
Content Delivery System for Optimal VoD
Streaming

Sasho Gramatikov, Fernando Jaureguizar, Julián Cabrera, Narciso García
Grupo de Tratamiento de Imágenes, Universidad Politécnica de Madrid, Madrid, Spain

{sgr, fjn, julian.cabrera, narciso }@gti.ssr.upm.es

Abstract— The demand of video contents has rapidly
increased in the past years as a result of the wide
deployment of IPTV and the variety of services offered by
the network operators. One of the services that has
especially become attractive to the customers is real-time
video on demand (VoD) because it offers an immediate
streaming of a large variety of video contents. The price that
the operators have to pay for this convenience is the
increased traffic in the networks, which are becoming more
congested due to the higher demand for VoD contents and
the increased quality of the videos. As a solution, in this
paper we propose a hierarchical network system for VoD
content delivery in managed networks, which implements
redistribution algorithm and a redirection strategy for
optimal content distribution within the network core and
optimal streaming to the clients. The system monitors the
state of the network and the behavior of the users to
estimate the demand for the content items and to take the
right decision on the appropriate number of replicas and
their best positions in the network. The system’s objectives
are to distribute replicas of the content items in the network
in a way that the most demanded contents will have replicas
closer to the clients so that it will optimize the network
utilization and will improve the users’ experience. It also
balances the load between the servers concentrating the
traffic to the edges of the network.

I. INTRODUCTION
The wide spread of the IPTV and the advance of the

network technologies made a solid ground for offering a
real-time video on demand service (VoD). The fact that it
enables the clients to watch any video at any time made it
a significantly popular service which has been
continuously gaining on number of users. This
personalized service, however, requires a dedicated
unicast flow of data for every request, which significantly
increases the traffic in the network. The tendency of rapid
growth of the popularity of VoD, its high bandwidth
demand and the clients’ appetite for higher quality videos
and better service has congested the networks and made
them a weak point in the realization of the service.
Therefore, the network architecture and the strategies for
placement of the video contents have become a
considerable challenge for many telecommunication
operators. One of the initial approaches that has been
considered for solving the problem of network congestion
is placing servers in various points of the network and
caching replicas of certain videos so that they are closer to
the users and they can serve more clients. This approach
was originally implemented in distribution of web
contents in various network architectures [1], but one of
the most accepted concepts were the content delivery

networks (CDN) [2]. As the videos started to dominate in
the internet traffic, the CDNs become a convenient
solution for hosting such contents and many of the
approaches for distribution of web contents emerged as an
acceptable solution. The research in the CDNs was mainly
concentrated in solving the replication problem which
consists of determining the number of replicas that have to
be made for a given video and the servers where to be
placed in order to optimize certain cost and quality of
service. The replica placement problem has been
extensively investigated in the past years. In [3] the
replication is set as k-median problem of storing replicas
in a manner that a certain cost is optimized. It analyses a
static case of user requests pattern and offers a variety of
algorithms for replica placement. This solution, however,
does not limit the number of request that can be served by
one server and does not consider the traffic that is
generated while the replicas are being distributed. A more
specific formulation of the problem where the quality of
service is considered is given in [4]. The dynamic
character of the user behavior is taken into consideration
in the work presented in [5][6].

Apart from the CDN, there are many other Internet
based architectures for partially caching the streaming
contents. One such solution is proposed in [7] where the
initial parts of the video are cached on proxy servers and
the rest of the video is loaded while the prefix is being
played. An improved approach of this solution is proposed
in [8] where the prefixes of the popular content items are
pushed on the clients’ side.

Nevertheless, the high traffic demands of VoD services
cannot be always satisfied by these architectures because
of the uncontrollable and unpredictable character of the
Internet. Therefore many VoD solutions move towards
development of new architectures in managed networks.
These networks are a convenient solution because their
size and capacity can be adjusted according to the number
of the subscribed users and the traffic can be controlled
and spread over the network using technologies that are
not possible in the Internet. The IPTV [9] emerged as one
of the most implemented solution by many operators.
Apart from the main service of multicast linear TV, the
IPTV offers more personalized services [10] like VoD and
Time-Shifted TV (TSTV) which require dedicated data
flow to each request. Because of their growing popularity,
the problem of the optimal network utilization and the
provision of an improved quality of service is a main
concern for many research works. Following this
direction, the authors in [11] propose an algorithm for
optimal placement of video contents for various IPTV
services based on the popularity of the contents without
considering the state of the network. Few different

