
Received October 23, 2017, accepted November 16, 2017, date of publication November 27, 2017,
date of current version February 14, 2018.

Digital Object Identifier 10.1109/ACCESS.2017.2778029

Linked Data Authorization Platform
RISTE STOJANOV , SASHO GRAMATIKOV, IGOR MISHKOVSKI, AND DIMITAR TRAJANOV
Faculty of Computer Science and Engineering, Saints Cyril and Methodius University, 1000 Skopje, Macedonia

Corresponding author: Riste Stojanov (riste.stojanov@finki.ukim.mk)

ABSTRACT The expansion of the smart devices, the growing popularity of the social networks, and the wide
spread of the corporate services impose huge amounts of heterogeneous data to be generated and stored in
separate silos on a daily basis. Parts of this data are private and highly sensitive as they reflect owner’s
behavior, obligations, habits, and preferences. On the other hand, the emerging crowd services challenge
the owners to expose these data in return to the convenience they offer. Therefore, it is imperative not only
to protect the interaction with sensitive data, but also to selectively open it in an unharmful manner for the
owner’s personal integrity. One of the main enablers of the crowd services is the emerging linked data, which
is all about opening heterogeneous knowledge from separate data silos. Its growing popularity encourages the
data owners to publish their personal data in linked data format. The fusion of sensor, social, and corporate
data opens new security challenges, which extend the standard security considerations toward more flexible
and context aware authorization platforms. In this paper, we propose a linked data authorization (LDA)
platform atop a policy language flexible enough to cover all newly emerged requirements, including context
awareness. The proposed policy language extends the widely accepted W3C’s SPARQL query language
and leverages its expressiveness to protect every part of the data. The novelty of our LDA platform is its
unique capability of design time policy validation through stand-alone testing, conflict detection, and overall
protection coverage extraction.

INDEX TERMS Authorization platform, security policy language, data security, linked data, semantic web.

I. INTRODUCTION
In the smart world around us, billions of devices, users and
applications continuously generate vast amount of hetero-
geneous data. These devices range from regular comput-
ers to mobile phones, wearables, and sensor nodes. Thanks
to the Internet, they are connected to each other, enabling
them to exchange and fuse data with the social media
resources, which may be further integrated with the corporate
databases. Such a data mixture provides situation awareness
that empowers the applications and the human users to bet-
ter understand their surrounding environment. Furthermore,
combining multiple data sources can make the context aware
applications capable of making intelligent decisions, regard-
ing their environment changes. This fused data is continu-
ously gathered and stored at various enterprise servers, cloud
infrastructures or even on private storage servers.

The heterogeneity of the devices makes interoperability
a challenging task because of the different nature of the
generated data (temperature, light, video, text, location), the
inconsistent quality, and the trustworthiness of the sources.
In the past decades, the W3C recognized this problem and
introduced new standards known as Web 3.0, or Semantic

Web [1]. The main goal of these W3C standards is to move
the World Wide Web towards the Web of Data, transforming
the pages into linked data resources consumable by software
agents. The Linked Data approach [2], [3] provides new ways
of integrating and consolidating data from various and dis-
tributed sources, solving the issue of isolated data silos such
as the traditional relational database systems. This approach
enables publishing and contextual linking of data on the Web
of Data. An illustration of some of the entities that publish
data in the Linked Open Data (LOD) Cloud [4] is shown in
Fig. 1. The LOD cloud1 visualizes a subset of the datasets2

published using the Linked Data principles [3].
The data we generate, directly or through the devices we

posses, combined with the general public knowledge (such
as DBpedia [5]) and the corporate databases can describe
our habits, environment, and, in case of wearables, even our
health. Since this data is of sensitive nature, it should remain
private and protected. If not properly secured, it can cause

1Linking Open Data cloud diagram 2017, by Andrejs Abele,
John P. McCrae, Paul Buitelaar, Anja Jentzsch and Richard Cyganiak.
http://lod-cloud.net/.

2http://stats.lod2.eu/

VOLUME 6, 2018
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1189

https://orcid.org/0000-0003-2067-3467

R. Stojanov et al.: LDA Platform

FIGURE 1. Linked open data cloud and data publishers.

serious privacy violation. Analysis of misuse of sensitive
location data is shown in [6], where the authors discuss that
the advertising industry largely benefits from personal infor-
mation exposed by improper data handling. Nevertheless,
when the user data is handled properly, it can be used to
provide crowd sourced services that can significantly improve
our lives. Such an example is the Google Traffic service3 that
uses user’s locations to detect congested routes and propose
alternative faster routes. This service saves precious time of
the users and favors the general community.

The need for personalized, user defined protection of vast
amounts of heterogeneous data has not been considered
before in such scale. The security protocols, procedures and
tools are always a step behind in handling new security chal-
lenges. When it comes to sensitive data, no matter whether it
is personal, social or corporate, strict rules must be applied
to ensure that it is properly accessed and handled. The data
owners’ ability to control who and under what conditions
gets accesses to their data can encourage them to expose
beneficiary data for the greater goods, and at the same time,
protect their privacy. Tools that enable security policy testing
and preview of the protected data are important step towards
gaining trust in the authorization platforms.

The data storage and management systems expose their
data through various processing actions, submitted by a
requester, who may be a person, software agent or any other
subject that can send its intention to the system. A requester is
identified by the evidences it presents to the system, such as
its authentication token or other environmental parameters,
usually provided by the software agent. These evidences,
together with the system’s state, define the context in which
the action executes.When an action is invoked, its operations,

3http://www.dailymail.co.uk/sciencetech/article-4706666/Google-
introduces-traffic-time-maps.html, accessed 20 July 2017.

parameters and context describe the processing intention, or
Intent.

The security rules are typically expressed as natural lan-
guage requirements. Although the free text requirements
have great expressiveness, their diversity makes them almost
impossible to implement. Therefore, the requirements need to
be formalized and translated into machine readable security
policies that are easier to implement. The policy formalism
settles the boundaries of free text requirement transformation
into security policies, i.e., rules that define which parts of
the data can be protected in a given contextual environ-
ment. Furthermore, the policy language provides a syntax
that supports this formalism and simplifies the management
process. In the traditional enterprises, the translation process
is usually carried out by properly trained security officers
and administrators. However, the scale of the data to be
protected, its creation velocity and its heterogeneity makes
the centralized policy management unfeasible. Therefore, the
policy formalism should support tools that will enable regu-
lar users to protect their own heterogeneous and distributed
data.

The design time validation of the policies’ correspondence
to the security requirements is crucial for proper data pro-
tection. The correspondence can be validated only if the
policy language enables extraction of the data protected by
the policy. Additionally, every well designed policy language
should enable detecting and resolving possible conflicts in the
policies.

Since the W3C’s Semantic Web initiatives have defined
standards that enable linking of the resources stored in differ-
ent datasets [1], [7], and the Linked Open Data initiative have
defined mechanisms for matching the same resources with
different representations [3], one of the issues that remains
open is the design of a policy language able to protect data
stored or exposed as Linked Data [8], [9]. This policy lan-
guage should provide various levels of protection granularity
over distributed datasets and flexibility to match the natural
language requirements. Apart from the flexibility, the policy
language should be easy to understand and learn, and it should
enable creating tools that will simplify the policy manage-
ment and validation.

The main motivation of this paper is to design a platform
that protects every interaction with arbitrary parts of the
Linked Data and supports design time policy correctness
validation. The proposed Linked Data Authorization (LDA)
platform fulfills this goal and is able to protect read, insert,
delete and manage operations using its flexible policy lan-
guage that links the protected data to the authorization envi-
ronment. The policy language is based on the well established
W3C standardized SPARQL syntax4 which enables reuse
of the existing knowledge and tools for policy management
simplification. Additionally, we implemented a policy man-
agement module that enables design time validation of the

4SPARQL is the query language of the Semantic Web:
https://www.w3.org/TR/rdf-sparql-query.

1190 VOLUME 6, 2018

R. Stojanov et al.: LDA Platform

data protected by the policies, conflict detection and overall
protected and unprotected data extraction.

The rest of the paper is organized as follows: in §II, the
design principles of the LDA platforms used for com-
parison with the literature and assertion of our work are
emphasized. Based on these platform design principles,
§III provides literature overview and emphasizes the need
for our LDA platform. In §IV, we describe the archi-
tecture of our LDA platform, together with the pol-
icy language description and enforcement implementation.
In §V, the platform implementation is described, and use case
is presented for better understanding. Afterwards, in §VI,
we point out the strengths and weaknesses in respect to the
defined design principles, together with performance evalua-
tion of the implementation. Eventually, in §VII, we conclude
our work.

II. LINKED DATA AUTHORIZATION DESIGN PRINCIPLES
Designing a complete authorization platform requires identi-
fying security aspects for quality assessment. The expansion
of Linked Data has motivated many researchers to work
on security issues, either by restricting the set of available
actions [10]–[12] or by filtering the data available for the
operations [13]–[20]. In this section, we discuss the autho-
rization aspects required for suitable protection not only of
the data published using the Linked Data design principles,
but also the data produced by various mobile devices and sen-
sors, possibly stored in traditional database systems. Based
on extensive literature review we have defined the following
four design principles: (1) flexibility defines the need for cov-
ering wide range of requirements in the authorization system;
(2) maintainability focuses on the policy management pro-
cess optimization; (3) correctness validation emphasizes the
importance of the policy testability, and (4) understandability
settles the importance of using standardized syntax as basis
of the policy language. Furthermore, we use these principles
to analyze the related work in §III and lay the foundations of
our policy language and authorization platform.

A. FLEXIBILITY
Flexibility is the ability to transform arbitrary free text autho-
rization requirements into security policies. It defines the
power of the policy language to express a range of differ-
ent security requirements. According to [15], a policy can
be generally formalized using the tuple 〈R,D,AR〉, which
describes the access rights AR assigned to the requesters R
(or Subject) for the data D (or resources). Regarding this
policy formalization, there are different flexibility aspects
that every modern LDA platform should meet:

1) OPERATION COVERAGE
This aspect defines the operations supported by the autho-
rization platform, referred to as Permission Model in [21].
In this paper, we use the term atomic operations (or oper-
ations for brevity) for the inseparable actions that can be
executed, while the term action is used to denote a more

complex processing (usually from the business domain) that
requires one or more operations to be invoked. Throughout
the literature, the operations read, insert (often referred to
as create [21] or write [10], [22]) and delete are usually
covered. Inspired by [15], where the authors use the SPARQL
query types as atomic operations for protection, in this paper,
we additionally include the manage atomic operation, which
unifies the named graph5 creation, dropping, copying and
moving interactions.

2) GRANULARITY
The Linked Data follows a directed graph structure where the
nodes are represented by resources and literals, and the edges
are represented by properties of the resources. The resources
are used to describe real world or abstract concepts, and the
literals represent primitive values that can be assigned as a
property value for a resource. Every pair of connected nodes,
including the property that connects them (edge), is referred
to as triple, which can logically belong to a named graph and
be physically stored in a dataset [1], [2].

