CEUR-WS.org/Vol-2508/paper—kot .pdf

Unit and Performance Testing of Scientific Software
Using MATLAB®

BOJANA KOTESKA, MONIKA SIMJANOSKA, IVANA JACHEVA, FROSINA KRSTESKA and
ANASTAS MISHEYV, Ss. Cyril and Methodius University

In this paper we report our activities on performing testing of scientific software for calculating ECG-derived heart rate (HR)and
respiratory rate (RR) by using Matlab®. The aim of this software is to aid the triage process in the emergency medicine which
is crucial for ranging the priority of the injured victims in mass casualty situations based on the severity of their condition. One
challenge of this paper is to perform unit testing in Matlab by using the Input Space Partitioning method. For that purpose,
we created sets of test values for the ECG signals and we modified them according to our needs. By using the Profiler tool we
tested the performance of the algorithm functions.

1. INTRODUCTION

Scientific software solves problems in various (scientific) fields by applying computational practices
[Kelly et al. 2008]. Its multidisciplinary nature makes it more complex, but it provides great opportu-
nities and advantages for scientists in many different scientific fields. Scientists usually have a large
amount of data to process [Wilson et al. 2014], many calculations, lots of requests to handle, and au-
tomating the process by creating software makes their work easier, increases productivity, quality and
sustainability [Wiedemann 2013].

Scientific software is based on models, experimentation and observation of the results [Joppa et al.
2013]. Tests are very much like experiments and the obtained results are observed later. That is how
the scientists test their hypotheses. They run experiments, measure results and analyze the data.

Scientific software testing is a hard and challenging task due to the complexity and the lack of test
oracles [Kanewala and Chen 2018; Lin et al. 2018]. Challenges are categorized according to the specific
testing activities: test case development, producing expected test case output values, test execution,
test result interpretation, cultural differences between scientists and the software engineering com-
munity, limited understanding of testing process, not applying known testing methods, etc [Kanewala
and Bieman 2014].

In this paper, we report our activities on performing testing of a scientific software for calculating
ECG-derived heart rate (HR) and respiratory rate (RR) by using Matlab®. We try to identify specific
challenges, proposed solutions, and unsolved problems faced when testing scientific software. The aim
of this software is to aid the triage process in the emergency medicine which is crucial for ranging
the priority of the injured victims in mass casualty situations based on the severity of their condition

This work is supported by the Faculty of Computer Science and Engineering, Skopje, North Macedonia.

Ivana Jacheva, Bojana Koteska, Frosina Krsteska, Monika Simjanoska, and Anastas Mishev, FCSE, Rugjer
Boshkovikj 16, P.O. Box 393 1000, Skopje; email: ivana.jaceva@students.finki.ukim.mk; bojana.koteska@finki.ukim.mk;
frosina.krsteska@students.finki.ukim.mk; monika.simjanoska@finki.ukim.mk; anastas.mishev@finki.ukim.mk.

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 Inter-
national (CC BY 4.0).

In: Z. Budimac and B. Koteska (eds.): Proceedings of the SQAMIA 2019: 8th Workshop on Software Quality, Analysis, Mon-
itoring, Improvement, and Applications, Ohrid, North Macedonia, 22—-25. September 2019. Also published online by CEUR
Workshop Proceedings (http://ceur-ws.org, ISSN 1613-0073)

8:2 . Bojana Koteska et al.

[Hogan and Brown 2014], whether they are man-made, natural or hybrid disasters. When performed
manually, an efficient triage process takes less than 30 seconds. In order to optimize the process when
there are hundreds of injured people, the challenge is to reduce the triage time and the number of
medical persons needed. The software we describe in Section 2 extracts heart rate and respiratory rate
from ECG signal. This optimization can be achieved by using the benefits of the biosensor technologies
to extract the vital signs needed for the triage.

The other sections are organized as follows. Section 3 provides a comprehensive explanation of the
testing methodology and results: definition of test cases, testing preparations and execution and anal-
yses of the results of the executed tests. The final Section 4 concludes the paper.

