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Abstract. The excessively increased volume of data in modern data
management systems demands an improved system performance, fre-
quently provided by data distribution, system scalability and perfor-
mance optimization techniques. Optimized horizontal data partitioning
has a significant influence of distributed data management systems. An
optimally partitioned schema found in the early phase of logical database
design without loading of real data in the system and its adaptation to
changes of business environment are very important for a successful im-
plementation, system scalability and performance improvement.
In this paper we present a novel approach for finding an optimal horizon-
tally partitioned schema that manifests a minimal total execution cost
of a given database workload. Our approach is based on a formal model
that enables abstraction of the predicates in the workload queries, and
are subsequently used to define all relational fragments. This approach
has predictive features acquired by simulation of horizontal partitioning,
without loading any data into the partitions, but instead, altering the
statistics in the database catalogs. We define an optimization problem
and employ a genetic algorithm (GA) to find an approximately opti-
mal horizontally partitioned schema. The solutions to the optimization
problem are evaluated using PostgreSQL’s query optimizer. The initial
experimental evaluation of our approach confirms its efficiency and cor-
rectness, and the numbers imply that the approach is effective in reducing
the workload execution cost.

Keywords: Predictive Horizontal Data Partitioning; Data Warehouse; Genetic
Algorithm; Optimizer Cost Model

1 Introduction

The focus of this paper is the prediction of an (approximately) optimal hori-
zontally partitioned schema through simulation of horizontal data partitioning,
which is performed by altering the database catalogs (statistics). We use the
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optimizer cost model to estimate the execution cost of a given workload. Our
motivation is based on four key factors.

First, although the problem of (optimal) horizontal partitioning is well stud-
ied, to find a partitioned schema that minimizes the workload execution cost is
still a challenging problem [9,11]. The idea behind it is to distribute the rows of
a relational table across the nodes of a cluster so that they can be processed in
parallel [23]. In this way, the system performance for a workload can be signif-
icantly improved, since parallel processing of data becomes possible by placing
the tuples where they are most frequently accessed. In effect, the workload per-
formance can scale to larger volumes of data. The work on this problem has
been extensive [10,4,11,15]. The ideas were then adapted to the setting of a data
warehouse, where significant performance improvements are possible due to the
size of the fact table in a star or a snowflake schema. However, the optimal parti-
tioning problem is NP-hard and static (non-adaptive) solutions are not suitable
for dynamically changing workloads [3]. Automated data partitioning methods
in parallel database systems have also been proposed, since partitioning can have
a positive impact on the system performance [13,17]. Our motivation is to pro-
pose an efficient method that addresses the problem of optimal horizontal data
warehouse partitioning.

Second, in the early phase of design of analytical systems it is very impor-
tant to predict an optimal horizontally partitioned schema that minimizes the
workload execution cost. Also in the case of changes to some of the factors that
affect the system’s performance, it is important to find a new optimal design
(partitioned schema) with minimal reallocation cost. This problem is partially
addressed by on-line data re-balancing, which ensures storage balance at all
times, even after insertion/deletion [7]. The approach is adaptive, but it does
not ensure optimal performance.

Third, the inevitable increase of the volume of data in analytical systems
introduces the need of improved system scalability, elasticity and adaptivity
in order to avoid additional costs related to new hardware configurations and
costly reorganization or a complete logical redesign. Optimal on-line horizontal
data (re)partitioning can help avoid these costs by significantly improving the
scalability of existing hardware configurations of analytical systems. On-line an-
alytical processing (OLAP) systems used in data-driven decision making have
to be elastic, i.e. adaptive to changing workloads over time to meet the require-
ments of the business environment. These characteristics related to big data can
be obtained by horizontal partitioning based on a given workload.

Finally, there is extensive research and good novel results in the field of query
execution cost estimation and database optimizer model improvements. The cost
models used by query optimizers are challenged by statistical machine learning
approaches, but if properly calibrated, they can be highly accurate and precisely
reflect the real execution cost of queries [24]. Therefore, the query optimizer
models become even more promising and our approach is more applicable on
real systems [8,2].



In an endeavor to accomplish these objectives, we develop a new approach for
automatic generation of an optimal/good horizontally partitioned schema. The
main characteristics of our approach for automatic generation of optimal/good
horizontally partitioned schema are the following:

– The approach predicts the execution cost of the workload without loading
real data in the database, only by changing the statistics of the database
system.

– The approach finds an approximately optimal/good partitioned schema of a
data warehouse for a given representative workload. We use a GA to find an
approximately optimal horizontally partitioned schema.

– The approach is based on a formal model for horizontal partitioning by
predicate abstraction and uses a real query optimizer to estimate the to-
tal execution cost of a given workload. It is applied to PostgreSQL’s query
optimizer.

Relational data warehouses often contain large relations (fact relations or fact
tables) and require techniques both for managing (maintaining) these large rela-
tions and for providing good workload performance across these large relations.
The space of possible physical partitioning schema alternatives that need to be
considered is very large and grows exponentially with respect to the number of
range predicates used for range partitioning.

To address the optimization problem, we first choose a set of predicates to
horizontally partition some (or all) of the dimension relations of a data warehouse
with a star schema. The predicates over a relation can involve one or more
attributes of that relation. Then we split the fact relation by using the predicates
specified on dimension relations. This creates a number of sub-star fragments
of the data warehouse we consider, where each sub-star fragment consists of
a partition of the fact table and corresponding to it partitions of dimension
relations. Then we find a suitable solution which minimizes the query cost. To
validate the efficiency of our approach, the experiments are conducted using the
Star Schema Benchmark (SSB) dataset, an adapted data warehouse variation
of TPC-H dataset [16], and the JGAP genetic algorithm package is used to
implement the GA [12]. Our approach does not guarantee the best possible
partitioning, but the experimental results suggest that it produces good solutions
in practice. In this paper we present a proof of concept of our approach to optimal
horizontal partitioning.