11th International Conference on Telecommunications - ConTEL 2011
ISBN: 978-953-184-152-8, June 15-17, 2011, Graz, Austria
11th International Conference on Telecommunications - ConTEL 2011
ISBN: 978-953-184-152-8, June 15-17, 2011, Graz, Austria
11th International Conference on Telecommunications - ConTEL 2011
ISBN: 978-953-184-152-8, June 15-17, 2011, Graz, Austria
11th International Conference on Telecommunications - ConTEL 2011
ISBN: 978-953-184-152-8, June 15-17, 2011, Graz, Austria
11th International Conference on Telecommunications - ConTEL 2011
ISBN: 978-953-184-152-8, June 15-17, 2011, Graz, Austria
11th International Conference on Telecommunications - ConTEL 2011
ISBN: 978-953-184-152-8, June 15-17, 2011, Graz, Austria
11th International Conference on Telecommunications - ConTEL 2011
ISBN: 978-953-184-152-8, June 15-17, 2011, Graz, Austria 487

algorithms for replication and placement of VoD contents
within a cluster of media servers based on the user request
pattern are proposed in [12][13], but they cannot be
entirely used in architectures which contain streaming
servers in different locations of the network.

In this paper we propose a solution for optimal and
efficient content delivery in a managed network. We have
developed a new hierarchical content delivery system that
implements replication and placement algorithms for
redistribution of the contents in the system and a
redirection strategy for unicast delivery of content items to
the clients. The main objectives of our proposed system
are to keep the popular content items close to the clients
concentrating the traffic to the outer bands of the network,
to reduce the service time, to keep the load balanced
among the servers and to optimize the distribution of the
replicas among the servers and the clients. We use the
replica demand on every server and the state of the
network as main parameters for obtaining the above
objectives. The model is highly responsive to the user
behavior and network conditions, following the dynamic
of the popularity of the offered video contents.

The rest of this paper is organized as follows. In section
II we describe the proposed system’s architecture and the
interactions between its entities. In section III we define a
set of parameters essential for the system and propose a
method for estimation of the replicas’ streaming demand.
In section IV and V we present the principles of the
redistribution algorithm and the redirection strategy.
Afterwards, in section VI we present the experimental
environment and the results obtained by the simulation.
Finally we conclude with a summary in section VII.

II. SYSTEM DESCRIPTION
For the purpose of optimal video delivery, we

developed a network model capable of serving large
amount of streaming requests and managing the network
according to the users’ behavior. It consists of streaming
servers responsible for serving the clients and
management servers which are responsible for the
automatic content distribution and service selection. The
streaming servers have a double role: they serve the
clients and they deliver content items to other servers in
the network. These servers have resources to host and
serve only part of the global content items that are offered
to the clients. From a structural point of view, the
streaming servers are organized as an n-tier hierarchical
architecture (Fig. 1). Starting from the top of the
hierarchy, which consists of a Central Repository (CR)
server, every level downwards is closer to the clients. The
CR server contains all the contents that are offered by the
operator and unlike the rest of the streaming servers, it
does not serve clients. It serves as an entry point for new
videos in the system and as an origin point for distribution
of replicas to the streaming servers down the hierarchy.
The servers store the content items in compressed format
and stream the packets with data rate that is sufficient for
the client to get uninterrupted video sequence. They
provide true streaming [9] i.e. they deliver the packets in
real-time and have the capacity to simultaneously serve
large number of clients.

The clients in the system use a PC or STB to view the
content items. These devices have internal buffer that
stores the received packets for decoding and prevents

interruptions when there is network congestion. The
buffer size will have an important role in viewing an
uninterrupted video sequence in congested network
conditions, when the packets arrive with big delays and
out of order.

The management servers are represented by the
Operator, the Automatic Content Movement (ACM)
server and the Service Selection (SS) server.

Figure 1. General logic structure of the model

The Operator is an entry point for new contents and
also serves for configuration of the system. Anytime a
new content item is introduced in the system, it is set on
the CR via the Operator and upon the first request from
the clients it is pushed to any of the streaming servers.

The ACM server has a central role in the entire system.
It communicates with all the servers, monitors the system,
takes redistribution decisions and issues commands to the
servers. The ACM monitors the state of the network by
periodically issuing commands to the streaming servers.
Upon reception of the state information from all the
streaming servers, it forwards it to the SS server for
redirection purposes. Whenever it detects that there are
overloaded servers, it runs an algorithm for content
redistribution. Using popularity data for the contents in the
recent past, previously obtained from the SS server, the
algorithm decides whether a replica of a content item
should be moved to another server, cloned, removed or
left as it is. The execution of the algorithm results with a
new distribution of the content items in the system which
is deployed by execution of the set of removal, replication
and movement commands issued by the ACM server.
Along with issuing the commands, the ACM server sends
the new availability of the contents to the SS server.

