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Abstract: Network-based representations have introduced a revolution in neuroscience, expanding
the understanding of the brain from the activity of individual regions to the interactions between
them. This augmented network view comes at the cost of high dimensionality, which hinders both
our capacity of deciphering the main mechanisms behind pathologies, and the significance of any
statistical and/or machine learning task used in processing this data. A link selection method,
allowing to remove irrelevant connections in a given scenario, is an obvious solution that provides
improved utilization of these network representations. In this contribution we review a large set of
statistical and machine learning link selection methods and evaluate them on real brain functional
networks. Results indicate that most methods perform in a qualitatively similar way, with NBS
(Network Based Statistics) winning in terms of quantity of retained information, AnovaNet in terms
of stability and ExT (Extra Trees) in terms of lower computational cost. While machine learning
methods are conceptually more complex than statistical ones, they do not yield a clear advantage.
At the same time, the high heterogeneity in the set of links retained by each method suggests that
they are offering complementary views to the data. The implications of these results in neuroscience
tasks are finally discussed.

Keywords: brain functional networks; link selection; statistics; machine learning

1. Introduction

Since the beginning of modern neuroscience, one of the main focuses has been de-
scribing the differences between groups of subjects, with one of them usually comprising
people suffering from a given condition, and the other matched healthy control subjects.
The objective is to describe what is significantly different between controls and patients,
hence what is potentially causing the condition and, ideally, how can its impact be miti-
gated. Nevertheless, this also yields another benefit, i.e., validation; if no differences are
detected in patients suffering from a condition that is profoundly modifying the cognitive
capabilities, as e.g., Alzheimer’s or Parkinson’s diseases, one may infer that the data used
in the comparison are not characterising important aspects of brain activity.

In recent years, neuroscience has gone through a second shift in its focus. The historical
picture of the brain was one of a collection of regions working in a quite independent
way, such that a clear association could be established between regions and cognitive
tasks—e.g., Broca’s area and speech, or Wernicke’s area and language comprehension [1].
This was nevertheless at odd with two main evidences: brain activation studies, showing
that multiple regions seamlessly contribute to simple tasks; and brain plasticity, the process
allowing one function to shift to nearby areas in the brain. A new paradigm emerged,
in which different areas can work both together and isolated, resulting in respectively
integration and segregation of functions and information. While this has long ago been
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hypothesised, only the recent introduction of complex network theory has made rigorous
mathematical studies possible. Complex networks are mathematical objects composed of
nodes, pairwise connected by links [2–4]. Nodes and links can then be used to respectively
represent brain regions and their interactions, giving birth to structural and functional
brain networks [5,6].

In spite of important successes, the use of brain network representations also in-
troduced conceptual and computational problems, one of them being the complexity of
performing the aforementioned comparison between two groups of subjects. To illustrate,
let us consider the simple case of a localised brain tumour. When analysed through fMRI,
or even EEG data, a practitioner would locate a region of lower (or null) activity; fol-
lowing the original framework, he/she would deduce which area is affected, and hence
which function. Things nevertheless become more complex with the network framework.
On one hand, a single region can be (directly or indirectly) involved in many cognitive
tasks. On the other hand, and from a computational perspective, the analysis has a higher
dimensionality, as it has to be ascertain not just which area is affected, but instead which
connections (involving pairs of areas) are. Combining both ideas, it is possible for a damage
in a region a to affect, e.g., through plasticity, the connectivity between two other regions b
and c, regions that are prima facie not related to a.

When the group comparison is performed through automated tools, as e.g., through
machine learning models, network representations lead to another problem, commonly
called curse of dimensionality [7]. In short, the number of features (here of links, number
that scales quadratically with the number of nodes) can become larger than the number of
instances, i.e., of subjects available in the analysis; this, in turn, can lead to an over-fitting
of the classification models, and hence to unreliable and not generalisable results. The pres-
ence of a large number of potentially irrelevant links can further decrease the accuracy of
the learning algorithm, and increase memory and computational requirements. Selecting
features in brain network analysis can help detecting significant biomarkers for a particular
brain disease.

Such increase in complexity can partly be solved through the use of a selection process,
i.e., an initial step devoted to identifying only those connections that are relevant for a given
study. This is akin to the task of feature selection in machine learning, according to which
the initial set of features describing the instances of the problem is filtered to delete those
that are not relevant. The practitioner could then disregard the full network, to only focus
on the subset of nodes and connections that seem to be related with the condition under
study. This not only results in a conceptually simpler problem: it can also drastically
reduce the computational complexity of the same, thus allowing the use of more complex
numerical techniques in subsequent steps.

Given this state of affair, one fundamental question remains: given the large number
of methods proposed in the Literature to perform such selection, how do they compare
to each other when applied to brain networks? This paper answers this question through
a large-scale review and evaluation of 19 commonly used selection strategies, based on
statistical and machine learning principles. To the best of our knowledge, this is the first
instance of such a large-scale comparison of methods for feature selection in brain net-
works. The evaluation is performed using a well-known and publicly available functional
Magnetic Resonance Imaging (fMRI) data set, comprising both schizophrenic patients and
matched control subjects; and further confirmed with two additional data sets. Methods are
ranked according to the quantity of information they retain, measured through the score
achieved in a subsequent classification task; their stability, i.e., how consistent is the set of
retained links; and their computational cost. Results indicate that most methods perform
in a qualitatively similar and efficient way, in the sense that subsequent classification tasks
are not negatively affected. Still, the sets of retained links strongly vary across methods;
while the same quantity of information is preserved, each method localises it in a different
way, thus offering complementary views to the brain structure. Among the best performing
methods, it is worth highlight NBS (Network Based Statistics) for the highest quantity of re-
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tained information, AnovaNet for the highest stability and ExT (Extra Trees) for the lowest
computational cost.

The remainder of the text is organised as follows. Section 2 presents a review
of 19 methods for link selection, based on statistical and machine learning principles.
Afterwards, Section 3 details the three data sets used in this study, and how the brain
networks have been reconstructed from them; and the classification models that have
been used to evaluate the effectiveness of the selection methods. Results are presented
in Section 4, organised in terms of performance (Section 4.1), stability (Section 4.2), com-
putational cost (Section 4.3) and generalisability (Section 4.4). Lastly, Section 5 draws
some conclusions, discusses the limitations of the present study, and sketches future lines
of research.

2. Methods for Link Selection in Functional Brain Networks

As previously introduced, in this work we compare 19 methods—see Figure 1 for a list.
These can be divided in two big families, i.e., those based on statistics methods and those based
on machine learning models. These two families can further be divided in different groups.
Specifically, statistical methods can be univariate, i.e., evaluating one single link at the time
(see Section 2.1), or multivariate, when each link is evaluated taking into account the other
ones (Section 2.2). On the other hand, machine learning methods can be classified as filtering
ones, in which links are selected as an a priori step to classification (Section 2.3.1); wrappers,
i.e., when the selection is performed using the result of a classification model (Section 2.3.2);
and embedded methods, in which the selection process is performed by looking at the internal
process performed by a classification model (Section 2.3.3). Note that this classification is
a fuzzy one, and is only meant to provide a general guide on the main underlying principle—to
illustrate, any univariate method corrected for multiple comparisons is technically considering
all links in the final step, and may therefore be classified as multivariate.

