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ABSTRACT Delays in air transport can be seen as the result of two independent contributions, respectively
stemming from the local dynamics of each airport and from a global propagation process; yet, assessing
the relative importance of these two aspects in the final behaviour of the system is a challenging task.
We here propose the use of the score obtained in a classification task, performed over vectors representing
the profiles of delays at each airport, as a way of assessing their identifiability. We show how Deep Learning
models are able to recognise airports with high precision, thus suggesting that delays are defined more by
the characteristics of each airport than by the global network effects. This identifiability is higher for large
and highly connected airports, constant through years, but modulated by season and geographical location.
We finally discuss some operational implications of this approach.

INDEX TERMS Air transport, airport identifiability, delays, deep learning.

I. INTRODUCTION
Air transport delays, and specifically the phenomenon of
delay propagation, is one of the most important research
topics in air transport management, due to delays’ profound
implications in the cost-efficiency [1] and safety of the
system [2], as well as their contribution to the negative
impact of air transport on the environment [3]. Research
works on air transport delays can be divided in two (partially
overlapping) groups, depending on whether they focus on
understanding the mechanisms behind delay propagation,
or on predicting their appearance. The first group can further
be divided among those works in which the propagation is
modelled by means of large-scale simulations, as for instance
in [4]–[8]; and those that rely on historical data to extract
some properties of the propagation, as e.g. in [9]–[12]. With
respect to the second group, the use of data mining and
machine learning models, and specifically on tasks related to
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the prediction of delays, has a long history, possibly fostered
by the operational relevance of such models. To illustrate,
such models have extensively been used in the last two
decades to predict delays [13]–[17]. Narrower models have
also been proposed, focusing on identifying and estimating
the impact of some operational elements on delays, e.g.
of adverse weather events [18]–[21].

In more recent years a new trend is emerging: the use of
Deep Learning (DL) models [22], [23], i.e. machine learning
models not requiring an a priori definition of features,
to predict the occurrence and magnitude of delays. The idea
is thus to train a model using data that are not strongly
pre-processed; on the contrary, the definition and selection
of high-level features is performed in an automatic way by
the model. The possibly first application of DL to delay
prediction was proposed by Kim and co-authors, in which
the sequences of departure and arrival flight delays of an
airport were predicted using a Long Short-Term Memory
network architecture, using input features like the delay of
previous flights and the weather condition [24]. Numerous
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new studies have followed this initial work, mainly focusing
on increasing the spectrum of information fed in the models:
from micro-scale meteorological conditions [25]–[28], rea-
sons of previous delays [29], airline and flights connection
structure [26], [28], [30], [31], airport crowdedness [26], [32],
to aircraft trajectories [33] and airspace structure [32]. The
interested reader can refer to [34] for a review on the use of
data analysis in the study of air transport delays.

In this study we propose a bridge between both groups,
by analysing the role of airports in the delay propagation
process through the use of data mining, and specifically of
Deep Learning, models. The starting hypothesis is that, given
time series representing the observed dynamics of a set of
elements (here, airports), the score of a classification task
aimed at distinguishing them can be used as a metric of
their dissimilarity - or, in other words, of their respective
identifiability. In other words, if the classifier model is able
to successfully discriminate between the two elements, it can
then be concluded that there are differences between them,
even though the exact nature of such differences is not
readily available. Note that this is conceptually different from
predicting the magnitude of future delays, as commonly done
through DL models; and is instead closer to the problem
of identity recognition [35]. The choice of DL models,
as opposed to classical machine learning ones, is justified by
the fact that i) they are extremely sensitive, i.e. they are able
to detect even subtle and complex differences between data
sets; and ii) their main drawback, i.e. their black-box nature,
is not a limitation for our objective. While the use of DL
models for identifying relationships and couplings between
pairs of time series is not new (see [36]–[38]), to the best of
our knowledge this is the first time such problem is tackled
through the concept of identifiability.

We specifically analyse the delay profiles of the top-
30 European airports from 2015 to 2018, where the delay
profile is here defined as the normalised average hourly
delay observed during one day of operation. By performing a
classification task on pairs of airports, we are able to define
their identifiability, i.e. a metric describing how uniquely are
delays distributed across the day for each airport in the set.
Two alternative scenarios can then emerge: airports can have
similar (or identical) profiles, i.e. low identifiability; or, on the
other hand, unique ones and hence a high identifiability. In the
first case, this would imply that delays are a global property
of the system, i.e. that their appearance is independent on the
considered airport, or that their generation is driven by some
systemic properties of air transport. On the other hand, unique
delay profiles imply that delays are a local property, more the
result of the dynamics and rules of each airport than of the
global system.