The granularity aspect defines the ability of the policy
language to capture the data structure and semantics at a
various levels. The granularity level is determined through
the ability to protect resources, triples, named graphs and
datasets and is one of the most commonly discussed aspect
in other authorization platforms [23]. In our work, we use the
following features that enable various granularity levels for
protection:
• Triple Patterns (TP) are essentially triples that can have
variable at any position, used for selection of resources
that have certain property or connection with other
resource. The TP selection results with a set of triples.

• Basic Graph Patterns (BGP) are set of triple patterns
that can capture more complex relationships among the
resources.

• Graphmembership (Gm) enables selection of triples that
belong to a given named graph.

• Dataset membership (DSm) enables selection of triples
that belong to a given dataset.

3) CONTEXT AWARENESS
The growing popularity and presence of sensing devices for
ubiquitous computing make the context inevitable part of the
modern systems. In order to provide suitable protection of
the private and sensitive data they produce, a flexible autho-
rization framework must take the context into account [11],
[13], [21]. Nevertheless, the data context may infer an emer-
gency situation that requires exposure of sensitive data to
corresponding authorities so they can react appropriately.
For example, a person wearing a heart-rate sensor may want
to keep his/her measurements private until an emergency
situation occurs. In such situations, the data needs to be
opened to the doctor in order to react properly. Therefore,

5The named graphs provide logical organization of the Linked Data,
whereas the datasets provide physical storage.

VOLUME 6, 2018 1191

R. Stojanov et al.: LDA Platform

the authorization platform must provide both protection and
exposure of the data, based on the context.

4) CONTEXT-DATA-REQUESTER ASSOCIATION
The authorization requirements may define protected data D
in respect to the requester [20], [24], [25] and its environ-
ment [11], [13]. Therefore, the policy language must link the
requester’s properties, the guarded data and the contextual
evidences.

5) AGGREGATED DATA SHARING
Crowd source applications provide many convenient services
to the users in return to sharing of anonymized and aggre-
gated sensitive data. Consequently, the authorization plat-
forms should enable exposure of portions of the protected
data based on user’s choice.

6) CONFLICT RESOLUTION
Since most of the authorization platforms support multiple
allow or deny policies, a conflict may arise when one policy
allows and other denies interaction with the same portion
of data for a given requester. Conflict resolution mecha-
nisms [11], [15], [16], [24] are crucial for consistent data
protection, giving the data owner possibility to choose which
part of the conflicting data should be allowed.

B. MAINTAINABILITY
Themaintainability is determined by the time it takes to trans-
form the security requirements into policies.Mechanisms that
support policy management can simplify this process and can
provide more accurate protection [23], [26].

1) CONFLICT DETECTION
The conflicts are not always obvious and they may remain
undetected for a long period of time [26], [27]. Therefore, a
conflict detection mechanism should be provided in order to
detect the conflicts at the very policy creation phase, prevent-
ing inappropriate data protection.

2) PROTECTED DATA COVERAGE
The data protected by each policy, along with the overall
protected an unprotected data are very important for accurate
data protection [30]. In an authorization platform that offers
data coverage preview, the data owner is aware of the data
portions that are unprotected and can react by specifying
additional policies as needed. Lack of this kind of information
may lead to ambiguities and exposure of protected data.

C. CORRECTNESS VALIDATION
The policy testing is a challenging task since the requesters
and the context introduce high-dimensional space that is hard
to be covered and understood. In order to ensure correctness
during design time, it is necessary to validate that the policy
corresponds to the requirement it represents [30]. Therefore,
the authorization platform must enable mechanisms that will
provide a preview of the data protected by the policy, so

that the data owner can check if this data corresponds to the
requirement.

D. UNDERSTANDABILITY
Understandability can be observed as the time it takes to mas-
ter the policy format and language of the authorization plat-
form [23], [31]. Hence, using a standardized policy language
supported by a larger community can significantly reduce the
learning time and make the language more understandable.

III. RELATED WORK
In order to review the related work in respect to the authoriza-
tion principles in §II, we created Table 1, which summarizes
and compares the most relevant Linked Data authorization
approaches that support data protection.

The column Operation represents the operation coverage
and shows that the read operation protection is the most
popular. However, the policy languages that support Insert
and Delete operations [10], [15], [21], [22], [25] lack flex-
ibility for data selection with complex graph patterns with
exception of the policy language in [25], where the authors
just mention these operations without any explanation how
they are enforced. The manage operation is only supported
in [15]. In [11], the policies protect the actions as a whole
using ontology defined activation context.

The column group Granularity covers the corresponding
flexibility aspect in respect to the requesters environment
(column group Requester) and the data being protected (col-
umn group Protected data). The ability to use triple pat-
terns for the Requester and Protected Data is shown in the
columns TP. The columns BGP show whether the data or
the requester can be selected through basic graph patterns.
In the columns Gm and DSm, the capability for representing
graph and dataset membership is shown, correspondingly.
In [10], [15], [17], and [18], the requester is specified by
its Internationalized Resource Identifier (IRI),6 by its class
in [10], [15], and [29], and by its role attribute in [19] and [29].
The SPARQL query language used in [21] and [22] enables
policy activation based on the requester’s graph membership.
When it comes to defining the protected data, the policy lan-
guage from [25] offers best flexibility through the SPARQL
expressiveness, followed by the policies that use SWRL [24]
or equivalent syntax [13], [20]. However, these policies are
limited regarding the graph membership.

The column Context describes whether the approach cov-
ers the context awareness considerations. Although the con-
text is part of the policies in [13], the authors do not provide
detailed explanation of the available evidences used to build
it. The Schi3ld framework [21] uses static context represented
with the prissma ontology,7 while [11] uses dynamic context
definition for evidence description.

The columns grouped as Association show whether it
is possible to combine the context with the requester
(column CR) or with the data (column CD), and whether the

6http://www.ietf.org/rfc/rfc3987.txt
7http://ns.inria.fr/prissma/v2/prissma_v2.html

1192 VOLUME 6, 2018

R. Stojanov et al.: LDA Platform

TABLE 1. Flexibility authorization design principles coverage.

approach supports combination of the requester’s properties
with the data (column RD). This group of columns repre-
sents the context-data-requester association consideration.
Only [11] and [13] are able to link all properties and evidences
together. The Proteus framework [11] activates the context
based on description logic and logical programming rules,
which links the requester to the data and the context. The
work in [13] uses the Protune policy language [32] to define
policies that implicate an allowed or denied triple based on a
basic graph pattern matching. In [24] and [25], the policies
are defined in the Semantic Web Rule Language (SWRL)
[33], which enables combining the requester’s properties with
the data. A policy format with similar expressiveness to
SWRL is employed in [20]. The work in [21] links the static
context information with the requester’s properties through
a SPARQL query [34], [35] assigned to the activation pol-
icy’s property. The policy languages that do not link the
requesters’ properties to the data usually have policy activa-
tion phase [10], [15], [17], [21], [22], which depends on the
requester and the action it intends to execute. This activation
phase selects the applicable policies that are later enforced.
The enforcement phase can filter only the permitted data [13],
[15]–[18], [20], [21], [24], [25], or it can allow or deny the
requested action as a whole [10], [11].

The rest of the authorization principles are only marginally
covered in the reviewed literature, and therefore, they are
omitted in Table 1. The conflict resolution consideration is
considered only in [13], [16], and [21]. All these approaches
are using strategy for conflict resolution where the deny
policies have higher precedence than the allowing one, or
vice versa. However, the default strategy does not provide
conflict resolution flexibility since the policy administrator
cannot specify precedence of the policies. Custom algorithms
for conflict resolution [15] partially solve this problem, but
they are complex and require extensive testing and validation.
The policy priorities [11], [36] provide the most flexible way

of conflict resolution and are closest to the way people resolve
conflicts.

The conflict detection is also required to detect require-
ment anomalies and to resolve them before a damage is
made. Rules for policy anomaly detection able to detect
contradiction or conflict are defined in [19], but their pol-
icy language lacks flexibility and the policy correspondence
to the requirement is not considered. Similarly, in [31], a
safety and consistency of the policies is considered through
their interactions. Regarding protected data coverage,
Flouris et al. [16] and Oulmakhzoune et al. [18] consider
conflicts and policy data coverage, but they only discuss the
default protection mechanisms for the guarded data and do
not present this information during the policy maintenance.

Besides the flexibility, the correctness of the policies is
rarely considered in the reviewed platforms. A methodology
for implementation correctness validation of query rewriting
authorization frameworks is proposed in [15], but it is not
suitable for design time policy validation against the require-
ments. The policy language should enable designing tools
that provide policy testing so that one can validate whether
they meet the requirements they are designed for.

Themain challenge that remains open is providing a design
time validation of the policy correctness, while enabling flex-
ibility to represent the natural language requirements. In this
direction, the system presented in [13] uses themost complete
policy language – Protune [32]. However, this system protects
only the read operations and is unable to protect the data
graph and dataset memberships. The authors do not discuss
conflict detection and resolution. Only Kirrane [15] validates
the implementation correctness of their authorization system,
but they do not provide design time testability and correct-
ness validation. In emergency situations, context awareness
is of crucial importance for the data owner. In such scenar-
ios, emergency policies should override the default system
behavior and expose the sensitive private information to the

VOLUME 6, 2018 1193

R. Stojanov et al.: LDA Platform

FIGURE 2. LDA platform architecture.

parties that can help the data owner. Moreover, exposing
aggregated information that hides the sensitive personal infor-
mation can enable emerging of new and more advanced
crowd sourced services that will improve the quality of life
in general. To the best of our knowledge, there is no policy
language that provides this kind of protection. Our work aims
to fill in the gaps of the existing approaches by proposing a
flexible and complete LDA platform that covers all settled
design principles in §II.

IV. LDA PLATFORM ARCHITECTURE
The goal of the LDA platform is to enforce the clients’ secu-
rity requirements represented in the platform as policies. The
architecture of the LDA platform is shown in Fig. 2. The LDA
platform protects the guarded dataD (Definition 2) by enforc-
ing the protection requirements represented by the security
policies (Definition 5). The Intent (Definition 3) describes
the action that the requester is attempting to execute, which,
at some point, should interact with the guarded data D.
Figure 3 (a) shows the allowed data (Definition 4) syn-
thesized by the enforcement module for multiple activated
polices, which is a subset of the guarded data, while
Figure 3 (b) additionally shows that the enforcement module
filters and returns only the allowed portion of the requested
results (denoted with IR).

FIGURE 3. Data protection per intent.

One of the central components of the platform is the Intent-
Provider component that we designed to extract the Intent I
from the available evidences in the platform (usually describ-
ing the requester, environment and action). This component
provides context awareness by embedding dynamic context
evidences in the Intent I. Additionally, the IntentProvider is
tightly coupled with the authentication process and it extracts
the evidences presented after the requester is authenticated.
The idea of the Intent component is based on our analysis
on various distributed multiprocessing platforms that store
and generate much of the todays data, especially the Android
operating system Intent8 component. The Android’s Intent
concept provides a flexible way of expressing both user inten-
tion and its environment, so we adopted this data structure in
order to represent the requester’s intention in the Linked Data
management platforms. In the LDA platform, the Intent I
is implemented as a set of RDF triples that describes the
context in which the intended action executes, including the
operation, the action parameters, the requester with its envi-
ronmental evidences and the event that invoked the action.
Additionally, the term intent is preferred because it represents
the implicit user intention, but it is uncertain whether it will
be permitted, denied or partially executed.