The paper is organized as follows. We discuss related work in Section 2,
where we describe an existing formal model for horizontal partitioning of rela-
tions and data warehouses. A procedure for simulation of horizontal partitioning
of relations is presented in Section ??. In Section 5, the optimization problem
is defined and a genetic algorithm addressing it is described. We present ex-
perimental results in Section 7. Finally, in Section 9, we conclude and discuss
future work. On a short notice, the terms fragmentation and partitioning are
used interchangeably.



2 Background Work

Further, this section gives an overview of a formal model for horizontal partition-
ing of relations and data warehouses based on predicate abstraction, as defined
in [6].

Let R be a relation, and A1, ..., An be its attributes with the corresponding
domains Dom(A1), ..., Dom(An). The set of all predicates over a relation R is
defined by:

φ ::= p | ¬φ |φ1 ∧ φ2 |φ1 ∨ φ2

where p is an atomic predicate, i.e. relationship among attributes and constants
of a relation.

We define a two-phase horizontal partitioning as a pair (R, φ), where R is a
relation and φ is a predicate. It splits R into at most 2 fragments of R with the
identical structure, one per each truth value of φ, i.e. we have:

R(0) = {t ∈ R | t � ¬φ}
R(1) = {t ∈ R | t � φ}

where the first fragment R(0) includes all tuples t of R which do not satisfy φ,
the second fragment R(1) includes all tuples t of R which satisfy φ. It is possible
one of the fragments to be empty if all tuples of R either satisfy or do not satisfy
φ. In the second phase, it is allowed to merge some of the fragments obtained
previously. In this case, that can be done by discarding the predicate φ.

R(2) = {t ∈ R | true} = R

We can apply horizontal partitioning using a predicate φ2 to each of the frag-
ments obtained by a partitioning (R, φ1), denoted as (R, φ1, φ2), thus obtaining
at most 4 fragments of R. They are denoted as: R(0,0), R(0,1), R(1,0), and R(1,1).
In the second phase, we can also merge some of these fragments. For exam-
ple, R(2,0) = {t ∈ R | t � ¬φ2} is obtained by merging R(0,0) and R(1,0), while
R(1,2) = {t ∈ R | t � φ1} by merging R(1,0) and R(1,1).

This is called embedded horizontal partitioning, and it can be applied with
an arbitrary number of predicates m, such that in each level a new predicate
is applied to the obtained fragments. Embedded horizontal partitioning of a
relation R with m predicates is denoted as (R, φ1, φ2, ..., φm), and it can split
the initial relation R into at most 2m fragments, denoted as:

R(v1,...,vm) = {t | t � v1 · φ1 ∧ . . . ∧ vm · φm}

where vi ∈ {0, 1}, 1 ≤ i ≤ m, and 0·φ = ¬φ, 1·φ = φ. Again, in the second phase
of partitioning we can decide to merge some of the fragments by discarding some
of the predicates. In this case, we have that:

R(v1,...,vm) = {t | t � v1 · φ1 ∧ . . . ∧ vm · φm}



where vi ∈ {0, 1, 2}, 1 ≤ i ≤ m, and 0 · φ = ¬φ, 1 · φ = φ, 2 · φ = true. An
index table with 2m entries representing all possible bit-vectors of length m can
be formed:

{(v1, . . . , vm) | vi ∈ {0, 1}, i = 1, . . . ,m}

An index entry (v1, . . . , vm) from the index table points to the fragmentR(v1,...,vm).
If some fragment is empty, then there will be no pointer to it. If two fragments
are merged, it is possible that two entries point to the same fragment. Then local
index tables can be created on each of the fragments.

Derived Horizontal Partitioning is defined on a relation which refers to an-
other relation by using its primary key as reference. Let R = (A1, . . . , An) and
S = (B1, . . . , Bm) be relations, such that S contains a foreign key referring to
a primary key of R. Given a horizontal partitioning of R into R1, . . . , Rk, this
induces the derived horizontal fragmentation of S into k fragments:

Sl = S ⋉Rl, l = 1, . . . , k

where the semi-join operator ⋉ is defined as
S ⋉ R = πB1,...,Bm

(S ⋊⋉ R), i.e. the result is the set of all tuples in S for which
there is a tuple in R that is equal on their common attributes.

Consider a relational data warehouse modeled by a star schema (F,D1, D2, . . . , Dk),
where F is a fact relation and D1, . . . , Dk are dimension relations. Suppose
that each dimension Di is horizontally partitioned by using a set of predicates
{φi,1, φi,2, . . . φi,mi

} obtaining in such a way at most 2mi fragmentsDi(vi,1 ,...,vi,mi
)
,

where 1 ≤ i ≤ k. Then, the fact relation F is partitioned using derived horizontal
partitioning in the following way:

F(v1,1,...,v1,m1 ,...,vk,mk
) =

=
(

F ⋉D1(v1,1,...,v1,m1
)
⋉ . . .⋉Dk(vk,1 ,...,vk,mk

)

)

where vi,j ∈ {0, 1}, for 1 ≤ i ≤ k and 1 ≤ j ≤ mi. So we obtain at most 2
∑k

i=1 mi

fragments of the fact relation. Given a fact relation partition F(v1,1,...,v1,m1 ,...,vk,mk
),

we can create the following sub-star schema fragment:

(F(v1,1,...,v1,m1 ,...,vk,mk
), D1(v1,1,...,v1,m1

)
, . . . , Dk(vk,1,...,vk,mk

)
)

We can form a global index table with 2
∑k

i=1 mi entries representing all possible
bit-vectors of length

∑k

i=1 mi. Each single entry (v1,1, . . . , v1,m1 , . . . , vk,mk
) from

the index points to the sub-star schema created by dimension relations
Di(vi,1,...,vi,mi

)
for 1 ≤ i ≤ k, and the corresponding fact sub-relation. Then local

index tables are created on each of the sub-star schemas.

