

RUHR-UNIVERSITÄT BOCHUM

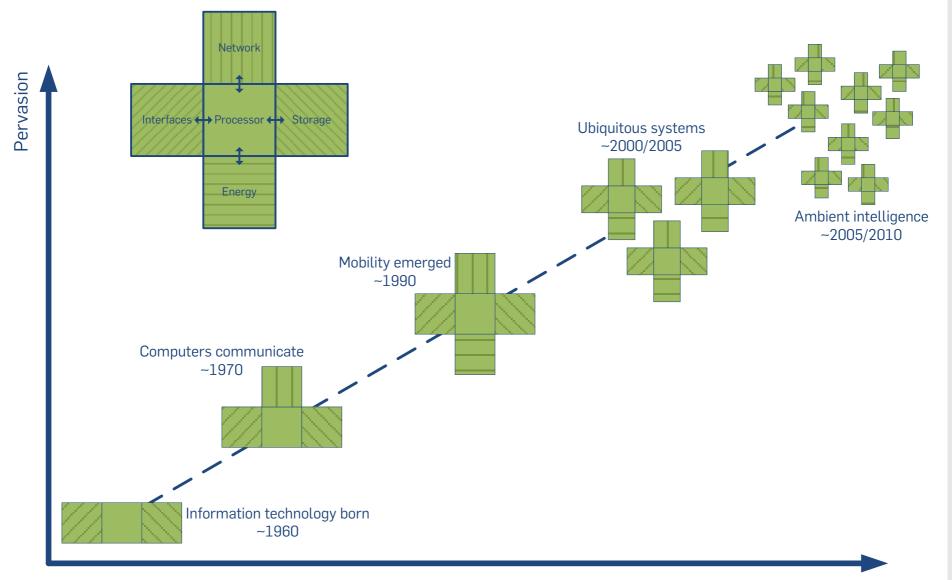
Horst Görtz Institute for IT-Security

A Non-Linear/Linear Instruction Set Extension for Lightweight Ciphers

Susanne Engels, <u>Elif Bilge Kavun</u>, Hristina Mihajloska, Christof Paar, Tolga Yalçın

Overview

- Lightweight and Pervasive Devices
 - Which Devices and Applications?
 - Security Need
- Standard/Lightweight Cryptography
 - Current Solutions
 - Software-oriented Solutions?
- Instruction Set Extension: NLU
 - ISE Model
 - Hardware Unit
 - Applications
- Conclusion and Future Directions


Overview

- Lightweight and Pervasive Devices
 - Which Devices and Applications?
 - Security Need
- Standard/Lightweight Cryptography
 - Current Solutions
 - Software-oriented Solutions?
- Instruction Set Extension: NLU
 - ISE Model
 - Hardware Unit
 - Applications
- Conclusion and Future Directions

DEVELOPMENT OF COMPUTERS AND CONSTRAINED DEVICES

Time

LIGHTWEIGHT APPLICATIONS

Electronic passports

Logistics

Road toll-collection

CONSTRAINED DEVICES?

- More precisely:
 - RFID-Tags: Radio-Frequency Identification
 - Smart Cards
 - Wireless Sensors

CONSTRAINED DEVICES?

- Low power and energy consumption
 - Active devices with on-chip batteries
 - Battery-less passive devices that rely on limited EM-transmitted power
- Low area and complexity
 - Gate count, I/O pin count, storage
- Constrained communication bandwidth
 - Due to increased device mobility and power constraints

THE NEED FOR SECURING CONSTRAINED DEVICES

- Control on access: Car key systems, internet banking, etc.
- Enforcing business models: Electronic wallet, SIM-cards, etc.
- Counterfeiting: Gaming, batteries, etc.
- Privacy protection: GSM, medical sensors, etc.

CONSTRAINED DEVICES?

- Low power and energy consumption
 - Active devices with on-chip batteries
 - Battery-less passive devices that rely on limited EM-transmitted power
- Low area and complexity
 - Gate count, I/O pin count, storage
- Constrained communication bandwidth
 - Due to increased device mobility and power constraints

CONSTRAINED DEVICES?

