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Abstract. With the recent development of technology, wireless sensor networks 
are becoming an important part of many applications such as health and 
medical applications, military applications, agriculture monitoring, home and 
office applications, environmental monitoring, etc. Knowing the location of a 
sensor is important, but GPS receivers and sophisticated sensors are too 
expensive and require processing power. Therefore, the localization wireless 
sensor network problem is a growing field of interest. The aim of this paper is 
to give a comparison of wireless sensor network localization methods, and 
therefore, multidimensional scaling and semidefinite programming are chosen 
for this research.  Multidimensional scaling is a simple mathematical technique 
widely-discussed that solves the wireless sensor networks localization problem. 
In contrast, semidefinite programming is a relatively new field of optimization 
with a growing use, although being more complex. In this paper, using 
extensive simulations, a detailed overview of these two approaches is given, 
regarding different network topologies, various network parameters and 
performance issues. The performances of both techniques are highly 
satisfactory and estimation errors are minimal.  
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dimensional scaling, localization techniques 

1 Introduction 

New technologies bring new possibilities, however, in the same time new questions 
are being opened. The area of wireless sensor networks solves a great amount of new 
problems. A wireless sensor network (WSN) is a network consisting of distributed 
sensor devices that cooperatively monitor physical or environmental conditions at 
different locations.  The development of wireless sensor networks was originally 



       

motivated by military applications. However, wireless sensor networks are now used 
in many industrial and civilian application areas, including industrial process 
monitoring and control, machine health monitoring, environment and habitat 
monitoring, healthcare applications and traffic control. Today, wireless sensor 
networks has become a key technology for different types of smart environments, and 
the aim is to enable the application of wireless sensor networks for a wide range of 
industrial problems. Wireless networks are of particular importance when a large 
number of sensor nodes have to be deployed. 

A fundamental problem in wireless sensor networks is localization i.e. the 
determination of the geographical locations of sensors. Localization is a challenge 
when dealing with wireless sensor nodes, and a problem which has been studied for 
many years [1]. Nodes can be equipped with a Global Positioning System (GPS), but 
this is a costly solution in terms of money and power consumption. The localization 
issue is important where there is an uncertainty about some positioning. If the sensor 
network is used for monitoring the temperature in a remote forest, nodes may be 
deployed from an airplane and the precise location of most sensors may be unknown. 
An effective localization algorithm can then use all the available information from the 
nodes to compute all the positions. 

Most existing localization algorithms were designed to work well in wireless 
sensor networks. The performance of localization algorithms depend on critical sensor 
network parameters, such as the radio range, the network topology i.e. the density of 
nodes, the anchor-to-node ratio, and it is important that the solution gives adequate 
performance over a range of reasonable parameter values. 

In this paper we give an overview of two completely different localization 
approaches: Multidimensional scaling and Semidefinite programming. We present 
analysis and simulations of the algorithms, demonstrating the accuracy compared to 
each other, regarding different sensor network parameters.  

The Multidimensional scaling approach is an algorithm using connectivity 
information for computing the nodes’ localization with the help of some linear 
transformations [2]. The MDS-MAP algorithm first uses connectivity to roughly 
estimate the distance between each pair of nodes, then, multidimensional scaling 
(MDS) is used to find possible node locations that fit the estimations, and finally, it is 
optimized by using the anchors positions [3]. In section 2 we describe the classical 
MDS approach used in the simulations.  

Section 3 describes the Semidefinite programming (SDP) relaxation based method 
for the position estimation problem in sensor networks [4][5]. The basic idea behind 
the technique is to convert the nonconvex quadratic distance constraints into convex 
constraints by introducing a relaxation to remove the quadratic term in the 
formulation. The solving of the connection convex constraint is by using techniques 
of linear programming.  

In Section 4 we show results on both simulated algorithms with a discussion and a 
comparison of the two proposed methods and finally, Section 5 concludes the paper. 



2 Multidimensional Scaling 

First we will give a mathematical model of the wireless sensor network localization 
problem. In all the localization approaches the network is modeled by a graph 

( ), ,G V E=  where V  is the set of nodes some with known positions in the 

Euclidean space dimR  and E  is the set of edges defined by the network topology 
(connectivity). In one case a set of weights ( ){ }: ,ijd i j E∈ on the graph’s edges is 

given, representing the (estimated) distances between the corresponding nodes. The 
problem is then to place all nodes in such a way that the Euclidean distance between 
every pair of nodes v  and ,w  where ( ), ,v w E∈  equals vwd . In the other case, 

ijd are not given a special value. It is only assumed that ijd R< , where R  is the 
range of the transmitter of a wireless sensor node. To describe the positions of the 
nodes of the network, we form a corresponding matrix and to store the available 
distance information we define the matrix { }, 1,2,...,ijD d i j n= = .  