The results here presented suggest an intermediate and
complex situation. Generally speaking, airports are highly
identifiable, i.e. their delay profiles are unique. Delays thus
seem to be a local property; or, at least, characteristic
dynamics at each airport dominate over global network
effects. This identifiability is nevertheless not homogeneous

and, on one hand, increases with connectivity, i.e. large and
highly connected airports are more unique; and, on the other
hand, reduces with geographical proximity, such that near
airports tend to share similar profiles. We further analyse how
this identifiability changed over time, and how it is affected
by the winter and summer seasons.

The remainder of the work is organised as follows. Sec. II
presents a simplified synthetic model of the identifiability
of a set of networking elements, aimed at clarifying the
interpretation of subsequent results. Sec. III then introduces
the main materials and methods of this work, including
the used flight data set, the Deep Learning models used in
the classification, and the optimisation of the classification
parameters. Results are presented in Sec. IV, including the
study of the identifiability of airports, their geographical
distribution, and their evolution through time. Conclusions on
these results and ideas for future works are finally drawn in
Sec. V.

II. A SYNTHETIC MODEL OF IDENTIFIABILITY
Let us suppose a system composed of three coupled elements
a, b and c (in the case here considered, these would be
three airports), each one described by an observable metric
through time (here, average hourly delay) - see left part of
Fig. 1 for a graphical representation. In each realisation of
the system, 24 values are observed, thus yielding three time
series xa(t), xb(t) and xc(t), with t = 1, . . . , 24; note that
each realisation is assumed to be independent from the other
ones. These time series are further defined as the sum of three
components:

xa(t) = va(t)+N (0, 0.1)+ γ [xb(t)+ xc(t)] , (1)

xb(t) = vb(t)+N (0, 0.1)+ γ [xa(t)+ xc(t)] , (2)

xc(t) = vc(t)+N (0, 0.1)+ γ [xa(t)+ xb(t)] . (3)

The first part (i.e. va, vb and vc) represents a constant
dynamic observed at each element independently of the
specific realisation, or, in other words, what is characteristic
of that element. To this, a random component is added, in the
form of random numbers drawn from a normal distribution
N of zero mean and 0.1 standard deviation - note that,
without loss of generality, vectors v are expected to be defined
between zero and one, hence this noise is 10% of them.
This random component thus represents the variability that
is observed across different realisations - or across different
days. Increasing (or decreasing) this noise only changes
the final classification score, as a large noise will mask
the underlying dynamics; but the conclusions drawn from
the model are independent from the selected noise level.
Finally, each element receives contributions from the other
two, through a coupling constant γ . While, for the sake of
simplicity, this parameter is considered equal for all pairs
of interactions, a more realistic scenario should include six
parameters γa,b, γb,a, γa,c, γc,a, γb,c, and γc,b; results should
then be represented in a six-dimensional space. In synthesis,
the behaviour of each element is given by a characteristic
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FIGURE 1. Synthetic model exemplifying the concept of identifiability.
(Left) Graphical depiction of a system composed of three elements,
pairwise coupled through a coupling constant γ ; see main text for
definitions. (Right) Median (solid blue line) and 10− 90 percentile band
(blue shaded region) of the obtained classification score as a function of
γ , for a system composed of three elements. The solid red line represents
the results for a larger system of 30 elements. Insets report three
examples of the time series xb and xc , for γ = 0.4, 1.0 and 1.4. Results
correspond to 103 independent realisations, using a ResNet deep
learning classifier.

and (almost identical) repetitive dynamic, plus a tuneable
contribution from the two neighbours.

Once a value of γ has been fixed, 100 random realisations
have been obtained, thus obtaining 100 vectors x(t) for
each element. Note that this is equivalent to a data set
comprising the average hourly delays of three airports along
100 days, as will be considered in the next section; still,
results here reported only correspond to the previously
described synthetic model, and not to real data. Vectors of
elements b and c were then classified, using the Residual
Network (ResNet) Deep Learning algorithm that will be
described in detail in Sec. III-C. The final classification
score, measured through the accuracy metric, has finally been
calculated. Note that this classification score represents the
identifiability of elements b and c, as these two elements
can correctly be classified only if they are different in a
characteristic way. As discussed in the introduction, the use
of Deep Learning models is justified by the fact that they
yield the best classification scores, i.e. they are able to detect
the subtlest differences between the elements. Also note that
a full identifiability analysis, as the one performed in the
following sections, would require a similar classification task
between all pairs of elements; the analysis is here limited to
a single pair for the sake of clarity.

Fig. 1, right panel and blue line, reports the median of
the classification score as a function of the coupling γ . For
low values of the coupling constant γ , the behaviour of each
element is dominated by its own characteristic dynamic v; as
vb(t) 6= vc(t), it is in general possible to distinguish xb from
xc, and the classification yields a score close to 1. On the other
hand, values of γ approaching 1 imply that the behaviour of
each element is virtually indistinguishable from those of the
other ones, as all dynamics are mixed, reaching what known
in statistical physics as a mean field; hence no classification
is possible. Finally, a perfect classification is recovered for
γ > 1.2. In this latter case, the dynamics of each airport is
dominated by the dynamics of the remaining ones; in other
words, airport b is mainly defined by va + vc, airport c by
va + vb, and hence xb 6= xc.
When the system is expanded to include 30 airports, similar

results are still observed, see the red line in the same panel.