3 Prediction of Data Partitioning

The extracted predicates from the workload are used for partitioning by pred-
icate abstraction, which is optimized by a GA. The quality of the solution is



input-sensitive. There are two factors that cause this sensitivity. First, the exe-
cution cost is sensitive to the size of the table subregions (or partitions) being
accessed. The size of each partition is determined by the selectivity of the pred-
icates used for range partitioning over the non-partitioned data. Second, the
breadth and depth of the search in the space of horizontally partitioned schemas
are determined by the size of the population and the number of evolution gen-
erations, respectively.

We assume that a non-partitioned relational schema is given and that its
statistical data exist in the system catalogs. The simulation of horizontal par-
titioning is performed by creating a new table for each partition, defined by a
logical conjunction of one or more atomic predicates. Actual data are not loaded
into these partitions, and obtaining highly accurate cost estimations from the
query optimizer requires only the presence of statistical catalog data in a given
DBMS. The execution cost estimation is inexpensive in terms of disk accesses,
since it only requires a query execution plan (query tree), and, no queries need
to be executed against actual data in the partitions.

As the section progresses further, three major statistical data structures are
reviewed and the corresponding statistics generation methods are encompassed.
For each column, we examine one-dimensional histograms, a list of most common
values and their corresponding frequencies. Together with distinct values frac-
tions, attribute widths and table metadata (cardinality in terms of both tuples
and disk pages), they form an exhaustive basis for a functional query optimizer
and query plan generation.

3.1 Derived Partition Statistics

Let R be a non-partitioned relation with attributes A1, . . . , An. For each frag-
ment R(v1,...,vm) obtained by partitioning the parent relation R with a set of
atomic predicates {φ1, . . . , φm}. The histogram is a list of interval boundaries
that split the values of the attribute into bins (buckets or groups) of approxi-
mately equal size; most common values is a list of the most frequent non-null
attribute values, and most common frequencies array stores their frequencies.

Three data structures are defined for an attributeA ofR. LetH = {b1, . . . , bz}
be the one-dimensional histogram, where b1, . . . , bz are interval boundaries from
Dom(A) which define z− 1 buckets, [b1, b2), [b2, b3), . . . , [bz−1, bz), such that the
number of tuples from R in each bucket is approximately the same. Let V al[ ]
represent the array of v most common values from Dom(A), and let Fre[ ] store
the most common frequencies, such that Fre[i] is the frequency of V al[i], for
i = 1, . . . , v.

It is assumed that the subscript of each data structure represents its relation
R (or fragment R(v1,...,vm)), and that they refer to a single attribute A of R. The
values in HR(v1,...,vm)

are chosen such that

HR(v1,...,vm)
= {bi | bi ∈ HR, i ∈ {1, . . . , z},

bi � φ1 ∧ . . . ∧ bi � φm}



The values in V alR(v1,...,vm)
[ ] are chosen such that

V alR(v1,...,vm)
[ ] = {V al[i] | V al[i] ∈ V alR[ ], i∈{1, . . . , v},

V al[i] � φ1 ∧ . . . ∧ V al[i] � φm, }

The values for FreR(v1,...,vm)
[ ] are chosen such that

FreR(v1,...,vm)
[i] is the frequency of V alR(v1,...,vm)

[i] in
R(v1,...,vm), and 0 < FreR(v1,...,vm)

[i] ≤ 1.
The width w of an attribute is the average size in bytes of the data stored in

each field of the corresponding column. If the column data is represented with a
fixed-length type (such as 32-bit integer), its width in the fragment is equal the
same value as in parent relation. If the column data is represented by a variable-
length type (such as text), the width of the attribute has to be recalculated from
the data. Copying the width value from the parent relation can lead to highly
inaccurate estimates for a non-uniform, or skewed distribution of size of data in
each field in the column.

The fraction of distinct values σ is the ratio of the number of distinct val-
ues to the total number of records in an arbitrary column. Therefore, σ =
|Dom(A)| / |R|.

Since all of these statistics can be easily estimated by querying the origi-
nal data, which breaks down to loading data into every partition, time-efficient
structures are needed to quickly derive all of the statistics for a partition. In the
following part, we present two data structures that can be effectively employed
for statistics derivation.

3.2 Multidimensional Histograms of Finest Granularity

A multidimensional histogram (MDH) provides a substantial part of statistical
data necessary for estimating a partition’s statistics. Histograms are a fundamen-
tal part of planning query execution, and are certainly ubiquitous across com-
mercial systems; PostgreSQL supports only one dimensional histograms, while
other systems, such as Oracle DB support multidimensional ones [14]. Gener-
ally, histogram granularity is referred to as the number of bins, but in the case of
horizontal partitioning by predicate abstraction, it is referred to as the smallest
range partition, i.e. the most constrained one, being defined by the largest num-
ber of workload predicates possible. This approach allows for flexibility, since
the level of granularity is easy to adjust through aggregation of more granular
records. Since a GA is the optimization method of choice (see Section 1) and any
predicate can be used for partitioning, the histogram presented in this section
is of finest granularity. It contains at most 2|P| records for the most detailed
fragments of R, where P is the set of all extracted atomic predicates from the
workload, for the relation R. These fragments are mutually exclusive, and each
record in MDHR is a key-value pair, such that

MDHR = {
(

(v1, . . . , v|P|), (T1, . . . , Tn)
)

| vj ∈ {0, 1},

j = 1, . . . , |P|},



where Tk is a self-balancing AVL tree [21] that stores information for the k-th
attribute Ak of the fragment R(v1,...,v|P|). Each node of the AVL tree Tk is, also,
a key-value pair (dk, cdk

), dk ∈ Dom(Ak), where cdk
denotes the number of oc-

currences of dk in the k-th column of R(v1,...,v|P|). The AVL tree Tk is ordered
by the keys of its nodes. Balanced AVL trees guarantee O(log |Dom(Ak)|) com-
plexity for lookup. Hash algorithms are deliberately left out because of the size
of the data. For brevity in the following part it is assumed that calculations refer
to the statistics of a single attribute Ak of R.