The enforcement module executes the algorithms that
ensure the authorized interaction with the underlaying data.
We defined separate enforcement algorithm for each oper-
ation, where the operation is executed against previously
constructed allowed data (Definition 4) for the intent. The
policies used to construct the allowed data are selected based
on the requested operation and Intent I. In the LDA platform,
the allowed data is stored in temporal dataset. Unlike the
approaches in [16], [24], and [25], which create a ‘‘protected
graph’’, we create temporal dataset in order to preserve the
structural organization of the data without loosing any infor-
mation. Once the enforcementmodulefinishes processing and
filtering of the data, the allowed data (if any) is transfered
to the ResultInterpreter component, which transforms the
results in the requested form based on the Intent I. The
ResultInterpreter additionally inserts the activated policies as
an explanation of the result. When the operation is denied as
a whole, the enforcement module throws an exception, which
is serialized by the ResultInterpreter.
The enforcement module behavior and the legitimate pro-

tection depend on the policy correctness. The policy man-

8https://developer.android.com/reference/android/content/Intent.html

1194 VOLUME 6, 2018

R. Stojanov et al.: LDA Platform

agement module supports the design time policy correctness
validation and provides conflict detection, standalone policy
testing, policy protection per intent, and overall protected
and unprotected data extraction. This module is valuable tool
for the data owners and simplifies the policy maintenance
process.

In order to support maintainability and correctness vali-
dation, we make an effort to formally define the LDA plat-
form and policy language. The formal definitions enable
the design of the transformation algorithms for standalone
policy testing, conflict detection and protected/unprotected
data extraction, all used in the policy management module.
Definition 1: Linked data authorization (LDA) platform

is represented by the tuple 〈D, I,P〉, where D is the guarded
data, I is the requester’s Intent and P is the set of the policies
defined in the platform.
Definition 2: Guarded data (D) is a set of tuples
〈S,P,O,G,DS〉 that defines the RDF triples 〈S,P,O〉 ∈
(I ∪ B)× (I ∪ B)× (I ∪ B∪ L) logically organized in graphs
G, physically stored in datasets DS. I ,B and L represent the
sets of all Internationalized Resource Identifiers (IRI), blank
nodes and literals, respectively.
Definition 3: Intent (I) is a semantic representation of the

requester’s intention, composed of multiple RDF triples.
Definition 4: Allowed data is the largest subset of the

guarded data D that is permitted for the intent I by the
policies P.

A. POLICY LANGUAGE
A policy (Definition 5) specifies the affected data after the
intended action is executed. The intended action may involve
multiple operations that should be constrained by the pol-
icy. READ operation policies define the data that can be
obtained from the guarded data D, while the modification
operation policies (INSERT andDELETE) define the allowed
state of the guarded data D after the operation is executed.
MANAGE operation policies describe whether the operation
should be allowed or not. In this way, the policies are easier
to comprehend, define and validate against the requirements.
Depending on the operation, the activated policies define
whether the action will be rejected, allowed or it will have
restricted access to the allowed data.
Definition 5: Policy is a tuple of the form 〈ε, o, q, ϕi, ϕd , ρ〉,

where:
• ε ∈ {allow(+), deny(−)} is the permission for interac-
tion with the policy’s protected data D(I,p)

• o ∈ {READ, INSERT ,DELETE,MANAGE} is the
intended operation

• q is a tuple of four variables used to project the extracted
variable bindings into protected data quads9 D(I,p).

• ϕi and ϕd are predicate functions used for variable
extraction from the Intent I and the guarded data D.

• ρ is a priority used for conflict resolution.

9Quad is essentially a triple with additional element that denotes the graph
in which it belongs. It is a four element tuple.

Definition 6: Predicate function ϕ(t1, . . . , tn) is an n-ary
function that returns true if the terms ti ∈ T = I∪B∪L∪{nil}
satisfies its predicates, where n = |vars(ϕ)|. vars(ϕ) extracts
the set of variables defined in the predicate function ϕ, while
vars(ϕ, i) returns the variable expected as i-th argument in
the ϕ function.
The protected data by a single policy depends on the

Intent I and is a subset of the guarded data D. Definition 7
describes how this data is obtained for a given policy p and
Intent I.
Definition 7: Policy protected data D(I,p) for Intent I and

policy p = 〈ε, o, q, ϕi, ϕd , ρ〉 is a set of quads obtained as a
result of the expression:
D(I,p)

= π (q, σ (ϕi, I, ϕd ,D))
Definition 8: Variable evaluation function σ (ϕ1,D1,

ϕ2,D2) extracts a set of term tuples from D1 ∪D2 that satisfy
the predicate functions ϕ1 and ϕ2 such that:

σ (ϕ1,D1, ϕ2,D2)
= {(t1, . . . , tm+n) |
m = |vars(ϕ1)| ∧ n = |vars(ϕ2)|
∧ϕ1(t1, . . . , tm) = true ∧ ϕ2(tm+1, . . . , tm+n) = true
∧∀i ∈ [1..m], ∀j ∈ [m+ 1..m+ n]⇒
ti ∈ D1 ∧ tj ∈ D2

∧ vars(ϕ1, i) = vars(ϕ2, j)⇒ ti = tj
}.

Definition 9: Variable projection function π (vd , vs, t)
restricts the set of term tuples t that correspond to the vari-
able names vs to the tuples that correspond to the variable
names vd such that m = |vd |, n = |vs| and:

∀(t ′1, . . . , t
′
m) ∈ π (vd , vS , (t1, . . . , tn))⇒

∀j ∈ [1..m]⇒ t ′j =

{
ti, ∃vd [j] = vs[i]
nil, otherwise

According to Definition 7 and Definition 8, the protected
data is obtained by first extracting the set of tuples (t1, . . . , tm)
from the Intent I that satisfy the conditions in ϕi, the set
of tuples (tm+1, . . . , tm+n) from the guarded data D that sat-
isfy the conditions in ϕd , and then joins them based on the
expression vars(ϕ1, i) = vars(ϕ2, j) ⇒ ti = tj. Next, the
projection π from Definition 9 reduces these results to four-
element tuples that correspond to the variables of interest
in q. An example that illustrates this formalism on a real case
sample data is shown in §V.

1) POLICY COMBINATION
In every non-trivial system, there are multiple require-
ments represented by policies. In such case, it is pos-
sible that multiple policies are activated for the same
Intent, and hence, their protected data needs to be
combined.

The operator� determines how the data from two policies
is combined. When two policies have the same permission,
their protected data is combined together with the union

VOLUME 6, 2018 1195

R. Stojanov et al.: LDA Platform

operator ∪, preserving the permission. In the opposite case,
the protected data by the second policy is removed from
the protected data by the first policy using the set minus
operator \, keeping the permission of the first policy.
Definition 10: Protected data combination � is a binary,

non-commutative operator which combines the protected
data of two policies with the same operation p1 =

〈ε1, o, q1, ϕi1, ϕd1, ρ1〉 and p2 = 〈ε2, o, q2, ϕi2, ϕd2, ρ2〉 as
follows:

〈ε1,D(I,p1)〉 � 〈ε2,D(I,p2)〉

=

{
〈ε1,D(I,p1) ∪ D(I,p2)〉, ε1 = ε2

〈ε1,D(I,p1) \ D(I,p2)〉, ε1 6= ε2

Definition 11: Allowed data extraction functionα(I,D,P)
is a function that outputs the subset of the guarded dataD that
is allowed for a particular Intent I, using the LDA platform
configured policies P, such that:

α = α(k)

α(i) = α(i−1) � 〈εi,D(I,pi)〉

α(0) =

{
〈ε+,∅〉, ε1 = +

〈ε+,D〉, ε1 = −

where

P = {pi = 〈εi, oi, qi, ϕii, ϕdi, ρi〉 | i ∈ [1, k] ∧

∀j ∈ [2, k]⇒ ρj−1 ≤ ρj}

Definition 11 states that the allowed data function α

extracts all the data from the guarded data D that is available
for a given Intent I and allowed by the entire set of LDA plat-
form configured policiesP. The policy’s protected dataD(I,p),
on the contrary, contains only the quads that are allowed or
denied by a single policy for a given Intent I. The function α
actually combines the protected data of every policy using the
� operator, considering the policy priorities ρ. The α = α(k)

equation denotes that the allowed data for the Intent I will
be the result obtained after the highest priority policy pk is
applied. The α(i) = α(i−1) � 〈εi,D(I,pi)〉 defines an ordered
processing of the policies, because ∀j ∈ [2, k]⇒ ρj−1 ≤ ρj.
Since the operator� always takes the permission from its first
argument, α(0) is used to force the allowed data as result of
α(1), while α(i) = α(i−1) � 〈εi,D(I,pi)〉 is used to propagate
this permission to the final result. For example, if the lowest
priority policy p1 allows access, α(1) = 〈ε+,∅ ∪ D(I,p1)〉 =
〈ε+,D(I,p1)〉, i.e., nothing is allowed at the beginning, and the
allowed data is extended with the next policy. In the opposite
case, when p1 denies access, α(1) = 〈ε−,D \ D(I,p1)〉, i.e.,
everything is allowed at the beginning, and the allowed data
is reduced by the next policy.

2) POLICY LANGUAGE SYNTAX
The role of a policy language is to provide a syntax that will
support the policy formalism. The policy language should
be designed to correspond to the policy formalism, while
simplifying the requirement transformation into policies. Our

Listing 1. Policy language definition with first order logic using prologue
syntax.

policy language extends the SPARQL syntax for policy def-
inition. The SPARQL extension is used in order to make the
policies more readable and understandable, without mixing
more syntaxes, which is the case in [21], [22], and [25]. The
large amount of SPARQL resources makes the core of our
policy language easier to understand and learn. The addi-
tional parts introduced in our policy language, on the top of
SPARQL syntax, are the permission, operation, priority and
the dataset elements, which are simple and do not introduce
much complexity.

The first order logic definition of the SPARQL extension in
our language10 is shown in Listing 1. The permission element
defines whether the policy allows or denies the operation
and corresponds to the ε element of the policy formalism in
Definition 5. The operation element is composed of one of the
operation keywords opKeyword that defines the operation o,
optionally followed by a quad pattern that specifies the pro-
jection variables q. Although our formalism does not explic-
itly support MODIFY operations, in order to provide better
maintainability, we added this operation in our language for
convenience. Nevertheless, the MODIFY operation policies
are formally represented by separate INSERT and DELETE
operation policies.

Our policy language takes advantage of the SPARQL
expressiveness for data selection which is used to specify
the policy protected data D(I,p) in Definition 5. The policy
language selection part is a valid SPARQL element that out-
puts variable bindings and corresponds to the σ (ϕi, I, ϕd ,D)
function. The predicate function ϕi is specified as SPARQL
GRAPH element,11 while ϕd is specified as SPARQL group

10The reused parts from the original SPARQL specification are referenced
by their URL. The <#something> elements from the definition should be
replaced with <https://www.w3.org/TR/sparql11-query/#something>.