Wrappers

SVM-RFE 

Boruta

LR-RFE

SLDA

Embedded

LASSO

Elastic-Net

RF

ExT

Filtering

SURFFDR

Bonferroni

KBest

Univariate

Corr

NBS

aSPU

Hotelling

Multivariate

Statistics Machine learning

DDT

AnovaNet

Nevada

Figure 1. List of the 19 selection methods here considered, classified according to their nature. For the
sake of clarity, the same class colour code will be used in all subsequent figures.

2.1. Statistical, Mass Univariate (Local) Approaches
2.1.1. False Discovery Rate (FDR)

The False Discovery Rate (FDR) approach works with uni-dimensional data, such
that connections between different pairs of nodes are considered as independent cases.
The weights of the corresponding edges of the two samples are compared, for then determin-
ing whether the difference is statistically significant for each individual link. This approach
uses the adjacent matrix of the brain networks and compares the weights of the links belong-
ing to the lower triangular part of the matrix (matrix half-vectorization). Such comparison
can be done through a simple Student’s t-test. Here we use the Welch’s t-test [8,9], a variation
of the t-test for cases in which the two samples have different variance.

Testing multiple connections in an independent fashion results in the well-known
problem of multiple comparisons. Specifically, the probability of one or more false rejec-
tions, also known as type I errors or family-wise error rate (FWER), needs to be controlled.
One of the several procedures to address this issue is the False discovery rate (FDR) [10],
which provides less stringent type I error control, contributing to greater statistical power.
On the other hand, this method also results in an increased number of false rejections (type
I errors). This control procedure works by sorting the p-values in increasing order, for then
finding the largest index i satisfying the condition pi ≤ αi/N (with i = 1, 2, . . . , N, and N
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being the number of tests or edges). In other words, it finds the largest index i for which
the null hypothesis (the two samples are different) is rejected.

The univariate FDR approach can be summarised in the following steps: (1) calculate
the half-vectorization of the brain networks’ adjacency matrices; (2) perform the Weltch’s
t-test on each element of the vector; (3) apply the FDR procedure to correct the p-values; (4)
reject the null hypothesis for each edge if p-value < α; (5) sort the edges according to their
p-value; and (6) extract the significantly different edges.

2.1.2. Bonferroni

As previously discussed, there are several procedures [11–15] that address the issue of
multiple comparisons using a correction value, in order to ensure that the FWER is kept
below a certain level. One of them is the Bonferroni correction [16], which is a strong control
method. This method has a higher probability of producing false negatives, thus reducing
the statistical power of the tests. The procedure for link selection using the Bonferroni
correction is similar to the previous one, only the FDR is replaced in step 3 by the Bonferroni
p-values.

2.1.3. Select K Best (KBest)

The KBest method is based on the evaluation of a function (a Chi-squared statistic
in our case) that assesses the correlation between the features (i.e., the link weights) and
the target variable (the class labels). A fixed and predetermined number k of edges with
the highest scores are finally selected.

2.2. Statistical, Multivariate (Global) Approaches
2.2.1. Correlation of Features (Corr)

This method leverages on the idea that good features are highly correlated with
the target variable, but at the same time uncorrelated among themselves. Consequently,
if two features are highly correlated, only the one that is more correlated with the target
variable is retained. A threshold of 0.5 is used for determining whether pairs of features
are linearly correlated between themselves.

2.2.2. Network Based Statistics (NBS)

Network-based statistics (NBS) [17] is a method performing mass-univariate testing
on the network connections, with a subsequent control for FWER. The clustering structure
of the network, i.e., connected subnetworks in the topological space, is used to correct
the initial test statistics and p-values, and the result is a set of components that are sta-
tistically significant. The test controls the FWER in a weak sense, and gives corrected
p-values to each subnetwork using permutation testing, in order to conclude whether each
component has a statistically significant effect in the network.

More in details, NBS works as follows. The first step involves calculating an individual
univariate test statistics for each connection, as e.g., the t-test statistics. After that, a thresh-
old defined by the user is applied, resulting in a set of supra-threshold links. This threshold
is the minimal value of the test statistics of an edge that can potentially reject the null
hypothesis. The following step is to use a breadth-first search algorithm on the set of links,
to find the number of resulting connected components and their sizes. These components
can be considered as subnetworks containing connections that have a statistical effect.
The size of the largest component is saved; additionally, and using repeated permutation
tests, the members of the samples are randomly permuted, and the size of the largest com-
ponent is stored. Finally, the edges of the final component are retained for further analyses.
NBS comes with a gain in statistical power, but its weakness is that one cannot localise
the effect to individual edges, as instead complete connected components are retained.

Several improvements and variations of the NBS testing procedure have been pro-
posed. To illustrate, a threshold-free variant is described in [18]. A specific procedure was
proposed to adjust the cluster sizes in [19], and implemented in the permutation-testing
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framework in the Mrtrix connectomestats software (https://mrtrix.readthedocs.io/en/
latest/reference/commands/connectomestats.html, accessed on 20 February 2021). Finally,
other highly data adaptive tests that choose several parameters to reflect uncertainty with
gained power are proposed in [20].

We used the basic NBS implementation available at https://github.com/aestrivex/
bctpy/blob/master/bct/nbs.py (accessed on 20 February 2021), with a grid search to find
the optimal threshold that leads to the best classification.

2.2.3. Adaptive Sum of Powered Score Test

The sum of powered score test, also known as the SPU test, was initially proposed
in [21] for identifying rare variants in genome-wide association studies, and has subse-
quently been used on brain networks [22]. This approach provides a global testing, i.e., the
significant effect cannot be associated to individual edges.

The simplest SPU test computes a score vector U as U = ∑n
i=1 Xi(Yi − Ŷi), where Xi

are the observations (brain network half-vectorized) for the i-th individual, Y is a binary
vector indicating the group of the individuals, and Ŷ the mean of the latter. Each element
Uj contains the non-zero effect of each connection in the network. This score vector is used
to compute the test statistics as TSPU = ∑k

j=1Uγ
j , where γ is an input parameter that should

be tuned in order to obtain the highest statistical power. To make a statistical inference,
the next step is to perform parametric bootstrapping or permutations, obtaining corrected
p-values.

The adaptive sum of powered score test (aSPU) is a variation aimed at finding
the optimal value of the parameter γ [21]. If Γ = 1, 2, . . . , ∞ and PSPU(γ) is the p-value
of the SPU test with parameter γ, then the statistics for the aSPU test is computed as
TaSPU = minγ∈Γ PSPU(γ). The p-value of the test statistics is calculated through bootstrap-
ping or permutations. [21] demonstrates the use of the score component Uj as the contribu-
tion of each connection to the test statistics. One can thus order connections according to
their Uj, and select the top-k as the k most important ones. We used the R implementation
of the basic aSPU test available at https://github.com/ikwak2/aSPU (accessed on 25
February 2021).

2.2.4. Two Sample HOTELLING’s T-Square Statistics

Hotelling’s T2 statistics [23,24] is a natural multidimensional generalisation of Stu-
dent’s t statistics. This test compares the mean values of the samples containing data
with multiple variables (characteristics). In order to perform a link selection, one starts
by calculating N Laplacian matrices, one per subject, as L = D− A, where D and A are
respectively the corresponding degree and adjacency matrices. Afterwards, two Fréchet
means are calculated, of respectively the Laplacian matrices of the two groups of subjects;
these mean matrices are then transformed into vectors through half-vectorization, and are
denoted in what follows by vec(L̂1) and vec(L̂2).