- DusseSincreased device mobility

 Journsumption

 Jou



Overview

- Lightweight and Pervasive Devices
 - Which Devices and Applications?
 - Security Need
- Standard/Lightweight Cryptography
 - Current Solutions
 - Software-oriented Solutions?
- Instruction Set Extension: NLU
 - ISE Model
 - Hardware Unit
 - Applications
- Conclusion and Future Directions

Requirements : The trade-off

LIGHTWEIGHT CRYPTOGRAPHY REQUIREMENTS?

- No strict criteria, but common features:
 - Should be cheaper than traditional cryptography
 - A reduced level of security is sufficient
 - ➤ Key size below 128 bits
 - Short data block size

LIGHTWEIGHT BLOCK CIPHERS

- Algorithms with particularly low implementation costs
 - Tailored to fulfill previously mentioned requirements
- Examples:
 - PRESENT, CLEFIA (ISO standards), KLEIN, LED, mCrypton, etc.

LIGHTWEIGHT BLOCK CIPHERS

- Algorithms with particularly low implementation costs
 - Tailored to fulfill previously mentioned requirements
- Examples:
 - PRESENT, CLEFIA (ISO standards), KLEIN, LED, mCrypton, etc.

Mostly targeted for

low gate count in hardware!

LIGHTWEIGHT BLOCK CIPHERS - SOFTWARE SOLUTIONS

- 8-bit microprocessors are used widely in the market
 - Hardware-optimized *software-unfriendly* lightweight ciphers are actually mostly implemented in 8-bit microprocessors!
 - Results in higher code size and more cycles
- We should proceed with software-friendly solutions and designs!

LIGHTWEIGHT BLOCK CIPHERS - SOFTWARE SOLUTIONS

Software-friendly solutions?

Not much there...

LIGHTWEIGHT BLOCK CIPHERS - SOFTWARE SOLUTIONS: RELATED WORK

- Not necessarily for lightweight block ciphers
- Implementation of cipher-specific instructions
 - Plugging the specific cipher as a coprocessor to the main module
 - Increases microprocessor area!
- Other works introduce complex instructions utilization

LIGHTWEIGHT BLOCK CIPHERS - SOFTWARE SOLUTIONS: RELATED WORK

- Not necessarily for lightweight block ciphers
- Implementation of cipher-specific instructions
 - Plugging the specific cipher as a coprocessor to the main module
 - Increases microprocessor area!
- Other works introduce complex instructions utilization

A first attempt: **NLU**!!!

Overview

- Lightweight and Pervasive Devices
 - Which Devices and Applications?
 - Security Need
- Standard/Lightweight Cryptography
 - Current Solutions
 - Software-oriented Solutions?
- Instruction Set Extension: NLU
 - ISE Model
 - Hardware Unit
 - Applications
- Conclusion and Future Directions

NON-LINEAR/LINEAR INSTRUCTION SET EXTENSION FOR LIGHTWEIGHT CIPHERS

- In block ciphers;
 - Non-linear refers to substitution Introduces confusion
 - Linear refers to permutation Introduces diffusion
- Block ciphers designed in a way to provide these!
 - Sbox layer for substitution
 - Mixing layer for permutation
- They are essential but also costly in software!

Non-Linear/Linear Instruction Set Extension For Lightweight Ciphers

- Non-linear refers to substitution Introduces of the son
 Linear refers to permutation Introduces of the son
 Linear refers to permutation Introduces of the son
 Block ciphers designed in a warrust provision
 Block ciphers designed in a warrust provision these!
 Sbox layer for substitution in a variable of the solution o

ISE MODEL

- Special instructions
 - To realize non-linear and linear layers of block ciphers
 - To reduce cycle count and code size
- A unified hardware block for:
 - Cycle-consuming substitution and permutation operations
- Call new instructions in software!
 - Results in less cycles...