11https://www.w3.org/TR/rdf-sparql-query/#rGraphGraphPattern

1196 VOLUME 6, 2018

R. Stojanov et al.: LDA Platform

graph pattern.12 They are both used to extract variable bind-
ings: the former from the implicitly managed named graph
that represents the Intent I, while the later, from the dataset
against which the query is executed D. The policy language
quad pattern defines the four variables of interest from the
solutions obtained by the σ function. The LDA platform
uses these solutions to construct a set of quads that will
represent the protected data quads D(I,p). In this way, the
administrators can specify an arbitrary resource, triple, quad
or graph that should be protected and test the selection against
their guarded data D.
The priority element is used for conflict resolution. We use

this approach since it is closest to the way people resolve
the conflicts in the requirements. They either add another
meta-policy that has higher priority compared to the others,
or just tell that one of the requirement is more important than
the others. Both cases can be modeled with policy priorities
where the policies with higher priority are overriding the
results of those with lower priority.

One of the key features of the semantic data is its inter-
operability and re-usability. In order to follow this trend,
our policy language is capable of defining policies that can
protect multiple datasets through the datasets element. This
feature encourages distributed data storage and enables defi-
nition of policies that will protect this data. The datasets are
represented by their dereferencable IRI, which is a downside
from a maintainability point of view because all IRIs should
bemanually provided. The absence of this elementmeans that
the policy applies to all datasets.

B. ENFORCEMENT MODULE
The goal of the Enforcement module is to ensure interac-
tion only with the allowed data for a given intent. It uses
partial data filtering strategy [23] and generates temporal
dataset against which executes the operation. The operation
determines the behavior of the Enforcement module. When
read operation is executed, the results are either filtered or
conditionally returned. Insertion of new data and removal of
existing data requires validation if the data is allowed for the
given Intent. The allowed data extracted with the function α
is always constructed from the policies that protect the given
operation.

Depending on the Intent and the data sensitivity, the oper-
ations may be executed against the allowed data extracted
with the function α from Definition 11 or they can be
allowed or denied conditionally. Based on the action’s con-
figuration, in the process of conversion of available evi-
dences into an Intent I, the IntentProvider embeds the infor-
mation weather partial results are allowed or not. When
partial results are not allowed, the LDA platform throws
an exception when some part of the requested data is
denied, i.e., it conditionally rejects the requested data without
filtering it.

12https://www.w3.org/TR/rdf-sparql-query/#rGroupGraphPattern

1) POLICY ALIGNMENT
The policies defined in the LDA platform can use arbitrary
variable names. The LDA platform aligns the policies by
unifying the variable names that refer to the same resources,
which is useful in the processes of policy combination, con-
flict detection and overall data coverage estimation. The pol-
icy alignment starts by renaming all variables in the policies
with globally unique variable names. Then, the policies’ quad
patterns q are aligned, providing that the same variables are
used for the protected quads. We use the quad pattern q0 =
(?s, ?p, ?o, ?g) to unify all policies’ projections q. In this
process, each policy variable that occurs in the quad element
is replaced in the policy’s predicate functions ϕi and ϕd with
the corresponding variable from q0.
Next, the triple patters from the predicate functions ϕi

are aligned against each other. The variables that occur at
the same position in the quad patterns that are ‘‘equivalent’’
are aligned by replacing the corresponding variables. The
equivalent quad patterns are either the same or differ only in
the variable names at the corresponding triple’s positions.

This step is executed for each pair of policies, starting from
the policies with the lowest priority.

2) ALLOWED DATA EXTRACTION
In the LDA platform, the allowed data is stored in temporal
dataset since it is composed of multiple quads returned by the
policies’ protected data D(I,p). Thus, we achieve execution of
the requested queries in their native form, without modifica-
tion. In the cases when a ‘‘temporal graph’’ is used [16], [24],
[25], the queries containing GRAPH element should be trans-
formed in order to obtain the permitted results, usually by
removing the GRAPH elements in the query. This querymod-
ification looses information and often may produce incorrect
results.

Algorithm 1 describes the implementation of the allowed
data extraction function α fromDefinition 11 and the creation
of the temporal datasetDStmp. The policies in P are aligned as
described in §IV-B1 and sorted by their priority in ascending
order. Since the SPARQL query language supports combin-
ing the elements using UNION and MINUS operations, the
allowed data α is constructed with a single query.

According to Algorithm 1, the Intent is first registered
(line 1) by inserting the Intent’s data I in a newly created
named graph <http://intent/{id}>, where the {id} is sequen-
tially generated in order to enable concurrent Intent pro-
cessing. The registerIntent(I,D,P) additionally replaces the
<http://intent> string with the newly created graph name
in every policy from P and returns a set of modified poli-
cies P′. Next, the SPARQL’s WHERE expression W is ini-
tialized depending on the lowest priority policy permission
p1.permission. The initialization of α0 from Definition 11
(lines 2-5) uses the quad pattern ϕ0 = { ?s ?p ?o ?g },
which matches every quad from the guarded data D, and ϕ∅,
which is an empty predicate function that has no variables and
does not select any data. Afterwards, all policies from P′ are

VOLUME 6, 2018 1197

R. Stojanov et al.: LDA Platform

Algorithm 1 Generating Temporal Dataset
Data: I, D, P
Result: DStmp

1 P′:=registerIntent(I,D,P);
2 if p1.permission = ALLOW then
3 W := {ϕ∅};
4 else
5 W :={ϕq0};
6 foreach p in P′ do
7 if p.permission = ALLOW then
8 W :=W UNION {p.WHERE} ;
9 else
10 W :=W MINUS {p.WHERE} ;
11 end
12 varMappings:=execute(W ,D);
13 DStmp:=asQuads(varMappings, q0);
14 return DStmp.

processed (lines 6-11). When a policy has allow permission,
the content of its WHERE element13 is appended using the
UNION operation (line 8). In the opposite case, the MINUS
operation is used (line 10). After all policies from P′ are
processed, the resultingWHERE element is executed against
the guarded data D to extract the variable mappings (line 12).
The extracted variable mappings for q0 are transformed into
quads in order to form the resulting temporal dataset DStmp
(line 13).

After the temporal dataset is created, all operations are exe-
cuted against it. Since this dataset contains only the allowed
data, it provides implicit security, meaning that the queries do
not interact with the data which is not allowed.

3) READ OPERATION PROTECTION
The READ operation is used to extract data of interest
that satisfies certain criteria, specified by a query Q(D)
that can be executed against multiple datasets D. However,
when requester authorization is required, the read operation
additionally depends on the Intent I and on the configured
policies P in order to determine the allowed data.

Definition 12 formalizes the outcome of the read opera-
tions, showing that the allowed data for the query should
be obtained by its execution against the allowed data. The
conditional equation in Definition 12 refers to the scenario
where no data filtering is involved. This protection may be
required when result consistency is needed. In this case, the
read operation is allowed only if the protected results R(I,Q)
are the same as the query results executed against the original
data.
Definition 12 (Read Protection):

a) partial: R(I,Q) := Q(αread (I,D,P))
b) conditional: Q(D) = R(I,Q)

13p.WHERE denotes the content of the policys’s WHERE element that
represents σ (ϕi, I, ϕd ,D).

This approach allows implicit protection even when the
requester is aware of the data structure and is able to exe-
cute multiple probing queries with malicious intention. The
correctness of Definition 12 is confirmed in [15], where the
allowed data is used as baseline for proving that a query
rewriting algorithm is secure.
Our LDA platform executes each query against the tem-

poral dataset that represents the allowed data for reading
αread , which is constructed using only the policies with read
operation.

4) DELETE OPERATION PROTECTION
The delete operation usually requests a set of quads to be
deleted from the existing data, defined directly or with a
query that selects the quads for removal. As Definition 13
shows, only the permitted data should be deleted in the partial
deletion scenario. Since the data is already present in the
dataset, the allowed data function αdelete will return the exist-
ing quads that are allowed for removing, and the intersection
with the requested one gives what can be deleted after the
enforcement process. When the data consistency should be
preserved, which is the most often case, all requested data
must be permitted.
Definition 13 (Delete Protection):
a) partial: D(I, qd) := qd ∩ αdelete(I,D,P)
b) conditional: qd = D(I, qd)
For each delete operation, our LDA platform checks if the

quads are present in the temporal dataset constructed from the
delete operation policies. If partial removal is allowed, only
the quads that are found in this dataset are removed. In cases
when SPARQL query is used to define the data that should
be removed, this query is first executed against the permitted
dataset for the read operations, and the resulting quads are
filtered in the permitted dataset for deletion.

5) INSERT OPERATION PROTECTION

The INSERT operations usuallymodify the state of the dataset
and receive a set of quads to be created (di) in addition to
the Intent. Since most of the platforms have some consis-
tency assumptions, the conditional protection will be themost
common way of inserting data, where all the quads requested
for creation should be approved. Such an example are the
relational databases that constrain the data with their model.
However, there also exist platforms with looser constrains
that may allow partial data entry. In this case, the partial data
allowed for insertion is I (I, qi) from Definition 14.
Definition 14 (Insert Protection):
a) partial: I (I, qi) := qi ∩ αinsert (I,D ∪ qi,P)
b) conditional: qi = I (I, qi)
Since the policies describe the final state of the dataset after

the interaction is executed, the permitted data function αinsert
selects the allowed consequences of the insert operation.
This data is used to select which of the requested quads for
insertion are allowed with I (I, qc). When data consistency is
required, the conditional equation in Definition 14 shows that

1198 VOLUME 6, 2018

R. Stojanov et al.: LDA Platform

the operation will be allowed only when all requested quads
are permitted for insertion.

Our LDA platform first inserts the requested quads for
creation qi in the original dataset, and then, constructs the
allowed data for insertion. Next, every quad from qi that is
not present in the allowed dataset for insertion is removed
from the original dataset. The entire process is executed in a
single transaction.

6) MANAGE OPERATION PROTECTION

The atomic managing operations are interacting with graph
arguments embedded in the Intent as operation parameters.
Partially allowing this kind of operations is impossible since
they often require graph creation, deletion, coping or moving,
which are either allowed or denied. The policies are processed
starting from the highest priority towards the lowest. The
permission of the first policy (which is with highest priority)
that will return result is considered as final. The query exe-
cuted for each policy is constructed with the transformation
Task (shown in Listing 3) and it returns whether the policy
should be activated or not. Since the business actions are also
described through the Intent, the same procedure is used for
their protection.

C. AUTHORIZATION PRINCIPLES SUPPORT IN THE LDA
PLATFORM

The LDA platform is designed to support all authoriza-
tion design principles defined in §II. Table 2 summarizes
the components and features that support the Flexibility,
Maintainability, Correctness validation and Understandabil-
ity principles. The policy language is designed to cover all
flexibility aspects discussed in §II. In order to increase the
understandability, our policy language is based on the W3C
standardized SPARQL language, and hence, the policies can
be easily transformed into SPARQL queries that can be exe-
cuted against the guarded dataD, which simplifies theirmain-
tainability. The IntentProvider component provides dynamic
context representation, which is important part of the flexibil-
ity principle. The Enforcement module uses temporal datasets
which ensures correct protection [15] and provides implicit
security. The policy transformation algorithms denoted as
Policy to SPARQL, Policy coverage, Minimal Intent Bind-
ing, Conflict detection and Protected/Unprotected data are
employed in the Policy management module and can be exe-
cuted in design phase. They simplify the maintenance process
and can be used to validate that the guarded data is properly
protected.

