
Received October 8, 2021, accepted October 25, 2021, date of publication November 1, 2021, date of current version November 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3124633

Data-Driven Intelligence System for General
Recommendations of Deep
Learning Architectures
GJORGJI NOVESKI 1, TOME EFTIMOV 2, (Member, IEEE),
KOSTADIN MISHEV 3, AND MONIKA SIMJANOSKA 3
1Department of Intelligent Systems, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
2Computer Systems Department, Joz̆ef Stefan Institute, 1000 Ljubljana, Slovenia
3Faculty of Computer Science and Engineering, Saints Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia

Corresponding author: Gjorgji Noveski (gjorgji.noveski@ijs.si)

This work was supported by the Slovenian Research Agency under research core funding programs Project P2-0098 and Project Z2-1867.

ABSTRACT Choosing optimal Deep Learning (DL) architecture and hyperparameters for a particular
problem is still not a trivial task among researchers. The most common approach relies on popular
architectures proven to work on specific problem domains led on the same experiment environment and
setup. However, this limits the opportunity to choose or invent novel DL networks that could lead to better
results. This paper proposes a novel approach for providing general recommendations of an appropriate DL
architecture and its hyperparameters based on different configurations presented in thousands of published
research papers that examine various problem domains. This architecture can further serve as a starting point
of investigating DL architecture for a concrete data set. Natural language processing (NLP) methods are
used to create structured data from unstructured scientific papers upon which intelligent models are learned
to propose optimal DL architecture, layer type, and activation functions. The advantage of the proposed
methodology is multifold. The first is the ability to eventually use the knowledge and experience from
thousands of DL papers published through the years. The second is the contribution to the forthcoming
novel researches by aiding the process of choosing optimal DL setup based on the particular problem to be
analyzed. The third advantage is the scalability and flexibility of the model, meaning that it can be easily
retrained as new papers are published in the future, and therefore to be constantly improved.

INDEX TERMS Deep learning, intelligent system, hyperparameters selection, DL architecture selection,
multi-label classification.

I. INTRODUCTION
Building a DL intelligent model is still a non-deterministic
and challenging process. Most of the difficulties arise from
the need of sufficient empirical information to aid the deci-
sion of the architecture type and hyperparameters to be used
in the DL network. This information is usually obtained
experimentally, meaning days, weeks and even months are
spent on trainingmodels that might fail to produce the desired
results. Therefore, the researchers often choose DL solutions
that are similar to the problem at hand. Even though it does
not consistently achieve the best results, it is still considered
a good starting point.

The associate editor coordinating the review of this manuscript and

approving it for publication was Davide Patti .

Recognizing the starting point becomes more complicated
as many novel research papers are published each day. Even
more, those research papers might contain some ‘‘hidden’’
information that is crucial for adapting a particular DL to
the problem analyzed. Reading and capturing those minor
differences in the papers is nearly impossible. The modern
NLP methods can be applied to extract structured knowledge
from unstructured scientific data and then use the knowledge
to train intelligent models that are able to provide directions
on the optimal starting point for choosing DL architecture and
parameters for the particular problem.

The representation of the problem domain is also a chal-
lenging task. The nature and the size of the data are one of
the most important aspects to consider when providing an
appropriate experimental setup.

148710
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-1072-9044
https://orcid.org/0000-0001-7330-1902
https://orcid.org/0000-0003-3982-3330
https://orcid.org/0000-0002-5028-3841
https://orcid.org/0000-0003-0874-7793


G. Noveski et al.: Data-Driven Intelligence System for General Recommendations of Deep Learning Architectures

Tackling the problem of choosing a good DL architec-
ture comes in many forms, from implementing new forward
propagation techniques [8] that provide more stable architec-
tures to building ‘‘umbrella’’ models which work on a broad
range of domains [9], [10]. Another way to build effective
neural network models is to use Neural architecture search
(NAS) [11], [12] alongside with hyper-parameter optimiza-
tion (HPO) [13], [14]. These techniques automate the process
of designing a neural network which in turn help researchers
make use of models with comparable or better results than
their state-of-the-art counterparts [15]. An issue that might
not be so evident while deploying DL architectures is dataset
shift. Differences between the distributions of the training and
the test set is a variable that should be taken into account
when building DL models. From [16] we can see that out-
of-distribution (OOD) inputs have a significant impact on a
model’s performance and uncertainty. Being able to quantify
this uncertainty using specific methods [17], [18] helps prac-
titioners have some insight into the models’ performances
during its lifetime. Under high uncertainty, a model can
refrain from making a decision in order to mitigate potential
problems it may cause in its environment. Several threats
can arise when a system makes wrongful decisions [19],
nevertheless, promising advances are made that warrant early
detection of poor predictions [20].

This paper describes a comprehensive methodology that
surpasses the preprocessing difficulties regarding the format
of the scientific papers, the unstructured data, and the missing
information to create a new database. This new database
built from structured data can be constantly updated with
novel research papers and, therefore, can be used to develop
intelligent models that are fed with keywords describing the
problem domain. As the researcher describes the problem
domain by choosing appropriate keywords, the intelligent
models predict the most suitable DL architecture, layer type,
and activation functions as starting experimental setup that
is expected to produce satisfying results. Since there is no
dataset that can be utilized to provide general recommenda-
tions about which architecture and hyperparameters should
be used based on the keywords that describe the paper, first
we annotate textual data that is used for training a NER
model. To create the annotated corpus, a rule-based method
was used. The first NER model provides us with some silver
standard that is further used to fine tune predefined corpus-
based NERmodels (e.g., specialized models). Using the NER
models, we are able to create a dataset using information
about architecture type, activation function, and building
blocks. Such a dataset can be further used to train MLmodels
that provide recommendations.