ISE MODEL

- Special instructions
 - To realize non-linear and linear layers of block ciphers
 - To reduce cycle count and code size
- A unified hardware block for:
 - Cycle-consuming substitution and permutation operations
- Call new instructions in software!
 - Results in less cycles...

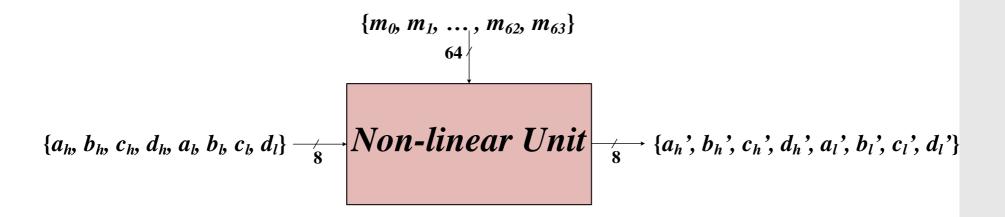
Hardware block should be cheap!

ISE MODEL

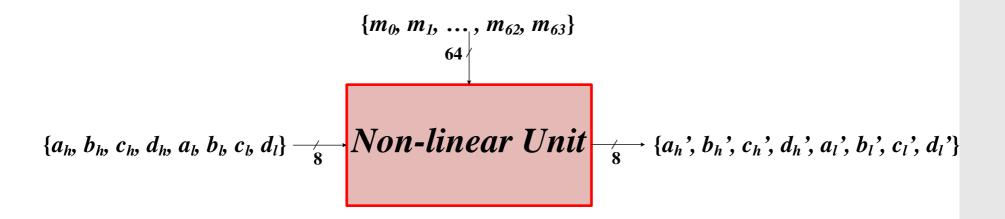
- For substitution:
 - Sboxes expressed in their Algebraic Normal Form (ANF)
- For permutation:
 - Linear layer expressed in binary matrix multiply-and-add form

ISE MODEL

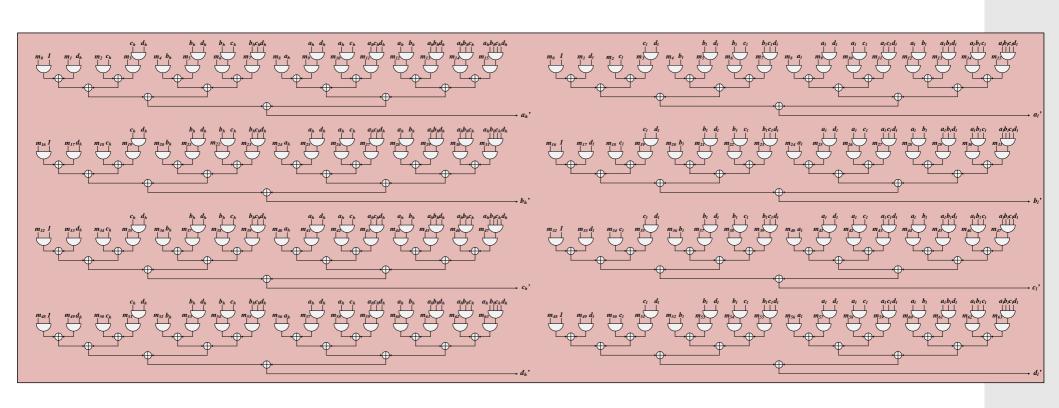
- For substitution:
 - Sboxes expressed in their Algebraic Normal Form (ANF)
- For permutation:
 - Linear layer expressed in binary matrix multiply-and-add form


Very simple and generic architecture!