2. DESCRIPTION OF SOFTWARE FOR CALCULATING ECG-DERIVED HR AND RR

The software is developed as a part of the triage procedure for determining a patient’s condition
[Gursky and Hreckovski 2012]. It is designed for low-power wearable biosensor and it uses only an
ECG signal to estimate automatically the HR and RR as crucial parts of the primary triage. The goal of
this software is to perform efficient real-time processing of ECG data in terms of the power-demanding
Bluetooth connection with the biosensor and the data transmission. The accuracy of the algorithm is
published in [Simjanoska et al. 2018].

mmmwmuu.uxu FAMAALAL

R-wave detection

h 4 A

Heart rate

Kurtosis computation .
computation

Smoothing

Y

Finding peaks

Y
Respiratory rate
computation

Fig. 1. Software Methodology

As depicted in Fig. 1, the input of the algorithm is a raw ECG signal. The calculation of the HR is per-
formed by R-peak detection performed by using the the Pan Tompkins algorithm [Pan and Tompkins
1985]. HR is calculated according to the following equation:

Unit and Performance Testing of Scientific Software Using MATLAB® o 8:3

signal_length

HR = ()71 %60 (1

number_of_R_peaks

The obtained R-peaks are used to estimate the RR. The kurtosis computation technique is used for
measuring the peakedness of the signal’s distribution. The locations of the local maxima are needed
for the smoothing method upon which a peak finder method is applied to find the local maxima (peaks)
of the ECG signal. The peaks represent a number of respirations according to which the respiratory
rate is calculated:

signal_length

RR = ()~ % 60 (2)

number_of respirations

The implementation of the proposed algorithm is realized in Matlab. It has 493 lines of code in total.

The software contains two main functions: A3r and pan_tompkin. The first one, A3r, has two argu-
ments needed for the calculation of the estimated values of RR and HR. The first argument is a raw
ECG signal, represented in vector format, which contains an array of decimal values and the second
argument is the measurement frequency (number of measurements in a second).

The second function, pan_tompkin, uses three arguments for calculating the qrs_amp_raw - ampli-
tude of R-waves, qrs_i_raw - the index of R-waves and delay - a number of samples in which the signal
is delayed due to the filtering. The arguments used by pan_tompkin are ECG - raw ECG vector signal,
fs - sampling frequency and gr-flag - flag for plotting.

3. METHODOLOGY AND RESULTS
3.1 Unit Testing

h3r and pan_tompkin functions are the two main software units. Unit testing purpose is to assess
the software units produced by the implementation phase. It represents the “lowest” level of testing
[Ammann and Offutt 2016]. Unit testing improves the quality of science and engineering software and
it focuses on small units of code (class, module, method, or function). In order to have effective unit
testing, the procedure should be automated so that entire test suites can be run quickly and easily.
The verifying of the individual units is helpful for verifying overall system behavior. The focus on the
smaller software part leads to modular and more maintainable code [Eddins 2009].

When testing a scientific software, it is very important to think about the nature of the software and
to be familiar with the scientific field. The metrics should be well defined and most often it is easily
noticed that they are surreal. For example, a respiratory rate can’t be 1000 breaths per minute. That’s
why the testers should know the possible result value ranges, so that they can determine the input
domain. The input domain should consists of as much as possible inputs (valid and invalid) that could
be taken by the program. The tester should choose test cases wisely since the input values could be
infinite. Program correctness can be proved by testing all possible input values, but we can only test
limited set of inputs (known as test cases). One method to determine the inputs for a specific variable is
to use Input Space Partitioning (ISP) - input or output data is grouped or partitioned into sets of data
that we expect to behave similarly and will help us with creating test cases. We used Functionality-
based ISP [Ammann and Offutt 2016].

Matlab provides multiple tools for unit testing [The MathWorks, Inc 2019].

h3r function’s first argument is the raw ECG signal vector. According to the database of ECG signals,
the usual values are floating points values in range 0-10. The purpose of ISP is to create partitions of
the input values and to test the software behavior when the input values are outside the usual range
also. For the ECG vector, the following test cases were tested:

8:4 . Bojana Koteska et al.