A record for any fragment R(v1,...,vm), generated by partitioning R using a
subset of atomic predicates {φ1, . . . , φm} ⊆ P , can be derived by merging the
fragments in MDHR by keys that contain (v1, . . . , vm) as a subsequence, and
aggregating their values (e.g summation). The multidimensional histograms for
each relation R from the non-partitioned schema are constructed prior to any
statistics estimations.

First, the histogram HR and most common values array V alR[ ] are loaded
into main memory, if they exist. The former is ordered, while the latter is sorted
upon loading. Any value of Ak can exist in either HR or V alR[ ], or both. To
construct HR(v1,...,vm)

or V alR(v1,...,vm)
, it is required to scan a list of all distinct

values from Dom(Ak) that satisfy the fragment’s predicates {φ1, . . . , φm}. For
each value in the list, binary search is used to check its existence in HR or V alR[ ]
and it is added to HR(v1,...,vm)

or V alR(v1,...,vm)
, or both, respectively.

The most common frequencies array FreR(v1,...,vm)
[ ] is recomputed using

V alR(v1,...,vm)
[ ] and MDHR. All keys of MDHR are scanned and their values are

aggregated, such that for any key (v1, . . . , v|P|),

FreR(v1,...,vm)
[i] =

∑

(v1,...,vm)⊆(v1,...,v|P|)

Tk(V alR(v1,...,vm)
[i])

|R(v1,...,vm)|
.

The average width wk of Ak is copied from R’s statistics, if Ak is represented
with a fixed-length data type, or else, if a variable-length data type is used, it
is recomputed by traversal of every AVL tree Tk in records of MDHR where
(v1, . . . , vm) ⊆ (v1, . . . , v|P|).

3.3 Roaring Bitmap Indexes for Fast Set Operations

The estimation of statistics also requires set intersection operations, for which
MDHR is inefficient. They can be optimized by bitmap indexes using bitwise
operations implemented in the CPU hardware. Since standard bitmap indexes
can be inefficient in terms of memory and speed of bitmap operations, we use
Roaring Bitmap, a two-level heterogeneous memory efficient compressed bitmap
index with optimized bitmap operations [5]. Two flavors of Roaring Bitmap
indexes are used to derive the fraction of distinct values σ and the cardinality
of a table, i.e. the number of tuples (rows).

To compute the fraction of distinct values σR(v1,...,vm)
of an attribute Ak of the

fragmentR(v1,...,vm), roaring bitmap indexes Bkφj
, φj ∈ {φ1, . . . , φm} are used to



avoid expensive set intersection operations of the AVL trees in MDHR. First, the
domainDom(Ak) of Ak is used to encode each extracted atomic predicate p ∈ P .
Then, for any set of predicates {φ1, . . . , φm}, used for horizontal partitioning,
the number of distinct values of Ak in R(v1,...,vm) can be quickly calculated as

|B
(v1,...,vm)
k{φ1,...,φm}| = |Bv1

kφ1
∧ . . . ∧ Bvm

kφm
|, (1)

where B
vj
kφj

= Bkφj
if vj = 1, and B

vj
kφj

= ¬Bkφj
if vj = 0 and is analogous to

the atomic predicate ¬φj . The cardinality of a bitmap index |Bkφj
| is defined

as the number of set bits in Bkφj
, for j = 1, . . . ,m. An index is created for each

pair of an atomic predicate and table column within R.
To compute the cardinality of any fragment R(v1,...,vm) a ”tuple-encoded”

bitmap index is used: instead of encoding each atomic predicate by the domain
of each attribute, the encoding is performed with respect to each tuple in the
relation R. Only a single index is created for each atomic predicate indicating
the table rows that satisfy the predicate. Estimating the cardinality of a frag-
ment R(v1,...,vm) breaks down to a calculation equivalent to Equation 1. The
index flavor will be further indicated by an upper-left superscript; V standing
for ”value-encoded” and T standing for a ”tuple-encoded” bitmap index.

The number of disk pages for each table can be computed as easy as equating
ratios of tuples to disk pages. This information, however, can be system specific
and alternative DBMS-specific calculation approaches can be employed.

4 Prediction of Horizontal Partitioning in PostgreSQL

The prediction of data partitioning is performed by simulation of horizontal
partitioning. Here, we present an implementation in the PostgreSQL DBMS.
PostgreSQL’s query optimizer is used to estimate the total execution cost of a
given workload across different partitioned schemas. The statistical data struc-
tures are completely compatible with PostgreSQL’s catalogs. Two PostgreSQL
system catalogs are used to implement the simulation method: pg class and
pg statistic. The pg class catalogs tables, indexes, sequences, views and compos-
ite types [19], and pg statistic stores statistical data about the contents of the
database [19]. The data loading stage merely consists of populating these two
catalogs used by the query optimizer to construct a query execution plan. The
fragment’s data statistics are stored in pg statistic and include one-dimensional
histograms, most common attribute values, their frequencies and the width and
domain cardinality of each attribute.

Most importantly, our approach is consistent with the PostgreSQL query
optimizer because the catalog statistics that we leverage are exactly the ones
used by the optimizer for query processing (more information regarding this can
be found in [20]).

4.1 Estimation of Statistical Data in pg statistic

The histograms, most common values and frequencies arrays, the width and the
fraction of distinct values for each fragment can be easily estimated from their



counterparts for the parent relation, using existing statistics and partitioning
predicate selectivities [20]. This estimation approach is very efficient (quick),
but, on the other hand, it is very limited due to the assumptions of uniform
data distribution and attribute independence (non-correlated attributes). These
assumptions are rarely applicable in a real scenario, where highly correlated,
non-uniform data occur very often. Thus, such derived statistics could be highly
inaccurate and lead to wrong execution cost estimations. This approach is in-
extensible to other attributes that might or might not have predicates defined
over them (the extracted set of predicates is defined over one or more attributes
of each table in the non-partitioned schema).