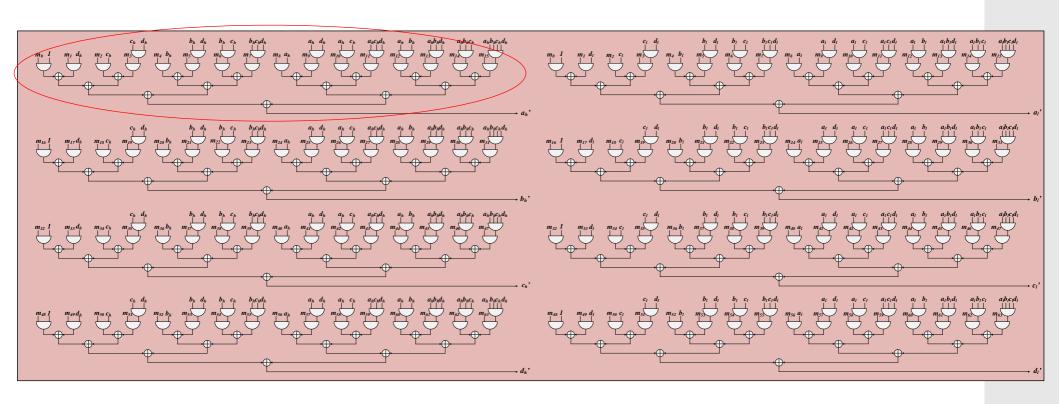
- Non-linear operations: Expressed in their ANF
 - In Boolean logic, ANF is a method of standardizing and normalizing logical formulas
 - ANF makes it easy to define the function
 - Better result in software than using lookup table for Sbox


HARDWARE - NON-LINEAR UNIT

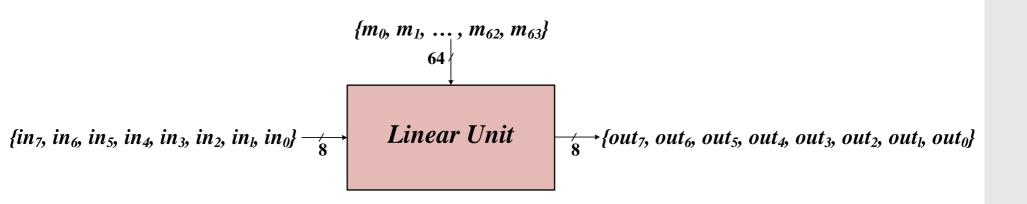
 \blacksquare m_i used for masking the unused ANF components