E#] Variables - database 2

|- h3r.m | pan_tompkin.m | testiranja_frekvencija.m 2| preallocationTest.m [+ |
1 % testiranje na pan tompkin so nuli za signal

2 — for i=l:length (database_ 2 (297) .signal)

3 - database 2 (2597).signal (i)} = 0;

4 - end

3 — [2, b, c] = pan_tompkin(database 2(237).signal, 125, 0);

[

o = assert (isempty (k) = true)

i assert (isempty(a) = true)

4 - assert (isempty(c) == false)

10

11

12 % testiranje na pan tompkin so negativni vrednosti za signal
13 = for i=l:length (database 2 (296) .signal)

14 - database 2(2596).signal (i) = database 2(296).signal(i) - 2;
15 = end

1&

Command Window

Mew to MATLABT See resources for Getting Started.
Error in preallocationTe=st [(l1ine Zj

for i=l:length(datakase_1(297) .signal)

»>>» preallocationTest

Funkcijata h3r ne =se povikuva so 0 kako =signal

Funkcijata h3r ne raboti so istl negativni vrednostl na signal

Funkcijata h3r ne rabotli so kombinacija od O i1 nmegativni vrednosti na signal
Funkcijata h3r ne raboti so kombinacija od O 1 pozitivni vrednosti na signal

fr s

-

Fig. 2. Unit Test Results

—empty vector;
—uvector of zeros;
—vector with negative float values;
—vector with positive floating values;
—vector with positive floating values greater than 10;
—vectors with combinations of negative values and Os;
—vectors with combinations of positive values and Os;
—vectors with combinations of values (negative, positive and 0).
We used the same strategy to test the other function as well, because both functions use the same

type of argument - the raw ECG signal vector. For the frequency parameter and for the gr flag we
also made ISP (for the frequency we have the correct value of 125, then 0, negative number and value

Unit and Performance Testing of Scientific Software Using MATLAB® o 8:5

greater than 125). For the gr flag we have 0, 1, negative value and value greater than 1. Each one of
these checks represents a single test, which can be run separately.

In Matlab it is possible to define unit test suites. We combined all the tests in one file (test suite),
and we ran the file once which ran all the tests automatically one by one.

By using the assertion functions from the matlab.unittest.qualifications.Assertable class, we com-
pared the output HR and RR values with the expected ones and if the test passes, that means the
assertion is true and the values from the test are the values we’ve been expecting to get.

Z] Profiler — O >
File Edit Debug Window Help k]
AN

Start Profiling Run this code: ~ | @ Profiletime: 2 5

Ll
h3r (Calls: 1, Time: 0.308 s)
Generated 21-May-2019 23:34:36 using performance time.
function in file D:\Documents\WMATLABYST. m
Copy to new window for comparing multiple runs
Refresh

Show parent functions Show busy lines Show child functions

Show Code Analyzer results [Show file coverage] Show function listing
Parents (calling functions)
Mo parent
Lines where the most time was spent

Line Number | Code Calls | Total Time = % Time | Time Plot

10 seconds = round(lengthisignal... 1 0256 5 83.3% | I

All other lines 0052 s 167% | 1l

Totals 0.308 s 100%
Children (called functions)
Mo children
Code Analyzer results

Line

number bl v

Fig. 3. Performance testing of the hr3 function.

To make test running easy, Matlab provides function runtests which runs all the tests in the current
folder, gathers them into a test suite, runs the test suite and returns the results as a TestResult object.
In our project, we have several test files: one with the test cases for signal vector values, one for testing
the functions with different values for frequency, etc. Figure 2 shows the output from the first test file
- preallocationTest. As the figure shows, the output is shown in the Command Window. In Matlab, if
the test case passed, it doesn’t show any output. So, the output shown here is only by the test cases

8:6 . Bojana Koteska et al.

that failed. The output is presented in details, telling where and why the test case failed: function A3r
can not provide results for signal contains only 0Os, it does not work with negative values, combination
of Os and negative values, combination of Os and positive values, etc.