The SS server’s role is to accept the clients’ requests
and to redirect them to the most appropriate streaming
server. For every received request, there are three possible
situations regarding to the availability of the content item:
a replica of the content item exists on some of the
streaming servers which is normally loaded, a replica of
the content exists on the streaming servers, but they are all
overloaded and none of the streaming servers contains a
replica. In the first situation, the SS server implements the
redirection strategy which chooses the best server. When
the best server is chosen, the SS forwards the address to
the client, which in turn resends the request to the
indicated server. In the second case, the SS server rejects
the request and lets the client request the same content

ConTEL 2011, ISBN: 978-953-184-152-8

Multimedia Services Quality: Analysis, Evaluation and Management

488

item after a certain time. The process continues until there
is a server that can serve the client. In the third case the SS
server does not know where to redirect the client because
there is no replica of the desired content item.

The whole process of handling the situation when there
is no replica on any server is fully shown in Fig. 2, where
the numbers attached to the arrows mark the sequence of
each action. After the client makes a request for an
unavailable content (1), the SS servers asks the ACM
server (2) to issue a replication command for the missing
content item to the CR server and sends a response to the
client (3) indicating it to retry after a time that is long
enough for a sufficient part of the content to be provided
from the other servers. Because of the large size of the
multimedia objects, to avoid long waiting time for
complete distribution, the replicas are pushed to the
servers with data rate higher than the streaming rate and
the streaming is initiated when there is enough buffered
streaming data on the server where the replica is pushed.
The ACM server chooses the best server to host the
replica and issues a push command to the CR server (4).
After the delivery of the content has been initiated (5), the
ACM server informs the SS server about the new location
of the replica (6). Later, when the client resends the
request (7), it is redirected to the new streaming server (8).
Once the client has the address of the server that can best
serve it, it makes a request (9) and immediately initiates a
streaming session (10).

Figure 2. Redirection process for the miss scenario

Having the control over the redirection, the SS server
gathers information about the popularity of the replicas on
different streaming servers and sends it to the ACM server
right before the redistribution algorithm is run. The
redirection role of the SS server is such that it optimizes
the utilization of the network according to the current
placement of the replicas and the current state of the
network. The optimal network utilization in this contest is
referred to the maximal utilization of the servers at the
edge of the network so that most of the traffic generated
for serving the client requests is concentrated closer to the
clients.

III. SYSTEM PARAMETERS
In this section we define the parameters of the system

which we use to estimate the demand of the replicas of the
content items on each server and to run the algorithm. We
propose an estimation method that achieves to calculate
the demand of each replica in the system using only the

redirection data obtained from the SS server and the
streaming utilization obtained by the streaming servers.
This contributes to the reduction of management data in
the network and the reduction of the time necessary to
obtain it.

The content delivery network that we propose consists
of a set of streaming servers S placed in one of the L
different levels of the hierarchy. The state of each server
�s S is defined by the streaming and memory utilization.

The streaming utilization u(s) is defined as the percentage
of up-link streaming capacity U(s) that is occupied for
serving the requests of the clients and distribution of
replicas to other servers. The value of this parameter lets
the ACM server determine whether a redistribution
algorithm should be run. An important measure tightly
coupled to the triggering of the algorithm, is the utilization
trigger threshold T(s) defined as the maximum value of
u(s) which can be tolerated for considering the server as
normally loaded. Whenever this value is exceeded, the
ACM server initiates a procedure for new redistribution in
the system. The server storage utilization m(s) is defined
as the percentage of the storage capacity M(s) used for
hosting the replicas on a given server. The vicinity of the
server related to the clients and the other streaming servers
is defined by its level within the hierarchy l(s). It can have
minimum value 1 if it is directly connected to the clients
or value L if it is in the last level of the hierarchy. The
only server that has the maximum level is the CR server.

Each server can host one replica from a set of different
content items C. Each content item present in the system
�c C has size s(c) and streaming rate rs(c).
The system also maintains information about the

replicas of content items on different streaming servers.
The presence information of the replicas is kept in an
availability matrix of size �S C where each element a(s,c)
has value 1 if a replica of content item c is present on
server s, or 0 otherwise. The local popularity of the
replicas is stored in a popularity matrix of the same size,
where each element p(s,c) represents the number of times
a replica of content item c has been accessed on server s.
The popularity information is gathered by the ACM server
before the execution of the algorithm and it refers to the
activity of the users during the inter-execution interval �T,
defined as the time between the previous execution of the
algorithm and the current execution. In order to control the
frequency of the algorithm execution, we also define a
minimum inter-execution interval �Tmin which is the
minimum time that has to pass between two consecutive
executions, no matter the value of the up-link utilization of
the servers. The system also keeps the local popularities of
the replicas in the previous execution of the algorithm
p'(s,c).

In addition, we introduce a global popularity P(c) of the
content item c defined as a portion of all the requests in
the system during the interval �T that belong to its
replicas and a minimum level global popularity PLmin(l)
defined as the average value of the minimum global
popularities of every server of level l. The later is defined
as the global popularity of the first replica that does not
enter in the most popular replicas on the server that make
70% of the total load.

