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Abstract—Image captioning is the process of generating a
textual description that best fits the image scene. It is one of the
most important tasks in computer vision and natural language
processing and has the potential to improve many applications
in robotics, assistive technologies, storytelling, medical imaging
and more. This paper aims to analyse different encoder-decoder
architectures for dense image caption generation while focusing
on the text generation component.

Already trained models for image feature generation are
utilized with transfer learning. These features are used for
describing the regions using three different models for text
generation. We propose three deep learning architectures for
generating one-sentence captions of Regions of Interest (RoIs).
The proposed architectures reflect several ways of integrating
features from images and text. The proposed models were eval-
uated and compared with several metrics for natural language
generation. The experimental results demonstrate that injecting
image features into a decoder RNN while generating a caption
word by word is the best performing architecture among the
architectures explored in this paper.

I. INTRODUCTION

Describing images, also known as image captioning, is the

process of generating a textual description that best explains

the image scene. Automatically describing the content of an

image is a problem in artificial intelligence that connects

computer vision and natural language processing. The textual

description is expected to represent not only the presence of

objects but also the interaction between them, as well as their

characteristics and relationships [1], [2], [3].

Recognizing and describing the content of images is a

very important task in many applications, including assis-

tance to people with visual impairment (e.g., for text-to-voice

guidance), robotic systems, vision-based search engines, and

more. For most applications, the image captioning system must

give an accurate description of the scene [4]. Additionally,

image captioning can be used for automated scene description

and its output can be used for automated training of mod-

els for other domains, such as other assistive technologies,

storytelling, medical imaging, health-care, behaviour analysis,

visual surveillance, and more.

Generating caption for a given image requires a strong

understanding of its content. With the rise of deep learning

techniques, understanding the content of an image relies upon

convolutional neural networks. Detecting objects, as well as

their properties and relations, is the primary concern for

caption generation. Object detection is a widespread research

area which comprises of many well-performing models [5].

The problem of automatically describing images can be split

into two sub-problems: understanding the content of the image,

which is considered as a computer vision task, and generating

text sequences, a natural language processing task. Various

approaches are used in the area of object detection, and the

most successful ones are based on deep learning techniques.

Models like R-CNN [6], Fast R-CNN [7], Faster R-CNN [8],

Mask R-CNN [9] utilize region proposal networks (RPNs) to

detect objects in an image. On the other hand, the method

described in [10], often referred to as VGG, named by the

group that proposed it, focuses on classifying the image scene

with Very Deep Convolutional Networks.

The problem of image captioning can be split into two main

approaches: (1) generation of a single description of an image,

and (2) describing different Regions of Interest (RoIs) from a

single image, also known as dense captioning [4]. The dense

image captioning describes several regions of the image that

contain objects and some relations between them. Therefore,

the problem is considered as a more informative strategy when

describing images, but also a more difficult one.

Concerning the problem of image captioning, many re-

searchers are using hybrid deep learning models, that is, a

combination of a convolutional neural network (CNN) and

a recurrent neural network (RNN). The models developed

for object detection, RoI proposal, image segmentation, and

related problems are achieving great performances [11]. These

models are used as feature extractors of images and specific

regions in the images. The main question is, can we use

the already designed models as feature extractors, and then

describe the regions in an image with models designed for

text generation.

To answer this question we conducted experiments with

three deep learning architectures for generating text captions

of RoIs in the image1. We apply a transfer learning approach

using a pre-trained object detection network from Mask R-

CNN for determining RoIs and their corresponding features.

The integration of features describing images and the context

of previously generated text was performed using three differ-

ent models for text generation. We evaluated and compared

1The code for this research is available at https://github.com/
frosinastojanovska/image-captioning
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the models using well-known evaluation metrics for natural

language generation. The discussion of the performance of

the models is introduced along with the evaluation results.

The rest of the paper is organized as follows. Section II

reviews the relevant related work. Section III describes the

utilized dataset, the proposed architecture for extraction and

captioning of regions of interest (RoIs) in images and the used

evaluation metrics. Next, in Section IV, we present and discuss

the results of our experiments. Finally, Section V concludes

the paper and identifies directions for future research.

II. RELATED WORK

There is an abundance of models introduced in the domain

of image captioning, originating from the models that generate

single image caption to models that generate multiple captions

for an image. The first group includes models that generate a

single caption for the whole image [12], [13], [14], [15].