ﬂ Profiler

File Edit Debug Window Help

o« d| o N

Start Profiling Run this code: |[a, b, c] = h3r(database_2(292).signal, 125)

Farents (calling TUnciaons;
Mo parent

Lines where the most time was spent

Line Number = Code

L]]] —
(=~

|T\J
[

end
All ather lines

Totals

Children (called functions)
Function Name

pan_tompkin

smaoth

kurtosis

findpeaks

Self time (built-ins, overhead, etc.)

Totals

[qrs_awp_raw,qrs_i raw,delay]=...
swoothed k = swooth(k,'rlowess...
kii) = kurtosisisignal (qrs_i r...

pnum = findpeaks (smoothed kj;

Function Type | Calls

function 1
function 1
function 19
function 1

Calls

19

19

Tatal Time

0.183 s
0043 s
0011 s
0011 s
0.004 s
0251 s

Total Time
0.184 s
0.043 s
0.011 s
0.011 s
0.000 s
0.001 s
0251 s

% Time
72.9%
17.1%
43%
4.2%
1.6%
100%

% Time | Time Plot
73.1% | N
173% |1l
45% 1

45% 1

0.2%

0.4%

100%
Time Plot
]
|
1
1
|

Fig. 4. Performance testing of the pan_tompkin function.

3.2 Performance testing

Performance testing is a non-functional testing which checks the behavior of the system when it is
under significant load. In a case of performance testing the software system is evaluated from a user’s
perspective, and is typically assessed in terms of throughput, stimulus response time, or both. Per-
formance testing could be used to assess the level of system availability also [Vokolos and Weyuker
1998]. The goal of performance testing is to identify the performance bottleneck, to make comparison

Unit and Performance Testing of Scientific Software Using MATLAB® o 8:7

Start Profiling Run this code: [[a, b, c] = h3r(database_2(292).signal, 123)

Color highlight code according to | time e
time Calls line

¥ Input:
Ysignal - a wvector (ECG signal)
$freq - the sampling fredquency of the ECG signal

Foutput:
%hr - heart rate
Ybreaths - the number of breathings in the ECG =signal
%rr - the respiratory rate (number of breathings in a minute)
< 0.001 1 10 seconds = round(lengthisignal)/freq):
%P-F peak detection
0.154 1 12 [qrs amp raw,qrs 1 raw,delay]=pan tompkin(=signal, frecg,0);
L e L e L e et Heart Rate--—-———————
< 0.001 1 15 bps = 1/ (seconds/lengthiqrs_1i raw)|;

1 16 hr = bps * &0;

S Respiratory Rate-—————————--"--"—""--"----————

YNunber of peaks

< 0.001 1 20 k = zeros(lengthigqrs i1 raw)-1,1);
(%Find the kurtosis of between the intervals of peaks
< 0.001 1 23 for i=l:lengthigrs_i raw)-1
0.011 19 24 kii) = kurtesis(signal (gqrs_i rawii):qrs_i raw(i+l)),1):
< 0.001 19 25 end

%5mooth the kurtosis
0.043 1 28 smoothed k = smooth(k,'rlowess');

Fig. 5. Perfromance evaluation of each code line.

of the performance, etc. Usually, the performance testing is made by using a benchmark - a program
or workload designed to be representative of the typical software system usage [Pan 1999].

In the earlier versions of Matlab, in order to measure the code’s performance, there was a testing
framework, which included different performance measurement-oriented features. The newest version
comes with a tool called Profiler, which automates the work. It provides details about the performance
of a specific function: how much time did it take to execute the function, the percentage of the summed
up time of executing the part of the program which that separate unit used, whether a line has been
executed and if so, how many times, the full code coverage etc.

Figure 3 shows the results of the execution time of the A3r function. It gives information about the
number of calls and total execution time for each children function call.

8:8 . Bojana Koteska et al.

Figure 4 shows the executing time of the pan_tompkin function.

With the Profiler Tool, we can analyse each function call separately and see more detailed informa-
tion about its executing, like it’s shown in Fig. 5. The results show that pan_tompkin function took
most of the execution time (0.184s or 73.1% of the total execution time).