These predictions are in the form of general recommenda-
tions (e.g., Given an input vector of keywords: signal pro-
cessing, threshold prediction, real time, the trained model
provides the following recommendation: Use CNN architec-
ture type with ReLU activation function and a convolutional
layer alongside pooling layers as building blocks. The out-
come of the intelligent system can also be further tuned based

on the characteristics of the data set that is being solved,
since it has already provided architecture that is utilized for
the same problem. Those models adapt the concept of online
training by continuously updating their knowledge with the
latest advances in published research papers that present
updates in model configuration, architecture, and hyperpa-
rameters to achieve better results in the same tasks.

The rest of the paper is organized as follows. Section II
presents similar efforts from the competing papers as well
as an appropriate comparison with the benefits from the
proposed approach in this paper. The detailed methodology
that includes the database creation and the intelligent models
training is provided in Section III. The results are presented
in Section IV. A comprehensive discussion is provided in
Section V and the final Section VI presents a conclusion on
the performance of the intelligent models as well as directions
for future improvements.

II. RELATED WORK
Looking at network architecture search (NAS) solutions, [21]
manage to overcome the problem of designing a neural net
by using reinforcement learning (RL). They use an RNN to
generate descriptors of candidate networks and train them
by RL, achieving better results than previous state-of-the-
art models. On image classification, evolutionary algorithms
might be used to find an architecture that performs well.
Other solutions such as the one proposed in [22] utilize many
workers that compare trained architectures, picking ones with
higher validation scores and mutating them by adding or
removing layers. They report only a few restrictions on the
mutation operations allowing for a large search space. Other
NAS techniques are able to achieve fast convergence on their
models with fewer parameters resulting in a smaller memory
footprint and fewer GPU train times [23], [24]. The rest of
the notable related work together with accompanying results
is provided in Table 1. Some of the works are designed to
output a trained model for only a specific type of architecture
[1], [2], [25], while others are general systems that seek to
improve existing Machine learning models [3], [26]. None of
the efforts gave a primary focus on the data they process and
instead try to transform architectures, create specific objec-
tive functions, minimize known ones, or other approaches.

We address this problem by proposing a data-driven sys-
tem, extracting information from thousands of scientific
papers, representing the effort the scientific community is
taking into building intelligent systems. The system is a novel
method for learning deeper meaning, taking into account
scientific text. Instead of being restricted to a particular field,
our method can be used to learn different representations in
the text depending on the need. Capturing the essence of a
scientific paper are its keywords, so only by using the ‘‘Key-
words’’ section of a paper, the model can predict what kind of
architecture and hyperparameters should be used to get good
starting results. With the further development in the research
field of DL, systems designed for specific tasks are con-
stantly improving, e.g., CNNs are used for object detection

VOLUME 9, 2021 148711



G. Noveski et al.: Data-Driven Intelligence System for General Recommendations of Deep Learning Architectures

TABLE 1. Overview of related work.

and computer vision [27], [28], RNNs for NLP and speech
recognition [29], etc. We aim to unify hidden knowledge in
unrelated scientific papers and make building DL intelligent
systems easier, thus reducing the number of models that need
to be tested. Our effort will help researchers pick a starting
approach in building their DL intelligent system.

III. THE METHODOLOGY
The proposed methodology is comprised of two parts. The
first is the methodology developed to create the database, and
the second is the methodology for creating the DL intelligent
recommendation models.

A. CREATING THE DATABASE
A large corpus of scientific papers is required to achieve
a good intelligent system for recommending a DL archi-
tecture. Since such corpus has not been previously created,
the database was built from scratch containing a total of
19,868 scientific papers. All of the collected papers were
related toMachine Learning and Deep Learning. A portion of
them are studies done in Computer Science, while the remain-
ing portion are papers where their methodologies are applied
to solve some specific applications (e.g., social humanities,
chemistry, biology, etc.).

Extracting relevant data from a text can be considered
a separate research problem that requires cautiously choos-
ing appropriate preprocessing methods. From the currently
known solutions for information extraction, there are various
methods for accomplishing that task because each method
depends on the context of the text that is being processed
(encyclopedic text, scientific papers, general web text, etc.).
The methods can be categorized in two categories: metadata
extraction [30], [31] and key-insights extraction [32]. Meta-
data focuses on general information around a scientific paper,
like title, authors, and publication date, while key insights is
information that is obtained from the body of the paper.

The methodology established in this research to extract
information from the scientific papers is based on a key-
insights approach and is described in Figure 1. The steps until

‘‘Training specialized NER models’’ are consider part of the
NER pipeline, subsequently the following steps are respon-
sible for creating the dataset. A NER approach is chosen
because of its applicability to our problem and since using
a rule-based approach to extracting entities is not as robust.
We later see how the NERmodels do in fact give good results.