In order to quantify the generated traffic between two
executions of the algorithm, we introduce a demand
parameter r(s,c), defined as an average load on server s,

ConTEL 2011, ISBN: 978-953-184-152-8

Multimedia Services Quality: Analysis, Evaluation and Management

489

generated as result of serving requests for the replica of
content item c within an inter-execution interval. We
calculate the demand as a ratio of the total amount of
streamed data B(s,c) sent between two consequent
executions of the algorithm and the duration of that
interval

 (,) (,) ()(,) B s c n s c s cr s c
T T

� �
� �

 (1)

where n(s,c) is the number of completed streams for c on
s. This number cannot be easily determined by the local
popularity p(s,c), because in indicates only how many
times the content has been requested within �T, but it
doesn’t say anything about how many of these requests
have been completed. In order to determine this number,
we propose an estimation method based on the popularity
data and the duration of the last inter-execution times.

()d c
�T��T

t
()d c

Figure 3. Timeline of streaming a replica from single server

In our analysis we assume that the time of two
consecutive executions of the algorithm is such that the
streams initiated in one interval will end in the next
interval (Fig. 3). In this case, the streaming duration d(c)
is less than the inter execution interval and therefore some
of the initiated p(s,c) requests will be completed, and
some not. The overall number of completed streams will
be expressed as

 (,) (,) (,) (,),c p pn s c n s c n s c n s c�� � � (2)

where nc(s,c) is the number of initiated and completed
streams within the interval �T, np(s,c) is the number of
partially completed streams that were initiated in the
interval but were interrupted by the execution of the
algorithm and n'p(s,c) is the number of partially completed
streams that were initiated in the previous interval and
interrupted by the previous execution of the algorithm. In
order to obtain these values we assume that each request
in the system occurs according to a Poisson process N(t).
Since the requests for a given content item are
independent of the requests for other content items, we
represent the main Poisson process N(t) as a sum of
independent Poisson processes Nc(t) with intensity �c
where each one represents the process of requests for
content item c. We furthermore divide the process Nc(t) as
a sum of Poisson processes Nsc(t) with intensity �s,c where
each process is the request for content item c from server
s. Since the expected number of events for a Poisson
process within a time interval �T is �s,c�T, we determine
�s,c as the ratio

 ,
(,) .s c

p s c
T

� �
�

 (3)

We also consider that �s,c has a constant value within
the interval �T, but its value can change after every

execution of the algorithm because there might be a
different rate of requests due to the possibly different
number of replicas for the content items.

t

()d c

iT

	

it

1iT

1it1t nt
xt � �xt T

Figure 4. Representation of partially completed streams

The initiated and completed streams within �T are
those that were requested one content item duration d(c)
before the algorithm execution, and therefore their number
nc(s,c) is calculated as the expected number of events
within the interval �T -d

 � �,(,) 1 (,).c s c
dn s c T d p s c
T

�
 �� �
 �
� ��� �
 (4)

The number of partially completed streams np(s,c) is
calculated by finding the completed fractions f(i) of each
stream i initiated within the interval [tx+�T
d, tx+�T]
(Fig. 4), defined as

� �()

()
()

id c E t
f i

d c

� (5)

where E[ti] is the expected time of arrival of the i-th
request regarding to the time tx+�T
d. This time can be
expressed as a sum of exponentially distributed
independent inter-arrival times Ti, which leads to

� � � �
1 1 ,

i i

i k k
k k s c

iE t E T E T
�� �

� �� � �� �
� �
� � (6)

where E[Tk] is the expected inter-arrival time between the
(k-1) -th and k-th request and is expressed as E[Tk] = �-1.

By summing the fractions of all initiated and
interrupted streams, q(s,c)=p(s,c)
nc(s,c), and substituting
(4)-(6), the number of partially completed streams will be
eventually calculated as

(,)

1

1 ()(,) () (,) 1
2

q s c

p
i

d cn s c f i p s c
T�

 �� �
� ��� �
� . (7)

The number of completed streams interrupted by the
previous execution of the algorithm can be determined in
a similar way, with the difference that the fraction of each
completed stream is now determined as

� �

,

()
()

i

s c

E t if i
d d c�
�

� � �
�

 (8)

where E'[ti] is the expected time of arrival of the i–th
request in the previous interval �T'. In this case �'s,c is
obtained as the ratio �'s,c = p'(s,c)/�T'.