The larger number of elements, and hence of connections,
nevertheless acts as a global noise, which reduces the
coupling required to loose the identifiability of the elements.
It further becomes impossible to identify elements for γ > 1,
as now the dynamics of each airport becomes the result of
the sum of a large number of independent contributions,
i.e. it effectively becomes unpredictable. Most importantly,
it can be appreciated that a high classification score (i.e.
a high identifiability) is still obtained for low values of γ ;
in other words, the size of the system does not affect the fact
that elements are identified as long as they are not strongly
coupled.

This simple model illustrates how the identifiability of
a set of elements coupled together is the result of two
contributions: how unique the dynamic of each element
is, and how tightly they are coupled together. While such
unambiguous conclusions cannot in principle be drawn when
studying a real system, as more elements may affect the
identifiability of elements, this synthetic model still suggests
some interesting ideas. High classification scores will always
imply high identifiability, as elements have dynamics that can
be recognised; and this is usually the result of the unique
dynamic of each element dominating over a global network
signal. On the other hand, low classification scores (low
identifiability) suggest that pairs of elements are coupled
together in a tight way, such that they have a shared dynamics.
It is additionally worth noting that in a real system the
coupling γi,j can be different for each pair of elements (i, j);
in this case, elements can be identifiable even when having
similar internal dynamics, provided their coupling patterns
differ enough. For the sake of completeness, a final possibility
can also emerge, not relevant for the present study: elements
may not be identifiable when they are both disconnected and
lacking an individual dynamic, i.e. vi = vj and γi,j = 0 for all
i and j.

III. MATERIALS AND METHODS
A. OPERATIONS AND DELAY DATA
Data about air transport operations have been extracted from
the EUROCONTROL’s R&D Data Archive, a public repos-
itory of historical flights made available for research pur-
poses, and freely accessible at https://www.eurocontrol.int/
dashboard/rnd-data-archive. It includes information about all
commercial flights operating in and over Europe, completed
with flight plans, radar data, and associated airspace structure.
While it is limited to four months (i.e. March, June, Septem-
ber and December) of four years (2015-2018), it provides a
good starting point to analyse both the structure of operations
in Europe and the corresponding evolution.

In this study, we considered the information associated
with the 30 largest airports in Europe, ranked according to
their number of passengers. Table 1 reports the full list, and
information about the number of landings and delayed flights.
Additionally, Table 2 describes the evolution through time of
some basic network metrics.
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TABLE 1. Information on the 30 airports considered in this study, including their 4-letters ICAO code, number of landing flights, and number and
percentage of flights delayed more than 10 minutes.

TABLE 2. Evolution of the data available in this work. Starting from the third, each column reports: the total number of flights included in the data set;
the number of flights landing in the 30 considered airports; the busiest airport, in terms of number of landings (the number in parenthesis); and the
second busiest airport.

For each flight landing at these 30 airports, the corre-
sponding delay has been calculated as the difference between
the actual (from the ATFM-updated flight plan) and the
planned (according to the last filed flight plan) landing
times. Afterwards, for each airport, flights have been grouped
according to the actual landing hour, and the average delay
per hour has been calculated. Subsequently, these time series
have been split in windows of 24 hours, i.e. of the average
hourly delay per airport per day.

In this work we are interested in the profile of delays,
i.e. their distribution throughout the day, as opposed to the

absolute value. In other words, we are interested in seeing if
an airport suffered from delays homogeneously throughout
the day or at some specific hours, and not in the value of the
average delay at a given time. For that, average delays have
been transformed through a Z-Score. Mathematically, given
a time series (x1, x2, . . . , x24), it is transformed according to:

zi =
xi − x̄
σx

, (4)

with x̄ being the average and σx the standard deviation.
Therefore, a value of zi above (below) zero indicates that the
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average delay at time i was higher (respectively, lower) than
what is observed throughout the same day.

B. WEATHER DATA
Each airport of Tab. 1 has further been characterised by the
average climatic conditions that are expected in winter and
summer; this information will be used in Sec. IV-B to explain
changes in identifiability between these two operational sea-
sons. Towards this aim, we have downloaded several average
climate indicators for each airport from the corresponding
city’s Wikipedia page. These include: the average minimum
winter temperature, as the average of the average minimum
temperature observed in March and December (i.e. the two
wintermonths available in the data set); the averageminimum
summer temperature, corresponding to June and September;
the drop in temperature between summer and winter, i.e. the
difference between the two previous values; and the average
number of rainy days in winter (again, average between
March and December).