Therefore, the histogram HR(v1,...,vm)
and most common values V alR(v1,...,vm)

for each fragment are derived exactly as described in Section 3.1, while the mul-
tidimensional histogram of finest granularity MDHR is employed to efficiently
compute the frequencies FreR(v1 ,...,vm)

of the most common values, as described
in Section 3.2. The width wk of each attribute Ak of a given fragment R(v1,...,vm)

has exactly the same value as in R.
PostgreSQL uses a signed σ value to distinguish distinct value ratios against

actual numbers of distinct values (domain cardinality). A positive value indicates
the actual number of distinct values of the attribute (cardinality of its domain),
and a negative value represents fraction that distinct values occupy in the in
the relation [19], i.e σ = −|Dom(A)| / |R| and has to be recalculated for the
fragment R(v1,...,vm). Thus,

1. If σR > 0,

σR(v1,...,vm)
= |VB

(v1,...,vm)
k{φ1,...,φm}|.

2. If σR < 0,

σR(v1 ,...,vm)
= −

|VB
(v1,...,vm)
k{φ1,...,φm}|

|R(v1,...,vm)|
,

where |R(v1,...,vm)| is the cardinality (number of tuples) of the fragment and
can be efficiently computed by an equivalent bitmap operation |R(v1,...,vm)| =

|T B
(v1,...,vm)
{φ1,...,φm}|, where the bitmap index now encodes distinct tuples of R,

rather than distinct values of Ak.
3. If σR = 0, then σR(v1,...,vm)

= 0, since the fraction of distinct values is not
known [19].

In all cases, 1 through 3, it holds that

|VB
(v1,...,vm)
k{φ1,...,φm}| = |VB

(v1)
k{φ1}

∧ VB
(v2)
k{φ2}

. . . VB
(vm)
k{φm}|,

|T B
(v1,...,vm)
{φ1,...,φm}| = |T B

(v1)
{φ1}

∧ T B
(v2)
{φ2}

. . . T B
(vm)
{φm}|.

4.2 Estimation of Statistical Data in pg class

The pg class catalog stores physical storage information for each relation, such
as the number of tuples and disk pages. The final step is to estimate the values



of the fields reltuples and relpages. They have a unique value for each relation.
The value of reltuples for the fragment R(v1,...,vm) is exactly the cardinality
|R(v1,...,vm)|, i.e

reltuplesR(v1, . . . , vm) = |R(v1, . . . , vm)| = |T B
(v1,...,vm)
{φ1,...,φm}|.

The value of relpages represents the number of disk pages (physical blocks)
that PostgreSQL uses to store the given relation. This value is sensitive to
the total length (number of bytes) of each tuple, which depends on the data
types used to represent the attributes of the relation. If at least one attribute
in {A1, . . . , An} is represented with a variable-length data type, then the most
accurate estimate of replages is

replagesR(v1,...,vm)
=













|R(v1,...,vm)|
⌊

8168

8 +
∑n

i=1 wi

⌋













.

A disk page in PostgreSQL’s storage system is an abstraction layer over a phys-
ical block on disk. The default block size is 8KB. Each page contains a header
of 24B, leaving 8168B free for tuples. Each tuple is associated with a 4B pointer
to an array of offsets, 4B each, indicating the offset of each tuple stored on the
page. Thus, a tuple requires a total of 8 +

∑

i = 1nwi bytes of space, where wi

is the calculated average width of Ai in the fragment R(v1,...,vm).
If all attributes of R are represented with a fixed-length data type, then

replagesR(v1,...,vm)
can be also computed as

replagesR(v1,...,vm)
=

⌈

relpagesR × |R(v1,...,vm)|

|R |

⌉

.

The existing field reltuplesR is not used in these estimations since it could be
outdated in the existing statistics because it is only updated by VACUUM,
ANALYZE, and a few DDL commands [19].

The pg statistic catalog is populated for each attribute {A1, . . . , An}, and the
pg class catalog is also populated for every generated partition of R using the
set of atomic predicates {φ1, . . . , φm}. No actual data is loaded into any of the
partitions of R, and at this point, PostgreSQL’s query optimizer can be used to
estimate the total execution cost of set of queries Q from the given workload.

4.3 The Simulation Process

The partitioning predicates for each relation R are selected from P and non-
overlapping check constraints are added for each partition of R represent the
range partition.

The predicates for partitioning are extracted from the Star Schema Bench-
mark (SSB) workload (13 queries), and are subsequently split into atomic predi-
cates. The supported predicate operators are: >, ≥, <, ≤, =, 6=, BETWEEN and



IN. Predicates that contain the BETWEEN operator are split into two atomic
predicates, while those that contain the IN operator are split into two or more
atomic predicates. Each resulting atomic predicate represents a relation between
an attribute and a constant. The number of resulting predicates depends on the
number of elements in the IN clause. For a set of atomic partitioning predicates
{φ1, . . . , φm} over a relation R in the non-partitioned schema and for each valid
combination (v1, . . . , vm) , a partition is created. Its statistics are updated for
each attribute in pg statistic, and a single record is inserted into pg class.

With the new partitioned schema in place, the process proceeds by estimation
of the total execution cost of the selected queries from the workload. The total
cost is the sum of the costs of all queries. If a given query does not involve a
join operation, then its cost is estimated against all partitions of the relation
on which the query is defined. On the other hand, if the query involves a join
operation between k relations, then its cost is estimated over every k-tuple of k
partitions that contains a nonempty intersection of the k ranges by any attribute
in the JOIN clause.