HARDWARE - NON-LINEAR UNIT

 \blacksquare m_i used for masking the unused ANF components

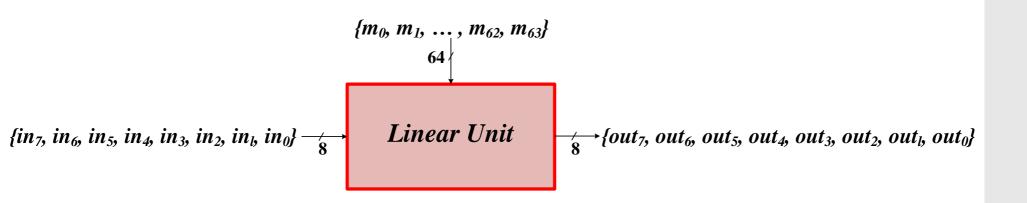




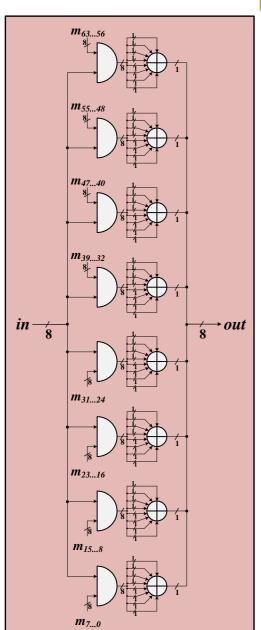


HARDWARE -LINEAR UNIT

Linear operations: In binary matrix multiplication form

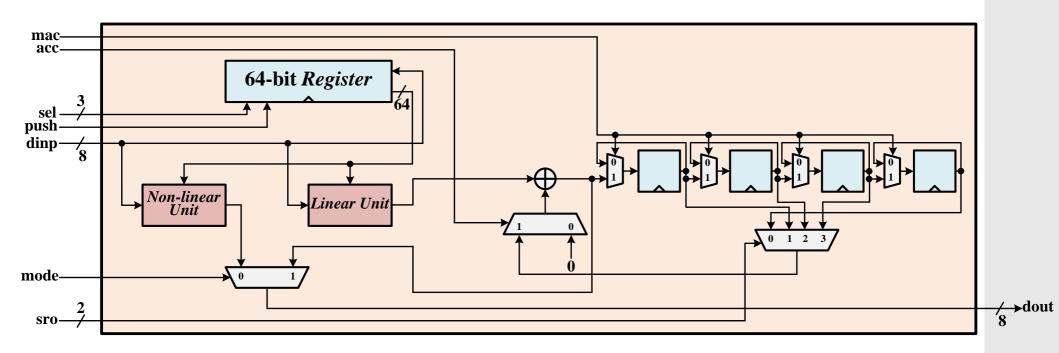


34


HARDWARE -LINEAR UNIT

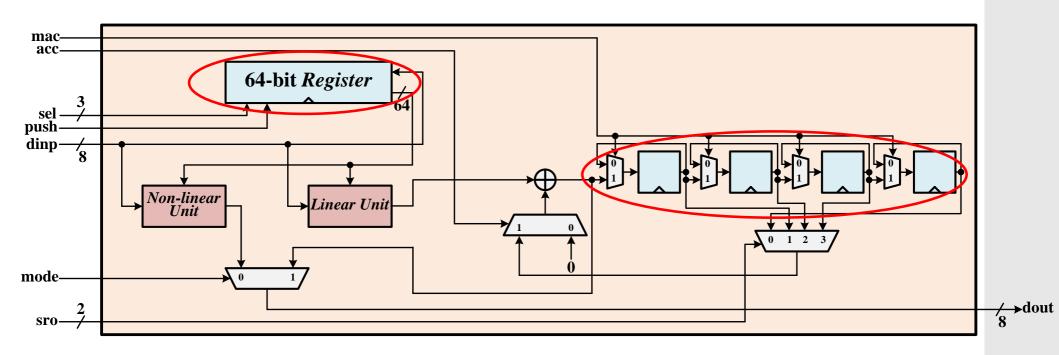
Linear operations: In binary matrix multiplication form

HARDWARE -LINEAR UNIT



 \blacksquare m_i used for masking

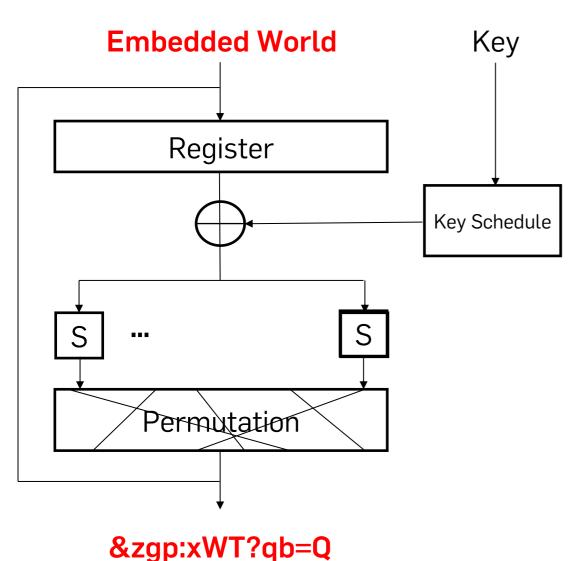
HARDWARE


NLU: Overall unit

HARDWARE

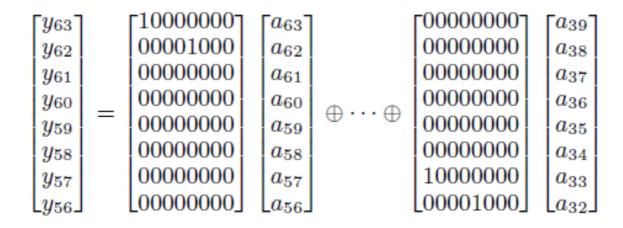
NLU: Overall unit

HARDWARE


- Shift registers to perform both:
 - $out[n] = mask \times in[n]$
 - out[n] = (mask x in[n]) + out[n-i] , i = 1 ... 4
- matrix multiply-and-add form!
 - Used in Present...