To describe the entire image with one sentence, the NIC

approach [12] uses a CNN pre-trained for an image classi-

fication task. This method encodes images into a compact

representation, followed by an LSTM network that generates

a corresponding sentence. The model is trained to maximize

the likelihood of the sentence for a given image, which is fed

into the LSTM only once.

Attention-based models focus on a specific image part (i.e.,

region or object). A visual attention-based model with hard

and soft attention alternatives is proposed in [13]. As the

model generates each word, its attention changes to reflect the

relevant parts of the image. A semantic attention-based model

is proposed in [14]. This model learns to selectively attend to

semantic concept proposals and fuse them into hidden states

and outputs of RNNs. The selection and fusion form feedback

combining a top-down approach, which starts from a gist of an

image and converts it into words, and a bottom-up approach,

which combines words describing various aspects of an image.

The model presented in [15] consists of object detection and

localization model to extract the information of objects and

their spatial relationship, and RNN with attention mechanism

to generate sentences. The encoder first uses Faster R-CNN to

detect objects and then applies VGG to create feature represen-

tation for detected object regions. Captions are generated with

an LSTM conditioned on the attention of the detected object

regions, previously generated tokens and a previous hidden

state.

Recent approaches [16], [3], [17], [18] incorporate the

Transformer [19] architecture instead of traditional RNNs

for caption generation. The underlying architecture remains

Encoder-Decoder, but the structure differs from previous

CNN-RNN approaches. Faster R-CNN [8] is used as image

encoder in [17], [3], ResNext [20] in [16], and a novel Image

Transformer in [18]. For all methods, Transformer is applied

as a decoder to generate the caption.

The second group consists of models intended for dense

image captioning. These models, unlike the models described

above, generate a caption for each region of an image.

The DenseCap model [21] achieved exceptional results in

describing image regions. It consists of convolutional and

recurrent networks responsible for detecting RoIs and their

vector representation, respectively. DenseCap is a convolu-

tional localization layer based on VGG similar to the one

applied in Faster R-CNN with several modifications. The

localization layer identifies spatial regions of interest and

extracts a fixed-sized representation from each region. The

second part is an LSTM for creating descriptions.

Another approach for dense captioning is presented in [22].

It relies upon Faster R-CNN for region features extraction.

This model is an improvement of the DenseCap model.

The improvement is two-fold: (1) incorporate global context

feature of the image, and (2) late fusion of the region features.

Authors in [23] present a Multimodal RNN that uses visual-

semantic alignments. This alignment method is based on

a combination of a CNN that processes image regions, a

bidirectional RNN that processes sentences, and a structured

objective that aligns the two modalities through a multimodal

embedding.

Novel approaches [24], [25] rely upon object context fea-

tures for generating a caption. CAG-net [24] uses Faster R-

CNN for region extraction and custom contextual feature

extraction for extracting features of the target region as well

as a global feature of the whole image and features of neigh-

bouring regions. The features are then fused and fed into an

LSTM network to generate region caption. Another approach

presented in [25], proposes two different architectures. The

first architecture, COCD, uses an LSTM to decode the object

context. It is then concatenated with caption LSTM in order

to generate the final description. In the second architecture,

COCG, the object context is fed into caption LSTM as

guidance information for generating the region description. For

both architectures, the object context is obtained with gLSTM

module [26] with region features, extracted with Faster R-

CNN, as guidance information.

In this paper, we focus on the caption decoder of an encoder-

decoder based architecture for dense captioning. We employ

the Mask R-CNN module [9] for region extraction with a

transfer learning approach. We explore different architectures

for decoding region features into region captions.

III. METHODS AND ANALYSIS

A. Dataset

In the experiments, we used the Visual Genome dataset [27],

consisting of 108,077 images with 5,408,689 region descrip-

tions. An exemplary image with three regions is shown in

Fig. 1. Each image region (i.e., a RoI) is described with the

following parameters: width, height, x coordinate, y coordi-

nate, and caption. The distribution of the number of regions

per image and caption length is shown in Fig. 2.