5 Optimal Horizontal Schema Partitioning

The number of generated partitioned schemas grows exponentially as the number
of predicates used for abstraction increases. We want to compute an (near) opti-
mal number of fragments such that the performance of queries will be optimal. A
GA is often used as an optimization approach in databases and data warehouses.
An optimal design of a distributed database, in terms of query execution perfor-
mance, can be subjected to a GA [22]. The GA approach allows to incorporate
ad-hoc constraints to the optimization procedure, such as the maximal number
of partitions that can be maintained by a data warehouse administrator, or a
bounded data reallocation cost. We now formally define the problem of finding
an optimal partitioning implementation schema of a data warehouse.

5.1 The Optimization Problem

Let (F,D1, D2, . . . , Dk) be a star schema, Q = {Q1, Q2, . . . , Ql} be a set of
queries, and Cost be a cost evaluation function. The optimization problem of
initial horizontal partitioning is defined as follows. Find a set of sub-star frag-
ments S = {S1, S2, . . . , SN} such that the cost

MINCost(S,Q)

subject to the constraintN ≤ W , whereW is a threshold representing a maximal
number of fragments that can be generated.

The optimization problem of horizontal re-partitioning is defined as follows.
Find a set of N sub-star fragments such that the cost

MINCost(S,Q)



subject to the constraint N ≤ W and L ≤ WW , where WW is threshold repre-
senting a maximal number of tuples (bytes) that can be relocated (read/written).

The cost evaluation function uses PostgreSQL’s query optimizer to calcu-
late the total execution cost of each particular solution (horizontally partitioned
schema). The cost of answering a query Qi, denoted as Cost(S, Qi), is equal to
the value estimated by the optimizer.

5.2 The Optimization Procedure

We now describe an optimization procedure for obtaining an optimal partitioning
implementation scheme given a workload:

1 Extract all predicates P used by Q.
2 Find a complete set of predicates Pi ⊆ P (1 ≤ i ≤ k) corresponding to each

dimension relation Di.
3 Use ComputeMin(Pi,Di) procedure to find a minimal set of predicates for

each Di. This procedure eliminates all redundant predicates in Pi which lead
to no additional fragments.

4 Apply a genetic algorithm to find an optimal partitioning scheme.

The defined problem is an optimization problem and a GA is used to find
an approximately optimal solution. Candidate solutions to a given problem, also
called chromosomes, are most commonly represented as bit strings, but other
encodings are also possible. The algorithm starts from a population of randomly
generated solutions and proceeds in iterations (i.e. generations). At each genera-
tion, the cost of every solution in the population is evaluated, multiple solutions
are selected from the current population based on their cost, and modified (re-
combined and possibly randomly mutated) to form a new population. The new
population is then used in the next iteration. The algorithm terminates when
either a maximum number of generations has been produced, or a solution with
satisfactory cost has been found. We now present the design of our genetic al-
gorithm. One of the choice factors for a GA is the flexibility due of the fitness
function that is optimized (usually maximized). It allows one to add constraints
of different nature and type that could fit and meet the needs of different environ-
ments and users, as well as constraints that come in the form od outside factors,
or environmental factors. It allows a greater extent of adaptivity, widening the
range of feasible adaptation requirements.

5.3 Representation of the Solution

Let Pi = {φi,1, φi,2, . . . φi,mi
} (1 ≤ i ≤ k) be a complete and minimal set of

predicates that needs to be applied to the dimension Di for horizontal partition-
ing. A possible solution of our problem is a set of N (N ≤ W ) different sub-star
fragments. Each fragment Sj (1 ≤ j ≤ N) is represented by a bit array (or,
bit-vector).

(v1,1, . . . , v1,m1 , . . . , vk,1, . . . , vk,mk
)



containing one bit for each predicate used in the partitioning. Each bit in the
solution is set to 1, if the respective predicate is satisfied by all tuples in Sj ;
otherwise it is set to 0. So, we have that

Sj = F(v1,1,...,v1,m1 ,...,vk,mk
)

=
(

F ⋉D1(v1,1,...,v1,m1
)
⋉ . . .⋉Dk(vk,1,...,vk,mk

)

)

The entry from the local index table pointing to Sj will be its bit array rep-
resentation (v1,1, . . . , v1,m1 , . . . , vk,1, . . . , vk,mk

). In this way, we obtain that the

search space of our optimization problem is 2N
∑k

i=1 mi , or in the worst case it

is 2W
∑

k
i=1 mi .

A chromosome consists of N composite genes, where each composite gene is
a bit-vector representing one fragment Sj as described above. One chromosome
represents one possible solution to the problem.

5.4 Genetic Algorithm Operators

A single point crossover operator is used, which chooses a random bit from two
parent chromosomes, i.e. solutions, and then performs a swap of that bit and
all subsequent bits between the two parent chromosomes, in order to obtain two
new offspring chromosomes.

The mutation operation is performed over each gene of a chromosome and
mutates them with a given probability. Because the genes are represented as bit
arrays, a mutation of a gene means flipping the value of every bit with the given
probability.

We use a natural selection operator where a chromosome is selected for sur-
vival in the next generation with a probability inversely proportional to the cost
of the solution represented by the chromosome. A strategy of elitist selection is
also used where the best chromosome of the population in the current generation
is always carried unaltered to the population in the next generation.

The termination of the GA is established by restraining the number of gen-
erations evolved by the GA.

