of shape theory. It is a well known result that the inclusion
i : M Ñ X from a global attractor to its phase space is a shape equi-
valence. In order to build our dynamical perspective to the topological
problem from [23] first we shall prove that the inclusion i : M Ñ X in-
duces a strong shape equivalence from a global attractor to its phase space.
Also avoiding embedding in suitable AR-spaces (by use of Kuratowski-
Wojdyslawski theorem) using the intrinsic approach to strong shape we
shall simplify our discussion only in terms of non-continuous topology.
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We start by showing how a semi-dynamical system in a compact metric
space with a global attractor M induces a strong proximate sequence and
hence a strong shape morphism in a natural way.

4.1. The strong shape morphism induced by a semi-dynamical
system. Let X be a compact metric space and tΦt : X Ñ X | t P R+u
a semi-flow with a global attractor M . We will induce a strong proximate
sequence (gn, gn,n+1) : X Ñ M in a natural way using the semi-flow Φ
defined in X. Namely, first we will define a map a : X ˆ R+ Ñ M in the
following way:

For arbitrary x P X and t P R+ we go with the semi-flow until the point
Φ(x, t). Then we measure the distance d(Φ(x, t),M) which by compactness
of the set M is achieved in some point mt

x P M , that is

d(Φ(x, t),M) := d(Φ(x, t),mt
x).

Of course this point may not be unique but nevertheless we can pick any
such point. So we define a(x, t) = mt

x, for (x, t) P X ˆ R+. Note that for
x P M and t P R+ the following holds a(x, t) = Φ(x, t).

Now let us choose an arbitrary cofinal sequence of finite coverings (Vn)
for the compact set M and adjoin the corresponding sequence of Lebesgue
numbers (λn) for the coverings (Vn). We will define a local base for M in
the form ␣

Wn = T
(
M, λn

8

) | n P N
(
,

where T
(
M, λn

8

)
stands for an open ball centered at M and radius r = λn

8 .
Using the fact that M is a global attractor there exists a monotonically
increasing sequence of real numbers tn Ñ +8 such that Φ(x, tn) P Wn, for
arbitrary x P X.

Now we make the choice t = tn and define the sequence gn(x) = a(x, tn).
The only thing left is to define the homotopies gn,n+1 : X ˆ I Ñ M by

gn,n+1(x, t) = a(x, (1 ´ t)tn + ttn+1).

Lemma 4.2. The sequence of pairs (gn, gn,n+1) : X Ñ M is a strong
proximate sequence. □

The proof of the above lemma is an appropriate adjustment of the proof
of a lemma given in the paper [22]. In the following section we will give some
insights to the question from [23]: “Is every shape equivalence f : M Ñ X
a strong shape equivalence?”

In the special case when f is the inclusion map (f = i) and we can define
a semi-flow

tΦt : X Ñ X | t P R+u
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in X such that M Ď X is a global attractor we will make some useful
conclusion.

Intrinsic strong shape of attractors.

Theorem 4.3. Let X be a compact metric space and

tΦt : X Ñ X | t P R+u
be a semi-dynamical system with a global attractor M . Then the inclusion
map i : M Ñ X induces a strong shape equivalence.
Proof. We define a strong proximate sequence (fn, fn,n+1) : M Ñ X by
fn = i, for every n P N and the homotopies fn,n+1 : MˆI Ñ X are given by
fn,n+1(x, t) = x, for every x P M, t P I and for every n P N. We will prove
that the strong proximate sequence (gn, gn,n+1) is a strong shape inverse of
(fn, fn,n+1), i.e., the following holds:

[(gn, gn,n+1)] ˝ [(fn, fn,n+1)] = [(1n, 1n,n+1)],

[(fn, fn,n+1)] ˝ [(gn, gn,n+1)] = [(1n, 1n,n+1)],

where [(gn, gn,n+1)] stands for homotopy class of the strong proximate se-
quence (gn, gn,n+1) (see the proof of [22, Proposition 3.1] for the equality
[gn] = [1n] in the shape category).

We will prove the first composition as follows. Let us note that the
composition

[(gn, gn,n+1)] ˝ [(fn, fn,n+1)] = [(hn, hn,n+1)]

is given by hn = gn ˝ fkn , where kn is an appropriate chosen subsequence
for the cofinal sequences of coverings (Vn) for M and (Un) for X according
to the definition and the connecting homotopy is given by:

hn,n+1(x, t) =

#
gnfkn,kn+1(x, 2t), t P [0; 12 ],

gn,n+1(fkn+1(x), 2t ´ 1), t P [12 ; 1].