For the Multidimensional scaling approach we consider the node localization 
problem with defining the network as an undirected graph with vertices V and edges 
E. The vertices correspond to the nodes, of which zero or more may be special nodes, 
which we call anchors, whose positions are already known. We assume that all the 
nodes being considered in the positioning problem form a connected graph, i.e., there 
is a path between every pair of nodes. 

We focus on classical MDS in this paper. Classical MDS is the simplest case of 
MDS: the proximities of objects are treated as distances in a Euclidean space. The 
goal of MDS is to find a configuration of points in a multidimensional space such that 
the inter-point distances are related to the provided proximities by some 
transformation (e.g., a linear transformation). 

Let ijp  refer to the proximity measure between objects i  and j . The Euclidean 

distance between two points 1 2 3( ; ; ... )i i i i imX x x x x=  and 

1 2 3( ; ; ... )j j j j jmX x x x x=  in an m - dimensional space is 

2
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( )
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=
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(1) 

 

The Euclidean distances are related to the proximities by a transformation 
( )ij ijd f p= . In the classical MDS, a linear transformation model is assumed, i.e. 

ij ijd a bp= + . The distances D  are determined so that they are as close to the 



       

proximities P  as possible. In that way, we define ( )I P D E= + , where ( )I P  is a 
linear transformation of the proximities, and E  is a matrix of errors. Since D  is a 
function of the coordinates X , the goal of classical MDS is to calculate X  such that 
the sum of squares of E  is minimized, subject to suitable normalization of X . 

In classical MDS, P  is shifted to the center and coordinates X  can be computed 
from the double centered P  through singular value decomposition. For an n n×  P  
matrix for n  points and m  dimensions of each point, it can be shown that 
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The double centered matrix on the left hand side ( B ) is symmetric. Having now 
calculated B  and performing singular value decomposition on B  gives B VAV= . 
The coordinate matrix becomes 1/2X VA= . 

Retaining the first r  largest eigenvalues and eigenvectors ( )r m<  leads to a 
solution in lower dimension. This implies that the summation over k  runs from 1 to 
r  instead of m . This is the best low rank approximation in the least-squares sense. 
For example, for a 2D network, we take the first 2 largest eigenvalues and 
eigenvectors to construct the best 2D approximation. 

2.1 MDS-MAP algorithm 

MDS-MAP is a localization method based on multidimensional scaling [3]. The 
MDS-MAP algorithm consists of three steps: 

• Compute the shortest distances between all pairs of nodes in the region. The 
computed distances are used for building the distance matrix for MDS.  

•  Apply classical MDS to the distance matrix, retaining the first 2 eigenvalues 
and eigenvectors to construct a 2D relative map. 

• Given sufficient anchor nodes (3 or more), transform the relative map to an 
absolute map based on the absolute positions of anchors. 

In the first step, we assign distances to the edges in the connectivity graph. When 
the distance of a pair of neighbor nodes is known, the value of the corresponding edge 
is the measured distance. When we only have connectivity information, a simple 
approximation is to assign value 1 to all edges. Then a classical all-pairs shortest-path 
algorithm, such as Dijkstra’s algorithm, can be applied. In the second step, classical 



MDS is applied directly to the distance matrix. The core of classical MDS is singular 
value decomposition. The result of MDS is a relative map that gives a location for 
each node. Although these locations may be accurate relative to one another, the 
entire map will be arbitrarily rotated relative to the true node positions. In the third 
step, the relative map is transformed through linear transformations, which include 
scaling, rotation, and reflection. The goal is to minimize the sum of squares of the 
errors between the true positions of the anchors and their transformed positions in the 
MDS map. 

3 Semidefinite Programming 

Semidefinite programming is the other approach we are going to present in this paper. 
It is a new optimization algorithm that uses techniques of linear programming. 