B. Feature extraction based on Mask R-CNN

The dense image captioning is the problem of generating

descriptions of RoIs in an image. Therefore, the RoIs need to

be extracted from the image and described with a fixed-length

feature vector. This vector then is an input into another part of
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Fig. 1: Sample image, regions of interests and their corre-

sponding captions from Visual Genome [27]

Fig. 2: Distribution of the number of regions per image (top)

and caption length (bottom)

the model for text generation. There are several deep learning

convolutional models for this problem. The R-CNN [6] model

is improved with the next version of the Fast R-CNN [7] that

facilitate feature extraction from RoIs with any dimension into

a fixed-sized feature vector. Then, the Faster R-CNN [8] is the

next improvement that adds a Region Proposal Network (RPN)

for detection of RoIs which are fed to the Fast R-CNN model.

Mask R-CNN model [9] is a method for object detection

and segmentation. It extends the Faster R-CNN [8] model

by adding a new branch for mask detection and introducing

RoIAlign technique. RoIAlign is a modification of the RoIPool

technique [7], which extracts a feature map with quantization

from each RoI. RoIAlign replaces the quantization with bilin-

ear interpolation aligning the extracted features with the RoIs.

In this paper, to generate the RoI feature representations,

we utilize the first stage of the Mask R-CNN model (RPN)

and the first part of the second stage (RoIAlign). The Mask

R-CNN modules for object detection and segmentation are

ignored. We use transfer learning in the following way. The

Mask R-CNN is pre-trained on an object detection problem,

and the segmentation model was pre-trained for detecting and

encoding image regions on the MS COCO dataset [28].

The input of the model are images with varying sizes.

Therefore, the images are resized with a scale that ensures that

the smaller dimension is at least 800 and the longer dimension

is maximum 1024 pixels. We apply padding to the scaled

image to fix the image dimensions to 1024× 1024.

The image is processed with the ResNet feature pyramid

network of the ResNet-FPN convolutional backbone architec-

ture for feature extraction of an entire image. This bottom-up

approach extracts the features of the image with five stages of

the ResNet [29] architecture, which has 101 layers. Each stage

is incorporated into a top-down Feature Pyramid Network

(FPN) network [30], which constructs higher resolution feature

maps.

The proposed boxes, called anchors, are generated given a

sliding window with proper scale and ratio. The RPN network

ranks the anchors and chooses the ones that most likely

contain objects. This process involves predicting foreground

and background boxes from the anchors and their refinement.

The output regions of the RPN are then processed with non-

maximum suppression (NMS) to remove the highly overlap-

ping regions. With an Intersection over Union (IoU) threshold

of 0.7 of the NMS method, the region proposals are filtered

according to their class probability of being positive (foreign)

region. RoIs can be with different sizes, so the RoIAlign layer

is proposed to generate small feature maps with size 7×7×256
by applying bilinear interpolation. The outputs of the RoIAlign

layer are the feature maps for every RoI.

C. Text generation deep learning architectures

The architectures of the proposed models are shown in

Fig. 3. The application of recurrent neural networks (RNNs) in

image captioning problems is discussed in [31]. An RNN can

be used as either a decoder (generating words) or an encoder

(encoding preceding words). In the proposed architectures, we

utilize RNNs in both ways, as described below.

All three proposed architectures start similarly, by feeding

the image through the R-CNN network that we reuse from

the Mask R-CNN model (the yellow block named R-CNN in

Fig. 3). This network creates features for each RoI of an image

provided at the input. In Fig. 3, the FC blocks denote feed-

forward networks which are represented by fully-connected

dense networks, as described in the following text.

1) Inject Model (M1): Fig. 3a presents the diagram of

our first model, M1. First, as mentioned earlier, the image

is fed through the R-CNN network that we reuse from the

Mask R-CNN model (the yellow block named R-CNN on
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(a) Inject model - M1 (b) Merge model - M2 (c) Hybrid model - M3

Fig. 3: Diagrams of the proposed model architectures

Fig. 3a), thus generating features for each RoI of an image.

A convolutional neural network (CNN) then processes these

features and encodes each RoI. In parallel, a recurrent neural

network (RNN) encodes the previous words (the blue circle in

Fig. 3a). The features representing both the RoI of the image

and the previous word embeddings (i.e., features) are fed into a

decoder RNN (the second blue circle in Fig. 3a) that decodes

the next word. Because the image features are injected into

this RNN, we denote this model as the inject version. In our

evaluations of this architecture, the decoder RNN is an LSTM

with 256 units. The caption is created word by word in a loop

with a predefined padding size.

