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ABSTRACT

We regard a multi-state one component system with gradu-

ate failure. The one level transitions are homogeneous Markov

transitions and the unit time work in the state i makes profit

Ci. We suppose that the system runs during n periods with

constant length T and after each period we are able to make

an inspection of the system. Depending of its current state

we can decide to repair it or not. The problem is to find the

optimum policy for repairing such that the summary profit be

the greatest one.

I. INTRODUCTION

A multi-state one component system with graduate failure

is a system consist of one component that has N + 1 states,

0, 1, 2, ..., N . The prefect state is N and the state 0 is a state

of total failure. Greater state means better performance. The

graduate failure means that the system can fall down only

for one state in a time. We suppose that one level transitions

are homogeneous Markov transitions, which imply that one

level failure time have an exponential distribution. Let failure

intensity from state i to state i − 1 be λi. So, the random

variable Ti, the time in which the system constantly works

in state i, has an exponential distribution with parameter λi.

Additionally we suppose that the operations in specifics level i

for a unit time result with some constant profit Ci. It is natural

to assume that the upper level gives more profit. Such system

is given in Figure1.

Such system runs during n periods with constant length

T . During each constant period the system can or cannot be

repaired. After each period we are able to make an inspection

and we can make one of two decisions: to repair the system

to its perfect state, which costs some amount R, or to leave

it to run from its current state for the next constant period

T . Our goal is to find the best practice for recovering this

system in a state which leads to maximum profit. In the second

section we will give a dynamic programming algorithm that

gives the optimal policy that maximizes the total profit. This

algorithm is based on the assumption that the profit Ĉi that

the system makes during the time T , under assumption that

in the beginning of this time period the system is in state i,

and the probability Pi,j(T ), that the system after a time T

will be found in state j starting from state i, are known. But

in our problem we assume that we known only the one level

intensities and the profit that system makes working in some

specific level for a unit time. So, in the next section we will

give a way for computing Ĉi from Ci and λi.

Fig. 1. Visual representation of a system

II. ALGORITHM FOR OPTIMAL REPAIRING POLICY

In this section we assume that for each i = 1, N , Ĉi,

the expected profit under assumption that the system works

time T starting in state i, Pi,j(T ) and repair costs R are

known. Let B[i, k] represent profit which we can gain in k-

th period if the machine is in i-th state. After each period

we calculate whether it is better to repair the machine or not.

This decision depends on the previous state and probability of

falling. The problem can be considered in aspects of dynamic

programming R repair cost and N number of states. If the

system before n-th period is in state i, the expected profit if it

is repeated is equal to −R+CN , and the expected profit if it

is not repaired is Ci. Similarly, if just before the k-th period,

the system is in state i, the expected profit if it is repaired is:

Bi,k = −R+ ĈN +
N∑

r=1

PN,r ∗Br,k−1, (1)

and if it is not repaired is

Bi,k = Ĉi +

N∑

r=1

Pi,r ∗Br,k−1) (2)
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We will do the action that gives grater profit, so the recursive

formula is:

Bi,j =





Bi,j = Ĉ[j], i = 1

Bi,j = Max(−R+ Ĉ[N ]+
N∑

k=1

PN,k ∗Bi−1,k,

N∑
k=1

Pj,k ∗Bi−1,k), i > 0, N > j > 0

(3)

We will explain the algorithm trough following example.

Example 1. Let us have a system with 5 states. Ĉi = i and

the matrix P (T ) is given in Figure II. We suppose that the

machine starts with its work at its best state, 4.

P =




1 0 0 0 0
0.5 0.5 0 0 0
0.25 0.25 0.5 0 0
0.125 0.125 0.25 0.5 0
0.0625 0.0625 0.125 0.25 0.5




So before n-th period we have those situations

• In state 4 the machine should not be repaired. We have

a profit of 4.

• In state 3 the machine should not be repaired. We have

a profit of 3.

• In state 2 the machine should not be repaired. We have

a profit of 2.

• In state 1 the machine should not be repaired. We have

a profit of 1.

• In state 0 the machine doesn’t work, which means no

profit.

Before N -1-th period

• In state 4:

– We have profit of 7.0625

• In state 3:

– If we choose to repeat the machine we have profit

of 3.0625

– If we choose to not repeat the machine we have profit

of 4.125

• In state 2:

– If we choose to repeat the machine we have profit

of 3.0625

– If we choose to not repeat the machine we have profit

of 3.25

• In state 1:

– If we choose to repeat the machine we have profit

of 3.0625

– If we choose to not repeat the machine we have profit

of 1.5

• In state 0 the machine doesn’t work, which means no

profit.

and so on.