The Hotelling’s two-sample T-Square statistics is then defined as

T2 =
n1n2

n1 + n2
(vec(L̂1)− vec(L̂2))

TΣ̂−1(vec(L̂1)− vec(L̂2)), (1)

where Σ̂−1 is the inverse of the covariance matrix Σ̂ = 1
n1+n2−2 ∑2

j=1 njΣ̂j, with Σ̂j denoting
the individual sample covariance matrix

Σ̂ =
1

n− 1

n

∑
i=1

(vec(Li)− vec(L̂))(vec(Li)− vec(L̂))T (2)

and n1 and n2 the samples sizes. According to [24], when the sample size is big enough, T2

is approximately chi-square distributed with p degrees of freedom. When the hypothesis
of normality holds, the Hotelling test is optimal.

https://mrtrix.readthedocs.io/en/latest/reference/commands/connectomestats.html
https://mrtrix.readthedocs.io/en/latest/reference/commands/connectomestats.html
https://github.com/aestrivex/bctpy/blob/master/bct/nbs.py
https://github.com/aestrivex/bctpy/blob/master/bct/nbs.py
https://github.com/ikwak2/aSPU
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With this definition of the T2 statistic, the next step is to calculate the covariance
matrix. As noted in [25], the sample (empirical) covariance based on the observed data
is singular when the dimension is larger than the sample size (n << p), i.e., it cannot be
inverted to compute the precision matrix. Also, the sample covariance matrix is likely
to be numerically unstable. Therefore, an estimation method for obtaining a proper
covariance matrix should be used. Multiple estimators have been developed as a solution
to the problem and they are applied in various fields [26]. A part of them are estimators
of covariance matrices [26], some are for sparse covariance matrices [25,27], and others
are used to estimate the inverse of the covariance matrix [28]. We here use a form of
shrinkage estimation [29] that shrinks the sample covariance matrix towards the identity
matrix, and which is equivalent to considering an asymptotically optimal convex linear
combination of the two. The implementation corresponds to the one in [30]. We then
calculate the covariance matrix from the individual estimated covariance matrices, the T2

statistics, the degrees of freedom, and p-value. Using p-value < α, we determine whether
the samples are different.

The contribution of each edge to the T2 statistic can be determined through a linear
decomposition of T2. By taking the square root of the inverse covariance matrix, one can
make the decomposition n1+n2

n1n2
T2 = AT A = ∑

p
i=1 A2

i , where A = Σ̂−
1
2 (vec(L̂1)− vec(L̂2)),

and A2
i is the contribution of the ith edge to the value of T2. With this, the inverse matrix is

decomposed through spectral decomposition, and the weights for the edges are estimated.
Finally, edges are sorted according to their weight, and the top-k edges are retained.

2.2.5. Difference Degree Test (DDT)

The difference degree test (DDT) [31] is a method for brain networks comparison pro-
posed to overcome the low statistical power of mass-univariate approaches. The test finds
the difference degree network that identifies the brain regions connected to a significant
number of differentially weighted edges (DWEs).

The first step of the test involves constructing the difference network D = dij,
i, j ∈ 1, 2, . . . , N; each element dij represents the statistical difference in the connections be-
tween nodes i and j, and is defined as the p-value of a between group difference test. After-
wards, the first and second moments of the difference network D are obtained as e = E(dij)

and σ2 = Var(dij), according to which a certain number of random networks are generated
using the efficient algorithm proposed in [32]. The random networks are thus matched
to the observed difference network, to capture its true topology. Afterwards, an adap-
tive threshold selection method is applied for thresholding D. In our analysis, we used
the empirical difference degree test (eDDT), which uses the empirical critical value for
thresholding. The selected threshold is applied to D and the difference adjacency matrix
A = aij is obtained, where aij represents the differences in the connection between nodes i
and j. Based on A, a difference degree measure di is calculated for each node i. di is mod-
eled with a binomial distribution B(N − 1, pnull

i ), where pnull
i is the expected probability

for each connection of node i to demonstrate between-group differences and it is computed
based on the generated random networks. Finally, the statistical significance of the DWEs
at each node is assessed. We here propose to create the list of relevant links by selecting
those that are connected to a statistically significant difference node.

2.2.6. Anova Networks Test (AnovaNet)

Another newly developed statistical test for identifying differences in populations
of networks is the analysis of variance (ANOVA) networks (AnovaNet) test [33]. It aims
at identifying subnetworks where different types of modifications between groups occur:
modifications localized just in particular edges; unlocalized modifications, in which some
edges are changed but they differ among individuals; and global modifications, in which
there are global alterations among groups. As a result, the algorithm yields a subset of
edges, or a subnetwork, where the highest network difference between groups is present.
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Given the complete set of brain networks G1, G2, . . . , Gn, the AnovaNet test compares
two groups by calculating the statistic T =

√
2

a ∑2
i=1
√

ni(
ni

ni−1
dGi (Mi)− n

n−1 dG(Mi)), where
ni (i ∈ 1, 2) are the number of networks in each group, n = n1 + n2, a is a normalization
constant, dG(M) = 1

l ∑l
k=1 d(Gk, M) is the average distance around a network (calculated

using the edit distance between graphs [34]) and Mi (i ∈ 1, 2) is the average adjacency
matrix for group i. In other words, this statistic compares the network variability for each
group on one hand, and the average distance between networks of one group and their
corresponding average on the other.

As a last step, an additional statistic TE is defined, as the T statistic obtained for
the subnetwork composed by all nodes and a subset E of all edges. The edges E that
minimises TE are the ones most contributing to the difference among the groups, and are
therefore retained for subsequent analyses.

2.2.7. NEtwork-VAlued Data Analysis (Nevada)

The model-free two-sample test for network-valued data (Nevada) [35] is a permu-
tation test for making inference on distributions of networks. The proposed framework
is very flexible, since it allows choosing different matrix representations of the networks,
different distance metrics and different test statistics.

Nevada can be adapted to perform link selection as follows. The first step involves
choosing the matrix representation, among the several available, that gives the best results:
adjacency, Laplacian or modularity matrices. Secondly, one must choose a statistic; a large
number of them are reviewed, proposed and used in [35]. Given the two groups i = 1, 2 and
the corresponding networks Gi ={Gi1, Gi2, ..., Gini }, we use the T statistic to detect higher-

moment differences between networks defined as T =
1

n1n2
∑

n1
i=1 ∑

n2
j=1d2(G1i ,G2j)−(σ̂2

1+σ̂2
2 )

σ̂2
1

n1
+

σ̂2
2

n2

. Here,

σ̂2
1 and σ̂2

2 are estimators of the within-sample variances in the two groups, and are defined
as σ̂2

1 = 1
n1(n1−1)∑n1

i=1 ∑n1
j>i d2(G1i, G1j) and σ̂2

2 = 1
n2(n2−1)∑n2

i=1 ∑n2
j>i d2(G2i, G2j). Note that

the distance d(Gk, Gl) between two networks Gk and Gl is here defined as the corresponding
Frobenius distance.

As a final step, a permutation test is designed with a non-parametric combination
approach that captures both mean and variance differences between networks groups with
high statistical power. Similarly to the AnovaNet approach, the edge subset that yields
the optimal value of the statistic, and therefore the largest differences between the two
groups, is selected. In our implementation we used the nevada (NEtwork-VAlued Data
Analysis) R package taken from https://github.com/astamm/nevada (accessed on 25
February 2021).

It is worth noting that other statistical methods for detecting group differences
in network structures have been proposed - the interested reader may refer to [36–40].
These methods have not been included here due to practical and implementation issues,
as e.g., too large computational costs.