2) Merge Model (M2): The second proposed architecture

which we denote as the merge version or M2 is shown in

Fig. 3b. It is identical to M1 in the way in which it creates

features for the RoIs of the input images. However, unlike in

the previous architecture, it uses a fully connected layer as a

decoder. The features representing the image and the previous

words are merged and passed to a fully connected (i.e., dense)

layer, behaving as a decoder (instead of the second RNN used

in M1), as shown by the blue FC block in Fig. 3b. The number

of units in the fully connected layer is equal to the vocabulary

size. Identical to the previous model, the caption is created

word by word in a loop with a predefined padding size.

3) Hybrid Model (M3): Additionally, we propose a third

architecture called a hybrid model (M3), which is shown in

Fig. 3c. Leveraging the ideas from the former two models, the

image features are concatenated with the word embeddings of

the previously generated words and fed into the RNN network

that encodes the previous context. The encoded context is

concatenated with the image features, and two fully connected

layers decode this vector representation into predicted word.

The difference in the training between this model and the prior

two is that this model is trained one-way, i.e., a caption by

caption, unlike the multi-way training, a word by word, of the

other methods.

In our experiments, the hybrid model (M3) uses two LSTM

layers with 512 units for encoding the previous words, and

two fully connected layers for generating captions: one fully

connected layer with 1024 units and second fully connected

layer with the number of units equivalent to the vocabulary

size for the FC block in Fig. 3c.

D. Scoring metrics

Evaluating the output of a natural language generation

model is a fundamentally difficult task. The most common

way to assess the quality of automatically generated texts is a

subjective evaluation by human experts [32]. However, human

evaluation is not always attainable. Another approach is to

use automatic evaluation metrics, such as METEOR [33] and

BLEU [34], which were developed for machine translation.

ROUGE [35], which was developed for text summarization,

and CIDEr [36] and SPICE [37] which were developed for

evaluating image captions. All these measures compute a score

that indicates the similarity between the system output and one

or more human-written reference texts.

E. Training details

We partitioned the dataset into three subsets of size 90, 000,

10, 000 and 8, 077 images for training, validation and testing,
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respectively. Captions of the images in the validation and train-

ing subset were used for creating the vocabulary. All words

are converted into lowercase. Words representing punctuation

were removed. The final vocabulary has 36, 413 tokens.

Consequently, words are represented with one-hot encod-

ings of size 36, 413. Each word is related to an integer

that maps the word with its corresponding one-hot encoding.

An embedding layer is used to encode the words into a

representation with size 300. This layer’s weights are frozen

and initialized with weights from the GloVe (Global Vectors

for Word Representation) [38] model, which is pre-trained on

the Wikipedia corpus2.

All models were trained with categorical cross-entropy loss

function, Adam optimizer [39] with 0.001 learning rate and

batch size 1024. Regions of the image are characterized by

three-dimensional features of size 7× 7× 256). For previous

words, we use a frame with a padding size of 10, so for each

word, we utilise the previous 10 words as features. If there are

less than 10 previous words, features are padded with zeros

to the required padding size.

All the models are implemented using the Python deep

learning library Keras3 with Tensorflow4 backend. The training

and testing were performed on NVIDIA Tesla K80 GPU on

Windows Azure. Some experiments were also performed on

an on-premises NVIDIA Titan V GPU.

IV. RESULTS AND DISCUSSION

We evaluated the three models using the evaluation metrics

described in Section III-D. For each RoI of each image in the

test set, all metrics were calculated and then averaged to get

an average score the image.

The first two models, inject (M1) and merge (M2), were

trained in 85 epochs using the ground truth regions of the

images. Train and validation losses are shown in Fig. 4a (inject

model - M1) and Fig. 4b (merge model - M2). Fig. 4a shows

that for M1 in the first epochs both validation and training

loss decrease. After about 40 epochs, the training loss starts

oscillating between 3 and 4. Similarly, for model M2 the

validation loss is decreasing and training loss is oscillating

between 3 and 4, as shown in Fig. 4b. Fig. 4c shows oscillating

training loss and decreasing validation loss for the hybrid

model - M3.