Unfortunately, the extraction of textual data from PDFs by
using some common libraries led to many tables, images,
headers, footers, and other elements in the PDF document
being undesirably extracted as textual data. Thus, the result
is corrupted sentences and added noise. To avoid this prob-
lem, some preprocessing is performed and the database was
created in eight consequential steps described as follows.
• Choosing optimal DL sentences: Manual annotations
have been done in order to create an annotated cor-
pora that can be used for training the ‘‘specialized’’
NER models. For reproducible results all annotated
corpora are publicly available on our GitHub repos-
itory. The selection of the sentences has been done
in order to have as much of a uniform distribution
as possible of the concepts and to manage imbal-
anced data during training of the models. Diverse DL
terms were included, such as: hidden layers, transfer
learning, model, hyperparameters, learning rate, CNN,
weights, parameters, etc. The annotated dataset is avail-
able at: https://github.com/Gjorgji-Noveski/Intelligent-
System-for-general-recommendations. Here are two
examples with annotated named entities in bold:
– ‘‘We apply deep learning methods in this paper,

namely we use convolutional neural networks
(CNNs) for description and prediction of the red
blood cells’ trajectory, which is crucial in modeling
of a blood flow.’’

– ‘‘TheDropout operation with probability p= 0.5 is
used to prevent overfitting during the training
phase.’’

• Training a ‘‘general’’ NER model: We refer to this
model as a ‘‘general’’ NERmodel because it is trained to
detect sentences containing various named entities from

148712 VOLUME 9, 2021



G. Noveski et al.: Data-Driven Intelligence System for General Recommendations of Deep Learning Architectures

FIGURE 1. Database creation and model learning process.

the field of Deep Learning. The training data is care-
fully selected because we believe having hand-picked
sentences with entity annotations will provide a robust
NER model that will be able to find the required named
entities. The model that we used for training was a pre-
trained one, namely using ‘‘en_core_web_sm’’ from the
‘‘SpaCy’’ library [33] which offered an already trained
NER model on English written text. In the core a deep
convolutional neural network with residual connections
is used. After training it is evaluated on a test set and
achieved f1-score of 0.77.

• Extracting sentences from corpus: The ‘‘general’’
NER model is run on the whole corpus of scientific
papers, which returns sentences that contain named
entities.

• Annotating extracted sentences: From the newly
acquired sentences, words are annotated in a way to be
used to train three new NER ‘‘specialized’’ models cov-
ering architecture type, activation functions and building
blocks (DL layers). We have decided to train separate
NER models for different types of entities, since in this
paper, we are not looking into the relations that exist
between the entities. Having separate NER models for
them can also provide more robust results since they
are trained only on a specific problem landscape. These
three categories were chosen because of their prevalence
in numerous scientific papers in which DL solutions are
deeply explained. There was no part-of-speech tagging
involved since the morphological information is irrel-
evant to us, simply a rule-based method was used to

annotate the sentences. Having an annotated domain
specific dataset provides better results as was shown
in [34]. Table 2 presents the content of the Archi-
tecture type, Activation functions and Building blocks
categories.

• Training ‘‘specialized’’ NER models: Even though
spaCy offers a pretrained model, that model recognizes
only general entities (such as person, organization and
location) and needs to be fine-tuned on a specific
domain. Our spaCy NER (i.e., general model) first
allows us to create a silver annotated corpus, on which
the pretrained corpus-based spaCy NER models are fur-
ther fine-tuned (i.e., specialized models). Same as the
‘‘general’’ NER model, the ‘‘en_core_web_sm’’ model
was used for fine tuning. The evaluation of these models
on a separate test set yielded f1-score of 0.99 for the
architecture type NER model, 0.99 for the activation
function NER model and 0.97 for the building blocks
NER model.

• Keywords document representation: The main goal in
the research is to achieve an intelligent recommendation
system able to propose optimal configurations from the
three categories, based on a user’s keywords input. Thus,
each scientific paper is preprocessed to extract its key-
words, representing the input vector features. The binary
values of the features represent whether the keyword
is present in the relevant scientific paper. A total of
16,123 unique keywords were identified.

• Linking named entities to labels: The ‘‘specialized’’
models are run on the whole corpus to check for named

VOLUME 9, 2021 148713



G. Noveski et al.: Data-Driven Intelligence System for General Recommendations of Deep Learning Architectures

entities. When a match is found, the vector containing
the keywords (the input) along with a vector of the cor-
responding named entities (the targets to be predicted)
is extracted.

• Building the datasets for training the intelligent sys-
tems: At the final step, a dataset of three distinct subsets
has been created. The first is comprised of Keywords
vectors with corresponding Architecture type vectors
and consists of 6,934 samples in total. The second isKey-
words vectors with corresponding Activation function
vectors and consists of 3,482 samples in total. The third
subset is Keywords vectors with corresponding Building
blocks vectors with 2,934 samples in total. At Figure 2
are shown the three datasets with the corresponding
number of occurrences of the target variables.

B. LEARNING THE INTELLIGENT MODELS
The process for learning the intelligent systems consists of
three main steps as shown in the ‘‘Learning intelligent sys-
tem’’ section of Figure 1. The first is referred to as dataset
preprocessing since it encompasses additional methods for
preparing the dataset to be appropriately used for learning
the intelligent models. The second step is applying several
methods that are evaluated in the third step and the best
models are chosen to be used as intelligent models.

1) DATASET PREPROCESSING
To ensure high-quality data, some preprocessing is needed.
The first step is removing samples that do not bring any infor-
mation. Those are the ones where all the binary indicators for
the named entities are zeros. This occurs due to some papers
not containing any of the named entities in Table 2 and also
the ‘‘specialized’’ NER model might have failed to detect
some of them. We separately consider the number of samples
for each named entity and disregard named entities below
a certain threshold as models struggle to learn meaningful
representations internally when samples are few.