2.3. Machine Learning

Feature selection is an active field of research within the machine learning community,
and as such a large number of algorithms and methods have been proposed. While
in principle all of them could be applied to functional brain networks, a complete review
goes beyond the scope of this contribution—review that the interested reader can find,
for instance, in [41,42]. Here, nine of the most representative and well-known methods are
instead discussed and evaluated. For the sake of clarity, there are further divided into three
families, following the customary classification in machine learning: filtering, wrapper and
embedded methods [41].

https://github.com/astamm/nevada
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2.3.1. Filtering Methods

Feature filtering methods use certain metrics to rank features and to form the best set
of attributes [43]. They are independent of the learning algorithm, and therefore are most
often used as a pre-processing technique. Filtering methods determine the relevance of
features by correlating them with the dependent variable, using metrics like information
gain, Gini index and others [44–46].

Spatially Uniform Relief (SURF)

Relief [47] is an feature ranking method based on instances for a binary classification
problem. ReliefF [48] is an extension of Relief for multi-class problems. Relief ranks features
depending on how well they differentiate between instances that are close to each other.

The algorithm randomly selects an instance Gi from the data and finds the nearest
neighbor H from the same class and the nearest neighbor M from another class. It then
updates the feature score by comparing the values of the features of Gi with H and M. If Gi
and H have different values for the feature f , i.e., the two instances of the same class are
separated by f (which is not desirable), the rank score of f is decreased. On the other hand,
if the feature f separates Gi and M (which is desirable), then the f rank score is increased.
The process is repeated for m randomly selected instances. ReliefF is also more robust
than Relief using k nearest neighbors. ReliefF ranks all features and needs a predefined
threshold t for choosing the best N features.

The SURF algorithm [49] builds on top of ReliefF, but, unlike this, eliminates the user
parameter k and instead adopts a threshold at a distance T to determine which cases will
be considered neighbors. We have used the SURF implementation included in the scikit-
rebate package in Python, and available at https://github.com/EpistasisLab/scikit-rebate
(accessed on 26 February 2021).

2.3.2. Wrapper Methods

Wrapper methods use a set of features to learn a model, for then using the parameters
of the model to evaluate the selection of features. In other words, they decide whether to
add or remove features from the subset by evaluating the impact that those features have
in the classification score. The problem is essentially reduced to a search one, making it
usually computationally very expensive. Additionally, there is an increased risk of overfit-
ting, especially when the number of observations is low. Well-known examples of wrapper
methods are forward feature selection, backward feature elimination, and recursive feature
elimination. We use the recursive elimination approach using the SVM learning model
(SVM-RFE), and logistic regression (LR-RFE), as well as Boruta.

Support Vector Machine-Recursive Feature Elimination (SVM-RFE)

This method, called support vector machine-recursive feature elimination (SVM-RFE),
is based on performing a recursive feature elimination (in which features are deleted one at
the time) under the guidance of a linear SVM classifier [50]. The SVM algorithm divides
a given set of instances using a maximum margin hyperplane, i.e., an hyperplane that
is maximally separated from the two classes of instances. The objective function is to
find a division function that will accurately classify new samples. The parameters of
a linear SVM define a decision hyperplane in the multidimensional feature space, i.e.,
g(x) = wTx + b = 0, where x is the features vector, w is the vector with weights for
the features, and b is a bias parameter.

According to the SVM-RFE algorithm, the relevance of the n element in the feature
vector is determined by the value wn from the weight vector. Practically, if wn is close to 0
the corresponding feature does not contribute significantly to the value of g(x). The impor-
tance of each feature is then determined by sorting the absolute values of the vector w, and,
in each iteration of the algorithm, a specific number of features are discarded.

https://github.com/EpistasisLab/scikit-rebate
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Logistic Regression with Recursive Feature Elimination (LR-RFE)

The logistic regression (LR) model predicts the parameters of a logistics model in order
to model class probabilities. Each feature of the training data is associated to a number
between 0 and 1, which represents the probability of belonging to a given class. The basic
idea of logistic regression is to use the mechanism already developed for linear regression
by modeling the probability pi using a linear prediction function, i.e., a linear combination
of given attributes and a set of regression coefficients. The linear prediction function f is
given by f (x) = w ∗ x + b = log(p(x)/(1− p(x)), where w the vector with the regression
coefficients, x is a vector of predefined data attributes, and b refers to the bias variable. In a
manner similar to the SVM-RFE approach, we use a recursive feature elimination algorithm
to determine the importance of each feature, sort them and take a specific number of
features (here, links) as significant.

Boruta

The Boruta [51] algorithm is a wrapper feature selection method around the Random
Forest classification algorithm. The algorithm first duplicates the set and shifts the features
values, which are called shadow features, in the newly created one. The next step involves
training a Random Forest algorithm to merge the original and the modified feature sets.
The values for feature significance are taken from the trained model. The algorithm
then checks which of the real features were more important than the modified features.
The random shift of the features, the learning of the algorithm, as well as the checking of
the significance of the real features is repeated N times and for each feature the number
of hits is calculated (number of iterations in which that feature had a significance greater
than the maximum significance of the modified features). A statistical test is performed
in which the feature is rejected if the number of hits is less than the expected value, and it is
retained otherwise. In the implementation, a two-step correction method is used to correct
the error that occurs during multiple testing. First, an FDR correction is used, and then
a Bonferroni correction to capture that the same features are tested over and over again
in each iteration with the same test.

We use the implementation of this algorithm in Python available at https://github.
com/scikit-learn-contrib/boruta_py (accessed on 26 February 2021), which has modifica-
tions to loosen the strictly defined rules in the original code in R, specifically, it introduces
a percentile to substitute the fixed rejection threshold.

Sparse Linear Discriminant Analysis (SLDA)

A Sparse Linear Discriminant Analysis (SLDA) feature selection process for brain
networks is proposed in [52], based on two stages, and using a machine learning tech-
nique that includes sparsity for weighted networks. In the first stage of the feature se-
lection, a sparse linear discriminant analysis is performed to select discriminant features.
Different subsets of the brain networks dataset are iterated with a multivariate bootstrap
approach. Moreover, also in the first step, an ensemble of sparse linear discriminant anal-
ysis (LDA) models is constructed, using the sparsity idea from [53] to find the features
(network links) that discriminate the two brain network groups. The subset of the selected
features is minimized, and the difference between the two groups is maximized. The sec-
ond step is a stability selection one, where only the features that are frequently selected
across iterations are kept.

The definition of the sparse LDA problem uses l1 and l2 regularizations as in a Elastic-
net problem (see below). The l1 regularization ensures a reduction in the overfitting,
by forcing the choice of a small number of features. Furthermore, the l2 regularization min-
imizes the prediction error and helps managing the high-dimensionality of the data. The
two combined give an optimal classifier and a minimum number of discriminant features.

For our implementation we have used an R alternative to the original Matlab code
(https://github.com/alecrimi/multi-link, accessed on 27 February 2021) taken from https:
//github.com/topepo/sparselda (accessed on 27 February 2021).

https://github.com/scikit-learn-contrib/boruta_py
https://github.com/scikit-learn-contrib/boruta_py
https://github.com/alecrimi/multi-link
https://github.com/topepo/sparselda
https://github.com/topepo/sparselda
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2.3.3. Embedded Methods

Embedded methods combine the qualities of filtering and wrapper methods. They are
implemented with algorithms that have their own built-in feature selection methods.
The learning algorithm utilizes its own feature selection process and at the same time
performs feature selection and classification/learning.