C. CLASSIFICATION MODELS
Deep learning can be defined as a set of machine learning
algorithms that progressively extract higher-level features
from the raw input, usually with the objective of performing
a supervised classification [22], [23]. Compared to stan-
dard machine learning classification models, deep learning
presents the advantage of not assuming nor requiring a priori
structures in the data, and of not requiring a pre-processing of
features; in other words, features are automatically extracted
from data, without human intervention. This results in a
drastically higher efficiency, especially in complex problems
for which features are difficult to be defined. On the other
hand, this also implies high computational costs, and usually
the need of dedicated hardware - as, e.g., general purpose
graphics processing unit (GPGPU).

Here we consider a subset of deep learning algorithms
designed to classify time series; in other words, given a set
of time series, each one associated with a label, the objective
is to assign the correct label to a new time series presented
to the algorithm. While this is not one of the main focuses of
deep learning, several models have been developed, usually
evolutions of models designed for image classification -
see [39] for a full review. More specifically, the following
five models have been used:

• Multi Layer Perceptron (MLP). One of the most
traditional and simplest form of neural networks, it is
composed of a set of nodes organised in layers, each
one receiving information from the previous layer and
responding through a nonlinear activation function.
Even though it does not encode temporal information,
the MLP model has been proposed as a baseline
architecture for classifying time series [40]. The network
here considered is composed of 4 layers, each one
fully connected to the outputs of the previous one,
and with the final layer being a softmax classifier. The

activation function is the well-known rectifier linear unit
(ReLU) [41].

• Convolutional Neural Network (CNN). Convolutional
networks are specialised versions of MLP, in which the
matrix multiplication is substituted by a convolution
operation [42]. Their advantages include a space (or,
in the case of time series, time) invariance [43], and a
reduced tendency to overfitting. We here consider a sim-
ple convolutionalmodel, composed of two convolutional
layers followed by a final sigmoid classifier.

• Residual network (ResNet). Residual networks are
inspired by the way pyramidal cells are organised in the
cerebral cortex; specifically, the connections between
layers are not sequential, but instead some layers can
be skipped (creating shortcuts or jumps). This presents
the advantage of a simpler structure, and consequently
of a reduced training cost [44]. The networks here
considered are composed of 11 layers, the first 9 of
them being convolutional, followed by a global average
pooling layer that averages the time series across the
time dimension, and by a final softmax classifier,
as proposed in [40].

• Fully Convolutional neural Network (FCN). FCNs are
networks in which only convolution operations can
be performed; in other words, they are equivalent to
CNNs without fully connected layers [45]. The model
is composed of three convolutional blocks, each one
performing a convolution, a batch normalisation and a
final activation. As a last step, the result of the third
convolutional block is fed to a softmax classifier [40].

• Multi Channel Deep Convolutional Neural Network
(MCDCNN). This model is based on a modified CNN,
in which the convolutions are applied independently (in
parallel) on each dimension (or channel) of the input
multivariate time series [46], [47].

The five models have been implemented in Python
3.8.5 using the libraries TensorFlow [48] and Keras [49].
In each iteration of the classification problem, a random half
of the available time series has been used for training, and the
remaining half for evaluating themodel, being thus equivalent
to a two-fold cross-validation. Each model performance is
finally measured through the corresponding accuracy score;
note that other complementary metrics, as e.g. recall or
F-score, are here redundant due to the use of a perfectly
balanced data set.

D. INTERPRETING THE CLASSIFICATION SCORE
The output of any classification task described in this work is
measured in terms of the accuracy, i.e. the number of correctly
labeled instances divided by the total number of instances.
As only problems involving two classes and with the same
number of instances in each class are here considered, the
accuracy is expected to be included between 0.5 and 1.0. The
former case indicates that only half of the instances have been
correctly labeled, which is also what expected if labels were
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FIGURE 2. Tuning the parameters of the classification models. (Left) Evolution of the average score as a function of the number of
epochs in the training, for the classification of the pair of airports Dublin Airport, DW, and Brussels Airport, EBBR. (Right) Evolution of
the average classification score (solid lines) and of the 10− 90 confidence band as a function of the number of random iterations.
The number of epochs in the second case was set to 600 for CNN and MLP, and 200 for Resnet, FCN and MCDCNN.

assigned at random; in other words, the model is not able
to detect any useful pattern in the data. On the other hand,
an accuracy of 1.0 points towards a perfect classification;
from the point of view of the model, the two groups of
instances are clearly different.

