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INTERPOLATION POLYNOMIALS VIA AIFS

LJ. KOCIĆ, S. G-ZAJKOVA, V. ANDOVA

Abstract. The general theory of IFS - AIFS relations is applied to the case
of polynomial attractors. The starting point is Bézier subdivision embodied
in two linear contractions of R

n space.

1. Introduction

The concept of Iterated Function System (IFS), and its affine invariant coun-
terpart AIFS appear to play a crucial role in constructive theory of fractal sets
and in paving the way to have a good modeling tools for such sets. But, if the col-
lection of objects to be modeled, besides fractals contains smooth objects as well
(polynomials for ex.) then one needs to revisit classical algorithms for smooth
objects generation and to introduce the new one that is capable to create both
fractal and smooth forms. In this light, the purpose of this paper is to develop
such algorithms for interpolating polynomials.
Let {wi, i = 1, 2, ..., n} , n > 1, be a set of contractive affine mappings defined on
the complete Euclidian metric space (Rm, dE)

wi(x) = Aix + bi, x ∈ R
m, i = 1, 2, ..., n, (1.1)

where Ai is an m×m real matrix and bi is an m-dimensional real vector. Supposing
that the Lipschitz factors si = Lip{wi}, satisfy condition |si| < 1, i = 1, 2, ..., n,
the system {Rm; w1, w2, ..., wn} is called (hyperbolic) Iterated Function System
(IFS). Associated with given IFS, so called Hutchinson operator W : H (Rm) →
H (Rm), defined by

W (B) =
n⋃

i=1

wi (B) , ∀B ∈ H (Rm) (1.2)

is a contractive mapping on the complete metric space (H (Rm) , h) with contrac-
tivity factor s = max {si}. Here, is the space of nonempty compact subsets of R

m

and h stands for Hausdorff metric induced by dE , i.e.

h(A,B) = max
{

max
a∈A

min
b∈B

dE(a, b), max
b∈B

min
a∈A

dE(b, a)
}

, ∀A, B ∈ H (Rm) .
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According to the contraction mapping theorem, W has the unique fixed point,
A ∈ H (Rm) called the attractor of the IFS, satisfying.

A = W (A) =
n⋃

i=1

wi (A)

Definition 1.1. A (non-degenerate) m-dimensional simplex P̂m (or simplex ) is
the convex hull of a set of m+1 affinely independent points (vectors) p1,p2, ..., pm+1

in Euclidean space of dimension m or higher, P̂m = conv {p1,p2, ...,pm+1}. The
vertices of P̂m will be denoted by Pm and represented by the vector

Pm = [pT
1 pT

2 . . . pT
m+1 ]T.

Let Sm+1 = [si,j ]
m+1
i,j=1 be an (m + 1) × (m + 1) row-stochastic real matrix (its

rows sum up to 1).

Definition 1.2. We refer to the linear mapping L : R
m+1 → R

m+1, such that
L(x)=STx as the linear mapping associated with S.
The corresponding Hutchinson operator is

W ′ (B) =
n⋃

i=1

Li (B), ∀B ∈ H (
R

m+1
)

(1.3)

Definition 1.3. Let P̂m be a non-degenerate simplex and let {Si}n
i=1 be a

set of real square nonsingular row-stochastic matrices of order m + 1. The sys-
tem Ω

(
P̂m

)
=

{
P̂m; S1, S2, ...,Sn

}
is called (hyperbolic) Affine invariant IFS

(AIFS), provided that the linear mappings associated with Si are contractions in
(Rm, dE) ([4 − 6]).

Theorem 1. One eigenvalue of the matrix Si is 1, other m eigenvalues coincide
with eigenvalues of Ai, the matrix that makes the linear part of the affine mapping
wi given by (1.1). In other words, sp {Si} = sp {Ai} ∪ {1}.