4. CONCLUSION

Testing of the scientific software must become a standard part of the development process. Not because
we only want to implement the correct way of development process as specified in the literature, but
also we should consider the fact that many of the scientific software programs are connected to people’s
health and can be categorized as critical software programs. Many of the testing methods designed for
commercial scientific software can be adapted to scientific software testing. Testing should be consid-
ered from different aspects also. For example, even if the scientific program code produces accurate
results, problems with performance can exist.

In this paper we made unit and performance testing of a scientific software for calculating ECG-
derived heart rate (HR) and respiratory rate (RR) designed to aid the triage process in the emergency
medicine which is crucial for ranging the priority of the injured victims in mass casualty situations
based on the severity of their condition. The testing was done in Matlab.

Multiple unit tests were created to test the functionality of the algorithm. Matlab provides a very
user friendly testing interface. Most of the things are fully automated and only function parameters
are required for testing. Unit testing and input space partitioning method helped us to find several
function errors, especially with test cases with boundary values. For e.g. ECG signal with zeros, signal
with negative values and signals with different lengths helped us to add exceptions in the code.

Performance testing helped us to check the execution times of the functions. We performed tests
with different signal lengths in order to increase the data load. That was useful to think about the
code optimization which is left as our future work.

REFERENCES

Paul Ammann and Jeff Offutt. 2016. Introduction to software testing. Cambridge University Press.

Steven L Eddins. 2009. Automated software testing for matlab. Computing in science & engineering 11, 6 (2009), 48-55.

Elin A Gursky and Boris Hreckovski. 2012. Handbook for Pandemic and Mass-casualty Planning and Response. Vol. 100. I0S
Press.

David E Hogan and Travis Brown. 2014. Utility of vital signs in mass casualty-disaster triage. Western journal of emergency
medicine 15, 7 (2014), 732.

Lucas N Joppa, Greg McInerny, Richard Harper, Lara Salido, Kenji Takeda, Kenton O’hara, David Gavaghan, and Stephen
Emmott. 2013. Troubling trends in scientific software use. Science 340, 6134 (2013), 814-815.

Upulee Kanewala and James M Bieman. 2014. Testing scientific software: A systematic literature review. Information and
software technology 56, 10 (2014), 1219-1232.

Upulee Kanewala and Tsong Yueh Chen. 2018. Metamorphic Testing: A Simple Yet Effective Approach for Testing Scientific
Software. Computing in Science & Engineering 21, 1 (2018), 66-72.

Diane Kelly, Rebecca Sanders, and others. 2008. Assessing the quality of scientific software. In First International Workshop on
Software Engineering for Computational Science and Engineering. Citeseer.

Xuanyi Lin, Michelle Simon, and Nan Niu. 2018. Hierarchical metamorphic relations for testing scientific software. In Proceed-
ings of the International Workshop on Software Engineering for Science. ACM, 1-8.

Jiantao Pan. 1999. Software testing. Dependable Embedded Systems 5 (1999), 2006.

Jiapu Pan and Willis J Tompkins. 1985. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng 32, 3 (1985), 230—236.

Monika Simjanoska, Bojana Koteska, Ana Madevska Bogdanova, Nevena Ackovska, Vladimir Trajkovik, and Magdalena Kos-
toska. 2018. Automated triage parameters estimation from ECG. Technology and Health Care Preprint (2018), 1-4.

The MathWorks, Inc. 2019. Testing Frameworks in Matlab. (2019). https://www.mathworks.com/help/matlab/
matlab-unit-test-framework.html

Unit and Performance Testing of Scientific Software Using MATLAB® o 8:9

Filippos I Vokolos and Elaine J Weyuker. 1998. Performance testing of software systems. In Proceedings of the 1st International
Workshop on Software and Performance. ACM, 80-87.

Christin Wiedemann. 2013. Applying the scientific method to software testing. (2013). https:/searchsoftwarequality.techtarget.
com/feature/Applying-the-scientific-method-to-software-testing

Greg Wilson, Dhavide A Aruliah, C Titus Brown, Neil P Chue Hong, Matt Davis, Richard T Guy, Steven HD Haddock, Kathryn D
Huff, Ian M Mitchell, Mark D Plumbley, and others. 2014. Best practices for scientific computing. PLoS biology 12, 1 (2014),
€1001745.