On the other hand the strong proximate sequence (1n, 1n,n+1) is given
by

1n : M Ñ M, 1n(x) = x,

1n,n+1 : M ˆ I Ñ M, 1n,n+1(x, t) = x,

for arbitrary x P M, t P I. We will prove that the strong proximate se-
quences (hn, hn,n+1) and (1n, 1n,n+1) are homotopic. First let us note that

hn(x) = gn ˝ fkn(x) = gn(x) = Φ(x, tn).
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Now define wn : M ˆ I Ñ M by wn(x, t) = Φ(x, (1 ´ t)tn). This is a
continuous homotopy connecting hn and 1n. We consider the following
map wn,n+1 : M ˆ I ˆ I Ñ M given by:

wn,n+1(x, t, s) =

#
Φ(x, (1 ´ s)tn), t P [0; 12 ],

Φ(x, 2(1 ´ s)(1 ´ t)tn + (1 ´ s)(2t ´ 1)tn+1), t P [12 ; 1].

We will prove that (wn, wn,n+1) is a strong proximate sequence connect-
ing (hn, hn,n+1) and (1n, 1n,n+1). Namely

wn,n+1(x, t, 0) = hn,n+1(x, t) for s = 0,

wn,n+1(x, t, 1) = x = 1n,n+1(x, t) for s = 1.

Similarly,

wn,n+1(x, 0, s) = wn(x, s) for t = 0,

wn,n+1(x, 1, s) = wn+1(x, s) for t = 1.

Then the claim follows from the continuity of wn and wn,n+1.
It remains to prove the second composition i.e., that

[(fn, fn,n+1)] ˝ [(gn, gn,n+1)] = [(1n, 1n,n+1)].

First let
[(fn, fn,n+1)] ˝ [(gn, gn,n+1)] = [(hn, hn,n+1)],

where the strong proximate sequence (hn, hn,n+1) by definition of compo-
sition is given by hn = fn ˝ gkn and:

hn,n+1(x, t) =

#
fngkn,kn+1(x, 2t), t P [0; 12 ],

fn,n+1(gkn+1(x), 2t ´ 1), t P [12 ; 1].

Let us note that the map hn : X Ñ X is given by hn(x) = a(x, tkn) and
using the notation c = kn+1 ´ kn the homotopy hn,n+1 is given by:

hn,n+1(x, t) =

$
’’’’’’’&
’’’’’’’%

a(x, (1 ´ 2ct)tkn + 2cttkn+1), 2t P [0; 1c ],

a(x, (2 ´ 2ct)tkn+1 + (2ct ´ 1)tkn+2), 2t P [1c ;
2
c ],

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
a(x, (c ´ 2ct)tkn+1´1 + (2tc ´ c+ 1)tkn+1), 2t P [ c´1

c ; 1],

a(x, tkn+1), t P [12 ; 1].

We need to construct a strong proximate sequence (wn, wn,n+1) which
connects the strong proximate sequence (hn, hn,n+1) and (1n, 1n,n+1). We
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proceed as follows. The choice for the homotopy wn is given by:

wn(x, t) =

#
Φ(x, (1 ´ t)tkn), t ‰ 0,

a(x, tkn), t = 0.

It remains to define the homotopy of second order wn,n+1 : XˆIˆI Ñ X
with:

wn,n+1(x, t, s) =

$
’’’’’’’&
’’’’’’’%

Φ(x, ((1 ´ p)tkn + ptkn+1)q), 2t P [0; 1c ],

Φ(x, ((2 ´ p)tkn+1 + (p ´ 1)tkn+2)q), 2t P [1c ;
2
c ],

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
Φ(x, ((c ´ p)tkn+1´1 + (p ´ c+ 1)tkn+1)q), 2t P [ c´1

c ; 1],

Φ(x, tkn+1q), t P [12 ; 1]

where p = 2tc and q = 1 ´ s ‰ 1. For the case where q = 1 ´ s = 1 we go
with:

wn,n+1(x, t, 0) =

$
’’’’’’’&
’’’’’’’%

a(x, (1 ´ p)tkn + ptkn+1), 2t P [0; 1c ],

a(x, (2 ´ p)tkn+1 + (p ´ 1)tkn+2), 2t P [1c ;
2
c ],

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
a(x, (c ´ p)tkn+1´1 + (p ´ c+ 1)tkn+1), 2t P [ c´1

c ; 1],

a(x, tkn+1), t P [12 ; 1].