It will be helpful to first introduce some mathematical notations to describe this 
technique. The trace of a given matrix A , denoted by )(Atr  is the sum of the entries 
on the main diagonal of A . A symmetrical matrix is called semidefinite if all its 
eigenvalues are nonnegative and is represented by 0fA . 

Suppose two nodes 1x  and 2x  are within radio range R  of each other, the 
proximity constraint can be represented as a convex second order cone constraint of 
the form Rxx ≤−

221 , and this can be formulated as a matrix linear inequality. 
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The mathematical model of the localization problem can be described as follows. 
There are n m−  distinct sensor points in dimR  whose locations are to be 
determined, and other m  fixed points (called the anchor points) whose locations are 

known.  The known nodes are indicated by a  and the unknown nodes by $x , so that 
$ $

1 1,... , ,...,n m mX x x a a−
⎡ ⎤= ⎣ ⎦ . All ( ),i j E∈  where  i j<  and if j  is an anchor 

are denoted by aN , and all ( ),i j E∈ , where i j< are unknown is denoted by xN .  
The following constraints must be satisfied: 

$ ( )
$ $ ( )
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We consider the case when the node distances are known, therefore, let 
$ $

1;...;
T

n mX x x −⎡ ⎤= ⎣ ⎦ be the matrix in )(dim mnR −×  that needs to be determined. 

Define mn
ij Re −∈  with 1 on i -th position and with -1 on j -th position, and 

everywhere else zeros. If dimI  is the identity matrix, the constraints can be written: 
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(5) 

 
We now need to find a symmetric matrix dimdim×∈ RY  and X  that satisfy the 

following constraints: 
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This is the SDP formulation of the problem of wireless sensor networks 
localization. In [4] a relaxation of this method is proposed that we will use in our 
simulations. The constraint TY X X=  is relaxed with XXY Tf . We can write this 
condition as follows 

0dim f⎟⎟
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⎞
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⎛
=

YX
XI

Z T  
(7) 

In this way the SDP problem can be written as min 0 , such that 

dimdim:1dim,:1 IZ =  

( )( ) 2;0;0 ij
T

ijij dZee =•    ( ) xNji ∈∀ ,  

( )( ) 2;; kj
T

jkjk dZeaea =•    ( ) aNjk ∈∀ ,  

0fZ  

(8) 

 



where )(ABtBA r=•  and 0  the zero vector of the corresponding dimension.  
When we have a solution to this problem, we can then easily extract the solution for 
the positions of the unknown nodes, since they are then defined by X  and are a part 
of Z . Practically this is solved by a SDP solver such as SeDuMi which we used in 
our simulations.  

4 Simulation results 

In our experiments, we ran MDS-MAP and SDP algorithms on various topologies of 
networks in Matlab. Three different network topologies were considered: (1) random 
topology with a uniform distribution within a square area, (2) square grid topology 
with some placement errors, and (3) on a hexagonal grid topology with some 
placement errors.  

For the SDP approach the computational results presented here were generated 
using the interior-point algorithm SDP solvers SeDuMi [6] with their interfaces to 
Matlab.  

In a square grid, with a placement error, a random value drawing from a normal 
distribution N(0;1) is added to the node's original grid position. The placement error 
in a hexagonal grid topology is defined similarly.  

The data points represent averages over 20 rounds in networks containing 64 
nodes. The anchor nodes are selected randomly and the number of anchor nodes 
varies between 4 and 10 in each simulation.  The connectivity (average number of 
neighbors) is controlled by specifying radio range R. Nodes are placed in a square 
area with size of rxr (r=0.5). 

4.1 Random network topology 

In the case when the network has a random topology, 64 nodes are placed randomly 
in rxr square area (r=0.5). Figure 1 shows an example of this random placement and 
the results in the SDP approach are given. The radio range here is 0.15r, which leads 
to an average connectivity of 14.625, and the number of anchor nodes is 6. Figure 2 
shows a comparison of MDS-MAP and SDP estimation errors in a random network 
topology with 64 nodes placed in a square area with size of rxr (r=0.5). The radio 
ranges (R) used are 0.15r, 0.18r, 0.2r and 0.25r, which lead to an average connectivity 
level of 13.31, 18.21, 21.55 and 29.75 respectively. The number of the anchor nodes 
used is 4, 5, 6 and 10.  