Lasso

The Least Absolute Shrinkage and Selection Operator (Lasso) is a regression analysis
method that includes feature selection and regularization in order to improve the accuracy
and interpretation of the obtained statistical model [54]. Lasso is able to achieve these two
goals by setting a fixed value for which the sum of the absolute values of the regression coef-
ficients must be minimized, forcing certain coefficients to be set to zero, effectively choosing
a simpler model that does not include irrelevant coefficients. The used implementation is
based on a l1 regularization in a logistic regression in Python.

Elastic-Net

Another well-known way of adding regularization is the Ridge method (l2 regulariza-
tion), which uses a square instead of an absolute value as in Lasso. The method known as
Elastic-Net [55] uses the Ridge and Lasso methods simultaneously: L + λ((1− α)∑ w2 +
α ∑ | w |), where α controls the mix of Ridge and Lasso regulations, with α = 0 value indi-
cating “pure” Ridge, and α = 1 “pure” Lasso. Our implementation uses the SGDClassifier
from the scikit-learn package [30] in Python, with an elastic-net regularization α = 0.15.

Random Forest (RF)

The random forest (RF) classification algorithm has a built-in feature importance
computation, capturing the features’ contribution in decreasing the weighted impurity
of a split while training the trees composing it. Features are selected as internal node
in the tree according to their impurity decrease, which, in the case of classification tasks,
can be computed through Gini impurity or infomation gain. The average of this decrease
of each feature in all trees of the forest is the measure for feature importance. We select
the top k features (edges) with the highest importance using the implementation of RF
classifier from scikit-learn package in Python.

Extra Trees (ExT)

In a way similar to what done in the previous RF method, we use the built-in feature
ranking included in Extremely Randomized Trees Classifiers (Extra Trees). Extra Trees
is an ensemble learning method very similar to random forest, different only in the way
the decision trees are constructed. For performing the feature selection, during the con-
struction of the forest, for each feature, a normalized total decrease in the criteria used
in the decision of the split (usually a Gini index) is calculated as feature importance. The fea-
tures are sorted in descending order of their importance and the top k features are retained.
Similarly to the previous methods, we used a Python scikit-learn implementation with
Extra Trees classifier.

3. Datasets and Classification Models
3.1. Brain Image Acquisition and Network Reconstruction
3.1.1. COBRE

The first dataset used in this study is the Schizophrenia dataset COBRE [56], which
includes Schizophrenia patients (SZ) and healthy control (HC) subjects. We have selected
144 subjects (70 SZ and 74 HC), excluding two subjects from the original dataset for being
outliers. A 3T Siemens Trio scanner was used to acquire anatomical multi-echo MPRAGE
sequence data (TR/TE/TI = 2530/[1.64, 3.5, 5.36, 7.22, 9.08]/900 ms, FOV = 256 × 256,
FA = 7◦, voxel size = 1 × 1 × 1 mm3 [56]) and rs-fMRI data (TR = 2 s, TE = 29 ms,
FA = 75◦; FOV = 240 mm, matrix size = 64 × 64, voxel size = 3.75 × 3.75 × 4.55 mm3 [56]).
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We did fMRI preprocessing using the Statistical Parametric Mapping (SPM12) [57] library
for MATLAB R2018b and the CONN toolbox [58] version 18b. A default pipeline was
used with standard preprocessing steps: realignment and unwrap; slice-timing correction;
outliers detection of functional volumes using ART [59]; segmentation of gray matter,
white matter, and cerebrospinal fluid (CSF) areas for the removal of temporal confounding
factors; normalization of images to the standard Montreal Neurological Institute (MNI)
template; smoothing with an 8mm full width at half maximum (FWHM) kernel); and
band-pass filtering with a frequency window of 0.008–0.09 Hz. Finally, to construct the
116 × 116 functional connectivity matrices using Fisher-transformed bivariate correlation
in the CONN toolbox, the Anatomical Atlas Labeling (AAL) [60] template was used for
brain ROI parcellation.

3.1.2. PRURIM

The second dataset here used is taken from the USC Multimodal Connectivity
Database [61] http://umcd.humanconnectomeproject.org (accessed on 15 February 2021),
which is a web-based brain network platform and database. It includes 29 functional 116 ×
116 connectivity matrices coming from a study with 14 patients with chronic psoriasis and
15 healthy controls [62]. The fMRI imaging data come from the University Hospital Brest
(CHU de Brest), France, acquired with a Philips Achieva dStream 3T scanner (fMRI data
with TR = 3.15 s, First Echo Time = 17 ms, Second Echo time = 46 ms, voxel size = 2.5 × 2.5
× 2.6 mm3, FA = 90◦, FOV = 250 × 250 × 143, matrix size = 128 × 128, number of slices
= 45). Standard pre-processing steps (slice time correction, realignment, coregistration,
normalization, smoothing with 10 mm FWHM, parcellation with AAL atlas, regressing
out confound factors, and band-pass filtering) have been performed and 29 functional
connectivity matrices have been uploaded to the USC Multimodal Connectivity Database.

3.1.3. UCSF Progressive Supranuclear Palsy (PSP)

The third dataset here used is also taken from the USC Multimodal Connectivity
Database [61]. It includes 64 connectivity matrices with size 27 × 27 from a task-free
functional magnetic resonance imaging (tf-fMRI) study of 12 Progressive Supranuclear
Palsy (PSP) patients and 20 healthy controls [63,64] scanned twice 6 months apart. They are
constructed from imaging data from the UCSF Neuroscience Imaging Center, San Francisco,
acquired with a Siemens Trio 3T scanner (tf-fMRI data with acquisition time = 8 min 6 s,
axial orientation with interleaved ordering, FOV = 230 × 230 × 129, matrix size = 92 × 92,
voxel size = 2.5 × 2.5 × 3.0 mm3, TR = 2000 ms, TE = 27 ms). Additional information
regarding the preprocessing steps and the reconstruction of the connectivity matrices is
available in [63].

3.2. Classification Algorithms

Once multiple sets of features, i.e., of links, are obtained through the different methods
described in Section 2, these are evaluated through a classification problem. In other
words, a classification model is trained to discriminate between the two groups of people
represented in the datasets, only using the selected links, and the result is evaluated
in terms of the Area Under the Curve (AUC) and F1 metrics. These are metrics that
assess the performance of a classifier, where the AUC represents a degree for separability
of classes, and the F1 score is a measure that balances between precision and recall of
the model. Intuitively, the higher the obtained classification score, the more information
relevant for the classification problem is included in the used set of links; consequently,
the classification score can be used as a proxy of the effectiveness of each link selection
method [65].

As different models are based on different assumptions on the features and their rela-
tionships, each classification has been performed using multiple algorithms with repeated
stratified 10-fold cross-validation for validation, in order to avoid model-specific biases.
There are:

http://umcd.humanconnectomeproject.org


Brain Sci. 2021, 11, 735 12 of 26

• Bayes: Also known as naïve Bayes classifier, this model assumes complete indepen-
dence between the input features of the problem, for then directly applying the Bayes
theorem and estimate the probability associated to each class [66]. While being highly
scalable and of low computational cost, its main limitation is the independence as-
sumption, as it cannot usually be guaranteed.