We need to check the connecting relations. For the level s = 0 we have
that wn,n+1(x, t, 0) = hn,n+1(x, t) and for the level s = 1 we obtain the
relation wn,n+1(x, t, 1) = 1n,n+1(x, t) = x. For the level t = 0 we have that
wn,n+1(x, 0, s) = wn(x, s) and for the level t = 1 we obtain the relation
wn,n+1(x, 1, s) = wn+1(x, s).

We will prove that the homotopies wn, wn,n+1 are sufficiently close to con-
tinuous according to the definition. Namely let (hn, hn,n+1) and (1n, 1n,n+1)
be strong proximate sequences over a cofinal sequence of coverings (Un) of
X with corresponding Lebesgue numbers γn such that λkn ď γn(Vkn ă Un).
We will prove that (wn, wn,n+1) is a strong proximate sequence over (st(Un))
such that:

(i) wn : X ˆ I Ñ X is Un-homotopy between hn and 1n.
(ii) wn,n+1 : X ˆ I ˆ I Ñ X is st2(Un)-continuous and at all points from

X ˆ BI2 is st(Un)-continuous connecting wn,n+1(x, t, 0) = hn,n+1(x, t)
and wn,n+1(x, t, 1) = 1n,n+1(x, t).

Let us discuss the first claim. We will prove that the homotopy wn is
st(Un)-continuous. Note that for points (x0, t0) P X ˆ Izt0u the homotopy
wn is continuous according to the definition and hence is st(Un)-continuous



26 M. Shoptrajanov

as well. It remains to consider the points (x0, 0) P X ˆ t0u. The map
hn : X Ñ X is Un-continuous, whence there exists a neighborhood Wx0 of
x0 such that hn(Wx0) Ď Un, for some Un P Un. Note that

Φ(x0, tkn) P T
(
M,

λkn
8

)
,

so there exists Un̊ P Un such that:
Φ(x0, tkn), h(x0) = a(x0, tkn) P Un̊ .

We will consider the map r(x, t) = Φ(x, (1 ´ t)tkn) at the point (x0, 0).
From the continuity of r there exists a neighborhood Ux0 ˆ Q0 of (x0, 0)
such that

r(Ux0 ˆ Q0) Ď Un̊ .

One can assume that Ux0 Ď Wx0 . Now from
Ux0 ˆ Q0 = Ux0 ˆ t0u Y Ux0 ˆ Q0zt0u

we obtain the following inclusion:
r(Ux0 ˆ Q0zt0u) = wn(Ux0 ˆ Q0zt0u) Ď Un̊ ,

while from
wn(Ux0 ˆ t0u) = hn(Ux0) Ď Un

we get that
wn(Ux0 ˆ Q0) Ď Un̊ Y Un.

Notice that Un̊ X Un ‰ H hence wn(Ux0 ˆ Q0) Ď st(Un). Emphasize also
that for points from X ˆ BI we have that either wn(x, 0) = a(x, tkn) or
wn(x, 1) = Φ(x, 0) = x. This implies Un-continuity at those points (recall
that Vkn ă Un).

It remains to consider the homotopy of the second order
wn,n+1 : X ˆ I ˆ I Ñ X

and to investigate how close to continuity this map really is. Note that
at the points (x0, t0, s0), s0 ‰ 0, the homotopy wn,n+1 is continuous be-
cause of the continuity of the phase map Φ. We will discuss the points
(x0, t0, 0). The map hn,n+1 is st(Un)-continuous which means that there
exists a neighborhood Ux0 ˆ Tt0 of (x0, t0) such that:

hn,n+1(Ux0 ˆ Tt0) Ď st(Un), st(Un) P st(Un).

It suffices to discuss the case when
2t0 =

m
kn+1´kn

= m
c , m P t1, 2, . . . , c ´ 1u.

We introduce the point P = Φ(x0, tkn+m). Consider the following two
continuous maps:
r1(x, t, s) = Φ

(
x, (m ´ 2ct)(1 ´ s)tkn+m´1 + (2ct ´ m+ 1)tkn+m(1 ´ s)

)
,
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r2(x, t, s) = Φ
(
x, (m+ 1 ´ 2ct)(1 ´ s)tkn+m + (2ct ´ m)tkn+m+1(1 ´ s)

)
.

Notice that
d(P,wn,n+1(x0, t0, 0)) ă λkn+m

8 ă γn,

whence there exists Un̊ P Un such that
P, wn,n+1(x0, t0, 0) P Un̊ .

Now from the continuity of the maps r1, r2 there exist neighborhoods
U1
x0

ˆ T 1
t0 ˆ W 1

0 and U2
x0

ˆ T 2
t0 ˆ W 2

0

of (x0, t0, 0) such that:
r1(U

1
x0

ˆ T 1
t0 ˆ W 1

0 ) Ď Un̊ , r2(U
2
x0

ˆ T 2
t0 ˆ W 2

0 ) Ď Un̊ .