ConTEL 2011, ISBN: 978-953-184-152-8

Multimedia Services Quality: Analysis, Evaluation and Management

490

Applying (8) in the sum of fractions for
q'(s,c)=p'(s,c)
n'c(s,c) we obtain

(,)

1

1 ()(,) () (,) 1
2

q s c

p
i

d cn s c f i p s c
T

�

�

 �� � �� � �� ���� �
� . (9)

If we substitute (4), (7) and (9) in (3) and then the later
in (1), expressing the streaming duration as a ratio
between the content size and its rate d(c)=s(c)/rs(c), we get
the average demand for the content items on the streaming
servers as

2 () (,) () () (,)(,) 1

2 () 2 ()s s

s c p s c s c s c p s cr s c
T Tr c Tr c T

 ��
� �
� ��� � � �� �

. (10)

The values r(s,c) for all the replicas stored on the server
and the current load of the server u(s), help us determine
the percentage of the total stream rate that belongs to each
of the replicas. We use this value to calculate the
replication metric mr(c) and the deletion metric md(c) for
determining the number of new replicas or the number of
replicas that have to be removed.

The replication metric mr(c) is defined as the average
amount of load per replica that is generated for serving the
requests for content item c. It is calculated according to
the following expression

�

� �

� �� �
21 (,) () ()() .

(,) (,)r
s S

c C c C

r s c u s U sm c
a s c r s c

 (11)

In the expression above, the calculated rate per replica
server is multiplied by the value of the streaming rate of
the server in order to give more weight to the replicas that
are placed on more loaded servers. The determination of
the number of replicas is related to a threshold stream rate
uo which determines the maximum amount of overload
that can be supported by a server in the system from a
single replica. Whenever the overload metric reaches this
value, new replicas are generated. The value of uo
determines the level of replication in the system. Lower
values imply higher sensitivity of the system to the
overload traffic which will result in more replicas.

The deletion metric md(c) is a measure of useful load
that the replicas of a content item c could produce on the
servers, but they are in fact occupying memory storage
without generating streaming traffic because of its low
popularity. Since this metric is intended to serve for
deletion of replicas, it takes into consideration the
occupied storage space on every server. It is calculated
according to the following expression

�

� �

 �
� �
� ��

� �
� �
� �

�
� �1

1 1

(,) 1() () () ().
(,) (,)

S

d C C
s

c c

r s cm c m s u s U s
r s c a s c

 (12)

In this expression, the locally unpopular replicas of the
contents contribute with a negative value in the sum i.e.

they have negative contribution to the optimal usage of the
server and therefore should be considered for deletion.
Therefore, the replicas of the content items that have the
most negative value of the deletion should be removed so
that the space they occupy is used for storing more
popular replicas. The number of replicas that will be
removed is determined by dividing the deletion metric by
a parameter that determines the maximum allowed
underload streaming rate uu per single replica.

IV. REDISTRIBUTION ALGORITHM
The goal of the redistribution algorithm is to reorganize

the system by moving the existing replicas closer to the
clients and creating new copies of the contents with
increased popularity in order to optimize the network
utilization according to the users’ behavior. It is run
whenever the system detects increase of the streaming
utilization of the servers. The redistribution algorithm is
executed in three phases: marking replicas for deletion;
movement and replication; and unmarking and deletion.

The first phase of the algorithm reserves free storage
space for placing future replicas. It marks for deletion the
replicas of those content items which have excessive
number of copies for their popularity. Therefore, for each
content item the algorithm first chooses the number of
replicas that could be potentially deleted and then chooses
the servers which will have to remove the replica. The
algorithm marks for deletion the replicas that are placed
on servers lower in the hierarchy, thus reserving more
storage space on the servers that are closer to the clients
for more popular replicas. This phase provides only
“virtual” free space, because although it updates the
available storage space, it does not remove the replicas,
but only assigns them for potential removal. The final
decision for physical removal of the replicas is taken after
the replication and movement phase.

In the second phase (Fig. 5), the algorithm attempts to
move the existing replicas of a content item as low in the
hierarchy as possible and to place new replicas in the
levels that remain. It first sorts the content items according
to their global popularity so that it can consider the most
requested content items first. Then, for each content item
(lines 3-16) starting from the upmost level that contains a
replica, it selects as an origin server the first server that is
close or above its streaming threshold. Afterwards, the
algorithm looks for servers in the lowest levels that are
underloaded and have enough storage space to host the
replica from the upper server. One important condition
that the replica has to fulfill is that its global popularity is
higher than the minimum global popularity of the chosen
level.