NLU Instructions

Instruction	Syntax	Description
NLD	NLD n , K	$CONF \leftarrow CONF \ll K[MSB-n], if n>0$
Load NLU configuration		$CONF \leftarrow CONF \ll K$, else
NNL	NNL Rd, Rs	$Rd(7:4) \leftarrow ANF[Rs(7:4)]$
NLU non-linear operation		$Rd(3:0) \leftarrow ANF[Rs(3:0)]$
NMU	NMU Rd, Rs	$Rd \leftarrow M \times Rs$
NLU multiply operation		$FIFO \leftarrow FIFO \ll M \times Rs$
NMA	NMA s , Rd, Rs	$Rd \leftarrow M \times Rs + FIFO(s)$
NLU multiply-and-add operation		$FIFO \leftarrow FIFO \ll [M \times Rs + FIFO(s)]$


- 64-bit block size, 80/128-bit key size
- Pure substitution-permutation network
- 4x4-bit S-box
- 31 rounds
- Secure against linear and differential cryptanalyses
- ISO standard!

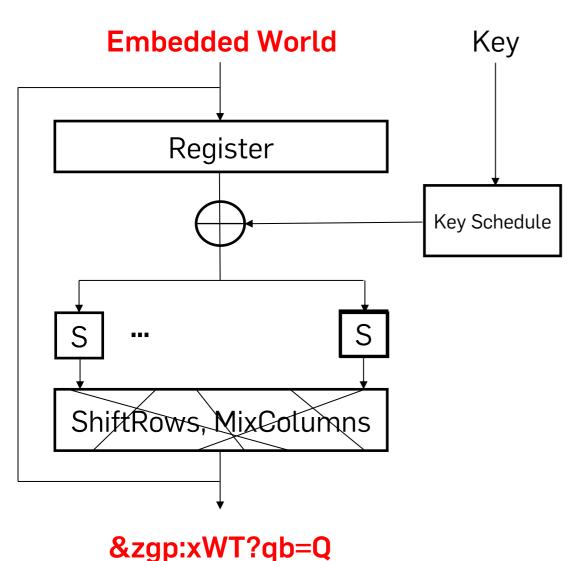

```
: load ANF bits for the PRESENT S-Box
NLD 0, 0xB3
NLD 0, 0x92
NLD 0, 0x67
NLD 0, 0x0B
NLD 0, 0xDE
NLD 0, 0x43
NLD 0, 0x4A
NLD 0, 0x80
; perform non-linear S-Box operation
NNL r18, r18
NNL r19, r19
NNL r20, r20
NNL r21, r21
NNL r22, r22
NNL r23, r23
NNL r24, r24
NNL r25, r25
```



```
y_{\{63...56\}}
                       a_{\{63,59,55,51,47,43,39,35\}}
y_{\{55...48\}}
                    a_{\{31,27,23,19,15,11,7,3\}}
y_{\{47...40\}}
                       a_{\{62,58,54,50,46,42,38,34\}}
                       a_{\{30,26,22,18,14,10,6,2\}}
y_{\{39...32\}}
y_{\{31...24\}}
                       a_{\{61,57,53,49,45,41,37,33\}}
y_{\{23...16\}}
                       a_{\{29,25,21,17,13,9,5,1\}}
y_{\{15...8\}}
                       a_{\{60,56,52,48,44,40,36,32\}}
y_{\{7...0\}}
                       a_{\{28,24,20,16,12,8,4,0\}}
```