During this phase different feature portfolios were used
based on the number of selected keywords. This is done
in order to find a combination which will capture the most
information while also using less number of features. The
raw (original) data consisted of 16,123 features correspond-
ing to all distinct keywords. Having a high number of features
brings longer model training times and noise. To address
this issue, a dimensionality reduction techniques is tested:
truncated SVD [35]. Data embedded using truncated SVD
was fed into each of the tested intelligent models. Multiple
benefits can be observed using embedding techniques such as
having data that is easier to work with, faster model training,
and more importantly, they allow projection of the data into
a lower-dimensional space where semantically similar key-
words are closely located to each other. Similarly, deep learn-
ing architectures have been proven to achieve good results
when paired with embeddings, as shown in [36].

2) LEARNING THE INTELLIGENT MODELS
While choosing an optimal ML model, numerous architec-
tures are tested and data manipulations are done to achieve
good results. SVM is considered a good option, since accord-
ing to the research presented in [37], SVM-based methods
are more suited for a dataset at which the number of features
exceeds the number of instances. Multitude of methods for
multi-label learning are compared [37] and results show the
binary relevance (BR) [38] method provides good results.
Following the advice of the research, the same method is
used for the problem at hand. To obtain more reliable results,
several other approaches are applied and compared to those
obtained from SVM. The architectures used in this research
are:

• SVM
• Random forest
• XGboost
• Multilayer perceptron
• Convolutional neural networks

Since the prediction problem belongs to the category of
multi-label classification, some of these architectures do
not inherently provide multiple output values. To overcome
this, two options are available, problem transformation and
algorithm adaptation. Problem transformation converts a
multi-label problem into multiple single-label problems, and
then trains a separate classifier for each of them. The final pre-
diction is an aggregated result from each of the independent
classifiers. Algorithm adaptation, on the other hand, adapts
the original algorithm to work with multi-label data. This
is usually done by changing the cost function of the algo-
rithm. SVM is used with the BR method for the purpose to
obtain multi-label predictions. Another problem transforma-
tion method that was tested and achieved comparable results
to BR is label powerset. This considers all the distinct label
combinations that appear in the dataset and treats the problem
as a multi-class task, meaning a training sample will contain
all label combinations, and the original combination of the
sample will be one-hot encoded.

To ensure that the distribution of the labels in the training
and testing set will be nearly equal, the stratification method
has been used to provide a balanced split [39]. Without using
stratification, it might be possible for a certain label to appear
only in one of the sets and therefore, worsen the generaliza-
tion performance of themodel. Furthermore, the stratification
method used iteratively distributes the rarest occurring labels
into respective N-folds, since the label distribution can be
changed more easily later in the subsequent iterations with
the more frequently occurring labels. The size of the datasets
before undergoing stratification can be seen in Figure 3.
After stratification the following number of samples were

obtained for training and testing the models:
• Architecture type dataset: train: 4,169 / test: 1,900
• Activation function dataset: train: 2,070 / test: 955
• Building blocks dataset: train: 1,737 / test: 784

148714 VOLUME 9, 2021



G. Noveski et al.: Data-Driven Intelligence System for General Recommendations of Deep Learning Architectures

TABLE 2. Labels per dataset.

TABLE 3. Labels per dataset after filtering labels that occur less than 300 times.

3) EVALUATING THE INTELLIGENT MODELS
The evaluation of the models is conducted using several
metrics as follows:

• Precision
• Recall
• F1-Score
• Hamming distance

Because of the nature of the problem (multi-label), some
metrics are more suited than others and give reliable infor-
mation on the models’ performance. Most attention is given
to F1-score, representing the harmonic mean of precision
and recall. It is used to decide if to further experiment with
a model’s hyperparameters or try different approaches. The
basis for choosing the f1-score as a deciding indicator of a
model’s performance is the equal importance of precision and
recall to our problem.

We decided not to use accuracy in any of our evalua-
tions since we experimented with a multi-label problem.
Using accuracy, a single prediction must have an exact match
between the predicted labels and the corresponding true
labels in order to be classified as a correct prediction. Because
of that, it is a harsh metric in multi-label problems, thus other
metrics are needed that will take into account even partially
correct predictions.

Precision represents the ratio of correctly predicted posi-
tive instances to the total predicted positive instances. For the
problem at hand, it is used in conjunction with recall, which
represents the ratio of positive instances that were retrieved
from a certain class. Precision and recall help during training
to observe if a model achieves overfitting and testing to see
if a specific target variable (label) achieves good results by
having representative samples.

Hamming distance represents the distance between two
binary vectors. It is calculated as the sum or averaged number

of bit differences between the two vectors, making it suitable
for our multi-label problem. The average number of bit differ-
ences is used in this work since having a scaled score between
0 and 1 is easier to interpret.

To take into account the general performance of the models
on all target variables, several averaging methods to average
each of the metrics except hamming distance are used as
follows:

• Micro average
• Macro average
• Weighted average
• Samples average

Micro average computes the metrics by considering the
total number of true positives, false positives, and false nega-
tives. Macro average computes the metrics for every label and
finds their unweighted mean. This gives equal importance to
each label without taking label imbalance into account. The
weighted average is similar to the macro average, it computes
the metrics, finds their mean, but it also applies weight to
each separate label which is the number of true instances
for the particular label. This provides results that are heavily
influenced by the more frequent labels in the dataset. Finally,
samples average works by computing the metrics on each
label instance and returning the average.