After five periods the profit matrix and the repair matrix

will be

According to repair matrix in the first period we don’t have

to repair the machine (no matter in what condition it is). In




0 1 2 3 4
3.0625 3.0625 3.25 5.125 7.0625
5.60156 5.60156 5.60156 7.14063 9.60156
7.98633 7.98633 7.98633 9.37109 11.9863
10.3325 10.3325 10.3325 11.6787 14.3325
12.6691 12.6691 12.6691 14.0056 16.6691




Fig. 2. Profit matrix

P
P
P

P
P

P
PP

Period

State
0 1 2 3 4

0 0 0 0 0 0

1 1 1 0 0 0

2 1 1 1 0 0

3 1 1 1 0 0

4 1 1 1 0 0

Fig. 3. Repair table (This table show the optimal repair of the system
observed in 4 period. 1 means that if we are in state s in period p we should
repair system. If there is 0 we should not repair.)

the second period if the machine is in state 2, 3 or 4 we don’t

have to repair, but if the machine is in the state 1 it is more

affectively to repair the machine. At the forth period (and all

upper periods) it isn’t necessary to repair the machine in state

4, but in all other states we should repair the machine.

Example 2. There is a example how the system works with

repair cost equal to 6, Ĉi = {0, 1, 2, 3, 4} where i is a state

and next Probability matrix

P =




1 0 0 0 0
0.8 0.2 0 0 0
0.7 0.2 0.1 0 0
0.6 0.25 0.15 0.1 0
0.5 0.2 0.15 0.1 0.05




The results are:

Fig. 4. Profit of a system (For all states we display expected profit after
some period of time
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Fig. 5. Repair of a system (The method for repair the system in order to
maximise expected profit. Point on state 3, period 5 means that if system is
in state 3 or below in period 5 the system should be repaired

Example 3. Another example with repair cost equal to 10,

Ĉi = {0, 1, 2, 10, 20} where i is a state and same Probability

matrix as in Example 2.

The results are:

Fig. 6. Profit of a system

Fig. 7. Rapeir of a system

The pseudo code for algorithm is following:

for i = 1→ time do

for j = 1→ N do

sr ← 0
if j < N then

for k = 1→ N do

sr ← sr + rm[i, k] ∗ P [N, k]
end for

end if

ssr ← sr −R+ rm[i, N ]
snr ← 0
for k = 1→ N do

snr ← snr + rm[i, k] ∗ P [j, k]
end for

snr ← snr + rm[i, j]
if sr > snr then

rm[i+ 1, j]← sr

rem[i+ 1, j]← 1
else

rm[i+ 1, j]← snr

rem[i+ 1, j]← 0
end if

end for

end for

III. COMPUTATION OF THE EXPECTED PROFIT FOR

SYSTEM WITH INDEPENDENT ONE-LEVEL TRANSITIONS

It is naturally to assume that the expected profit under

assumption that the system works time T starting in state i

is unknown, but we know the profit system makes when it is

working for a unit time in a certain level. Moreover, we will

suppose that the one level transitions are monotone Markov

transitions with known one level failure intensities. From the

other hand, to calculate the optimal repair policy we need tho

now the probability that the system that starts its work in level

i after time T will found in state j, i.e. the matrix P . Therefore,

the problem we analyze here is finding the unknown values

for the given ones.

Since one level transitions are monotone Markov transitions,

the distribution of time of work in the i-th level has exponential

distribution and the probabilities Pi,j when all the intensities

are equal can be calculate using next Theorem:

Theorem 1: Suppose that a multi-state one component sys-

tem with graduate failure and equal transition intensities, λ

works time T starting in state i. Then the probability that a

system will finish its work in state j is:

Pi,j(t) =
λi−jti−j

(i− j)!
e−λt, (4)

The proof of the theorem is given in [2], where it can be

found the formula for calculation same probabilities for system

with different failure intensities.

In order to find formula for calculation of the expected

profit, we use following notations: Ci - the profit system makes

when it works with level i a unit period without failure, and

Ĉi(T ) - the profit system makes when works a time T without

reparation, starting at level i. Next theorem gives a formula

for calculation of Ĉi(T ).