The average evaluation scores for each metric on the test

set are shown in Table I. The table also includes information

about the number of weights that need to be trained for each

model.

The comparison of the inject (M1) and merge (M2) models

highlights that the inject model has better performance. Al-

though the merge model has comparable results, it achieves

lower average scores for all metrics except BLEU-1. This

contradicts the findings of [31], which showed that the merge

version generally outperforms the inject version of models.

We could hypothesize that the RNN decoder outperforms the

2https://nlp.stanford.edu/projects/glove/, last visited: 22.05.2020
3https://keras.io/, last visited: 22.05.2020
4https://www.tensorflow.org/, last visited: 22.05.2020

(a) Model M1

(b) Model M2

(c) Model M3

Fig. 4: Train and validation loss of (a) the inject model (M1),

(b) the merge model (M2) and (c) the hybrid model (M3)

fully connected decoder, as opposed to the findings of [31]

which demonstrate that applying fully connected layer as

a decoder leads to better performance. However, their task

differs from ours since we predict multiple captions for an

image as opposed to predicting a single caption. Moreover,

both problems require different dataset types, that is "image -

single caption pairs" for single caption generation and "image

- multiple caption pairs" for multiple caption generation.

Therefore, we cannot precisely determine if one architecture

is better than another.

Even though the hybrid model (M3) was trained differently

than models M1 and M2, it was evaluated with the same

test set. The evaluation shows that the M3 model achieves

lower scores. We could hypothesize that the reason for the

low predictive performance of this model could be the fact
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TABLE I: Evaluation results for the proposed models M1 (inject model), M2 (merge model) and M3 (hybrid model).

Model #Weights SPICE ROUGE-L METEOR CIDEr BLEU-1 BLEU-2 BLEU-3 BLEU-4

M1 17M 0.1387 0.3593 0.1411 0.9935 0.3073 0.1600 0.0946 0.0526

M2 80M 0.1274 0.3476 0.1349 0.9142 0.3136 0.1600 0.0941 0.0521

M3 32M 0.0452 0.1643 0.0524 0.2553 0.1561 0.0664 0.0386 0.0277

that it was trained a caption by a caption and could benefit

from more training.

BLEU [34] measures how close a candidate sequence is

to a reference sequence, more concisely, the hits of n-grams

of a candidate sequence to the reference. According to the

results, we could hypothesize that M2 performs better in terms

of matching smaller n-grams, that is, unigrams and possibly

bigrams. However, for matching longer n-grams, M1 achieves

better results. This is confirmed with ROUGE-L [35], which

applies the concept of the Longest Common Subsequence

(LCS). The value of this metric is higher for M1.

CIDEr [36] measures how often n-grams in the candi-

date sentence are present in the reference sentences, while

METEOR [33] is based on the harmonic mean of unigram

precision and recall, where recall is weighted higher. Both

metrics map the words in their stem or root forms. M1 shows

better performance for both metrics. Therefore we can infer

that this model generates words that perhaps may not be the

exact match of the reference words, but they nevertheless have

the same root form.

SPICE [37] measures how effectively image captions re-

cover objects, attributes and the relations between them. It

is based on the agreement of the scene-graph tuples of the

candidate sentence and all reference sentences. The M1 model,

again, achieves the best performance leading to the conclusion

that this model effectively describes the image scene.

The number of trainable weights of the models is included

in Table I. The M1 model is the smallest model out of the three

models. That could be the reason for the best performance of

this model, which is learning fewer weights given the same

training time. Having a bigger model with many trainable

weights has been the preferred way for learning more complex

relationships in images. However, larger models also require

more training time for learning all the weights. Therefore,

with the results from these experiments, we can infer that the

smaller model is more practical and has the best performance

in this setting. Also, regarding the weaker performance of the

M3 model, we can conclude that the multi-way training (word

by word) is preferred over the more difficult process of one-

way training (caption by caption).

A. Extensive analysis of the capability of the models

Evaluating the models based on the n-gram evaluation

metrics limits us to understand the relative strengths and

weaknesses of the models. Therefore, we use the property of

the SPICE metrics that enables us to divide the metric value

into meaningful categories.