We introduce the following sets:
W0̊ = W 1

0 X W 2
0 , Tt̊0 = Tt0 X T 1

t0 X T 2
t0 , Ux̊0

= Ux0 X U1
x0

X U2
x0
.

Then from the relation:
Ux̊0

ˆ Tt̊0 ˆ W0̊ = (Ux̊0
ˆ T ˚+

t0
ˆ W0̊ zt0u) Y (Ux̊0

ˆ T ˚+
t0

ˆ t0u)Y
Y (Ux̊0

ˆ T ˚´
t0

ˆ W0̊ zt0u) Y (Ux̊0
ˆ T ˚´

t0
ˆ t0u),

where T ˚+
t0

and T ˚´
t0

stands for:
T ˚+
t0

= Tt̊0 X [t0,+8), i.e. T ˚´
t0

= Tt̊0 X (´8, t0].

Hence we get the following inclusions:
wn,n+1(Ux̊0

ˆ T ˚+
t0

ˆ W0̊ zt0u) = r2(Ux̊0
ˆ T ˚+

t0
ˆ W0̊ zt0u) Ď Un̊ Ď st(Un̊ ),

wn,n+1(Ux̊0
ˆ T ˚+

t0
ˆ t0u) = hn,n+1(Ux̊0

ˆ T ˚+
t0

) Ď st(Un),

as well as
wn,n+1(Ux̊0

ˆ T ˚´
t0

ˆ W0̊ zt0u) = r1(Ux̊0
ˆ T ˚´

t0
ˆ W0̊ zt0u) Ď Un̊ Ď st(Un̊ ),

wn,n+1(Ux̊0
ˆ T ˚´

t0
ˆ t0u) = hn,n+1(Ux̊0

ˆ T ˚´
t0

) Ď st(Un).

Note that st(Un̊ ) X st(Un) ‰ H which implies that
wn,n+1(Ux̊0

ˆ Tt̊0 ˆ W0̊ ) Ď st2(Un).

Hence we conclude st2(Un)-continuity.
It remains to discuss the continuity at the points from X ˆ BI2. For

the level s = 0 we have wn,n+1(x, t, 0) = hn,n+1(x, t) and for s = 1 we
obtain the relation wn,n+1(x, t, 1) = 1n,n+1(x, t) = x. For the level t = 0
we have wn,n+1(x, 0, s) = wn(x, s) and for t = 1 we obtain the relation
wn,n+1(x, 1, s) = wn+1(x, s). Hence we conclude st(Un)-continuity. □

Now we shall use the following theorem from [4]
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Theorem 4.4. Let f : X Ñ Y be a map. The following holds:

1) The map f : X Ñ Y is a shape equivalence if and only if the inclusion
i : X Ñ M(f) from X to the mapping cylinder M(f) of f is a shape
equivalence.

2) The map f : X Ñ Y is a strong shape equivalence if and only if the
inclusion i : X Ñ M(f) from X to the mapping cylinder M(f) of f is
a strong shape equivalence.
The previous two Theorems 4.3 and 4.4 and discussion gives us a new

insight of the already mentioned problem from [23]. Namely, now we can
state the following question which arises from the results above and is purely
dynamic by nature:
Problem 4.5. Given a set X in a space M(f) such that the inclusion
i : X Ñ M(f) induces a shape equivalence, when is X the global attractor
for some semi-dynamical system in M(f)?

By answering this question we obtain a substantial information about
the problem in [23]. For example note that if X has the homotopy type of
a compact ANR then it is well known that X can be realized as a global
attractor in M(f) for a suitably defined semi-flow. Hence we have the
following claim:

Corollary 4.6. Let f : X Ñ Y be a shape equivalence. If X has the
homotopy type of a compact ANR then f is a strong shape equivalence as
well.

This means that we can use dynamical tools to answer shape theoretical
problems as well. Attacking Problem 4.5 which is a dynamical problem by
nature we actually obtain, at least partially, an answer to the purely shape
theoretical problem from [23].

Note that our Theorem 4.3 does not hold for discrete dynamical systems
as the following example shows.
Example 4.7. Consider the discrete semi-group tΦnu on R2 generated
by the function f(x, y) = (cos 10x, cos 10y), for every (x, y) P R2. Let us
introduce the following set A = t(x, y) P R2 | x2+y2 = 1u. Since f(R2) = A
and f(A) = A, it is clear that A is the global attractor for tΦnu. On hte
other hand, the strong shape of the plane clearly differs from the circle A,
being contractible.