Due to having unbalanced datasets, some labels will occur
more often than others, so it is needed to have a metric that
will represent overall model performance on all labels. All of
our target variables (labels) are of equal importance, and
therefore, while evaluating the models, we give most signifi-
cance to macro-averagedmetrics. This averagingmethod was
also noticed to give the least optimistic values in the majority
of cases when compared to the other averaging methods
which helps in building a more realistic expectation of the
performance of the final model.

VOLUME 9, 2021 148715



G. Noveski et al.: Data-Driven Intelligence System for General Recommendations of Deep Learning Architectures

Models tend to predict the majority class in the training
data and to overcome that tendency, class weight is applied.
Using class weights, each incorrect prediction will influence
the loss value depending on the assigned weight for that
particular class. We use a ‘‘balanced’’ class weight mode
during the training phase, which adjusts the weights to be
inversely proportional to the class frequencies. This showed
better results than without using any class weights. For a
representative metric of overall performance, macro averaged
f1-score is used, which calculates f1-score for each label and
finds their mean. This way, the overall score is penalized
if generalization performance is significantly poor on some
labels.

IV. RESULTS
Figure 3 presents how many samples each label appears in
from each of the three datasets. These samples are obtained
after removing the target variables (labels) that occur less than
300 times and also after splitting the dataset into training/
testing set where samples that had small keyword over-
lap in their corresponding keyword vectors were removed.
We chose 300 as our threshold number because we wanted
to have enough representative samples even after splitting
into a train and test set, likewise to decrease the variance in
the results. Additionally, most of the less frequent features
occurred less than a few hundred times.

In the further processed datasets, it is evident that there is
still class imbalance and in order to address it, class weight is
applied to every target variable. As a result, while evaluating
models, better metrics were achieved on all datasets when
using class weight compared to not using it.

After completing the dataset preprocessing and building
the intelligent models for the architecture type, activation
function, and building blocks, the best results from all the
models are shown in Table 4, which also appear in the same,
said order. The numbers shown in the tables indicate the
results obtained with using latent semantic analysis (LSA).
LSA tries to bring forth latent features that are inherent in
the dataset, which in our scenario ended up in 100 latent
features. It does this by constructing a 2D-matrix that rep-
resents word count per document. After constructing the
matrix, it uses singular value decomposition (SVD) to reduce
the dimensionality while preserving the similarity between
documents.

Looking at F1-score, SVMs offer the best results on the
architecture type and activation function dataset, while the
best model for the building blocks dataset is the CNN model.
This further proves that SVMs work well with tasks that
have a larger number of features, confirming the hypothesis
proposed in [37].

MLPs closely followed the results from the other best
models. Surprisingly the best MLP configuration consisted
of only one hidden layer with 150 nodes. Deeper MLP
architectures were tested, although they were slower to con-
verge and gave slightly worse results. It was noticed that
the best MLP results were obtained early in the training

FIGURE 2. Occurrence of labels in different datasets before applying
threshold.

process, before the model had managed to significantly
converge thus, training was usually stopped after the first
10 or 20 epochs.

148716 VOLUME 9, 2021



G. Noveski et al.: Data-Driven Intelligence System for General Recommendations of Deep Learning Architectures

TABLE 4. Results from models (architecture type dataset/activation function dataset/building blocks dataset).

Using an ensemble of decision trees, Random Forest (RF)
gave the worst f1-score on the activation function dataset,
0.32 and comparable results on the other datasets. SVD is
used in order to perform LSA, which in turn will give us
lower dimensional data. Principal component analysis (PCA)
was also used in the place of SVD and they both achieved
similar results. The general poor results on RF are primarily
because each decision tree takes a small subset of features,
making it difficult to learn as our problem has a large feature
space that is shrunk down to a smaller size which is less
representative. Also, RF have shown to be prone to overfitting
for the problem at hand.

XGboost [40] improves on RF by using gradient boosting.
Their sparsity-aware algorithm better handles sparse input but
since we embedded our data into a 100 dimensional vector,
it doesn’t manage to use all of its benefits. Likewise, gradient
boosted trees have also been observed to suffer from quick
overfitting.

CNNs are mainly adapted for computer vision, although
they can also be used for text classification [41], [42]. The
convolutional filters can be trained to extract n-gram features
from text [43] and this is one of the reasons for choosing
a CNN architecture, since our binary encoded vector can
also be viewed as textual data. Inspired by the work of [44],
we implemented their nine-layer deep architecture but cut the
original number of filters by a factor of 4 due to the limited
amount of resources. Their deeper architectures were also
tested but all failed to converge.

V. DISCUSSION
In the process of producing and selecting the best intel-
ligent recommendation models, many data manipulations
were done and different architectures were tested. With a
high number of keywords, numerous examples have been
observed that share a similar meaning between each other,
e.g. ‘‘clustering’’ and ‘‘clusters’’. This introduces specific
noise to the system and embedding provides a way to elimi-
nate it. Another problem of using raw data is the sparsity of
the input vectors. Collecting more scientific papers provides
more unique keywords that demand more training data for
achieving good results. In the end, we are left with a vector
which is filled with mostly zeros and just a few features that
have a value of one. Further difficulties that arise from the
sparse vectors is the small overlap between keywords found
in training and test set. After the data underwent stratification,
as much as 67.9% of the keywords (from their respectful

vectors) found in the train set, did not appear in the test set.
This number was obtained from the architecture type dataset,
although the other datasets also had small keyword overlap.
This represents a significant problem for the generalization
performance of the model because during the testing the
model encounters keywords it was never trained on. Addi-
tionally, the low number of samples per given target label
further degrade model performance. We eliminated the small
overlap between keywords found in the training and the test-
ing set by leaving only keywords that appear in both sets and
removing the rest. Besides removing keywords that do not
appear in both train and test set, the training and testing data
remain unchanged.