It is straightforward to interpret this classification score as
a metric of identifiability. Specifically, if the delay profiles
of two airports can perfectly be classified, i.e. with an
accuracy of 1.0, they then are substantially different, and
it is possible to construct a model able to identify the
airport corresponding to each delay profile without errors.
It is worth noting that such identifiability metric is a lower
bound of the real identifiability. On one hand, the fact
that a given classification model is not able to identify
differences between two groups does not imply that the two
groups are equal - they may actually be identifiable by more
advanced and complex models. On the other hand, a high
classification accuracy implies that there are differences,
at least as large as those identified by the considered model.
The use of Deep Learning classification models, i.e. of the
most accurate models presently available, guarantees that this
lower bound is as close as possible to the real identifiability
value.

The five models here considered are different in terms of
their internal structure, and of what features in the time series
they are able to detect; as such, they may perform differently
when classifying different pairs of airports. In other words,
it may happen that one model works well classifying two
airports, but its efficiency may lower for another pair, as the
features that were important in the first case are not so in the
second. As the objective here is to assess the identifiability
of airport delays, and not the presence of a specific feature,
each classification is executed with all five models, for then
retaining only the highest score.

E. PARAMETERS TUNING
There are two parameters that have to be set for each model,
and that may strongly affect the outcome of the classification.

The first one is the number of epochs, i.e. the number
of times the training is performed over all available data.
This number controls a trade-off: the larger the number
of epochs, the more accurate is the classification, albeit at
an increased computational cost. Additionally, performing
additional trainings beyond a certain level usually does not
improve the results.

Secondly, one has to note that the training is a stochastic
process: the original data set is split between training and
validation at random; and the initial state of the neural
network is also random. As a consequence, it is customary
to repeat the whole training and validation process several
times, and to finally average the result. The second parameter
is thus the number of iterations, i.e. executions of the full
training and evaluation cycle with random initial conditions.
The larger this value, the more stable is the final result, yet
again at the price of a larger computational cost.

Fig. 2 reports the results of tuning these two parameters.
Specifically, we have considered one pair of airports (Dublin
Airport, DW, and Brussels Airport, EBBR), and performed
the corresponding classification varying these parameters.
The right panel of Fig. 2 indicates that 400 iterations is a value
high enough to obtain very stable results with all models.
On the other hand, the left panel presents a more complex
situation. Some models, as e.g. MCDCNN, only require a
few epochs; others, specifically CNN and MLP, only saturate
for thousands of epochs. As a compromise between precision
and computational cost, the following number of epochs have
been selected: 600 for CNN and MLP, and 200 for Resnet,
FCN and MCDCNN.

F. TOPOLOGICAL METRICS
In order to evaluate how the identifiability of each airport
is modulated by its connectivity inside the network, the
following six metrics have been calculated for each one of
them. These are based on a network analysis [50], [51],
in which each airport is represented by a node, and nodes are
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FIGURE 3. Identifiability of airports’ delay profiles. (Top left) Classification score of each pair of airports; airports are sorted
according to Table 1, and also as in the bottom panel. (Top right) Fraction of times each classification model yielded the best
classification score. (Bottom) Average classification score of each airport, left Y axis; and corresponding number of flights and
connected airports, right Y axis.

pairwise connected by links whenever a direct flight exists
between the corresponding airports [52].

Number of flights. Total number of flights landed at
the considered airport, as reported in the available
data set, irrespectively of their origin.
Number of destinations. Number of unique airports
which the considered airport is connected to,
according to all available flights.
Clustering coefficient. The local clustering coeffi-
cient of a node quantifies the tendency of the neigh-
bours of a node to form a clique, i.e. a complete
graph [53]. More specifically, it is defined as the
proportion of the number of links between the nodes
within the neighbourhood of the considered airport,
divided by the number of links that could possibly
exist between them.
Weight centrality. Measure of the centrality (i.e.
importance) of each airport, and defined as the sum
of all flights in it landing, divided by the total
number of flights.
Eigenvector centrality. Measure of node centrality,
according to which the centrality of a node is
proportional to the sum of the centralities of nodes
to it connected.
Closeness centrality. Node centrality measure cal-
culated as the reciprocal of the sum of the length of
the shortest paths between the considered node and
all other nodes in the network.

Note that, in order to simplify the comparison between
different metrics, all three centralities have been normalised
between zero and one, with one being the centrality of the
most central airport.

IV. RESULTS
A. IDENTIFIABILITY OF AIRPORTS
We start by analysing the identifiability of airports in Fig. 3,
understood as the score of the classification of hourly delay
profile. Firstly, the top left panel reports the score obtained
for all couples of airports. It can be appreciated that most
pairs of airports yield a very good classification, in all
cases above 70%. This is well above what obtained for the
same classification problem when the data of each airport
are randomly shuffled in order to destroy any characteristic
pattern (average score of 61.3 ± 9.3%), thus confirming
the statistically significance of these results. Additionally,
the top right panel reports the fraction of times each model
yields the highest classification score; ResNet is the clear
winner, followed by CNN. The bottom panel of Fig. 3, left
Y axis, depicts the average classification score for each
airport, i.e. the classification score averaged over all pairs
including that airport. All airports are highly identifiable,
and especially London Heathrow (EGLL), Zurich (LSZH)
and Geneva (LSGG). In order to exclude that these results
could be biased by the use of a pairwise classification task,
scores are also reported for a task in which the profiles of
one airport are compared to a random selection of profiles
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FIGURE 4. Global identifiability of airports’ delay profiles. (Left) Classification score obtained when profiles of one airport are
compared against a random selection of profiles of all other airports. (Right) Histogram of the classification score obtained by
considering all the airports at the same time, i.e. a 30-classes classification problem.