In Table II, we review the performance of the models

from different aspects. The table contains F-scores for the

subcategories from which SPICE is calculated, that is objects,

their attributes, and relations between them. The M1 model

surpasses the other models for all of the categories, except the

size category, where the M2 model is finer. This effect means

that the M2 model caption generator is better for capturing

the size of the objects than the other models. The M3 model

is inferior in these settings, and we can see that the crucial

shortcoming of the model is the cardinality, so the model is

not able to count while generating the captions.

From the evaluation results, we can conclude that the mod-

els perform well at capturing objects present at the image and

their cardinality. However, they fail to describe the attributes

of the objects. We could hypothesize that such behaviour is

expected since the part of the models that extracts image

features is pre-trained on an object detection task and therefore

could potentially be biased towards detecting objects rather

than describing them in details. Therefore, because the text

generation models are separated from the CNN model for

creating the image features, one way of improving is to refine

the features of the CNN model by additionally training the

model on attribute prediction, not solely on object detection.

In this way, the image features should be expected to include

more information about the attributes of the object and hence

help the text generation models to create better captions.

B. Qualitative results

We present example predicted captions for ground truth

regions from models M1 (inject) and M2 (merge) in Fig. 5.

Predictions from M1 are shown on the left, while predictions

from M2 in the right. For brevity, we plot only one region

caption per image. For each model, one good, one quite good

and one not good example are displayed.

The first row presents captions classified as good. The

predictions are made with padding size 10, i.e. each generated

caption has length 10. However, from the examples, we can

infer that for some regions, this padding size is too big. Both

models generate descriptive captions with specific length and

fill the rest with words unrelated to the image. Nevertheless,

we classify such captions as good. Quite good captions are

those related to the image with minor errors (second row). For

example, M2 generates the following caption "child wearing a

blue shirt". As we can see, the child is wearing a white shirt.

We can conclude that even though the colour is incorrect, the

main context of the region is described. The last row presents

captions classified as not good. These captions are unrelated

to the region, which they describe.

134 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020



TABLE II: F-scores from SPICE by semantic proposition subcategory. The models models M1 (inject model), M2 (merge

model) and M3 (hybrid model) are compared with the SPICE metric for object, relation, attribute, color, cardinality and size.

Model SPICE Relation Cardinality Attribute Size Color Object

M1 0.1387 0.0595 0.1241 0.0618 0.0493 0.0627 0.1989

M2 0.1274 0.0456 0.1151 0.0548 0.0502 0.0499 0.1854

M3 0.0452 0.0197 0.0000 0.0219 0.0066 0.0408 0.0671

Fig. 5: Examples of generated region captions for the inject model, M1, (left) and the merge model, M2 (right)

V. CONCLUSIONS

This paper investigated the problem of automatically gener-

ating descriptions for RoIs in images. The aim is to investigate

the appropriate model for generating text that describes RoI

in images. The Mask R-CNN model trained for image clas-

sification was modified and used for RoI feature extraction.

For caption generation, three model versions were proposed.

In the first version, called inject model, image features are

injected into a decoder RNN. In the second version, called

merge model, image features and previous words features are

concatenated and fed into a fully connected layer as a decoder.

The third version, called hybrid model, the image features are

fed into a decoder RNN but the caption is generated one-way

instead of generating word by word as in the previous two

models.

We evaluated the proposed models with several text eval-

uation metrics. The results show that the models M1 (inject

model) and M2 (merge model) are better than M3 (hybrid

model), with M1 having the best performance. Also, the M1

model has the smallest number of trainable weights out of

the three models and still is the best performing model. The

experimental results demonstrate that injecting image features

into a decoder RNN while generating a caption word by word

is the best performing architecture among the architectures

explored in this paper. The extended evaluation represents

the shortcomings of the models to describe the attributes of

the objects in the images. Hence, future experiments should

examine the models after training the CNN feature extractor

on attribute prediction.

The visual text generation models are impressive in most

of the cases, but they also have faults. Show-and-Fool [40] is

a model created for attacking image captioning models with

adversarial perturbations in machine vision and perception

to produce randomly chosen captions that are not relevant

to the image. Therefore, the future work could focus on

applying such attacking model for evaluating the robustness

of the proposed model. An alternative implementation of this

model is to build a more robust image captioning model

using an attack model into a GAN network. Likewise, for

caption generation it could be interesting to investigate the

capability of networks consisted of attention only, such as the

Transformer [19] approach, to encode and decode both the
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context of the image and the text.
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