To overcome the low number of samples, pairs of labels are
joined together considering their relatedness:

From building blocks:
• Recurrent layer and GRU layer
From Architecture type:
• Perceptron and feed-forward
• Recurrent neural network and gated recurrent unit
• Autoencoder and generative adversarial network
• Markov chain and Boltzman machine
The reason for joining labels is because a positive trendwas

noticed where increasing the number of samples for a target
label also showed better results on all metrics. Furthermore,
some labels are similar to each other and are used inter-
changeably in the literature. Therefore, there is an increase in
model performance when comparing the results before and
after joining the labels.

Considering dimensionality reduction, while using SVD,
the number of components was first set to 2,100 to obtain a
very high variance but later was lowered to 100, which is used
in general practice. Using 100 components gave better results
in contrast to using 2,100 and provided faster training times
as well. TSNE was used in data visualization and dimen-
sionality reduction, though it achieved worse results than
truncated SVD.

The proposed system can provide some general recom-
mendations that can be used as a starting point to define
the architecture for a typical application scenario that fur-
ther should be tuned concerning its hyperparameters. After
that, NAS methods or other AutoML methods should be
used to find the best hyperparameters for the specific set of
problems. Our approach can be used as a pre-step to define
which DNN architecture may be more suitable for a typical
scenario since it utilizes the knowledge already published in

VOLUME 9, 2021 148717



G. Noveski et al.: Data-Driven Intelligence System for General Recommendations of Deep Learning Architectures

FIGURE 3. Occurrence of labels in different datasets after applying
threshold.

the state-of-the-art literature. With this in mind, innovation
cannot be limited by such a system which provides general
recommendations.

VI. CONCLUSION
The benefit of our research is multifold, and each is discussed
as follows:

• Establishing a novel database: A novel database was
created from a large number of research papers that
underlined methods that organized the information in
Keyword vectors, Architecture type vectors, Activa-
tion function vectors and Building blocks vectors. The
database is created to understand how the scientific
community builds deep learning methodologies for var-
ious problem domains. By processing the corpus of
research papers a total of 16,123 unique keywords were
extracted. Since our proposed database creation process
consists of several steps, shown in Figure 1, it allows
for independent modifications of its parts, meaning it is
possible to create a new recommendation system simply
by retraining the NER model to extract named entities
from another domain.

• Learning a novel intelligent system: To the best of our
knowledge, this is the first time someone has made a
data-driven intelligent system for recommending Deep
Learning architecture and hyperparameters based on the
problem domain represented in form of keywords vec-
tors.We showcase the steps needed to build a database to
train such a system and analyze the results gained from
an exhaustive dataset manipulation and model building
process.

• Contribution to the interdisciplinary research commu-
nity: A great benefit of such an intelligent system is
that it can help the researchers from various fields to
build a Deep Learning model that will perform well
on their particular problem regardless if they have
experience in DL or not. This system will be of a
great help to researchers without a computer science
background by shortening the gap between them and
DL/ML practice.

In the future, we intend to improve our recommendation
system by implementing embeddings to our keyword vec-
tors and to give a comparative analysis between using pre-
trained embeddings and our own embeddings. Considering
the multitude of keywords that have similar meanings, it is
evenmore incentivizing to implement embedding techniques.
Next, we are planning to use the outcome of the intelligent
system as a starting point to tune it based on the character-
istic of the dataset that is being solved. We plan to tackle
the problems of certain edge cases that might occur during
text processing to obtain higher-quality data. Doing so will
improve the quality of the recommendations andmake amore
robust system.

REFERENCES
[1] T. Elsken, J.-H. Metzen, and F. Hutter, ‘‘Simple and efficient architecture

search for convolutional neural networks,’’ 2017, arXiv:1711.04528.
[2] C. Gao, Y. Chen, S. Liu, Z. Tan, and S. Yan, ‘‘AdversarialNAS: Adversarial

neural architecture search for GANs,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 5680–5689.

148718 VOLUME 9, 2021



G. Noveski et al.: Data-Driven Intelligence System for General Recommendations of Deep Learning Architectures

[3] T. Wei, C. Wang, Y. Rui, and C. W. Chen, ‘‘Network morphism,’’ in Proc.
Int. Conf. Mach. Learn., 2016, pp. 564–572.

[4] J. Lu, W. Ma, and B. Faltings, ‘‘Compnet: Neural networks growing via
the compact network morphism,’’ 2018, arXiv:1804.10316.

[5] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, ‘‘Efficient architecture
search by network transformation,’’ in Proc. AAAI, 2017.

[6] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
‘‘Hyperband: A novel bandit-based approach to hyperparameter optimiza-
tion,’’ J. Mach. Learn. Res., vol. 18, no. 1, pp. 6765–6816, 2017.

[7] M. Cho, M. Soltani, and C. Hegde, ‘‘Hyperparameter optimization in
neural networks via structured sparse recovery,’’ 2020, arXiv:2007.04087.