2. Polynomials and subdivision

Although the notion of subdivision is usually attributed to m-dimensional (m ≥ 1)
continuous parametric mapping t �→ Pn(t), t ∈ [a, b] (a < b), so that Pn(t) ∈ R

m,
it is enough to consider an one-dimensional case, i.e., m = 1. Also, according to
[3] the restriction on Pn(t) ∈ R to be an algebraic polynomial allows considering
only linear subdivision. More precise, if

Pn(t) =
n∑

k=0

Ak Bn
k (t), t ∈ [a, b] (2.1)

where Ak are real coefficients and

Bn(t) = {Bn
0 (t), Bn

1 (t), ..., Bn
n(t)}, t ∈ [a, b], (2.2)
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is some functional basis, it may happened that both Ak and Bn(t) depend on the
interval of definition. To stress this fact, in the case when confusion may appear, it
is suitable to write Ak[a, b] as well as Bn[a, b](t). Then, the subdivision is defined
as follows.

Definition 2.1. The function Pn, defined by (2.1) is said to permit linear subdi-
vision if and only if for each nonempty subinterval [p, q] ⊂ [a, b], there exists a set
of coefficients {Ak [p, q]}n

k=0 such that

n∑
k=0

Ak [p, q] Bn
k [p, q](t) =

n∑
k=0

Ak [a, b]Bn
k [a, b] (ϕ(t))

for t ∈ [a, b], where

ϕ(t) =
1

b − a
((q − p)t + b p − a q)

is the affine contraction that maps [a, b] into [p, q].

As it is shown by Goldman and Heath, linear subdivision is strictly a polynomial
phenomenon.

Theorem 2. ([3]) The function Pn, defined by (2.1) admit linear subdivision if
and only if Bn(t) is a polynomial basis.

The classic, and best known subdivision phenomena is connected with Bernstein
polynomial basis {bn

k}n
k=0, of degree n ∈ N

0, where the basis functions t �→ bn
k (t)

are usually defined on the interval [0, 1]

bn
k (x) =

(
n
k

)
xk(1 − x)n−k, k = 0, ..., n

or, on [a, b]

bn
k [a, b](x) =

1
(b − a)n

(
n
k

)
(x − a)k (b − x)n−k, k = 0, ..., n.

It is suitable, for the sake of operational efficacy, to write Bernstein basis in vector
form

b[a, b](x) =
[
bn
0 [a, b](x) bn

1 [a, b](x) ... bn
n[a, b](x)

]T

.

Also, the convention b[0,1](x) = b(x) will be adopted.

Theorem 3. (Subdivision) For all 0 ≤ p < q ≤ 1, it holds

bn
k [(1 − t)p + tq] =

n∑
m=0

⎛
⎝ ∑

i+j=k

bn−m
i (p)bm

j (q)

⎞
⎠ bn

m(t), t ∈ [0, 1].

The span of Bernstein basis b[a,b] (x) of degree n, with coefficient vector

p[a,b] =
[

p
[a,b]

0 p
[a,b]

1 . . . p
[a,b]

n

]T

, is known as the n-th degree Bernstein poly-

nomial Bn(p[a,b]x) = pT
[a,b]

b[a,b](x). The indices [a, b] in sub-or superscripts of the
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coefficient vector indicate that these coefficient depend on the interval of definition
of Bernstein polynomial.

Let [c, d] be an arbitrary subinterval of [a, b] such that c = (1 − p) a + pb,
d = (1 − q) a + qb. Then, the direct consequence of Theorem 3 is that the
Bernstein polynomial over [c, d] is given by another coefficient vector, p[c,d] i.e.,
Bn(p[c,d]; x) = pT

[c,d] b[c,d](x). This new coefficient vector is given by [9]

p[c,d] =
[

p
[c,d]

0 p
[c,d]

1 . . . p
[c,d]

n

]T

,

where p
[c,d]

m =
n∑

k=0

( ∑
i+j=k

bn−m
i (p)bm

j (q)

)
pk, or, in matrix form

p[c,d] = Sp,q · p[a,b],

where

Sp,q = [sm,k]m=0,n
k=0,n

=

⎡
⎣ ∑

i+j=k

bn−m
i (p)bm

j (q)

⎤
⎦

m=0,n
k=0,n

. (2.3)