6 Adaptivity

A key factor that influences our approach is adaptivity. The question of adap-
tivity is triggered when dealing with dynamically changing data or dynami-
cally changing workloads over time. To ensure that the approach is adaptive
to changes of this kind, it is crucial that the existing horizontally partitioned
schema is able to re-adapt to the changes. A typical question induced from the
presented statistics derivation strategies concerns their usability and efficiency
when data changes over time (a dynamically-changing workload over time), or
for short - the adaptivity of the approach. There are two key-points that con-
stitute an answer. First and foremost, when data change, the statistical catalog



data have to be re-created, followed by generation of partition-specific statis-
tics for cost estimation. The latter requires re-creation of the statistical data
structures (the multidimensional histogram and Roaring Bitmap indexes). This
is a time-consuming operation in OLTP scenarios, but can be ameliorated by
periodical updates of the data structures (updating an AVL tree or even lists
is fast if implemented cleverly). Our approach is primarily targeted at OLAP
systems in typical data warehousing scenarios, where data change occasionally,
between longer periods of time - in contrast to the OLTP where changes occur on
a regular basis. Re-creating the multidimensional histogram and bitmap indexes
could be considered acceptable, if scheduled timely; for example, in low-activity
periods of reduced or negligible load (little or no update operations at all), such
as weekends or holidays. Another viewpoint of adaptivity concerns maintenance,
such as the maximal number of partitions that the data warehouse administra-
tor (DWA) can maintain. This adaptivity to outside factors that are partially
system-dependent can be achieved by extending the fitness function of the GA.
Finally, the targeted scenario of our approach is offline re-partitioning.

6.1 Adaptation to Dynamically Changing Workloads Over Time

The first scenario that we consider in order to make our approach adaptive is
characterized by changes in the workload . Specifically, a change of the workload
is either adding a new query or removing an existing one. Either of these changes
affects the fitness function of the GA (the total cost of the new workload), and
more importantly, it introduces an additional cost of adaptation. Removing a
query form the workload is equivalent to removing all of its atomic predicates for
partitioning. On the other hand, adding a query to the workload is equivalent to
adding new atomic predicates for partitioning. The cost of adaptation is virtually
the cost of re-partitioning the data regions affected by the changes.

Assume that one round of partitioning has been already performed and there
are change to the workload at that point. Let the existing (original) set of atomic
predicates that have been previously used to approximately optimize the hori-
zontally partitioned schema be denoted by P = {φq | ∀q ∈ Q}, where Q is the
original workload (set of queries). Let Pq ⊂ P be the set of atomic predicates in
query q. We distinguish two cases.

1. Query removal. Suppose query q is removed. This is the case when Q′ =
Q \ {q}, for some q ∈ Q. This yields the new set of atomic predicates P ′ =
P\Pq. The adaptation task is to update the existing horizontally partitioned
schema in order to reflect the changes in Q and P , respectively. In other
words, we adapt it to Q′ and P ′. This is achieved by merging all partitions
that were generated by any φq or ¬φq alone, such that φq ∈ Pq. Then, for
any relation R over which φq is defined, for any fragment of R generated by
a set of predicates {φ1, . . . , φq, . . . , φm}, we merge all fragments

R(v1,...,vq−1,vq+1,...,vm) =
⋃

vq

R(v1,...,vq−1,vq,vq+1,...,vm), R(.) ⊂ R, (2)



i.e. all fragments generated by a set of predicates that contains φq are merged
together.
This time, again, the PostgreSQL query optimizer is suitable to estimate
the cost of merging since it involves the SELECT/DELETE and UPDATE
SQL directives. Let Costmrg(Ri, Rj) denote the cost (in units interpreted as
number of accesses to disk) to merge two tables (fragments/relations) Ri

and Rj , such that i 6= j. It is clear that the most efficient way to merge
all fragments is to ’concatenate’ them to the largest one (having the largest
cardinality). Let

Rmax
(v1,...,vq,...,vm) = argmax

R

[

|R(v1,...,vq,...,vq)|
]

, vq ∈ {0, 1}.

Then,

Costmrg|P′,Q′ =
∑

vq

Costmrg(R
max
(v1,...,vq,...,vm), R(v1,...,vq,...,vm)), (3)

where Costmrg(R
max
(v1,...,vq,...,vm), R(v1,...,vq,...,vm)) = cost to read R(v1,...,vq,...,vm)+

cost to write R(v1,...,vq,...,vm) to Rmax
(v1,...,vq,...,vm) .

2. Adding a new query. Similarly, we are now looking at splitting, rather
than merging partitions. Assume that a new query qnew is added to Q, such
that Q′ = Q ∪ {qnew}. Also, P ′ = P ∪ Pqnew

. The strategy is strikingly
similar to (1). In this case, for any φqnew

defined over a relation R, we split
any fragment of R into two new complementary sub-fragments, such that

R(v1,...,vqnew−1,vqnew+1,...,vm) = R(v1,...,vqnew−1,0,vqnew+1,...,vm)

∪R(v1,...,vqnew−1,1,vqnew+1,...,vm),

and

R(v1,...,vqnew−1,0,vqnew+1,...,vm) ∩R(v1,...,vqnew−1,1,vqnew+1,...,vm) = ∅.

The cost of splitting is equivalent to the cost of merging because it involves
reading a fragment and then writing it to a new location on disk. There-
fore, the most efficient solution again consists of comparing the cardinalities
of R(v1,...,vqnew−1,0,vqnew+1,...,vm) and R(v1,...,vqnew−1,1,vqnew+1,...,vm), and then
split by the one that has a lower cardinality, i.e. read and re-write the smaller
sub-fragment. It is clear that the total cost is calculated in the same man-
ner as in (1), i.e. it is the sum of the costs to split each existing fragment
R(v1,...,vqnew−1,vqnew+1,...,vm).

6.2 Adaptation to Dynamically Changing Data Over Time

The second scenario where adaptation to changes in necessary involves changes
to the data, and not the workload. Usually, the worst case is when the size of



a partition unexpectedly grows, resulting in unpredictable performance deterio-
ration. If the partition is being accessed frequently by the given workload, it is
clear that the total execution cost of the workload is neither small, nor optimal.
In fact, the previously approximately optimal solution is now worse.