• Gaussian Naïve Bayes (GNB): A type of naïve Bayes classifier in which input features
are considered to be continuous (as opposed to discrete) and modelled as a normal (or
Gaussian) distribution.

• Decision Trees (DT): Classification models composed of a tree-like structure of nodes.
Each node represents an attribute (feature) in a record to be classified, which is tested
against a question defined in the training phase; each branch then represents a value
that the attribute can take, i.e., an answer to the node’s question. The DT’s main
advantage resides in its simplicity and reduced computational cost [67].

• Random Forest (RF): Combinations of Decision Tree predictors, in which each tree is
trained over a random subset of features and records; the final classification forecast is
then calculated through a majority rule. Random Forests are especially appreciated
for their precision and low tendency to overfitting [68].

• ExtraTrees (ExT): an ensemble fast method based on the combination of a number of
randomised decision trees on various sub-samples of the dataset, in a way similar to
the Random Forest classifier. Improvement of the predictive accuracy and control of
the over-fitting are gained by adding randomisation in choosing the optimum cut split
points [69].

• Stochastic Gradient Descent (SGD): meta-algorithm in which multiple linear Huber
loss functions are combined and optimised [70].

• Ada: a meta-algorithm whose output is the weighted sum of a large set of small deci-
sion trees, where the weights are dynamically adjusted to minimise the classification
error [71].

• AdaBoost: an iterative ensemble method [72] that combines multiple weak base
classifiers to obtain a final model of higher accuracy. It iteratively fits copies of
the base classifier with adjusted weights, such that subsequent classifiers are focused
on unusual observations.

• Multi-Layer Perceptron (MLP): based on the structural aspects of biological neu-
ral networks, MLPs are composed of a set of connected nodes organised in layers.
Each connection has a weight associated to it, which is tuned through the learning
phase [73]. When more than two layers are included in the model, it can be proven
that MLPs can classify data that are not linearly separable, and in general approximate
any non-linear function.

• Support Vector Machine (SVM): model that learns a classification by finding the best
curve, in the hyper-space created by the features, for dividing the instances according
to their class, such that instances laying in one of the two parts of the hyper-space
are mostly of one class [74]. We consider two alternatives: a linear curve, thus di-
viding the hyper-space with an hyper-plane (LinSVM); and a Radial Basis Function
kernel, based on the use of euclidean distances, and thus separating instances using
hyper-spheres (RBFSVM).

• Ridge: model that learns a classification rule by calculating a ridge regression between
the input features and the known classes. The ridge regression is similar to the stan-
dard linear one, but includes a penalty on the size of the coefficients, yielding a more
robust solution in the presence of collinearities [75].

• Gradient Boost (GradBoost): classification model composed of a large set of weak
classifiers, in this case DTs. The main difference with respect to RF is that here trees
are added one at the time, using a gradient descent-like procedure, and previously
added trees are frozen and left unchanged [76].
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• Logistic Regression (LR): a logistic regression model used as a (generally effective)
classifier. It takes a linear equation as input and uses a logistic function to perform
a binary classification task [77].

• K-Nearest Neighbours (KNN): simple classification model in which the class of a new
instance is set as the class most common among its k nearest neighbours. While it is
one of the most efficient algorithms and requires no initial training, it is also sensitive
to the local structure of the data, and may not be suitable for all problems [78].

• Voting: model based on combining multiple classifiers to make predictions based on
the most frequent one according a voting procedure [79]. It is especially well-suited
in situations where the best classification method is not known.

• Bagging: an ensemble method that builds several random instances of a base estimator
(here, decision trees) on random subsets of the original training set.
Individual predictions are aggregated in a final prediction. In this way the variance of
the base estimator is reduced, and stability and accuracy improved [80].

• XGBoost: variant of the Gradient Boost algorithm optimised for processing large data
sets, by leveraging both on parallel and distributed computation [81].

Some of the classification models have one or more parameters that require an initial
tuning. In those situation, we have considered both a naïve solution, leaving those param-
eters to their default values; and a grid search procedure, which determines the optimal
hyperparameters of the model by maximising the final classification score.

We finally consider two additional models, based on the concept of Deep Learning (DL).
DL encompasses machine learning algorithms that progressively extract higher-level features
from the raw input, usually with the objective of performing a supervised classification [82,83].
They present the advantage of achieving high precision, although at the cost of requiring
large training sets, of high computational costs, and of being black boxes, i.e., they don’t
facilitate recovering the logic behind a result. The first model is a basic approach with a fully
connected deep neural network (DNN) with 3 layers, 2 ReLU and 1 Sigmoid. The second
model is a deep graph convolutional neural network (DGCNN) [84,85] with the significant
edges extracted from the graph from the feature selection process as input.

4. Results

As initially introduced, the link selection methods described in Section 2 are here
evaluated against the COBRE dataset according to three main criteria: their performance,
in terms of quantity of retained information (Section 4.1); their stability, i.e., how consis-
tently they yield the same set of links (Section 4.2); and their computational cost (Section 4.3).
These results are then compared in Section 4.4 with those obtained for the two remaining
datasets, PRURIM and PSP, to assess their generalisability.

4.1. Performance Comparison

As a first analysis, Figure 2 depicts the best classification obtained by each selection
method, measured in terms of AUC (left panel) and F1-measure (right panel). For each
selection model, the maximum has been calculated across all classification models. In other
words, what depicted in Figure 2 is how good the classification is, provided the best
classification algorithm is known and used in each case. The resulting classification
score is then used as a measure of the quantity of information retained by each link
selection method.

Results are generally quite homogeneous. Excluding three outliers (SLDA, FDR and
Bonferroni), the 16 remaining methods are included between NBS (AUC of 0.869) and
Elastic-Net (AUC of 0.822). When comparing methods using the F1-measure, a simi-
lar picture arises, with the 16 methods laying between 0.780 (NBS) and 0.728 (LR-RFE).
This suggests that the choice of a specific selection method has a minor impact in the final
classification; and, accordingly, that the 16 methods are all effective in retaining relevant
information about the studied condition. This of course does not hold in the case of SLDA,
FDR and Bonferroni, which clearly perform worse than the others; and, in the case of
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Bonferroni, even approach the barrier of what expected in a random classification. It is
important to highlight that the classification scores here reported are the average across a 10-
fold cross-validation; when the standard deviation of these executions is taken into account,
respectively 0.094 for the NBS and 0.085 for the Elastic-Net (both for AUC), it becomes clear
that the difference between the best and worst algorithm is negligible. To further put these
numbers in context, the horizontal dashed lines of Figure 2 report the classification obtained
by a Random Forest algorithm using the complete connectivity matrices. These results,
respectively 0.861 for the AUC and 0.738 for the F1-measure, indicate that discarding non-
informative links is not only retaining all relevant information, but could also be beneficial
in a classification problem—an effect that is well-known in machine learning.
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Figure 2. Best classification score, in terms of AUC (left panel) and F1 (right panel), obtained by
the 19 feature selection methods here considered. Bar colours indicate the family of each method,
using the same code as in Figure 1. The horizontal dashed line represents the classification score
obtained by a RF model on the whole connectivity matrix, i.e., without any link selection.