The matrix Sp,q, is called subdivision matrix. Its order exceeds degree of Bn(p[a,b];x)
for one. For example, a subdivision matrix for n = 3, reads

ST
p, q =

⎡
⎢⎢⎣

(1 − p)3 3(1 − p)2p 3(1 − p)p2 p3

(1 − p)2(1 − q) 2(1 − p)p(1 − q) + (1 − p)2q p2(1 − q) + 2(1 − p)pq p2q
(1 − p)(1 − q)2 p(1 − q)2 + 2(1 − p)(1 − q)q 2p(1 − q)q + (1 − p)q2 pq2

(1 − q)3 3(1 − q)2q 3(1 − q)q2 q3

⎤
⎥⎥⎦ .

Note that, for ”reconstruction” of the whole segment of the polynomial Bn(p[a,b]; x)
over the interval [a, b], the following three subdivision matrices are necessary:
S0,p, Sp,q, and Sq,1. These matrices define three new coefficient vectors, p[a,c], p[c,d]

and p[d,b] that further yield three sub-segments : Bn(p[a,c]; x), x ∈ [a, c],
Bn(p[c,d]; x), x ∈ [c, d], and Bn(p[d,b]; x), x ∈ [d, b] of the starting polynomial.
This is the reason for the name ternary subdivision, for this process. The simpler,
binary subdivision, occurs when [a, b] splits into two subintervals, [a, c] and [c, b],
c = (1 − λ) a+λb. In this case, only two subdivision matrices exist: the ”left” one
S0,λ that will be denoted by SL (λ) , and the ”right” one SR (λ) = Sλ,1. It follows
from (2.3) that

SL(λ) =

⎡
⎢⎢⎢⎢⎢⎣

b0
0(λ) 0 0 · · · 0

b1
0(λ) b1

1(λ) 0 0
b2
0(λ) b2

1(λ) b2
2(λ) 0

...
. . .

bn
0 (λ) bn

1 (λ) bn
2 (λ) bn

n(λ)

⎤
⎥⎥⎥⎥⎥⎦ ,
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SR(λ) =

⎡
⎢⎢⎢⎢⎢⎣

bn
0 (λ) bn

1 (λ) bn
2 (λ) · · · bn

n(λ)
0 bn−1

0 (λ) bn−1
1 (λ) bn−1

n−1(λ)
0 0 bn−2

0 (λ) bn−2
n−2(λ)

...
. . .

0 0 0 b0
0(λ)

⎤
⎥⎥⎥⎥⎥⎦ .

Now, the relations between the new and old coefficient vectors are

p[c,b] = SR(λ) · p[a,b] (2.4)

Also, SR(λ) = Π · SL(1 − λ) · Π, where Π is a permutation (n + 1)-matrix having
unit counter-diagonal. Since Π2 = I, it holds that SL(λ) = Π · SR(1 − λ) · Π as
well.
Example 1. Let the Bernstein polynomial B4(p[a,b]; x) = pT

[a,b]
b[a,b](x) be de-

fined by the coefficient vector p[a,b] = [−1 − 1.5 − 3 2]T, over the interval
[a, b] = [−1 2.5]. The coefficient vector represents the ordinates of so called
Bézier points whose abscise are {a + k(b − a)/n, k = 0, ..., n}. In our case, Bézier
points are

P = {(−1, −1) , (−0.125, 1) , (0.75, −1.5) , (1.625, −3) , (2.5, 2)}

and they are connected by a polygonal line in Fig. 1(a). The graph of the poly-
nomial itself interpolates the end Bézier points. The choice c = 1.1 ∈ [a, b] gives
the subdivision factor λ = 0.6, and the subdivision matrices are

SL (λ) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
1 − λ λ 0 0 0
(1 − λ)2 2 (1 − λ)λ λ2 0 0
(1 − λ)3 3 (1 − λ)2 λ 3 (1 − λ) λ2 λ3 0
(1 − λ)4 4 (1 − λ)3 λ 6 (1 − λ)2 λ2 4 (1 − λ) λ3 λ4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0.4 0.6 0 0 0
0.16 0.48 0.36 0 0
0.064 0.288 0.432 0.216 0
0.0256 0.1536 0.3456 0.3456 0.1296