Figure 2 shows a better performance of the estimated errors in the SDP approach in 
comparison with the MDS-MAP algorithm. The estimation errors of the SDP 
approach are almost 2 times smaller than the MDS estimation errors. For example, 
MDS gives an estimation error of 0.1302R with connectivity level of 13.3125, and in 
contrast SDP estimation error is 0.0721R (in a case with 4 anchors), and moreover, 



       

for connectivity level of 29 and more SDP estimation errors are less than 0.01R. 
Obviously when the connectivity level rises, estimation errors are getting smaller 
even by half for connectivity level less than 18. An interesting result is that the 
number of anchor nodes does not effect much on the SDP estimation errors.  

 

 

Fig. 1. SDP simulation of a random network topology with 64 nodes placed in a square area 
0.5x0.5 and 6 anchors, average connectivity 14.625 

 

Fig. 2. Comparison of MDS-MAP and SDP estimation errors in a random network topology 
with 64 nodes placed in a square area with size of 0.5x0.5 



4.2 Square grid network topology 

In the case when the network has a square grid topology, we assume that the sensor 
nodes are deployed according to a regular structure. Actually, nodes are placed in the 
neighborhood of the vertices due to random placement error. 64 nodes are placed on a 
rxr (r=0.5) grid, with a unit edge distance r/8. This type of network topology is shown 
in figure 3. The results in the SDP approach are given here. The radio range is 0.15r, 
which leads to an average connectivity of 13.055, and the number of anchor nodes is 
6. Figure 4 shows a comparison of MDS-MAP and SDP estimation errors in a square 
grid network topology with 64 nodes placed in a square area with size of rxr (r=0.5). 
The radio ranges (R) used are 0.15r, 0.18r, 0.2r and 0.25r, which lead to a average 
connectivity level of 12.97, 18.07, 21.19 and 30.14 respectively.  

Our results show that MDS and SDP obtain much better results on the grid layout 
than on the random layout for the same connectivity level. Estimation errors are 
lowered by half with this regular topology in comparison with the random topology. 
SDP outperforms MDS in the same way as in the random placement.  
 

  

Fig. 3. SDP simulation of a square grid network topology with 64 nodes placed in a square area 
0.5x0.5 and 6 anchors, average connectivity 13.375 



       

 

Fig. 4. Comparison of MDS-MAP and SDP estimation errors in a square grid network topology 
with 64 nodes placed in a square area with size of 0.5x0.5 

4.3 Hexagonal grid network topology 

The case when the network has a hexagonal grid topology, is similar with the square 
grid topology. Sensor nodes are placed on the vertices of a hexagonal grid with a 
random placement error as in figure 5. Figure 6 shows a comparison of MDS-MAP 
and SDP estimation errors in a hexagonal grid network topology with 64 nodes placed 
in a square area with size of rxr (r=0.5). The radio ranges (R) used are 0.15r, 0.18r, 
0.2r and 0.25r, which lead to a average connectivity level of 14.94, 20.35, 24.075 and 
33.45 respectively. The simulation results here are similar with the square grid case. 
SDP estimation errors are lower than MDS estimation errors, but the improvement in 
the estimation errors with the SDP approach is not as stressed as in the random layout.  

 



 

Fig. 5. SDP simulation of a hexagonal grid network topology with 64 nodes placed in a square 
area 0.5x0.5 and 6 anchors, average connectivity 14.925 

 
 

Fig. 6. Comparison of MDS-MAP and SDP estimation errors in a hexagonal grid network 
topology with 64 nodes placed in a square area with size of 0.5x0.5 

5 Conclusions 

In the vast field of research related to wireless sensor networks, our focus has been 
on the problem of localization, one of the major challenges in the design of ad hoc 
networks. Our goal was to present two approaches that are of a rising interest: 



       

Multidimensional scaling with the MDS-MAP algorithm and localization with 
Semidefinite programming. They both work well, with a small amount of connectivity 
information about the network, however the Semidefinite programming approach 
with known distance network information outstands with its results in comparison to 
the Multidimensional Scaling approach. In conclusion, SDP as an approach is better 
than MDS for small sized networks (as used in our simulations) especially with 
random topologies. However, the time consuming factor is not considered. SDP as a 
more complex algorithm is slower than MDS, and for larger network sizes it will be 
very difficult to get any results. Although some research has been done concerning 
network topologies, some other irregular topologies should be considered in future 
with different network sizes. Furthermore, some hybrid algorithms which combine the 
advantages of these two approaches (greater performance with SDP and speed with 
MDS) should be developed.  
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