We next analyse how the methods behave in terms of the number of links they rec-
ommend for the analysis. Figure 3, left panel, depicts such number; and the right panel
presents a scatter plot of this number as a function of the classification score (AUC). Note
that three underperforming methods, according to Figure 2, have been omitted in Figure 3
for the sake of clarity. It can be appreciated that, as expected, methods selecting few features
are generally the ones performing worse. While the opposite is generally true, it is worth
noting that the method yielding the highest number of features (i.e., Nevada) is not the best
performing one (NBS, as also previously seen).
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Figure 3. (Left) Number of features retained by each method (excluding the three underperforming
ones), in thousands. (Right) Number of retained features as a function of the score (AUC) achieved
by each method. The colour of each method corresponds to the one in Figure 1.

Figure 4 reports a comparison of the behaviour of the best and worst performing
methods, i.e., respectively NBS and Elastic-Net, when two important characteristics of
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the dataset are synthetically changed: the number of subjects in it (left panel); and the way
networks are preprocessed, and specifically when a given fraction of the strongest links
are retained, and all others are deleted (a process known as proportional thresholding [86],
right panel). In both cases, the classification task has been executed with the machine learn-
ing model yielding the best result, i.e., the model yielding the score of Figure 2. As is to be
expected, reducing the sample size has a negative effect on the classification score of both al-
gorithms, although the behaviour is uneven. Elastic-net seems to perform better with small
data sets, with an almost linear decrease in the AUC, as opposed to a transition to random
classifications (i.e., AUC ≈ 0.5) displayed by NBS for sample sizes smaller than 60 subjects.
The right panel further suggests that the initial link deletion step has a negligible impact
in the output of both algorithms. Specifically, changing the threshold does not change
the ranking of the two methods, nor significantly change the AUC. Note that the difference
between the maximum and minimum AUC for each method is <0.04, i.e., smaller than
the standard deviation observed in the cross-validation process; the observed fluctuations
are thus the result of the stochasticity of the classification models.
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Figure 4. Evolution of the classification score, in terms of AUC, as a function of the sample size
(number of subjects in the dataset, (left panel)) and of the proportional threshold applied to the net-
work (right panel). Black and green lines respectively correspond to the NBS and Elastic-net link
selection methods.

4.2. Intra- and Inter-Method Stability

When dealing with different feature selection methods, two important aspects are
the intra- and inter-method stability. More in details, one wants to assess whether a given
method always yields the same set of features for a fixed problem (here called intra-method
stability); and whether two different methods yield sets of features that are compatible,
or overlapping (inter-method stability). Note that an unstable feature selection can lead to
inferior classification performance; but, more importantly, it can undermine any attempt at
understanding the mechanisms involved in a condition or pathology.

In order to assess both stabilities, we here use the similarity method proposed in [87].
The similarity of two selected sets s and s′ is calculated as one minus the Tanimoto distance,
which measures the overlap of two sets with arbitrary cardinality:

D(s, s′) = 1− | s | + | s′ | −2 | s ∩ s′ |
| s | + | s′ | − | s ∩ s′ | . (3)

This metric has a value in range [0, 1], where 0 means that there is no overlap or
similarity between two feature rankings, and 1 means that the feature rankings are identical.

Figure 5 reports the intra-stability of each selection method. For each one of them,
100 subsets comprising all the features but only 100 subjects, selected from the original
set using random resampling via bootstrapping, have been constructed; the displayed
value corresponds to the average over all pairwise values of D. Nevada stands out as
the method with the higher intra-stability; this is nevertheless not surprising, as this was
also the method yielding the larger number of elements—see Figure 3. After it, the two most
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stable methods are FDR and Bonferroni; yet, these were two of the underperforming ones
identified in Figure 2, suggesting that they are consistently selecting the wrong interactions.
Finally, the two following ones are AnovaNet and NBS, corresponding to the two best
performing methods.
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Figure 5. Intra-stability D of each method, representing how consistently each method is yield-
ing the same link selection over random subsamples of the original dataset. See Equation (3) for
a definition of the metric D.

Figure 6 further depicts the inter-stability, i.e., how overlapping are the sets of retained
links yielded by pairs of methods, again measured with the metric D. In a way similar
to Figure 5, it can be appreciated that values are generally low; for instance, two of
the best performing methods (NBS and AnovaNet) have a D ≈ 0.54, i.e., they agree
on approximately 50% of the links. Such heterogeneity is further depicted in Figure 7,
reporting the circular plot of the common links among the three best performing methods
(top left panel), and the links exclusive to these three methods. It can be appreciated
that common links are distributed among all brain areas, with the only exception being
the thalamus, recognised as important by the three methods. This latter result is well
aligned with the recognised importance of thalamic circuitry in Schizophrenia [88–90].
On the other hand, the number of links exclusive to each method vary between few tens
(for SURF) to several hundreds (NBS). The implications of the heterogeneity in the sets of
selected links will further be discussed in the conclusions.

4.3. Computational Cost

As a final issue, of major importance in a real-world environment where the objective
may be to analyse large-scale data sets, we here compare the computational cost of the 16
best performing methods. Such cost has been estimated as the time required to extract
the best set of links, excluding the time required for the subsequent classification and
validation, using a four-cores Intel R© i7-8565U CPU at 1.8 GHz, 8 GB RAM machine.
Results are presented in Figure 8, both independently (left panel) and as a function of
the classification score obtained with each method (right panel).

The large differences between methods stand out, spanning almost five orders of
magnitude-note that results are depicted using a logarithmic scale. Some methods, like
KBest, require a fraction of a second to yield their results, while other, e.g., Nevada, tens of
minutes. It is interesting to note that statistical methods are usually not the fastest ones;
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even if they may be conceptually simpler, they usually require the creation of random
ensembles to obtain p-values, resulting in a substantial computational cost. On the other
hand, the opposite is true for the embedded machine learning methods. This can be due
to two complementary reasons: firstly, that they do not require extra computational effort
beyond the training of the model itself; and secondly, that their implementation, included
in standard and well curated libraries like the scikit-learn package in Python, is especially
tuned for efficiency.
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Figure 7. Graphical representation of the links common and exclusive to the three best performing
methods, in terms of AUC. Specifically, the top left panel reports the circular representation of
the links common to NBS, ExT and SURF; while the other three, the set of links that have exclusively
been selected by respectively NBS, ExT and SURF. Nodes (i.e., of Regions of Interest, see Section 3.1)
are labelled according to the corresponding name in the AAL parcellation; colors indicate their
degree, from light (no or few connections) to dark shades (maximum degree). The four panels have
been prepared using the Circos software [91].
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Figure 8. Computational cost analysis. (Left) Computation time for each link selection method
(excluding the three underperforming ones), measured in seconds. (Right) Scatter plot of the compu-
tation time as a function of the performance (in terms of AUC) of each method. Colour code as per
Figure 1.

4.4. Generalisability of Results

One final important aspect to be considered is how general the results here reported
are; in other words, can a practitioner be confident that, for instance, the best link selection
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model detected in Figure 2 will also be the best performing one when applied to a different
dataset? Note that the generalisability of neuroscience results, and especially of those
obtained through network representations, is an ongoing field of research; and that a lack
of generalisability is usually recognised, mainly due to the many arbitrary steps involved
in data preprocessing that may affect results in a unpredictable way [92–94].

We here perform a basic test by executing the same exercise over the two remain-
ing brain networks datasets, i.e., PRURIM (see Section 3.1.2) and PSP (Section 3.1.3).
Specifically, Figure 9 reports the classification score, in terms of F1, for the two datasets;
and Figure 10 the corresponding intra-method stability. Results are generally compatible
with those reported in Figures 2 and 5. Most methods achieve comparable classification
scores, while FDR, Bonferroni and SLDA are underperforming. It can also be appreciated
that results are more flat in the case of the PSP dataset, i.e., the F1 presents very similar val-
ues across all methods; this is due to the limited size of this dataset, which only comprises
64 networks of 27 nodes.
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Figure 9. Best classification scores, in terms of the F1 metric, for the PRURIM (left panel) and PSP
(right panel) datasets.
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Figure 10. Intra-stability D of each method, for the PRURIM (left panel) and PSP (right panel)
datasets. See Equation (3) for a definition of the metric D.