⎤
⎥⎥⎥⎥⎦ and

SR (λ) =

⎡
⎢⎢⎢⎢⎣

(1 − λ)4 4 (1 − λ)3 λ 6 (1 − λ)2 λ2 4 (1 − λ) λ3 λ4

0 (1 − λ)3 3 (1 − λ)2 λ 3 (1 − λ) λ2 λ3

0 0 (1 − λ)2 2 (1 − λ) λ λ2

0 0 0 1 − λ λ
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎣

0.0256 0.1536 0.3456 0.3456 01296
0 0.064 0.288 0.432 0.216
0 0 0.16 0.48 0.36
0 0 0 0.4 0.6
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

a b

c d

Figure 1. Binary and ternary subdivision of Bernstein polynomial

The new Bézier points

PL = {(−1, −1) , (0.475, 0.2) , (0.05, 0.22) , (0.575, 1.072) , (1.1, −1.168)}
and

PR = {(1.1, −1.168) , (1.45, −1.232) , (1.8, −0.96) , (2.15, 0) , (2.5, 2)}
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are shown in Fig. 1(b), where the subdivision point is visible. The Fig. 1(c) and
Fig. 1(d) represents ternary subdivision for (p1, q1) = (0.2, 0.75) and (p2, q2) =
(0.4, 0.9) respectively. The corresponding subdivision matrices are

Sp1,q1 =

⎡
⎢⎢⎢⎢⎣

0.4096 0.4096 0.1536 0.0256 0.0016
0.1280 0.4800 0.3120 0.0740 0.0060
0.0400 0.2600 0.4825 0.1950 0.0225
0.0125 0.1156 0.3656 0.4219 0.0844
0.0039 0.0469 0.2109 0.4219 0.3164

⎤
⎥⎥⎥⎥⎦ ,

Sp2,q2 =

⎡
⎢⎢⎢⎢⎣

0.1296 0.3456 0.3456 0.1536 0.0256
0.0216 0.2376 0.4176 0.2656 0.0576
0.0036 0.0696 0.3796 0.4176 0.1296
0.0006 0.0166 0.1566 0.5346 0.2916
0.0001 0.0036 0.0486 0.2916 0.6561

⎤
⎥⎥⎥⎥⎦ .

As soon as the subdivision matrices are determined, a hyperbolic AIFS is de-
fined. The simplest AIFS is the binary one Ω (P) = {P; SL (λ) , SR (λ)}. The
hyperbolic character of Ω is the consequence of Theorem 1, i.e., of small sprectral
radii ρ (SL (λ)) = λ and ρ (SR (λ)) = 1−λ, both being smaller than 1. The known
theorem from matrix theory says that for any square matrix A, the norm ‖ � ‖
can be chosen so to make ‖A‖ arbitrarily close to ρ (A). This means that some
algorithms for generating fractal sets ([2]) can be applied for generating graphs of
smooth polynomials.

3. Monomial basis
Consider the following problem. Let the polynomial

Pn(x) = ā0 + ā1x + ... + ān−1x
n−1 + ānxn, x ∈ [a, b] (3.1)

be given, by the vector of its real coefficients ā = [ā0 ā1 ... ān−1 ān ]T.
With the monomial basis on [a, b] that takes vector form,

m(x) =
[

1
x − a

b − a

(
x − a

b − a

)2

. . .

(
x − a

b − a

)n ]T

polynomial (3.1) can be written shortly as

Pn(x) = aT · m(x), x ∈ [a, b], (3.2)
where

a =
[

a0 a1 . . . an−1 an

]T
Let the interval [a, b] be split in two subintervals by the point c ∈ (a, b). Find

the ”left” and ”right” coefficients vectors, aL = [aL
0 aL

1 . . . aL
n−1 aL

n ]T and
aR = [aR

0 aR
1 . . . aR

n−1 aR
n ]T, such that the ”left” polynomial

PL
n (x) = (aL)T · mL(x), x ∈ [a, c]
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where

mL(x) =
[

1
x − a

c − a

(
x − a

c − a

)2

. . .