[8] E. Haber and L. Ruthotto, ‘‘Stable architectures for deep neural networks,’’
Inverse Problems, vol. 34, no. 1, Dec. 2017, Art. no. 014004.

[9] S. Popov, S. Morozov, and A. Babenko, ‘‘Neural oblivious decision ensem-
bles for deep learning on tabular data,’’ 2020, arXiv:1909.06312.

[10] Z.-H. Zhou and J. Feng, ‘‘Deep forest: Towards an alternative to deep
neural networks,’’ in Proc. 26th Int. Joint Conf. Artif. Intell., Aug. 2017,
pp. 3553–3559.

[11] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang,
‘‘A comprehensive survey of neural architecture search: Challenges and
solutions,’’ 2020, arXiv:2006.02903.

[12] G. Kyriakides and K. Margaritis, ‘‘An introduction to neural architecture
search for convolutional networks,’’ 2020, arXiv:2005.11074.

[13] L. Yang and A. Shami, ‘‘On hyperparameter optimization of machine
learning algorithms: Theory and practice,’’ Neurocomputing, vol. 415,
pp. 295–316, Nov. 2020.

[14] T. Yu and H. Zhu, ‘‘Hyper-parameter optimization: A review of algorithms
and applications,’’ 2020, arXiv:2003.05689.

[15] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, ‘‘Learning transferable
architectures for scalable image recognition,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8697–8710.

[16] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, V. J. Dillon,
B. Lakshminarayanan, and J. Snoek, ‘‘Can you trust your model’s uncer-
tainty? Evaluating predictive uncertainty under dataset shift,’’ in Proc.
NeurIPS, 2019.

[17] J. Caldeira and B. Nord, ‘‘Deeply uncertain: Comparing methods of
uncertainty quantification in deep learning algorithms,’’Mach. Learn., Sci.
Technol., vol. 2, no. 1, Dec. 2020, Art. no. 015002.

[18] L. Hoffmann and C. Elster, ‘‘Deep ensembles from a Bayesian perspec-
tive,’’ 2021, arXiv:2105.13283.

[19] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and
D. Mané, ‘‘Concrete problems in ai safety,’’ 2016, arXiv:1606.06565.

[20] J. Chen, Y. Li, X. Wu, Y. Liang, and S. Jha, ‘‘Robust out-of-distribution
detection for neural networks,’’ 2020, arXiv:2003.09711.

[21] B. Zoph and V. Quoc Le, ‘‘Neural architecture search with reinforcement
learning,’’ 2017, arXiv:1611.01578.

[22] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. Le, and
A. Kurakin, ‘‘Large-scale evolution of image classifiers,’’ in Proc. Int.
Conf. Mach. Learn., 2017, pp. 2902–2911.

[23] S. Xie, H. Zheng, C. Liu, and L. Lin, ‘‘SNAS: Stochastic neural architec-
ture search,’’ 2019, arXiv:1812.09926.

[24] H. Cai, L. Zhu, and S. Han, ‘‘Proxylessnas: Direct neural architecture
search on target task and hardware,’’ 2019, arXiv:1812.00332.

[25] M. Suganuma, S. Shirakawa, and T. Nagao, ‘‘A genetic programming
approach to designing convolutional neural network architectures,’’ in
Proc. Genetic Evol. Comput. Conf., Jul. 2017, pp. 5369–5373.

[26] T. Chen, I. Goodfellow, and J. Shlens, ‘‘Net2Net: Accelerating learning via
knowledge transfer,’’ CoRR, vol. abs/1511.05641, 2016.

[27] S. Ren, K. He, R. B. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-
time object detection with region proposal networks,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, pp. 1137–1149, 2016.

[28] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, ‘‘YOLOv4: Optimal
speed and accuracy of object detection,’’ 2020, arXiv:2004.10934.

[29] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘Bert: Pre-training
of deep bidirectional transformers for language understanding,’’ in Proc.
NAACL, 2019.

[30] A. Gjorgjevikj, K. Mishev, and D. Trajanov, ‘‘ADD: Academic disci-
plines detector based on Wikipedia,’’ IEEE Access, vol. 8, pp. 7005–7019,
2020.

[31] F. Peng and A.McCallum, ‘‘Accurate information extraction from research
papers using conditional random fields,’’ in Proc. NAACL, 2004.

[32] Z. Nasar, S. W. Jaffry, and M. K. Malik, ‘‘Information extraction from sci-
entific articles: A survey,’’ Scientometrics, vol. 117, no. 3, pp. 1931–1990,
Dec. 2018.

[33] M. Honnibal, I. Montani, S. Van Landeghem, and A. Boyd, spaCy:
Industrial-Strength Natural Language Processing in Python, 2020.

[34] N. Jofche, K. Mishev, R. Stojanov, M. Jovanovik, and D. Trajanov,
‘‘PharmKE: Knowledge extraction platform for pharmaceutical texts using
transfer learning,’’ 2021, arXiv:2102.13139.

[35] N. Halko, P. G. Martinsson, and J. A. Tropp, ‘‘Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix
decompositions,’’ SIAM Rev., vol. 53, no. 2, pp. 217–288, Jan. 2011.

[36] K. Mishev, A. Gjorgjevikj, R. Stojanov, I. Mishkovski, I. Vodenska,
L. Chitkushev, and D. Trajanov, ‘‘Performance evaluation of word and sen-
tence embeddings for finance headlines sentiment analysis,’’ in Proc. Int.
Conf. ICT Innov. North Macedonia, Skopje: Springer, 2019, pp. 161–172.