of all other airports (Fig. 4, left panel); and a task in
which all airports are considered at the same time, thus
corresponding to a 30-classes classification (Fig. 4, right
panel). While scores are generally lower, as is to be expected
due to the higher complexity of these tasks, airports with
the highest scores coincide with those of Fig. 3. These
1-to-all classification tasks can also be used to extract
class-discriminative vectors, i.e. vectors representing what
parts of the delay profiles are more characteristic of
each airport, see Appendix A. Additionally, the 30-classes
classification yields a score (0.446 ± 0.0076) significantly
higher than what would be expected if results were random
(1/30 ≈ 0.033).

In order to understand whether such identifiability is
associated to some airport properties, the right Y axis of Fig. 3
reports the corresponding number of flights and number
of connected airports. This is further explored in Fig. 5,
depicting scatter plots of the classification score of each
airport as a function of the six metrics defined in Sec. III-F,
the corresponding linear fits, and the resulting ρ and p-values.
While the effect is not very strong (and seldom statistically
significant for α = 0.05), large and highly connected airports
are more identifiable; in other words, small airports seem
to have more common patterns of delays, while those of
large airports are more unique. Still, a linear model using the
six metrics to predict the classification score only reaches
an R2 = 0.377; this indicates that the metrics are highly
correlated, and that the identifiability of each airport only
marginally depends on them.

We afterwards study the structure created by such pair-
wise identifiability, with the objective to understand if there
are clusters (or communities) of highly similar airports. For
that, the pair-wise identifiability (as depicted in Fig. 3 top
left panel) has been transformed into a similarity using
the standard metric si,j =

√
(1− Ii,j)/2, Ii,j denoting

the identifiability of airports i and j. Afterwards, those
similarities have been interpreted as weights of the network
links, in which nodes represent airports and links the pair-
wise similarity. Finally, the celebrated Louvain algorithm

for community detection [54] has been applied. The results
of this community analysis are presented in Table 3;
additionally, the three largest communities are also plotted
on the European map in Fig. 6. Most notably, communities
are not randomly distributed in space, but instead seem to be
related to geographical regions - e.g., the largest one (red)
to the central Europe, the second one (yellow) to UK and
Belgium, etc. Prima facie, this may seem to be associated to
time zones, such that two airports may have the same delay
profile because most delays occur at the same (local) time.
Nevertheless, this is disproved by several cases, e.g. Brussels,
which does not share time zone with UK, or Prague, which
shares time zone with Germany.

Another possibility is the existence of medium-scale
weather patterns, that create disruptions across large regions
and hence force the delay profiles of several airports to
some common dynamics. This would explain why, for
instance, a similar pattern is observed in UK and northern
Europe. The fact that not all airports in those regions are
included can be explained by considering their different role
in air transport; to illustrate, and following the previous
example, London Heathrow, Paris Charles de Gaulle and
Amsterdam Schiphol may not be included in the yellow
community due to their significantly higher traffic, which
results in specific delay patters - as also illustrated in
Fig. 5.

B. INVARIANCE OF IDENTIFIABILITY THROUGH TIME
One natural question is whether airport delay profiles are
stable through time, or, on the contrary, have changed
throughout the years. In order to assess this point, we here
perform a classification in which the delay profiles of an
airport are organised in two groups, one for years 2015 and
2016, and a second one for years 2017 and 2018. A high
classification score would thus indicate that delays have
changed through the four years. The result, depicted in Fig. 7,
indicates that this is not the case, and that most airports have
maintained a similar delay profile.
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FIGURE 5. Scatter plots of the identifiability of each airport, represented by its average classification score, vs. the six metrics
defined in Sec. III-F. The red lines represent the best linear fit; and each panel further includes the ρ and the p-value of each fit.

TABLE 3. List of communities, obtained from the structure of similarities between them, and ordered by size. The color in parenthesis for the three
largest communities corresponds to their color in Fig. 6.

FIGURE 6. Map of the spatial location of the three largest communities,
as listed in Table 3. Airports included in the analysis, but not belonging to
these three communities, are marked in grey.