We will mention the following interesting corollary of our result as well
which suggest a kind of topological robustness of global attractors in nice
spaces.
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Corollary 4.8. Let Φλ : X ˆ R Ñ X,λ P I be a parameterized family of
flows defined on a locally compact ANR, X. If M is an attractor of Φ0 then
for every neighborhood V of M contained in the basin of attraction of M
there exists a λ0, with 0 ă λ0 ď 1, such that for every λ ď λ0 there exists
an attractor Mλ Ă V of the flow Φλ with SSh(Mλ) = SSh(M). Moreover
V is contained in the basin of attraction of Mλ.
Connectedness properties of attractors in metric spaces. The fol-
lowing theorem is a nice build up of our previous theorem. Namely, using
Theorem 4.3 we will give a nice result which also improves some of the
results from [10].

Theorem 4.9. Let X be a compact metric space and let
tΦt : X Ñ X | t P R+u

be a semi-flow with a global attractor M . Then there exists a bijection
φ : ˝(M) Ñ ˝(X) between the spaces of components of the global attractor
M and X such that M0 Ď φ(M0) for every M0 P ˝(M) and such that the
inclusion i : M0 Ñ φ(M0) induces a strong shape equivalence.
Proof. For every component Xα P ˝(X) put Mα = Xα X M . Since the
semi-trajectory γ+(x) of every point x P Xα is connected andM is compact,
we have that H ‰ ω(x) Ď Mα. We shall prove that Mα is connected.

Suppose that Mα is disconnected, so Mα = M1
α Y M2

α, where M1
α and

M2
α are nonempty disjoint compacta. Consider the following sets

Xi
α = tx P Xα | ω(x) Ď M i

αu, i = 1, 2.

Note that X1
α and X2

α are disjoint by definition and since M i
α Ď Xi

α, for
i = 1, 2 they are nonempty. We shall prove that Xα = X1

α Y X2
α.

Let x P Xα. By the normality of X there exist neighborhoods U1 and U2

of M1
α and M2

α correspondingly such that U1 XU2 = H. Hence there exists
T ą 0 such that

γ+(Φ(x, T )) Ď U1 Y U2.

Since γ+(Φ(x, T )) is connected, we have that either γ+(Φ(x, T )) Ď U1 or
γ+(Φ(x, T )) Ď U2. Therefore ω(x) Ď M1

α or ω(x) Ď M2
α. Finally, we shall

prove that X1
α and X2

α are closed sets.
Let us choose an arbitrary sequence xn P X1

α converging to p, i.e., xn Ñ p.
Suppose that p R X1

α. Then p P X2
α. Hence there exists Tp P R such that

Φ(p, t) P U2 for every t ě Tp. On the other hand using a theorem from [1]
for K = Xαz(U1 Y U2) ‰ H (in the opposite case Xα is disconnected and
the proof is complete) there exists a Lyapunov function L : X Ñ R+ such
that for sufficiently small β ą 0, L(x) ě β, for every x P K. Note that M2

α

attracts tpu hence there exists tp P R, tp ě Tp such that L(Φ(p, tp)) ă β
2 .
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From the continuity of L and Φ there exists a neighborhood V of p such
that

L(Φ(x, tp)) ă β
2 for all x P V.

Also from the continuity of Φ there exists a neighborhood W of p such that
Φ(x, tp) P U2 for every x P W . Now for sufficiently large n, xn P V X W ,
whence

L(Φ(xn, tp) ă β
2 and Φ(xn, tp) P U2.

On the other hand from the fact that xn P X1
α there exists t ě tp such

that Φ(xn, t) P U1. Consider the connected set Q = Φ(xn, [tp,8)). If
z P K X Q ‰ H then from the property of the Lyapunov function we have
that L(z) ă β

2 but from the theorem from [1] we have that L(z) ě β, a
contradiction. So the only possibility left is Q Ă U1 Y U2. However since

Q X U1 ‰ H and Q X U2 ‰ H,

we obtain that Q is disconnected, which gives a contradiction.
Thus we conclude that X1

α is closed. Similarly, X2
α is closed. Hence Xα

is not connected which contradicts to the assumption. Therefore, we have
proved that Mα is connected. Finally, we define φ : ˝(M) Ñ ˝(X) by
φ(Mα) = Xα. Then the last conclusion follows from the previous Theo-
rem 4.3. □
Remark 4.10. Theorem 4.9 holds for arbitrary metric spaces. The com-
pactness condition is required for the last conclusion that the inclusion
i : M0 Ñ φ(M0) induces a strong shape equivalence.
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