[37] G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Džeroski, ‘‘An extensive
experimental comparison of methods for multi-label learning,’’ Pattern
Recognit., vol. 45, no. 9, pp. 3084–3104, 2012.

[38] M.-L. Zhang, Y.-K. Li, X.-Y. Liu, and X. Geng, ‘‘Binary relevance for
multi-label learning: An overview,’’ Frontiers Comput. Sci., vol. 12, no. 2,
pp. 191–202, 2018.

[39] K. Sechidis, G. Tsoumakas, and I. Vlahavas, ‘‘On the stratification of
multi-label data,’’ in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery
Databases. Greece, Athens: Springer, 2011, pp. 145–158.

[40] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2016, pp. 785–794.

[41] R. Yadav, ‘‘Light-weighted CNN for text classification,’’ 2020,
arXiv:2004.07922.

[42] Z. Liu, H. Huang, C. Lu, and S. Lyu, ‘‘Multichannel CNN with attention
for text classification,’’ 2020, arXiv:2006.16174.

[43] A. Jacovi, O. S. Shalom, and Y. Goldberg, ‘‘Understanding convolutional
neural networks for text classification,’’ in Proc. BlackboxNLP EMNLP,
2020.

[44] H. Schwenk, L. Barrault, A. Conneau, and Y. LeCun, ‘‘Very deep convo-
lutional networks for text classification,’’ in Proc. EACL, 2017.

GJORGJI NOVESKI received the bachelor’s
degree in computer science from the Faculty of
Computer Science and Engineering, Saints Cyril
andMethodius University in Skopje, in 2021. He is
currently pursuing the master’s degree with the
Joz̆ef Stefan Institute, Ljubljana, Slovenia. During
his studies, he has worked on various projects
involving 3D object detection, dataset analysis,
and web platforms and services. He is also cur-
rently working with the Joz̆ef Stefan Institute as

a Researcher. As a young and ambitious Researcher, his current research
interests include machine learning, intelligent systems, and natural language
processing.

TOME EFTIMOV (Member, IEEE) received the
Ph.D. degree from the Joz̆ef Stefan International
Postgraduate School, Ljubljana, Slovenia, in 2018.
He was a Postdoctoral Research Fellow with
the Department of Biomedical Data Science, and
the Centre for Population Health Sciences, Stan-
ford University, USA, and a Research Associate
with the University of California at San Fran-
cisco (UCSF), San Francisco, USA. He is a
Senior Researcher with the Joz̆ef Stefan Institute,

Ljubljana. His main research interests include statistics, natural language
processing, heuristic optimization, machine learning, and representational
learning. Specific topics of research include information extraction of food-
and nutrition-related concepts from textual data, food data normalization,
and knowledge management for food- and nutrition-related data.

VOLUME 9, 2021 148719



G. Noveski et al.: Data-Driven Intelligence System for General Recommendations of Deep Learning Architectures

KOSTADIN MISHEV received the bachelor’s
degree in informatics and computer engineer-
ing, and the master’s degree in computer net-
works and e-technologies from Saints Cyril
and Methodius University in Skopje, in 2013 and
2016, respectively. He is currently pursuing the
Ph.D. degree in computer science and engineer-
ing with Saints Cyril and Methodius University in
Skopje. He is a Teaching and Research Assistant
with the Faculty of Computer Science and Engi-

neering, Saints Cyril and Methodius University in Skopje. In his career,
he has participated in numerous software and research projects. As part of his
scientific research work, he has published more than 20 scientific papers at
international conferences and journals. His research interests include natural
language processing, representation learning, speech technologies, semantic
web, assistive technologies, and web and mobile development.

MONIKA SIMJANOSKA received the Ph.D.
degree in informatics, defending her Ph.D. thesis
titled ‘‘Bioelectrical and Bioacoustical Signal Pro-
cessing for Prediction of Medical Conditions.’’

She is an Assistant Professor and a Senior
Researcher with the Faculty of Computer Science
and Engineering, Saints Cyril and Methodius Uni-
versity in Skopje, Skopje, and the Co-Founder
and the Co-Owner of a research and development
company Reason LLC, Skopje, North Macedonia.

During her research work, she had multiple research stays at the Joz̆ef Stefan
Institute, Ljubljana, where she worked in the field of machine learning and
biomedical signal analysis. Also, she had short research stays at the Univer-
sity CollegeDublin, Dublin, Ireland; theMaison JeanKuntzmann, Université
Grenoble Alpes, Grenoble, France; and the Laboratory for Microelectronics,
Faculty of Electrical Engineering, University of Ljubljana, Slovenia. She is
an author and coauthor of more than 60 research papers, partly published in
journals, on conferences, and as chapters of books.

Dr. Simjanoska received the Best Paper Award and the FESTO Young
Researchers and Scientists Support Scholarship for the proposed platform
architecture for colorectal cancer analysis at the 25th DAAAM International
Symposium, Vienna, Austria. Being trustworthy among the data science
community is the leading factor for her dynamic and diverse career devel-
opment encompassing intelligent systems creation as a response by the
various requirements of the society. She has arrangements in biomedicine,
bioinformatics, natural language processing, social sciences, agriculture,
cloud computing, education, and recently in microprocessor systems.

148720 VOLUME 9, 2021