As in the previous section, we analysed whether this
time-dependent identifiability can be explained by metrics

representing the dynamics of airports. The difference is
that, here, metrics must represent variations between the
two groups of years; for that, given a metric m, its
variation is calculated as1m = log2m2015−2016/m2017−2018.
Therefore, positive values of 1m indicate an increase in
m, and the opposite for negative values. An analysis of
the correlation between this identifiability and the variation
of the six previously considered airport metrics does not
yield significant results: number of flights, ρ = 0.026 and
p-value = 0.892; number of destinations, ρ = −0.195 and
p-value = 0.303; clustering, ρ = −0.071 and p-value =
0.707; weight centrality, ρ = −0.014 and p-value = 0.940;
eigenvector centrality, ρ = 0.021 and p-value = 0.912; and
closeness centrality, ρ = 0.003 and p-value = 0.998.

We further analysed whether the delay profiles of each
airport changes between summer and winter, through a
classification task involving days in March and December
on one hand, and June and September on the other. Results,
reported in Fig. 8, indicate that there is a generally strong
difference in the delays of different seasons; yet, such
difference is not driven by changes in the number of
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FIGURE 7. Identifiability of airports through time. Each bar (left Y axis) represents the classification score between the
delay profiles of each airport, with the two groups defined as days in years 2015− 2016 and 2017− 2018. The left Y
axes, and the blue and green lines, depict the evolution in number of flights and connected airports, respectively.

FIGURE 8. Identifiability of airports across seasons. Each bar (left Y axis) represents the classification score between
the delay profiles of each airport, with the two groups defined as days in March/December and June/September. The
left Y axes, and the blue and green lines, depict the evolution in number of flights and connected airports, respectively.

FIGURE 9. Evolution of the identifiability of each airport throughout the four years. Each bar indicates the average
classification score obtained by using only the data of one year. The horizontal dashed lines depict the global average
classification score for each airport, as reported in Fig. 3 bottom panel.

flights or of destinations (blue and green lines). We further
checked whether such difference may be due to weather
patterns, using the weather data described in Sec. III-B,
and by performing a linear regression between the score
of the summer/winter classification and the weather values.
No statistically significant relation was found with the
drop in minimum temperature between summer and winter

(ρ = 0.0452, p-value = 0.8157), average minimum winter
temperature (ρ = −0.0591, p-value = 0.7605), and average
number of rainy days in winter (ρ = 0.2700, p-value =
0.1917).

As a final issue, we have studied how the identifiability
of each airport, as depicted in Fig. 3 bottom panel, has
evolved through time. For this, for each pairs of airports, four
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different classification tasks have been performed, each one
using data of one single year. The result, as shown in Fig. 9,
is thus four scores for each airport, each one quantifying
the identifiability of the airport’s delays in one given year.
Note that this is complementary to what presented in Fig. 7,
as there the focus was the identifiability of each airport from
itself in two time intervals, and here is of each airport from
the other ones. It can be appreciated that variations across
years are minimal, with no clear trend. Also, the fact that
the identifiability by year is always lower than the global one
(the latter represented by the horizontal dashed lines) is easily
explained by the fact that each classification task can rely on
one forth of the data.

V. DISCUSSION AND CONCLUSION
In this work we have leveraged on the possibilities offered
by Deep Learning to create an identifiability index for
the top-30 European airports, i.e. a metric describing how
uniquely distributed are average delays throughout the day.
The main obtained result is that airports are actually highly
identifiable and unique, with pair-wise classification scores
almost reaching a 100% precision - see Fig. 3. While it is
tempting to conclude that delays are a local phenomenon,
i.e. only driven by local dynamics and operational constrains,
several caveats have to be highlighted.

First of all, high identifiability does not preclude a
propagation process, i.e. the diffusion of delays throughout
the system through secondary (or reactionary) delays. Both
aspects are compatible if received delays are different enough
across different airport, as seen in Fig. 1. They are also
compatible if one allows for received delays to be processed
(or dealt with) by each airport through different (i.e. local)
mechanisms. To illustrate, two airports may receive the same
amount of delays from other airports; yet, the resulting
dynamics can be different due to, e.g., different equipments
and operational buffers. Therefore, what here presented
does not contradict the large body of literature studying
the propagation of delays [7], [11], [55]–[59]; instead,
it suggests that propagation itself cannot be considered as a
homogeneous phenomenon.

Secondly, this global identifiability is not homogeneous,
but is instead modulated by different factors. On one hand,
it is positively (albeit weakly) correlated with the traffic
volume and connectivity of each airport - see Fig. 5. Thus,
being strongly integrated in the network, i.e. receiving delays
from multiple and heterogeneous sources, makes an airport
more unique. On the other hand, airports located in some
geographical regions seem to be more similar (see Fig. 6),
possibly because their operations are modulated by common
weather patterns.

Thirdly, when all flights throughout one year are con-
sidered, airport identifiability did not substantially change
between the first and last year analysed. On the other hand,
delay profiles were different (hence identifiable) between
the winter and summer seasons of the same airport. This
suggests that the change in network connectivity between

winter and summer produces different, albeit characteristic,
delay patterns in each season.