1) POLICY TO SPARQL

With this transformation algorithm, each policy becomes
a regular SPARQL query that can be executed for a
given Intent I. The resulting queries are used in the
Enforcement Module during the guarded data protection.
Additionally, these queries enable performing automated pol-

TABLE 2. Authorization design principles support in the LDA platform.

Listing 2. Tselect : Policy transformation into SPARQL SELECT query.

Listing 3. Task : Manage policy transformation into SPARQL ASK query.

icy tests through standalone policy testing.
The transformation in Listing 2 applies to the READ,

INSERT, DELETE andMODIFY operation policies, while the
transformation in Listing 3 applies to the MANAGE opera-
tion policies. With the first transformation, Tselect , the policy
becomes a regular SPARQL SELECT query that first extracts
the variable bindings from the Intent graph that meet the ϕi
conditions, and then, joins them with the solutions for ϕd .
The variable of interest are returned with the SELECT q part.
We rely on the SPARQL’s algebra [37], which is similar to the
relational algebra [38], as an implementation for the variable
extraction σ and the projection function π .
Similarly, the transformation Task shows how the

MANAGE operation policies can be transformed into
SPARQL ASK queries that answers whether there is match-
ing data for the selection conditions.

2) POLICY COVERAGE

When the data owner is interested in the overall data protected
by a policy, no mater what the Intent is, it can use the query
in Listing 4 to determine its coverage. The policy coverage
is independent on the Intent and returns a subset from the
guarded data D that satisfies the variable predicate func-
tion ϕd . Formally, the policy coverage can be represented as
π (q, vars(ϕd), σ (ϕ∅,∅, ϕd ,D)), where ϕ∅ is an empty predi-
cate function that has no variables (vars(ϕ∅) = ∅) and always
evaluates to true.
This transformation is very important for the policy design

VOLUME 6, 2018 1199

R. Stojanov et al.: LDA Platform

Listing 4. Tpolicy_coverage: All the data protected by a policy.

Listing 5. Minimal intent binding extraction.

process since it provides a preview of the data covered by the
policy and enables the policy designer to validate if all the
data of interest is included.

3) MINIMAL INTENT BINDING EXTRACTION

Constructing an Intent that will activate the policy is a straight
forward task because, if each variable from the policy’s ϕi ele-
ment is replaced by an arbitrary resource, the resulting triples
will form an Intent that will activate the policy. However, this
Intent does not guarantee that the policy will protect any data
D(I,p), so we have to carefully choose the resources. Finding
an Intent that will result in non-empty protected data D(I,p)

may require writing of many additional queries. Therefore,
the goal of Minimal Intent Binding extraction is to find all
the Intents that result in non-empty protected dataD(I,p)

6= ∅.
This transformation algorithm is the base of conflict detection
and protected data per minimal intent extraction algorithms.
Definition 15: Minimal intent binding extracts the vari-

able mappings that satisfy only the guarded data predicate
function ϕd and selects only the variables that occur in both
predicate functions (ϕi and ϕd):

π (vars(ϕi) ∩ vars(ϕd), vars(ϕd), σ (ϕ∅,∅, ϕd ,D))

The Minimal Intent Binding extracts only the variables
from ϕi that influence the protected data extraction, i.e., the
variables that occur both in ϕi and ϕd . The variables that
occur only in the predicate function ϕi are not considered
because they only contribute to policy activation, but do not
constrain the protected data D(I,p). Therefore, we use the
empty predicate function ϕ∅ so that σ extracts only the solu-
tions that satisfy ϕd . The Minimal Intent Binding restricts the
variables of interest to vars(ϕi)∩ vars(ϕd). Listing 5 presents
the structure of the SPARQL query that extracts all Minimal
Intent Bindings.

This transformation can help the data owners to choose
appropriate Intents for policy testing. All the possible Intents
can be obtained by replacing the variables vars(ϕi)∩vars(ϕd)
in every triple from ϕi with the corresponding Minimal Intent
Bindings solutions, whereas the variables vars(ϕi) \ vars(ϕd)
are replaced with blank nodes.

Listing 6. Policy’s protected data per minimal intent binding.

Moreover, the Minimal Intent Binding extraction can be
used to detect anomalies in the policy definition. An anomaly
can be detected when vars(ϕi) ∩ vars(ϕd) 6= ∅ and the
Minimal Intent Bindings extraction query does not return
any results. In this case, the policy will never be activated,
meaning that it is obsolete and should be reexamined.

Listing 6 shows a query that selects the protected dataD(I,p)

for each Minimal Intent Binding represented by the variables
from vars(ϕi) ∩ vars(ϕd). The policy’s predicate function ϕd
selects the data for all possible Intents, and the ORDER BY
element brings together the protected data per Intent.

4) CONFLICT DETECTION

When allow and deny permissions are allowed in the policies,
conflicts may occur. Conflict detection in design phase is
not a trivial task since the policy’s protected data D(I(c),p)

depends on the conflicting Intent I(c), the content of which
is not known in advance. Therefore, the conflict detection
process should find the conflicting Intents I(c) for which
there are two policies with opposite permission that protect
the same data. The output of the conflict detection process
must be comprehensive in order to provide simpler conflict
resolution. Definition 16 shows that two policy are in con-
flict when they have opposite permissions and protect the
same data.
Definition 16: Two policies p1 = 〈ε1, o1, q1, ϕi1, ϕd1, ρ1〉

and p2 = 〈ε2, o2, q2, ϕi2, ϕd2, ρ2〉 are in conflict if ε1 6= ε2
and there is a conflicting Intent I(c) for which D(I(c),p1) ∩
D(I(c),p2) 6= ∅.

Definition 17 shows that the conflict detection process
should be able to extract the Minimal Intent Bindings for
which the conflict occurs and to output them together with
the conflicting data. In this way, the data owners can react in
the design phase to prevent unwanted consequences through
the conflict resolution process.
Definition 17: For a given guarded data D, the con-

flict detection process accepts two aligned policies p′1 =
〈ε1, o1, q0, ϕ′i1, ϕ

′

d1, ρ1〉 and p
′

2 = 〈ε2, o2, q0, ϕ
′

i2, ϕ
′

d2, ρ2〉

and searches for Minimal Intent Bindings that form con-
flicting Intent I(c) and conflicting data portion D(c)

:=

π (q0, σ (ϕ′i1, I
(c), ϕ′d1,D)) ∩ π (q0, σ (ϕ

′

i2, I
(c), ϕ′d2,D)) that

satisfies D(c)
6= ∅.

When two policies are in conflict, Definition 16 implies
that there should exist a conflicting Intent I(c) that will acti-
vate them both i.e. I(c) satisfies both ϕ′i1 and ϕ′i2, which
leads to σ (ϕ′i1, I

(c), ϕ′i2, I
(c)) 6= ∅. The variables extracted by

the previous expression are vars(ϕ′i2) ∪ vars(ϕ
′

i2). Since the

1200 VOLUME 6, 2018

R. Stojanov et al.: LDA Platform

Listing 7. Conflict detection transformation.

Listing 8. Overall protected data.

Minimal Intent Bindings for a single policy are represented
by the variables vars(ϕi)∩ vars(ϕd), the conflicting Minimal
Intent Bindings are represented by vars(ϕ′i1) ∩ vars(ϕ

′

d1) ∪
vars(ϕ′i2) ∩ vars(ϕ

′

d2). Additionally, as the policies p′1 and
p′2 are aligned, their protected data is represented by the
variables in q0. Listing 7 shows the query that selects π (q0 ∪
vars(ϕ′i1) ∩ vars(ϕ

′

d1) ∪ vars(ϕ
′

i2) ∩ vars(ϕ
′

d2), vars(ϕ
′

d1) ∪
vars(ϕ′d2), σ (ϕ

′

d1,D, ϕ
′

d2,D)). The grouping gathers together
the conflicting data D(c) for the same conflicting Minimal
Intent Binding I(c).

5) PROTECTED/UNPROTECTED DATA

In §IV-C2, we showed a transformation that obtains the data
covered by the policy. This transformation can be generalized
to obtain the overall protected and unprotected data in the
platform. Listing 8 shows a query that returns the overall
protected data in the platform. All aligned policies p′i ∈ P (i ∈
[1..k], k = |P|) are combined together using the SPARQL
UNION element.

A query that obtains overall unprotected data is shown
in Listing 9, where ϕq0 is a predicate function that uses
the variables from q0 in order to denote the selection of
every quad from the guarded data D. This query removes
the protected data selected in Listing 8 from the guarded
data D using the SPARQL’s MINUS element. The result of
this query represents an important tool for validation of the
authorization completeness - when there is unprotected data,
the data owners will be alerted in the very policy design
phase.

V. PLATFORM IMPLEMENTATION AND VALIDATION
In order to validate the implementation of the LDA plat-
form, we developed a fully functional prototype implemen-
tation. Additionally, we developed secured query execution

Listing 9. Overall unprotected data.

Figure 4. LDA platform secure query execution.

console (Figure 4)14 for interactive testing of the platform.
This interactive console provides submission of an arbitrary

14http://lda.finki.ukim.mk

VOLUME 6, 2018 1201

R. Stojanov et al.: LDA Platform

Figure 5. LDA technology implementation stack.

query against the LDA platform guarded data in a user con-
figurable context. The Context button in Figure 4 opens a
modal window, where the user specifies the context evidences
in Resource Description Format (RDF) format.15 The data
from the console is sent to the IntentProvider component
that parses this data, creates an Intent and sends the Intent
to the enforcement module, which ensures interaction with
the allowed data only. In case of a read query, the Results
Interpreter serializes the allowed results and sends them back
to the user. Additionally, in order to support and simplify
the policy administration, we developed a user interface that
exposes the functionalities of the policy management module
(Figure 6).

A. TECHNICAL IMPLEMENTATION DETAILS

The main challenge of the LDA platform is the design of
an extendable and modular architecture independent on the
authentication mechanism, capable of flexible authorization
and security policy management. In order to meet the mod-
ularity requirement, the LDA platform utilizes the Spring
Framework, as shown in Figure 5. All semantic operations
are implemented using the Apache Jena Library [39], which
is mainly used in the authorization enforcement and policy
management processes.

The second layer in Figure 5 displays the modules that
support the enforcement module which runs the authoriza-
tion algorithms. The Intent provider module has a key role
in the context aware authorization. The current implemen-
tation of the Intent provider module relies on the state of
the art Spring Security [40] library which provides multi-
ple authentication mechanisms. The current IntentProvider
implementation uses theWebID authentication protocol [41],
[42]. However, due to the configurability that the Spring
Security library provides, the IntentProvider component can
be easily modified to use another AuthenticationProvider and
to extract the Intent based on other authentication protocol,
such as OAuth protocol,16 X509 certificates,17 Basic Authen-

15https://www.w3.org/TR/rdf11-concepts/
16https://tools.ietf.org/html/rfc6749
17https://tools.ietf.org/html/rfc5280

Figure 6. Policy management module.

tication18 and many others. The policy management module
enables the maintenance process and correctness validation.
The PolicyProvider returns the policies based on the oper-
ation being executed and the dataset it is intended for. The
PolicyTransformationService is used to extract the parts of
the policies using the Jena API and it implements the transfor-
mation algorithms described in §IV-C. The result interpreter
module serializes the results in the requested format and
appends the query used to create the temporal graph as an
explanation.