After the movement, the algorithm calculates the
number of replicas and then searches for the best servers
where they can be placed (lines 17-34). It starts from the
lowest level in the hierarchy and makes a list of candidate
servers which could potentially store a replica. Apart from
being underloaded and having sufficient storage space, the
candidate servers must belong to a level with minimum
global popularity lower than the global popularity of the
content item i.e. the content item must be popular enough
in order to be placed on the considered level. When the list
of candidate servers is completed, the server that is least
loaded is chosen as a destination server for the new
replica. If there is no server in the considered level that

ConTEL 2011, ISBN: 978-953-184-152-8

Multimedia Services Quality: Analysis, Evaluation and Management

491

fulfills the condition, the algorithm goes one level above,
until a destination server is found. The process continues
until there are no pending replicas left or there are no
available resources for storing the pending replicas.
1:sortGlobalPopDesc()
2:for each
3: maxLevel()
4: 1
5: while 0and
6: for each
7: if () ()and (,)
8: and exists server on such that
9: not (

C
c C

levelUp c
levelDown

levelUp levelUp levelDown
s levelUp

u s T s a s c
d levelDown

a

�

�
�

�
� �
�
�

min

,) and () ()and () () ()
10 : and () ()
11: move from to
12: () () (), () () ()
13: () () (), () () ()
14: else
15: 1
16: end while
17:

L

s c u d T d f d s c M d
P c P levelDown

c s d
u s u s s u d u d s
f s f s s c f d f d s c

levelDown levelDown

levelU

� �

� � �
�

�
 � �
�
 � �

� �

min

1
18: round(() /)
19 : 1
20: empty
21: while 0 and
22 : for each
23: if not (,)and () () and () () ()
24 : and () ()
25: ad

r o

L

p levelUp
replicas m c u
levelDown

candidateServ
replicas level L

s level
a s c u s T s f s s c M s

P c P levelDown

�

�
�

� �
�

� �
�

d in
26: end for
27: if not empty
28: minLoad()
29: place replica on
30: () () (), () () ()
31: 1
32: else
33: 1
34:

s candidateServ

candidateServ
bestServ candidateServ

bestServ
u s u s s f s f s s c
replicas replicas

level level

�

�

� � � �
�

� �
end while

35:end for

Figure 5. Movement and replication phase

In the movement and replication process, the increase
or decrease of the streaming utilization of the servers as a
result of the change in distribution is updated by a value
predicted according to the current state of the servers and
the streaming demand of the content item.

With the proposed strategy, the replicas of the most
popular content items are always pushed towards the
lowest level, giving a priority to the more popular
contents to occupy the lower serves so that when their
resources are fully used, the only possibility for placement
of replicas of the less popular contents are the servers
higher in the hierarchy.

Once the new distribution is determined, the algorithm
chooses origin servers that will deliver the replicas to the
destination servers. For every destination server assigned
to host a replica, the algorithm chooses as an origin server
the closest one above in the hierarchy that is not
overloaded. The algorithm also takes into consideration
the overhead traffic that will be produced for delivery of
the replica. It changes the streaming utilization of the
origin server by the delivery rate which is always higher
than the streaming rate, so that once a portion of it is
loaded on the destination server, the requests for that
replica can be immediately served.

In the last phase, the algorithm attempts to keep some
of the replicas that were marked for deletion so that all the
storage space of the server is completely utilized and there
is no unnecessary removal of replicas. For every server it
unmarks the most requested replicas among the previously
marked replicas until there is physical memory space left.
All the replicas that cannot be unmarked are permanently
deleted from the servers. When this phase is over, the

ACM server creates commands and sends them to the
streaming servers so that the new distribution is deployed.

V. REDIRECTION STRATEGY
The objective of the redirection strategy is to redirect

each request to the appropriate server so that the streaming
traffic is concentrated in the lower levels of the network
and the traffic between the servers in a same level is
equally distributed. Upon a request, the SS server
calculates a redirection metric for each server s that
contains a replica of the content item c and chooses the
one that minimizes the metric. The value of the redirection
metric (,)redm s c is calculated as

(,)(,) (1 (())) ()
1 (,) (,)red

s S

p s cm s c L l s u s
a s c p s c

!

�

�

��

(13)

where � is the level likelihood factor with values within
the interval [0,1/L) which defines the preference of the SS
server to redirect the requests to a certain level of the
hierarchy. If all the servers have the same value of u(s),
the servers in the first level (l=1) will always have smaller
value of the metric and will minimize the replication
metric. In order to balance the load generated by the
replica of the same contents between the servers, the
metric includes the percentage of served streams of a
single replica by a server relative to the total number of
served streams for that content item. Whenever the SS
server assigns a server for streaming, it increases its
streaming utilization u(s) by the value rs(c)/R(s). It also
predicts a certain reduction of the streaming rate as a
result of completion of some of the on-going streams.