Irrespectively on how this identifiability originates, the
fact that airports are characterised by fairly unique delay
profiles leads to important conclusions. Delays (at least at
the aggregated level here considered) are mostly defined
by their past, as opposed to other external factors. In other
words, it has previously been shown that predicting the
delay of an individual flight requires taking into account
aspects like local weather patters, and airport and airspace
crowdedness [34]. Results here presented instead show that
the average delay per hour can be estimated by only knowing
the delay evolution of the same airport in previous days,
as this evolution will be unique to that airport, and hence
different from those of other airports. Weather and other
elements, while useful to reduce the prediction error, are
therefore not themain features.Most notably, this also applies
to network effects: while the delay of individual flights can
only correctly be predicted by taking into account the status
(e.g. delays and crowdedness) of other airports and of the
system as a whole [26], [32], [33], [60], the aggregated
dynamics at an airport can be described without it. To make a
parallelism with statistical physics, macroscopic observables
of a system (e.g. the pressure or the temperature of a gas)
can be studied without explicit knowledge of the individual
elements composing it (e.g. position and velocity of all gas’
particles).

From an operational perspective, this implies that, firstly,
delays can be predicted, and hence acted upon. This stems
from the fact that, if delays were unpredictable and were
randomly changing across different days, they would not
form consistent and identifiable profiles. This is of course
in agreement with the large body of Literature dealing
with delay prediction [13]–[17], [34]. Secondly, and more
importantly, that these predictions and interventions aimed
at reducing delays must be local in nature, as the delay
profile at one airport (and hence, the evolution of delays
through time) encodes most of the information about such
delay dynamics. In other words, average delays at a given
airport are largely predictable without looking at the network
status. These results also suggest that airport identifiability
could be used as a metric to measure how efficiently delays
are managed throughout the system, and how intensely is the
local dynamics of airports dictated by the global propagation.

As a final point, several limitations of the present study
have to be highlighted. The calculation of delays has been
performed with the data available in the EUROCONTROL’s
R&DData Archive. While it provides a complete and official
source of information about all flights operating in Europe,
the planned time of landing corresponds to the last filed flight
plan, and not to the original intentions of the airlines. This
may result in a bias (specifically, a decrease) in the estimated
delay at landing. Also, delays have been calculated per flight,
i.e. disregarding the number of passengers that were affected
and how these delays may disrupt multi-leg trips [61]–[64];
in other words, only the magnitude of delays, and not their
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FIGURE 10. Graphical representation of the class-discriminative vector (solid red lines, right Y axes) for each airport, as obtained by
the Gradient-weighted Class Activation Mapping (Grad-CAM) approach [74]. Dashed black lines (left Y axes) represent examples of
the delay profiles of each airport.
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importance, has here been considered. Regarding available
data, limited information about the status of the airports and
of the system in general has been included in the analysis;
on the other hand, using data like flight connectivities,
airspace structure and crowdedness may help explaining
the origin of the identifiability, as previously shown for
delay prediction [26], [34]. While delay propagation is a
global process involving multiple airports simultaneously,
such process as here been represented as a set of pairwise
interactions. This is customary in network science, and
specifically in the reconstruction of functional networks [65],
[66]. Still, higher dimensional options have recently been
proposed [67], [68], which could in principle yield more
complete representations of the propagation dynamics. It has
to finally be noted that, while the strength of the interactions
was represented by the parameter γ in the model, it is not
possible to derive a real interaction strength from the available
data. While it may be tempting to state that, given a pair of
airports, their associated γ should be inversely proportional
to the corresponding pairwise identifiability, this would not
take into account that the airport dynamics is in reality not
constant, and it may be changed by random events or different
traffic patterns. While outside the scope of this work, a more
precise identification of all interaction γ s may be possible
through the use of recent results on the dynamics of coupled
systems, e.g. [65], [69]–[71].

APPENDIX A
VISUALISATION OF AIRPORT CHARACTERISTIC PROFILES
In spite of the unavoidable black-box nature of Deep Learning
models, several attempts have been made in recent years
to extract intuitive and understandable components from
them, in order to allow the practitioner to understand why a
given model predicted what it predicted - see [72], [73] for
reviews on the topic. We here applied the Gradient-weighted
Class Activation Mapping (Grad-CAM) approach [74] to
the 1-to-all classification problems presented in Fig. 4.
In synthesis, a ResNet model is trained to recognise the delay
profiles of one airport against a pool of profiles of all other
airports; the Grad-CAM approach is then used to retrieve
a class-discriminative vector, i.e. a vector representing how
important is the value observed at a given time of the day
for recognising such airport. The vectors for the 30 airports
here considered are depicted in Fig. 10 (red solid lines, right
Y axes), alongside an example of the delay profile (dashed
black lines, left Y axes).
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