Figure 5 also shows that the enforcement module exposes
the AuthorizationProcessor interface, which accepts the sub-
mitted query that should be protected, the Intent, the dataset
against which the query should be executed and an imple-
mentation of the ResultInterpreter interface. The Abstrac-
tAuthorizationProcessor first inserts the Intent in the dataset
as a separate named graph, than delegates the execution
to the specific operation implementation, and eventually,
removes the named graph for Intent. Since the Dataset
implementations in Jena provide transactions, this process
is executed in a single transaction. All operation imple-
mentations constructs in-memory temporal dataset, but this
behavior can be changed with different DatasetProvider
implementation.

18https://tools.ietf.org/html/rfc2617

1202 VOLUME 6, 2018

R. Stojanov et al.: LDA Platform

Figure 7. Example dataset.

Figure 8. Ontology.

B. PLATFORM USE-CASE VALIDATION

In order to explain all details regarding LDA platform imple-
mentation and its capabilities, we designed a use case sce-
nario that covers all important aspects of the LDA platform

Figure 9. Intent example.

operation. Figure 7 shows a sample guarded data D that
represents the popular mixing of data from smart devices
with social and corporate data. It visualizes sensor observa-
tions that are fused with the users’ personal data and with

VOLUME 6, 2018 1203

R. Stojanov et al.: LDA Platform

a patient management system’s data. Figure 8 shows the
ontology that models the classes and the properties of the data
in Figure 7. Our example covers one hospital, ex:hospital,
with a sm:network_address ‘‘194.168.100.0/24’’, located at
the location _:l1, described with the Geo-names ontology.19

Although, the ontology in Figure 8 shows that the hospitals
may provide multiple applications for sensor synchroniza-
tion, ex:hospital provides only the application ex:ssa. The
application ex:ssa is fed by sensor data from the sensors ex:s1
and ex:s2 owned by its users ex:bob and ex:alice, respectively.
These users are hospital’s patients with treatments ex:t1 and
ex:t2 conducted by the doctors ex:john and ex:ben, respec-
tively. The treatment ex:t3 shows that ex:john is a patient of
ex:ben. The fact that ex:john is a doctor and patient depending
on the occasion, enables modeling different levels of sepa-
ration of duty, as discussed in [43]. The locations _:l1 and
_:l2, and the hospital’s network IP address enable defining
geo-spatial contextual requirements, while the duration of the
treatments provides temporal contextual requirements.

Figure 9 shows an example Intent _:i, where a requester
ex:john tries to create a graph ex:ssa using a software
agent _:ag through an intended action _:act. The SPIN ontol-
ogy20 models the SPARQL syntax and is used to represent
the action in this example. It describes that the intended
action is a SPARQL CREATE query (sp:Create) and the
property sp:graphIRI represents the graph intended for cre-
ation. The int: prefix models the classes and the properties
used to indicate the expected data structure for the Intent.
The int:requester property and the class int:Requester specify
who the requester is. The resource _:ag represents the soft-
ware agent used to interact with the LDA platform.

1) POLICY’s PROTECTED DATA D(I,p)

Listing 10 shows an example policy that allows the doctors to
access their patients’ observations from the hospital network
only. In this example, the body of theGRAPH<http://intent>
element (lines 5-8) corresponds to the predicate function ϕi
that validates the policy applicability for the Intent. In our
case, we are using separate graph for maintaining the Intent’s
data. The policy utilizes the GRAPH <http://intent> ele-
ment (line 4) to validate that the Intent meets the activation
requirements. The policy is activated and considered in the
enforcement process when the Intent binding function ϕi
extracts the required resources from the Intent. The data
selection function ϕd is represented by the content of the
lines 10-19. We use SPARQL’sWHERE element (lines 4-19)
since its processing corresponds to the variable evaluation
function σ (ϕi, I, ϕd ,D) and returns the evaluated variable
bindings. These results are the variable evaluations that match
the policy’s predicate functions, but they do not define what
should be protected by the policy. The projection function π
is used to create the quads defined with the variables in q
that are protected by the policy from the variable bindings

19http://www.w3.org/2003/01/geo/wgs84_pos#
20http://spinrdf.org/sp#

Listing 10. E1: Example policy.

returned by σ . The SPARQL’s SELECT query form projects
the desired variables and is suitable implementation of the
projection function π . The quad pattern ?r ?p ?o ?app (line 2)
will construct the protected data D(I,p).

Lets assume that the data in Figure 7 is protected only
by the policy in Listing 10, and ex:john submits the Intent
from Figure 9 to execute the sp:Create action that requires
read operation to be executed before the graph creation. This
scenario is valid since each action may require multiple oper-
ations to be executed for its completion. The Intent binding
predicate function function ϕi is evaluated against the Intent’s
graph<http://intent> and separate binding is created for each
resource combination that matches all triple patterns of ϕi
(marked bold in Figure 9). In our case, vars(ϕi) =(?doc,
?ag, ?ip, ?n) and only the variable binding (?doc→ex:john,
?ag→_:ag, ?ip→_:ip, ?n→‘‘192.168.100.0/24’’) matches
all patterns in ϕi when evaluated against the Intent graph I.
Similarly, the predicate function ϕd is used to evaluate the
variable bindings shown in Table 3 (without the columns ?ag
and ?ip) from the guarded dataD. The final variable bindings
are obtained by joining the two results that have the same
value for the variables that are common both in ϕi and ϕd ,
i.e., ?doc and ?n. The user ex:john is the only doctor that
has a patient with observations (for the patient ex:bob) and
works at the hospital ex:hospital with network IP address
‘‘192.168.100.0/24’’, which is why all of the variable bind-
ings evaluated for ϕd are in the final result in Table 3. These
bindings contain the resources, literals and blank nodes that
match all triple and quad patterns from the policy’s WHERE
element. The projection quad q is then used to construct the
protected data shown in Figure 10. The first line of the policy
in Listing 10 describes that the read operations for the data in
Figure 10 will be allowed.

1204 VOLUME 6, 2018

R. Stojanov et al.: LDA Platform

TABLE 3. Protected data selection binding.

Figure 10. Protected data.

Once a policy is entered and saved, the policy manage-
ment module (Figure 6) aligns it as described in §IV-B1.
The ‘‘Parse’’ button parses the policy and creates a stan-
dalone testing query, as explained in §IV-C1. Additionally,
during this action, the policy management module parses the
variables from the Intent binding predicate function vars(ϕi)
and builds the ‘‘Simulate intent’’ form that can be used to
simulate the policy’s protected data for a given Intent variable
bindings. The policy management module also shows the
results of the data selection actions.

2) POLICY’s MINIMAL INTENT BINDINGS
An example Intent for the E1 policy in Listing 10 is the Intent
I={ex:sam a int:Requester. _:ag a int:Agent; int:address
_:ip. _:ip int:network ‘‘192.168.100.0/24’’}. However, when
applied to our sample dataset, this Intent will not result
in any protected data D(I,E1) when executed against the
guarded data D shown in Figure 7. In order to find a
scenario with non-empty protected data, it is necessary
to find the Minimal Intent Bindings that will activate the
policy.

The policy’s E1 Intent binding predicate function ϕi con-
tains the variables vars(ϕi) =(?doc, ?ag, ?ip, ?n), while
its protected data predicate function ϕd contains the vari-
ables vars(ϕd) =(?app, ?r, ?s, ?p, ?o, ?doc, ?h, ?pat,
?t,?n). The intersection of these sets are the variables
vars(ϕi) ∩ vars(ϕd) =(?doc, ?n), which are used in the query
in Listing 11 that extracts the Minimal Intent Binding from
Definition 15.

If the query in Listing 11 is executed against our sample
data, the only Minimal Intent Binding that is extracted is

Listing 11. Minimal Intent Bindings extraction example.

(ex:john, ‘‘192.168.100.0/24’’). The Intents that will result in
non-empty protected dataD(I,E1) can be synthesized from this
Minimal Intent Binding. In this process, the policy’s ϕi vari-
ables can be replaced with the resulting Minimal Intent Bind-
ings, and the remaining variables can be replaced with blank
nodes. If we apply this replacement in our example, we obtain
that the Intent I={ex:john a int:Requester. _:ag a int:Agent;
int:address _:ip. _:ip int:network ‘‘192.168.100.0/24’’} is the
only synthesized Intent that can activate the policy E1 and
protects the data D(I,E1)

6= ∅.

3) POLICY’s COVERAGE

The transformation algorithm Tpolicy_coverage in Listing 4 pro-
duces the query in Listing 12. This query extracts the data
shown in Figure 10 from the dataset in Figure 7. The results of
the action ‘‘Coverage per Intent’’, obtained by transforming
the policy according to Listing 6 and executing the obtained
query can be seen in Figure 6. This query extracts the policy’s
protected data D(I,p) per its Minimal Intent Bindings. In this
way, the data owner can obtain, review and validate the
protected data per Intent on a button click.

4) CONFLICT DETECTION

Lets assume that the security requirements from Table 6
should be implemented as policies that protect our sample
data from Figure 7. The policy management module provides
comparison of the currently inserted policy with the remain-
ing policies defined in the platform, showing the conflicting
Intents together with the conflicting data. The conflict detec-
tion process for the policies in Table 6 finds 3 conflicting
policy pairs: A2 – P1, A2 – U2 and D1 – D2. The output

VOLUME 6, 2018 1205

R. Stojanov et al.: LDA Platform

Listing 12. E1 protected data query.

TABLE 4. Conflict detection for A2 – P1.

TABLE 5. Read operation unprotected data.

of the conflict between A2 – P1 is shown in Table 4. This
information enables the data owner to properly resolve the
detected conflicts.

C. UNPROTECTED DATA EXTRACTION

A common ambiguity that arises in the authorization plat-
forms is whether the unprotected data should be allowed
or denied. Table 5 shows that the policies in Table 6 are
not sufficient for complete protection of the sample dataset.
This information can prevent exposure of private data (such
as the observations ex:o1, ex:o2 and ex:o3) or hiding data
that is intended for public good (such as the location of the
hospital _:b0). The unprotected data transformation alerts
the data owner that additional policies should be created for
complete data protection. The policy management module
reveals this information on a button click, showing the unpro-
tected data for each atomic operation. Although not shown in

the example, there are even more unprotected quads in our
example for the INSERT and DELETE operations (43 out of
59 quads).

VI. LDA PLATFORM EVALUATION
The main goal of our work is to build a flexible, maintain-
able and understandable LDA platform that covers all the
design consideration described in §II. The Flexibility of the
LDA platform compared to the related work is demonstrated
by a set of diverse authorization requirements in Table 6. The
requirements in this table are chosen to cover all flexibility
design principles in respect to the use case scenario from §V.
This table clearly shows that the LDA platform is the only one
that fully covers all these requirements, i.e., all the flexibility
design considerations. The policies for every single require-
ment, written in our policy language, and the data they protect
are shown in Appendix.