(
x − a

c − a

)n ]T

is the ”left” monomial basis, coincides with Pn(x) on the left subinterval [a, c],
and, at the same time, the ”right” polynomial

PR
n (x) = (aR)T · mR(x), x ∈ [c, b]

where

mR(x) =
[

1
x − c

b − c

(
x − c

b − c

)2

. . .

(
x − c

b − c

)n ]T

coincides with Pn(x) on the right subinterval [c, b]. In fact, it is a binary subdivi-
sion problem for the monomial basis. Now, the monomial and Bernstein basis of
degree n are connected by

m(x) = TBM · b(x) (3.3)
where TBM is an n×n upper-triangular matrix of the form (for n = 1, 2, 3 and 4)

[1] ,
[

1 1
0 1

]
,

⎡
⎣ 1 1 1

0 1/2 1
0 0 1

⎤
⎦ ,

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
0 1/4 1/2 3/4 1
0 0 1/6 1/2 1
0 0 0 1/4 1
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ , ...

Multiplying both sides of (3.3) by the vector aT from the left yields the last
expression is Bernstein polynomial, defined on [0, 1]. Now, subdivision for given λ
(formulae (2.4)) results in pL = SL(λ) ·p and pR = SR(λ) ·p. On the other hand,
by inverting (3.3), which is always possible since all matrices TBM are regular,
so that (TBM)−1 always exists, one gets b(x) = TMB · m(x), where it is set
(TBM)−1 = TMB. Consequently,

pT
L · b(x) =

(
pT

L · TMB

) · m(x) =
(
TT

MB · pL

)T · m(x),

which results in aL = TT
MB · pL. Similarly, aR = TT

MB · pR.

Now, taking into account that pL = SL(λ) · p and pR = SR(λ) · p, and that
p = TT

BM · a, we obtain{
aL = TT

MB · pL = TT
MB · SL(λ) · p =

(
TT

MB · SL(λ) · TT
BM

) · a = AL · a
aR = TT

MB · pR = TT
MB · SR(λ) · p =

(
TT

MB · SR(λ) · TT
BM

) · a = AR · a

Example 2. For āT =
[ −17/90 59/36 7/9 −97/36 −4/45 5/9

]
the

polynomial Pn(x), given by (3.1) is defined on [a, b] = [−2, 2]. The coefficients of
the polynomial given by (3.2) are

aT =
[

2 809/15 −7112/15 58288/45 −65024/45 5120/9
]
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a. b.

Figure 2. Binary subdivision of monomial basis

The subdivision factor is λ = 0.45 and, according to (3.4), one has

aT
L =

[
2 24.27 −96.012 118.033 −59.2531 10.4976

]
,

aT
R =

[ −0.46432 2.22581 11.2707 −25.567 −15.0965 28.6313
]
,

which implies PL
n (x) = aT

L ·mL(x), x ∈ [a, c] and PR
n (x) = aT

R ·mR(x), x ∈ [c, b].
Of course, as it is expected,

PL
n (x) ≡ PR

n (x) ≡ − 17
90

+
59
36

x +
7
9
x2 − 97

36
x3 − 4

45
x4 +

5
9
x5

4. The attractor

The subdivision matrices in all above cases define linear mappings in a higher
dimensional space R

m+1, which means the AIFS. The Hutchinson operator (1.3)
can be rewritten as

W ′ (x) =
n⋃

i=1

Si (x)

Then, the random-type algorithm ([1], [2]) is easy to establish to calculate the orbit
of W ′, i.e., the set (W ′)◦m (x0), where x0 ∈ R

m+1. If we employ the Bernstein
polynomial from Example 1, and use the random algorithm with 200 iterations,
the result is shown in Fig. 3a Using 1000 iterations gives a more complete picture
(Fig. 3b).
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a b

Figure 3. Bernstein polynomial as an attractor. a. 200 points;
b. 1000 points.
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