5. Discussion and Conclusions

When analysing networks representing brain dynamics in different conditions or
pathologies, the use of some kind of selection method is an appealing concept. Us-
ing the whole network can be computationally and conceptually challenging, especially
in the case of fMRI, which in its raw form may include >104 nodes and >108 links.
Processing those large networks does not only require substantial computational resources;
but it also makes it difficult to pinpoint what are the relevant elements characterising
a pathology or condition. In a way similar to feature selection in machine learning, select-
ing and retaining only a subset of those nodes and links yields an easier to interpret picture,
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while not discarding any relevant information. It further helps increasing the statistical
significance of results, and may improve subsequent processing, as e.g., classification tasks.
In this contribution we have compared a large set of different link selection methods,
drawn from statistics and machine learning, and compared their performance in terms
of performance (i.e., how much information is retained at the end, measured through
a classification task), stability and computational cost. The ranking of the top-5 methods
according to each one of these criteria is reported in Table 1.

Table 1. Ranking of the top-5 methods, according to their AUC, stability D and computational cost,
as obtained for the COBRE data set.

Best AUC Best Stability (D) Best Computational Cost (sec.)

NBS (0.869) Nevada (1.000) KBest (0.018)
ExT (0.866) FDR (0.711) Lasso (0.076)

SURF (0.866) Bonferroni (0.602) ExT (0.083)
RF (0.865) AnovaNet (0.536) Elastic-Net (0.099)

DDT (0.859) NBS (0.426) Corr (0.798)

The most important and somewhat surprising result is that, except for a few methods
(i.e., SLDA, FDR and Bonferroni), all others yields a similar classification score; in other
words, and in spite of their internal differences and underlying hypotheses, the information
they retain is almost the same—see Figure 2 and the first column of Table 1. Within this
group, the difference between the best (NBS) and worst (Elastic-Net) performing ones is
actually of the same magnitude of the standard deviation of scores obtained in different
iterations of their cross-validation; the difference is thus similar to the one expected when
processing different data sets, and thus not significant. Regarding the ranking of methods,
the best scoring method (i.e., NBS) was also found to be the best one in previous, smaller
scale comparisons, as for instance in [22]. As a second point, it is worth noting that
the classification score obtained using the filtered sets of links is equal, and in some cases
even larger, than the one corresponding to the use of the full data set. Therefore, deleting
uninformative links does not only simplify the problem, but even increase our capacity
of extracting conclusions from it. While this is a well-known idea in machine learning, its
application in neuroscience has so far been limited.

Moving to the intra-stability of each selection method, i.e., its capacity of consistently
yielding the same set of links, results are generally low—see Figure 5 and the second
column of Table 1. Nevada stands out as an exception; yet, this is due to the large number
of links it retains, and it is thus not significant. We hypothesise that this may due to
two different reasons: either the methods are not stable, i.e., they are designed in a way
that yields unstable results when applied to brain networks; or the network themselves
are unstable. This second possibility implies that the variability between people is large,
such that a condition may manifest in different parts of the brain networks in different
people. While this is not at odd, but actually aligns well with previous research works on
brain network generalisability [95–97], it is worth noting that the data and analyses here
presented cannot draw a conclusive answer to this problem.

The stability across link selection methods, i.e., the inter-stability, is also low - see
Figure 6. In other words, while different methods may retain all relevant information
for the task at hand, such information is not encoded by the same links. This suggests
an interesting picture, in which relevant information is encoded in a redundant way
in different parts of the brain network, parts that are selected by the methods according to
different criteria. In other words, a pathology may affect two sets of links s and s′, with little
overlap between them; choosing any one of them is thus equivalent, and no added value is
obtained by considering the two sets together. While this resembles the concept of brain’s
default mode networks [98,99], to the best of our knowledge the presence of pathology-
related complementary sub-networks has not previously been discussed in the literature.
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How do these results contribute to answering the main question tackled in this
contribution, i.e., what is the best method for link selection in brain networks? In general
terms, the conclusion is that, excluding a few exceptions, any method is good, and indeed
a selection step is even necessary to improve our understanding of the brain. Factoring
in the results regarding stability and computational costs, two cases can be defined. When
the priority is to obtain the best classification score, NBS is the best solution; it yields
scores marginally better than its peers and a good stability, albeit at the cost of a high
computational complexity. On the other hand, in case of large data sets or problems
in which the time required to obtain an answer is a concern, one may resort to ExT or
KBest: their computational cost is three orders of magnitude smaller and they yield smaller
output sets, the price being a slightly lower precision in the subsequent classification and
a much reduced stability in the selected links.

As a final note, it is important to discuss some limitations of the present study. First of
all, it is based on the data of three datasets, including information about three pathologies
(and matched control subjects). The generalisability of the conclusions here presented
to other datasets and pathologies is not guaranteed, even though pertinent actions have
been taken towards it—e.g., use of cross-validations and resampling of subjects, and use of
different sample sizes and thresholdings. On the other hand, COBRE is a well-known data
set, used as reference in many neuroscience studies, e.g., [100–103]; the presented results are
thus in any case of relevance to the neuroscience community. Secondly, the reconstruction
of functional brain networks is a process entailing many steps, in which several decisions
(e.g., use of different parameters or methods) have to be taken, and usually prone to
a large degree of subjectiveness [104]. This results in different conclusions drawn from
a same data set [92–94]; and, consequently, the possibility that the results here presented
are dependent on the choices made in the network reconstruction process. The researcher
performing any analysis on neuroimaging data should therefore always practice caution,
also in the choice of the selection method, for instance comparing a couple of them. Thirdly,
there is a high heterogeneity in the codes used to evaluate each method: some of them
are included in recognised and well-maintained libraries, others have been released by
the authors of the methods, and some have been developed specifically for this contribution.
As such, the comparison of the computational costs (Figure 8) must be taken with due
caution, as some methods may be susceptible to substantial optimisations. Still, results here
presented are representative of what a researcher with average coding skills may expect
to face; and further suggest additional development tasks, e.g., the creation of a unified
software library of link selection methods.

To conclude, this contribution focused on two wide families of link selection methods,
i.e., statistical and machine learning ones. The interested reader must be aware that other
alternatives can also be found. To illustrate, some methods based on Deep Learning have
been proposed, see for instance [105–107]; while DL approaches generally yield excellent
results, they are also black-boxes, i.e., they do not facilitate inspecting or making explicit
their internal logic. The comparison of these DL methods with statistics and machine
learning ones, both in terms of performance and computational cost, shall be the focus of
future research works. Secondly, machine learning is a mature yet active field of research,
with many fruitful applications to neuroscience problems [108,109]; not surprisingly many
studies have been published, both targeting specific pathologies [110–114], and focusing
on alternative methods for link selection [115–117]. Finally, the reader should be aware of
the large body of literature related to the analysis of brain networks [5,6]; while most of
the time the whole network is considered and is analysed using macro-scale topological
metrics, some studies have also identified specific subnetworks or subsets of links using
network science principles [112,118–123].
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