VI. SIMULATION RESULTS
In this section we present the experimental results for

the proposed model. We developed the model in the
discrete event simulator OMNeT++ [14], using the
implementation of the network protocols defined in the
INET library [15]. We used a network of S=11 streaming
servers. Following the architecture of a network for IPTV
services [10], we classify the servers according to their
vicinity to the clients as edge, branch and central servers.
The network contains 6 streaming servers, 3 branch
servers and 2 central servers with streaming capacities
U(s) of 300, 250 and 200 Mbps and trigger threshold T(s)
of 0.9, 0.85 and 0.8. There are 1000 clients that request
streaming services from the servers. The CR server hosts
C=200 files with average size of s(c)=50 MB and
streaming rate of rs(c)=2.7 Mbps. All the servers have the
same storage space and have the capacity to store an
average of 1/6 of the total number of contents. The value
of the level likelihood factor is �=0.25.Based on the
results obtained from the research on multimedia contents
popularity [16][17], our simulations implement a
popularity model which obeys a generalized Zipf like
distribution, obtained by applying a Zipf-k transformation
to the basic form of Zipf distribution. The transformation
gives a curved shape to the linear log-log representation of
the Zipf distribution with intensity defined by the
parameters kx and ky, which in our simulation have value
kx = ky =7 [16].

ConTEL 2011, ISBN: 978-953-184-152-8

Multimedia Services Quality: Analysis, Evaluation and Management

492

Figure 6. Service response time for the clients

Figure 7. Buffer time

Figure 8. Number of currently served streams

Figure 9. Link capacity utilization

Each client generates a request for a content item within
an interval determined according to an exponential
distribution with mean value of 30 s. When the streaming
of the required content is completed, the client obtains the
time of the next request in the same manner.

In order to see the advantages of the employment of the
redistribution algorithm, we run the simulation under two
different scenarios. In the first scenario we let the
algorithm run with a minimum inter-execution interval
�Tmin=120 s and in the second scenario we run the
simulation without the redistribution algorithm. The files
are initially randomly distributed among the servers.
Initially there is no traffic in the network and the time of
the first request for service of the clients is uniformly
distributed between 0 and 250 s. The simulations were run
within a period of T=900 s.

Fig. 6 shows the comparison of the time that a client
has to wait from the moment it requested the content item
until the beginning of the streaming. Each waiting time is
presented in the moment when the client has actually
made the first request. From the figure it can be noticed
that the waiting times follow patterns with linear
descending character. This happens because some of the
servers become overloaded and therefore reject every
request until some of the current streams are finished.
Each “line” refers to one overloaded server and its
duration is exactly the same as the duration while the
server is being overloaded. Obviously, the client that is

first rejected has to wait longer time than any other client
that makes a request later. The improvement of the
system’s performance is evident from the comparison:
when the algorithm is used, in most of the cases, the
clients get immediate service. There can be noted a delay
of service at the end of the initial request interval, which is
result of the random distribution of the replicas (not all the
content items have a replica on the servers) and the rapid
saturation of some servers before the algorithm is run.
Shortly after the algorithm is run for a first time in the
system, the contents are redistributed according to the
request pattern and therefore, there is considerably
reduced waiting time in the rest of the simulation. In the
case when the algorithm is not used, most of the clients
have to wait considerable time to obtain the requested
stream.

Another measure that we consider for evaluating the
quality of service is the time the clients have to wait for
buffering enough data for the video to be uninterruptedly
played, measured after the streaming of the videos is
completed. This quantity is shown on Fig. 7. It can be
noted that the highest values of the buffering time are in
the intervals when the servers are overload. The algorithm
utilization again proves to be of a great advantage, since
the buffer time is less than 1 s when the network is most
congested, whereas clients have to wait up to 25 s in the
cases when the contents are not being redistributed. If this

ConTEL 2011, ISBN: 978-953-184-152-8

Multimedia Services Quality: Analysis, Evaluation and Management

493

time is added to the service response time, then it is very
obvious that such a service is unacceptable.

Fig. 8 shows the number of clients which are
simultaneously served by the streaming servers. It can be
seen that in both the cases, the system reaches almost the
same maximum number of simultaneous sessions, but
unlike the case when the algorithm is used, the absence of
redistribution cannot maintain that value. The result of this
behavior is less clients served, which in moments
differentiate in more than 100 sessions.

Fig. 9 shows several aspects of the link capacity
utilization of all the servers in the system. One of the
aspects is the overall generated traffic both for streaming
and distribution purposes. From the figure we can see that
when the algorithm is run, there is considerably more
traffic generated in the system compared to the case when
the algorithm is not used. One reason for this is that more
clients are served because of the balanced load in the
network, but another reason is that in this case there is
overhead traffic that is generated due to the distribution of
the replicas among the streaming servers. Although there
is extra traffic in the network, the experiments show that
its quantity is less than 5% of the overall traffic. As the
algorithm is never executed in the second case, there is
only an insignificant amount of overhead traffic at the
beginning of the simulation due to the redistribution of the
content items that initially have no replica on the servers.
The figure also shows that there is higher percent of the
overall generated traffic concentrated in the first level,
which is one of the main objectives of the algorithm.