The context awareness is present in the requirements D1,
D2 and EM1, since D1 depends on the requester’s agent
IP address and on the accessing time, D2 depends only on
the accessing time and EM1 is an emergency policy that
depends on the data context. Even though the platforms [11],
[13], [24] provide context aware policies, they only support
read operations. Our LDA platform is unique in the support
of context awareness for every operation since it provides
complete operation coverage for the Linked Data opera-
tions. The IntentProvider component enables dynamic con-
text representation through the Intent, while the Enforcement
Module protects every operation in the provided contextual
environment.

Another flexibility feature that makes our LDA plat-
form distinguishable is the ability to define aggregated data
sharing policy which is pointed out by the requirement
A3. None of the reviewed authorization platforms supports
this feature.

The LDA platform is also superior from maintainability
point of view since it is the only one that provides one-to-one
policy to requirement specification, conflict detection and
protected and unprotected data extraction at the same time.

The extraction of the Minimal Intent Bindings described
in §IV-C3 significantly reduces the number of required test
cases by removing the ones that do not protect any data. The
protected data perMinimal Intent Binding provides a preview
of all possible outcomes for a policy, which is a significant
information for policy correctness verification. The protected
data per Minimal Intent Binding for each of the policies in
Table 6 is shown in Appendix.

Apart from the uniqueness of our LDA platform, another
contribution of our work is the policy management module. It
is a powerful tool that considerably lowers themaintainability
effort and time. It provides previewing of the results for ver-
satile policy transformation algorithms on a button click, such
as Minimal Intent Binding, conflict detection and extraction
of the protected and unprotected data at design time. The
results from the policy management module allow anomaly

1206 VOLUME 6, 2018

R. Stojanov et al.: LDA Platform

TABLE 6. Protection requirements.

detection, while the flexibility of the proposed policy lan-
guage enables writing policies that will resolve these security
flaws.

The use of the W3C standardized SPARQL query lan-
guage as a basis of our policy language simplifies the
maintenance process by reducing the number of needed
policies per security requirement. The large community
and materials lower the adoption barrier of our language.
There are already tools that enable non IT specialists to
write SPARQL queries [45]–[47], which can be adopted
for management of our policies with little effort and
adjustments.

As the main goal of the LDA platform is to provide a
flexible authorization of the datasets, we relay on the state
of the art authentication protocols provided by the Spring
library. The Intent provider module unites the authoriza-
tion and authentication processes. It extracts the evidences
provided by the authentication protocol and uses them to
compose the Intent used for authorization in the enforcement
module. The current implementation of the Intent provider
module utilizes a Spring Security authentication provider
for the WebID protocol, the most widely used authenti-
cation protocol in the Linked Data community. Depend-
ing on the use case, different protocol can be employed in
order to extract the requester’s properties and to secure their
intents.

The LDA platform is robust in terms of Query Injection
because it does not accept parameterized queries which are
commonly used for this type of attacks. In essence, the
query injection is an act of replacing the expected param-
eters with another malicious query, which executes multi-
ple queries per request. The LDA platform is designed to
ensure that there is single query per Intent and to modify
the query in a way that it can interact with the allowed
data only.

Since the data protection depends on the policies, it is
crucial to ensure that there is no attack that will alter the
configured policies. The current implementation of the LDA
platform is conservative in terms of policy administration,
and even though it allows policy testing and management,
only the person that has control to the LDA platform instance
can publish the policies. Another policy administration option
is to liberate this process by storing the policies in RDF
format and to authorize their maintenance through LDA
platform policies. In this scenario, the policy management
requirementsmust have highest priority so that nobody is able
to override the policies, i.e., it is impossible to create a policy
with a higher priority. This challenge is solved by limiting the
maximal priority of the newly added or modified policies to
a predefined value.

One of the highest security risks in every platform comes
from internal human mistakes. In order to overcome the
configuration mistakes and oversights, the policy manage-
ment module (Figure 6) provides tools for extensive policy
correctness testing, as described in §V. These tools enable
the data owners to ensure the appropriate protection and to
prevent improper data exposure. Considering that the policies
are used to construct a temporal dataset with the allowed
data without any external influence, we can ensure that the
testing results are relevant in production environment. The
fact that the temporal dataset contains only the allowed data,
the LDA platform prevents obtaining data using multiple
probing queries, and therefore, offers implicit data protection,
as explained in §IV-B3.

A. PERFORMANCE EVALUATION
According to [23], the enforcement architecture of the LDA
platform uses partial data filtering strategy where a temporal
dataset is created per request. This strategy has the advan-
tage of providing implicit data protection since the denied

VOLUME 6, 2018 1207

R. Stojanov et al.: LDA Platform

data is not considered at all during the Intent processing.
However, the evaluations presented in [15] and [16] show
that a performance price has to be payed in return to this
convenience.

In order to evaluate the performance of the LDA platform,
we conducted an experiment of a system configured with
the policies from Appendix, data modeled with the ontol-
ogy shown in Figure 8 and initial guarded data as shown
in Figure 7. The goal of the experiment is to examine the
dependency of the processing time on the allowed data size.
In order to achieve this goal, we execute 70 evaluation
rounds, where each following round increases the size of the
allowed data by 10000 quads, representing 2500 resources of
type sm:Observation. After each round, we evaluate different
operations using 10 warm up cycles and 20 evaluation cycles.
The largest evaluated dataset is composed of 700.000 triples.
Bigger datasets are not considered since there authorization
will require unacceptably long time. In the experiment, we
evaluate the following operations:
• Standard LDA authorized query: executes selection
of all allowed quads in the current round. The LDA
platform is used to authorize the operation using all con-
figured policies for temporal allowed dataset creation.

• Query-centric LDA authorized query: executes selec-
tion of all allowed quads in the current round. The
LDA platform is used to authorize the operation
using only the policies that may affect the query
results.

• Hard-coded authorization query: executes selection of
all allowed quads in the current round using hard-coded
query template for authorization in order to obtain the
same results as the previous operations.

• LDA authorized insert and delete: An authorized
requester executes insertion and deletion of resources.
The LDA platform is used to authorize the
intention.

• Hard-coded authorization insert and delete: An autho-
rized requester executes insertion and deletion of
resources. Hard-coded rules for the applicable require-
ments are used to authorize the intention using SPARQL
ASK queries. If all query results are positive, the inser-
tion or the deletion is executed.

The most common authorization approach used for fine
grained data protection is the use of hard-coded rules in the
service layer because the developer is able to optimize the per-
formance. Therefore, we consider the hard-coded authoriza-
tion approach as an optimal protection approach in respect to
performance.

Figure 11 shows the dependence of the insert/delete opera-
tions execution time on the allowed data size. The hard-coded
authorization insert/delete operations have almost constant
execution time because they execute a separate SPARQL ASK
query for each policy before allowing operation execution.
Therefore, the performance mainly depends on the number
of queries executed, i.e., the number of policies. On the other

Figure 11. LDA modify performance results.

Figure 12. LDA query performance results.

hand, the LDA authorized operations have linear increase in
the execution time since the LDA platform creates a temporal
dataset for each intent. The deceleration trend in this case is
due to the linear dependence of the dataset creation time on
its size.

Figure 12 shows that all query authorization operations
have linear execution time dependence in respect to the
allowed data size. However, the standard LDA authorization
query is approximately an order of magnitude slower due to
the complexity of the query for temporal dataset creation.
Therefore, we optimized this process by using only the rele-
vant policies for the query in the enforcement process. These
policies are extracted using variable type inference from the
quad patterns present in both the query and the policy. The
selected policies are only those that have matching of their
projection quad pattern with some of the query’s quad pat-
terns, considering the inferred variable types. This optimiza-
tion results in fivefold performance improvement, which is
near to the optimal performance, as shown with query-centric
LDA authorized query results.
Even though the hard-coded authorization has superior

performance, it is hard for testing and lacks flexibility and
maintainability. Moreover, each requirement change requires
code modification and additional testing. On the contrary,
the LDA platform provides flexible requirement representa-
tion, simple maintenance and tools for policy validation and

1208 VOLUME 6, 2018

R. Stojanov et al.: LDA Platform

testing. The only price that has to be paid for this convenience
is partially sacrificing the performance. However, this price
may be acceptable when a complete protection flexibility and
maintainability is required.

VII. CONCLUSION
In this paper, we present a complete Linked Data Authoriza-
tion platform on the top of a flexible policy language designed
for Linked Data protection. The LDA platform offers full
coverage of the flexibility authorization design principle,
while the use of the W3C standardized SPARQL query lan-
guage as a basis of the policy language increases the under-
standability and simplifies the maintainability process by
reducing the number of needed policies per security require-
ment. The policy management module supports the main-
tainability and correctness validation principles in design
time, while the enforcement module ensures the implicit data
protection.

The LDA platform uses context dependent policies with
a broad protection granularity, covering resources, triples,
graphs, and datasets. The authorization context is modeled
through the Intent, which is dynamically provided through the
Intent provider module and contains all necessary requester
and environment evidences, together with the intended action
and its parameters. The context awareness enables design-
ing emergency policies, while the flexible policy language
is unique in its support of policies that can expose aggre-
gated and impersonalized data that will serve the greater
good.

The policy management module supports design time val-
idation and significantly reduces the maintenance effort,
time and cost. In this process, not only the owners can
preview all the data protected by the policy, but they
can also get suggestions for the possible test case sce-
narios that result in non-empty protected data. Moreover,
the LDA platform enables conflict detection and resolu-
tion by using priorities. This paper also presents how the
platform’s unprotected data can be previewed in design
time, which guides the data owners towards a complete
data protection.

The LDA platform is implemented using the the widely
accepted Spring Framework and Apache Jena library, and
it has acceptable performance in comparison to the optimal
hard-coded authorization. Nevertheless, in order to achieve
better performance, we focus our future work on defining
a suitable query rewriting algorithm for our policy lan-
guage and introducing caching mechanisms for the temporal
datasets.

With all these features in mind, the proposed LDA plat-
form is a step forward towards wider acceptance of the
Link Data as a common platform for heterogeneous data
representation and interlinking. Furthermore, the policy man-
agement module can serve as a useful tool for design
time protection validation even for platforms other than the
LDA platform.

APPENDIX
EXAMPLE POLICIES
Protection requirements listed in Table VI are shown in this
section.

A1:. The hospital’s and the application’s properties are publicly available
for everyone:

A2:. User’s mobile and emergency phones are private:

A3:. The average daily measurements from the sensors that are not for
health are public:

VOLUME 6, 2018 1209

R. Stojanov et al.: LDA Platform

U1:. The users can view their own properties and the direct properties of
the resources connected with them:

U2:. The users can manage their name, phone, emergency phone or email:

P1:. The patients can see everything about the doctors:

1210 VOLUME 6, 2018

R. Stojanov et al.: LDA Platform

D1:. The doctors can manage their patients’ measurements from their
hospital’s network during office hours:

D2:. The doctors can not manage the measurements out of their
treatment timespan:

TS1:. Technical Staff can manage applications only for his/hers hospital:

SU1:. The user ex:ben can generate reports:

EM1:. The doctor can access their patients emergency phone number
during abnormal measurements:

VOLUME 6, 2018 1211

R. Stojanov et al.: LDA Platform

REFERENCES
[1] T. Berners-Lee, J. Hendler, and O. Lassila, ‘‘The semantic Web,’’ Sci.