APPLICATIONS: PRESENT

 $Y_7 = M_{00}A_7 \oplus M_{01}A_6 \oplus M_{02}A_5 \oplus M_{03}A_4$ $Y_6 = M_{00}A_3 \oplus M_{01}A_2 \oplus M_{02}A_1 \oplus M_{03}A_0$ $Y_5 = M_{10}A_7 \oplus M_{11}A_6 \oplus M_{12}A_5 \oplus M_{13}A_4$ $Y_4 = M_{10}A_3 \oplus M_{11}A_2 \oplus M_{12}A_1 \oplus M_{13}A_0$ $Y_3 = M_{20}A_7 \oplus M_{21}A_6 \oplus M_{22}A_5 \oplus M_{23}A_4$ $Y_2 = M_{20}A_3 \oplus M_{21}A_2 \oplus M_{22}A_1 \oplus M_{23}A_0$ $Y_1 = M_{30}A_7 \oplus M_{31}A_6 \oplus M_{32}A_5 \oplus M_{33}A_4$ $Y_0 = M_{30}A_3 \oplus M_{31}A_2 \oplus M_{32}A_1 \oplus M_{33}A_0$




```
; state is in registers r18 to r25
; write M03 to NLU
NLD 0, 0x00
NLD 0, 0x80
NLD 0, 0x40
```

```
; temporary registers r10, r11
 NMU r10, r21
 NMU r11, r25
 ; write M02 in NLU
 NLD 0, 0x00
 NLD 0, 0x00
 NMA 2, r10, r20
 NMA 2, r11, r24
 ; write M01 in NLU
 NLD 0, 0x00
 NLD 0, 0x00
 NMA 2, r10, r19
 NMA 2, r11, r23
 ; write M00 in NLU
 NLD 0, 0x00
 NLD 0, 0x00
 NMA 2, r10, r18
 NMA 2, r11, r22
 ; write M13 in NLU
 NLD 0, 0x40
 NLD 0, 0x04
```


APPLICATIONS: AES

- 128-bit block size,128/192/256-bit key size
- Substitution-permutation network
- 8x8-bit S-box
- 10/12/14 rounds
- Secure against linear and differential cryptanalyses
- NIST standard!

APPLICATIONS: AES

RESULTS

- Hardware unit synthesized in UMC 90 nm low-leakage
 Faraday library
- Area cost:
 - 1752 GE
- Power consumption:
 - 28.59 uW @ 100 KHz

RESULTS

- Hardware unit synthesized in UMC 90 nm low-leakage
 Faraday library
- Area cost:
 - 1752 GE
- Power consumption:
 - 28.59 uW @ 100 KHz

Low-cost!!!

RESULTS

Performance results

Implementation	Number of Clock Cycles	Flash Memory Utilization	Time-Area Product (TAP) (cycles·bytes)	TAP Gain (%)
PRESENT (LUT)	10792	660 bytes	7.1×10^{6}	0
PRESENT (NLU)	6017	406 bytes	2.4×10^{6}	66
CLEFIA (compact)	42124	2170 bytes	91.4×10^{6}	0
CLEFIA (fast)	28684	3046 bytes	87.4×10^{6}	4
CLEFIA (NLU)	15268	1912 bytes	29.2×10^{6}	68
SERPENT (ANF)	49314	7220 bytes	356.0×10^{6}	0
SERPENT (LUT)	106338	2620 bytes	278.6×10^{6}	22
SERPENT (NLU)	45431	2960 bytes	134.5×10^{6}	62
AES (LUT)	3159	1570 bytes	4.96×10^{6}	0
AES (NLU)	2826	1402 bytes	3.96×10^{6}	20

Overview

- Lightweight and Pervasive Devices
 - Which Devices and Applications?
 - Security Need
- Standard/Lightweight Cryptography
 - Current Solutions
 - Software-oriented Solutions?
- Instruction Set Extension: NLU
 - ISE Model
 - Hardware Unit
 - Applications
- Conclusion and Future Directions

Conclusion and Future Directions

- A generic instruction set extension for lightweight block ciphers
- Extremely simple and very low-cost design
- Improves software implementations of lightweight block ciphers
 - Time-area product reductions of 20-70%
- Modular architecture allows it to be used in 4, 16, 32, 64-bit
 CPUs
 - Possible to go for 32-bit microprocessors in future
- Performance results of more ciphers to be added

Thanks for Listening!

Any Questions?

elif.kavun@rub.de