VII. CONCLUSIONS
In the presented work we propose a hierarchical system

for optimal streaming and distribution of VoD contents in
managed networks. The system implements a
redistribution algorithm that uses the current demand of
the content items and the state of the network to take
distribution decisions that optimize the network utilization
and improve the quality of service received by the clients.
The system additionally implements a redirection strategy
which keeps the servers balanced and the traffic to the
edges of the network. We also propose an efficient
estimation method for determining the streaming demand
for the replicas in the systems that reduces the
management traffic in the network and the time necessary
to obtain the required rate for every replica of the content
items in the system.

After the experimental results we prove that the
proposed system reaches the defined objectives for
improved quality of service and optimal network
utilization. It redistributes the content items according to
the request pattern and thus, starting from a random
distribution of the content items, it achieves a fast
convergence to an optimal distribution. The advantages of
the optimal distribution and the efficient redirection are
numerous: the time a client has to wait for a service is
reduced and immediate service is achieved; there is almost
uninterrupted streaming which eliminates the necessity of

large buffers at client side; the traffic is concentrated to
the edges of the network thus providing less congested
network and a better utilization of the network resources;
and more clients are simultaneously served. The price that
has to be paid for these improvements is the overhead
traffic generated for distribution of the replicas among the
streaming servers. However, this traffic occupies only
insignificant part of the overall traffic in the network and
is always limited to shortest possible distances between
the servers.

REFERENCES
[1] P. Rodriguez, C. Spanner, and E.W. Biersack, “Analysis of Web

caching architectures: hierarchical and distributed caching,”
IEEE/ACM Trans. Networking, vol. 9, n. 4, pp. 404-418, 2001.

[2] R. Buyya, M. Pathan, and A. Vakali, Content Delivery Networks,
ser. Lecture Notes In Electrical Engineering, Berlin, Germany:
Springer-Verlag, vol. 9, 2008, pp. 418.

[3] L. Qiu, V. Padmanabhan, and G. Voelker, “On the placement of
web server replicas,” in Proc. IEEE INFOCOM, 2001, pp.1587-
1596.

[4] W. Fu, N. Xiao, and X. Lu, “A Quantitative Survey on QoS-
Aware Replica Placement,” in Porc. GCC, Oct. 2008, pp. 281-
286.

[5] F. Lo Presti, C. Petrioli, and C. Vicari, “Distributed Dynamic
Replica Placement and Request Redirection in Content Delivery
Networks,” in Proc. MASCOTS, 2007, pp. 366-373.

[6] A. J. Cahill and C. J. Sreenan, “An Efficient CDN Placement
Algorithm for the Delivery of High-Quality TV Content.” in Proc.
EuroIMSA, Feb. 2005.

[7] A. Hamra, E.W. Biersack and G. Urvoy-Keller, “Architectural
choices for video-on-demand systems,” in Web content caching
and distribution, Norwell, MA: Kluwer Academic Publishers,
2004, pp.129-138.

[8] J. Liu and J. Xu, "Proxy caching for media streaming over the
Internet," IEEE Commun. Mag., vol. 42, no. 8, pp. 88- 94, Aug.
2004

[9] W. Simpson and H. Greenfield, IPTV and Internet Video,
Burlington, MA: Focal Press, 2nd ed, 2009

[10] T. Stockhammer and J. Heiles, “DVB-IPTV Content Download
Services-IPTV services anytime and anywhere,” in Proc. IEEE
ConTEL, 2009, pp. 413–420.

[11] M. Verhoeyen, D. De Vleeschauwer and D. Robinson, “Content
storage architectures for boosted IPTV service,” Bell Labs
Technical Journal, vol. 13, no. 3, pp. 29-43, 2008.

[12] X. Zhou and C. Xu, “Efficient algorithms of video replication and
placement on a cluster of streaming servers,” Journal of Network
and Computer Applications, vol. 30, no. 1, 2007, pp. 551-540,
2007.

[13] J. Dukes and J. Jones, “Dynamic RePacking: a content replication
policy for clustered multimedia servers,” in Proc. Microsoft
Research Summer Workshop, 2002.

[14] R. Hornig and A. Varga, “An overview of the OMNeT++
simulation environment,” in Proc. ICST, 2008.

[15] A. Varga. (2011, Apr 15). INET Framework for OMNeT++
[Online]. Available:http://inet.omnetpp.org

[16] W. Tang et al. “Medisyn: A synthetic streaming media service
workload generator,” in Proc. NOSSDAV, 2003, pp. 12–21.

[17] G.Paneda et al. “Popularity analysis of a video-on-demand service
with a great variety of content types. Influence of the subject and
video characteristics,” Int. J. Adv. Media Commun., vol. 9, n. 4,
pp. 369-385, 2007.

ConTEL 2011, ISBN: 978-953-184-152-8

Multimedia Services Quality: Analysis, Evaluation and Management

494

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