Theorem 2: Suppose that a multi-state one component sys-

tem with graduate failure and one level transition intensities

λk works time T starting in state i. Than the expect cost Ĉi(T )
can be calculate by:

c©2012 Faculty of Computer Science and Engineering

204



The 9th Conference for Informatics and Information Technology (CIIT 2012)

Ĉi(T ) =
∞∫

ti=T

CiTe
−λiti dt+

T∫
ti=0

∞∫
ti−1=T−ti

(Citi + Ci−1(T − ti))e
−λi−1ti−1e−λitidti−1dti

+ . . .+
T∫

ti=0

T−ti∫
ti−1=0

. . .
∞∫

t1=T−(ti+...+t2)

(Citi + Ci−1ti−1

+ . . .+ C2t2 + C1(T −
∑
k=2

ti))e
−λiti . . . e−λ1t1dt1 . . . dti

+
T∫

ti=0

T−ti∫
ti−1=0

. . .
T−(ti+...+t2)∫

t1=0

(Citi + Ci−1ti−1 + . . .+

C1t1 + C0(T −
∑
k=1

ti))e
−λiti . . . e−λ0t0dt1 . . . dti

1

(5)

Proof: Let Ai be the event: The system works time T

without reparation, starting from the state i; and Bj be the

event: At the and of the work, the system is in the state j.

Then,

P (Ai) =

i∑

j=0

P (AiBj).

It is clear that P (AiBj) is

T∫
ti=0

T−ti∫
ti−1=0

. . .
∞∫

tj=T−

∑
i
k=j+1

tk

((∑i

k=j+1 Cktk

)
+

Cj(T −
∑
k=j

ti)

)
e−λiti . . . e−λjtjdtj . . . dti.

The Theorem follows directly from (5).

The last Theorem gives complicate expression for calcu-

lation of Ĉi(T ), so next we will give recursive relationship

between the integrals found in that equation.

Let by Dk(T,Ck, Ck−1, ..., C1) be the k-th integral of (5)

where the constant a set on Ck, Ck−1, ...,C1 on the same order

as that found in the integral. Then

D1(T,C1) =
∞∫

t1=T

C1Te
−λ1t1dti.

The integral D2(T,C2, C1) can be expressed using D1(T −
t1, C1) as
T∫

t2=0

∞∫
t1=T−t2

(C2t2 + C1(T − t2))e
−λ1t1e−λ2t2dt1dt2 =

T∫
t2=0

∞∫
t1=T−t2

C2t2e
−λ1t1e−λ2t2dt1dt2 +

T∫
t2=0

(

∞∫

t1=T−t2

C1(T − t2)e
−λ1t1dt1

︸ ︷︷ ︸
D1(T−t2,C1)

)e−λ2t2dt2 =

G2(C2, T ) +
T∫

tk=0

D1(T − t2, C1)e
−λt2dt2.

Similarly,

Dk(T,Ck, . . . , C1) =

T∫
tk=0

. . .

T−

k∑

r=3

tr∫
t2=0

∞∫
t1=T−t2−...tk

Cktke
−

k∑

r=3

tkλrtr
dt1...dtk

+
T∫

tk=0

Dk−1(T − tk, Ck−1, . . . , C1)e
−λtkdtk =

Gk(Ck, T ) +
T∫

tk=0

Dk−1(T − tk, Ck−1, . . . , C1)e
−λtkdtk.

We will denote the last integrals by D̂i(T,C1, . . . , Cn), i.e.

D̂k(T,C1, . . . , Ck) =
T∫

ti=0

T−ti∫
ti−1=0

. . .
T−(ti+...+t2)∫

t1=0

(
i∑

r=1
Crtr+

C0(T −
k∑

r=1
tr))e

−λiti . . . e−λ0t0dt1 . . . dti

Now, the expected costs are:

Ĉk =
∑k

r=1 Dr(T,Cr, . . . , Ck−r+1) + D̂(T,Ck).

This can be solved in bottom-up principe, again using a

dynamic programming algorithm.

IV. CONCLUSION AND FUTURE WORK

In this paper we find the optimal policy for repairing

(replacing) a one component multi-state system. The manage-

ment is in respect to profit optimization. The system works

for a constant time T and the problem we interested in is,

depending to the level in which the system is found after

that time, to decide is it better to repair the system or not.

First we give a method in which the expected profit, repairing

time and transition failure probabilities. Moreover we analyze

how to find this unknown values, assuming that the one-level

transition intensities, the profit for unit time in certain level

and time T are known and we give a recursive formulation of

that problem. On the basis of this formula we give a dynamic

programming algorithm.

Our next work will be focused on finding the highest level in

which system should be repaired in order to get profit. Also we

will try to make further simplifications of the given recursive

formula.
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