If this is the case, the statistical data for each partition have to be updated
accordingly to reflect the most recent changes of data. Then, they are again
eligible to be used by the query optimizer. This way, the consistency of the
approach is preserved and the approach is adaptive to changes of the data.
At this point, the GA is run again to search for a new approximately optimal
horizontally partitioned schema.

7 Experimental Results

This section provides an experimental evaluation of the partitioning optimization
approach. All experiments are conducted on a PostgreSQL 9.3 server, running
under Ubuntu 15.04, that uses a single disk. All execution costs and times are
measured using that disk as a reference point. The results presented in this
section can be improved further by increasing the number of disks, which enables
much of the queries to be distributed and parallelized across different partitions.
The idea remains as an essential for our future work.

The SSB workload is used to find the optimal horizontally partitioned schema.
The simulation method is implemented in Java, and the source code is available
on-line at [1]. The JGAP genetic algorithm package is used to implement the
GA.

The experiments are conducted on a generalized variation of the optimization
problem, where classical, rather than derived horizontal partitioning is used,
making the implementation suitable for data models other than a star schema, as
well. The SSB workload is accompanied by 13 queries from which the predicates
are extracted. They contain predicates for all relations in the schema.

The experimental process consists of two stages:

1. Predictive optimization by the simulation method described in Section 3
using a GA with initial population size Kpop, evolved in G generations.
Additional GA parameters, such as the elitism ǫ and mutation probability
pm are set at the initialization of the GA.

2. Validation of the best solution at each generation. At each generation, the
best solution found so far is re-evaluated on real data. The partitioned
schema (solution) is re-created and actual data is inserted into all parti-
tions. Then, VACUUM FULL ANALYZE is used to automatically generate
the statistical data in catalogs for the partitioned schema. The cost total
of all queries is estimated with the command EXPLAIN to validate the
correctness of the our statistics estimation method, without executing any
queries, but rather estimating their cost. Additionally, each query is then
executed with EXPLAIN ANALYZE and the real cost and execution time
are measured to validate the correctness and quality of the solution.



7.1 Optimization of Horizontal Partitioning

The first chart in Figure 1 shows the average minimal estimated execution cost
(average best solution) by simulation of horizontal partitioning (y-axis) against
the number of evolved generations (x-axis). The values are averaged over several
runs of the GA. Each point on the line represents the total cost of the queries
in the corresponding horizontally partitioned schema. The initial size of the
population is Kpop = 20, and G = 30. The elitism is set to ǫ = 2, while the
mutation probability is set to p = 0.1. The execution cost in PostgreSQL is
measured by five specific units of relative cost of different operations, and the
actual value of any cost closely resembles the number of accesses to disk of the
operation (query). For brevity, let the cost represent the number of disk accesses
required.

Fig. 1. The average minimal estimated execution cost (in disk accesses) of SSB queries
at each generation of the GA.

The results in Figure 1 show that the horizontal partitioning can be optimized
significantly. The total execution cost across different partitioned schemas is
reduced from 25 millions to less than 200,000 disk accesses, on average. The
total execution cost in the non-partitioned schema is approximately 2 millions,
so its is reduced more than 10 times in terms of disk accesses, on average.

Figure 2 shows the quality of the best solution at each generation, in terms
of the average of the real total execution time of the queries. This experiment
is part of the validation stage and the total execution time of the workload is
measured in milliseconds (ms), on the y-axis, at the current generation, shown
on the x-axis. At each generation, the actual data are loaded into the partitions
and queries are executed against the data.

The reduction of the total execution time follows the trend of reduction of
the estimated workload cost in Figure 1. The results indicate that our proposed
approach is, in fact, suitable for real applications in time-critical scenarios. The



Fig. 2. The average optimal total execution time of the SSB queries at each generation
of the GA.

total execution time of the queries across different partitioned schemas is reduced
to approximately three times by the GA, on average. The total execution time
of the queries in the non-partitioned schema is 11168 ms, while the average best
solution reduces this time to approximately 1270 ms, or approximately 8.8 times,
on average. Most importantly, these reduction are achieved on the same disk,
solely by partitioning.

7.2 Validation and Estimation Error Rate

Finally, we validate and confirm the correctness of the approach by measuring the
error rate of the estimated total execution cost of the solution at each generation.
The results show that the approach is highly accurate, hence a multi-line plot
of the execution cost is not suitable for visualization. The mean error rate in
30 generations is only 1.16%±0.45%, and the smallest and largest error rates
are 0% and 3.10%, respectively. The low error rate confirms correctness of the
statistics estimation method in our approach.

8 Related Work

Automatic partitioning in commercial systems has already been a practice. Au-
tomatic skew-aware partitioning has been targeted at enterprise On-Line Trans-
action Processing (OLTP) systems (a feature of the shared-nothing H-Store) [18].
However, in terms of consistency and efficient query distribution, its challenges
are different than partitioning in On-Line Analytical Processing (OLAP) sys-
tems, at which this paper is targeted. Thus, the relationship between the two is
obscure, because the challenge here is optimality rather than consistency.



9 Conclusion and Future Work

In this paper we describe a novel approach for predictive horizontal partitioning,
based on a formal model for partitioning by predicate abstraction. We demon-
strate how this approach can be used to find an optimal data warehouse design
that improves the performance of the system for a given workload of data and
queries. The advantage of our approach is the simulation method based on es-
timation of the database statistics, for which loading of any real data or query
execution is unnecessary. The latter is attained by using a real query optimizer.
The experimental evaluation in the last section confirms that the approach is
applicable to real systems and provides a clear prospect of its contribution to
system performance improvement.

The next possible direction of extension of our approach is to evaluate its per-
formance on distributed systems with multiple nodes, where distributed queries
provide the opportunity for parallel execution, which will emphasize the mini-
mization of the workload execution time. The approach will be tested on different
number of nodes, several scaling factors of the SSB dataset, and different con-
straints of the optimization problem, such as the maximal number of partitions,
partition maintenance cost and other environmental factors.
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