Amer., vol. 284, no. 5, pp. 28–37, 2001.
[2] T. Heath and C. Bizer, ‘‘Linked data: Evolving the Web into a global

data space,’’ Synth. Lectures Semantic Web, Theory Technol., vol. 1, no. 1,
pp. 1–136, Feb. 2011.

[3] C. Bizer, T. Heath, and T. Berners-Lee, ‘‘Linked data—The story so far,’’
in Semantic Services, Interoperability and Web Applications: Emerging
Concepts. Hershey, PA, USA: IGI Global, 2009, pp. 205–227.

[4] R. Cyganiak and A. Jentzsch, ‘‘Linking open data cloud diagram,’’
vol. 12, Sep. 2011. [Online]. Available: http://lod-cloud.net/versions/2011-
09-19/lod-cloud.png

[5] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,
‘‘DBpedia: A nucleus for aWeb of open data,’’ in The Semantic Web. 2007,
pp. 722–735.

[6] G. Andrienko, A. Gkoulalas-Divanis, M. Gruteser, C. Kopp, T. Liebig,
and K. Rechert, ‘‘Report from Dagstuhl: The liberation of mobile location
data and its implications for privacy research,’’ ACM SIGMOBILE Mobile
Comput. Commun. Rev., vol. 17, no. 2, pp. 7–18, Apr. 2013.

[7] G. Klyne and J. J. Carroll, ‘‘Resource description framework (RDF):
Concepts and abstract syntax,’’ W3C, W3C Rec., Feb. 2004. [Online].
Available: http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

[8] S. Das, S. Sundara, and R. Cyganiak, ‘‘R2RML: RDB to RDF map-
ping language,’’ W3C, W3C Rec., Sep. 2012. [Online]. Available:
http://www.w3.org/TR/2012/REC-r2rml-20120927/

[9] C. Bizer and R. Cyganiak, ‘‘D2R server—Publishing relational databases
on the semanticWeb,’’ inProc. 5th Int. SemanticWebConf., vol. 175. 2006,
pp. 1–2.

[10] J. Hollenbach, J. Presbrey, and T. Berners-Lee, ‘‘Using RDF metadata to
enable access control on the social semanticWeb,’’ in Proc. Workshop Col-
laborative Construction, Manage. Linking Struct. Knowl. (CK), vol. 514.
2009, pp. 1–10.

[11] A. Toninelli, R. Montanari, L. Kagal, and O. Lassila, ‘‘Proteus:
A semantic context-aware adaptive policy model,’’ in Proc. 8th IEEE
Int. Workshop Policies Distrib. Syst. Netw. (POLICY), Jun. 2007,
pp. 129–140.

[12] L. Kagal, T. Finin, and A. Joshi, ‘‘A policy language for a pervasive
computing environment,’’ in Proc. IEEE 4th Int. Workshop Distrib. Syst.
Netw. (POLICY), Jun. 2003, pp. 63–74.

[13] F. Abel, J. L. De Coi, N. Henze, A. W. Koesling, D. Krause, and
D.Olmedilla, ‘‘Enabling advanced and context-dependent access control in
RDF stores,’’ in The Semantic Web. New York, NY, USA: Springer, 2007,
pp. 1–14.

[14] R. S. Sandhu and P. Samarati, ‘‘Access control: Principle and practice,’’
IEEE Commun. Mag., vol. 32, no. 9, pp. 40–48, Sep. 1994.

[15] S. Kirrane, ‘‘Linked data with access control,’’ Ph.D. dissertation, Nat.
Univ. Ireland, Galway, Ireland, 2015.

[16] G. Flouris, I. Fundulaki, M. Michou, and G. Antoniou, ‘‘Control-
ling access to RDF graphs,’’ in Proc. Future Internet Symp., 2010,
pp. 107–117.

[17] S. Franzoni, P. Mazzoleni, S. Valtolina, and E. Bertino, ‘‘Towards a fine-
grained access control model and mechanisms for semantic databases,’’ in
Proc. IEEE Int. Conf. Web Services (ICWS), Jul. 2007, pp. 993–1000.

[18] S. Oulmakhzoune, N. Cuppens-Boulahia, F. Cuppens, and S. Morucci,
‘‘fQuery: SPARQL query rewriting to enforce data confidential-
ity,’’ in Proc. IFIP Annu. Conf. Data Appl. Secur. Privacy, 2010,
pp. 146–161.

[19] W. Chen and H. Stuckenschmidt, ‘‘A model-driven approach to enable
access control for ontologies,’’ in Proc. Wirtschaftsinformatik, vol. 1. 2009,
pp. 663–672.

[20] A. Padia, T. Finin, and A. Joshi, ‘‘Attribute-based fine grained
access control for triple stores,’’ in Proc. 3rd Soc., Privacy Semantic
Web-Policy Technol. Workshop, 14th Int. Semantic Web Conf., 2015,
pp. 1–15.

[21] L. Costabello, S. Villata, O. R. Rocha, and F. Gandon, ‘‘Access control for
HTTP operations on linked data,’’ in Proc. Extended Semantic Web Conf.,
2013, pp. 185–199.

[22] O. Sacco and J. G. Breslin, ‘‘PPO & PPM 2.0: Extending the pri-
vacy preference framework to provide finer-grained access control
for the Web of data,’’ in Proc. 8th Int. Conf. Semantic Syst., 2012,
pp. 80–87.

[23] S. Kirrane, A. Mileo, and S. Decker, ‘‘Access control and the resource
description framework: A survey,’’ Semantic Web, vol. 8, no. 2,
pp. 311–352, 2017.

[24] H. Mühleisen, M. Kost, and J.-C. Freytag, ‘‘SWRL-based access policies
for linked data,’’ in Proc. SPOT, vol. 80. 2010, pp. 1–12.

[25] S. Dietzold and S. Auer, ‘‘Access control on RDF triple stores from a
semantic Wiki perspective,’’ in Proc. ESWC Workshop Scripting Semantic
Web, 2006, pp. 1–9.

[26] P. Bonatti and D. Olmedilla, ‘‘Driving and monitoring provisional trust
negotiation with metapolicies,’’ in Proc. 6th IEEE Int. Workshop Policies
Distrib. Syst. Netw., Jun. 2005, pp. 14–23.

[27] J. Li and W. K. Cheung, ‘‘Query rewriting for access control on semantic
Web,’’ in Proc. Workshop Secure Data Manage., 2008, pp. 151–168.

[28] O. Sacco and A. Passant, ‘‘A privacy preference manager for the social
semantic Web,’’ in Proc. SPIM, 2011, pp. 42–53.

[29] N. Lopes, S. Kirrane, A. Zimmermann, A. Polleres, and A. Mileo,
‘‘A logic programming approach for access control over RDF,’’ in
Proc. Tech. Commun. 28th Int. Conf. Logic Program., vol. 17. 2012,
pp. 381–392, 10.4230/LIPIcs.ICLP.2012.381.

[30] M. Howard and S. Lipner, The Security Development Lifecycle: SDL:
A Process for Developing Demonstrably More Secure Software. Beijing,
China: Publishing House of Electronics Industry, 2008.

[31] T. Ryutov, T. Kichkaylo, and R. Neches, ‘‘Access control policies for
semantic networks,’’ in Proc. IEEE Int. Symp. Policies for Distrib. Syst.
Netw. (POLICY), Jul. 2009, pp. 150–157.

[32] J. L. De Coi, D. Olmedilla, P. A. Bonatti, and L. Sauro, ‘‘Protune:
A framework for semantic Web policies,’’ in Proc. Int. Semantic Web
Conf. (Posters Demos), vol. 401. 2008, p. 128.

[33] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean, ‘‘SWRL: A semantic Web rule language combining OWL and
RuleML,’’ in W3C Member Submission, vol. 21. 2004, p. 79.

[34] E. Prud’hommeaux and A. Seaborne, ‘‘SPARQL query language
for RDF,’’ W3C, W3C Rec., Jan. 2008. [Online]. Available:
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

[35] S. Harris, A. Seaborne, and E. Prud’hommeaux, ‘‘SPARQL 1.1 query
language,’’ W3C, W3C Rec., Mar. 2013, vol. 21. [Online]. Available:
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

[36] V. Kolovski, J. Hendler, and B. Parsia, ‘‘Analyzing Web access con-
trol policies,’’ in Proc. 16th Int. Conf. World Wide Web, 2007,
pp. 677–686.

[37] R. Cyganiak, ‘‘A relational algebra for SPARQL,’’ Digit. Media Syst. Lab.
HP Lab., Bristol, U.K., Tech. Rep. HPL-2005-170, 2005, vol. 35.

[38] C. J. Date, An Introduction to Database Systems. Noida, India:
Pearson Education, 2006.

[39] B. McBride, ‘‘Jena: A semantic Web toolkit,’’ IEEE Internet Comput.,
vol. 6, no. 6, pp. 55–59, Nov./Dec. 2002.

[40] C. Scarioni, Pro Spring Security. New York, NY, USA: Apress, 2013.
[41] M. Sporny, T. Inkster, H. Story, B. Harbulot, and R. Bachmann-

Gmür, ‘‘Webid 1.0: Web identification and discovery,’’ in Proc. W3C,
2011.

[42] H. Story, B. Harbulot, I. Jacobi, and M. Jones, ‘‘FOAF+SSL: RESTful
authentication for the social Web,’’ in Proc. 1st Workshop Trust Privacy
Social Semantic Web (SPOT), 2009, pp. 1–12.

[43] T. Finin et al., ‘‘ROWLBAC: Representing role based access control in
OWL,’’ in Proc. 13th ACM Symp. Access Control Models Technol., 2008,
pp. 73–82.

[44] L. Costabello, S. Villata, N. Delaforge, and F. Gandon, ‘‘Linked
data access goes mobile: Context-aware authorization for graph
stores,’’ in Proc. LDOW-5th WWW Workshop Linked Data Web, 2012,
pp. 1–8.

[45] S. Ferré, ‘‘Sparklis: An expressive query builder for SPARQL end-
points with guidance in natural language,’’ Semantic Web, vol. 8, no. 3,
pp. 405–418, 2017.

[46] A. Bernstein, E. Kaufmann, and C. Kaiser, ‘‘Querying the semantic
Web with ginseng: A guided input natural language search engine,’’ in
Proc. 15th Workshop Inf. Technol. Syst., Las Vegas, NV, USA, 2005,
pp. 112–126.

[47] A. Bernstein and E. Kaufmann, ‘‘GINO—A guided input natural lan-
guage ontology editor,’’ in Proc. Int. Semantic Web Conf., 2006,
pp. 144–157.

1212 VOLUME 6, 2018

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.381

R. Stojanov et al.: LDA Platform

RISTE STOJANOV received theDiploma degree in
computer science and the M.Sc. degree in content-
based retrieval from Saints Cyril and Methodius
University, Skopje, where he is currently pursu-
ing the Ph.D. degree in semantic web security
with the Faculty of Computer Science and Engi-
neering with focus to authorizing access to the
data in Linked Data business applications. He
is currently a Teaching and Research Assistant
with Saints Cyril and Methodius University. His

research interests include data science, data security, semantic web, enter-
prise application architectures, and natural language processing.

SASHO GRAMATIKOV received the bachelor’s
degree in computer science, information tech-
nologies and automation, the master’s degree
in computer science and computer engineering
degree from Saints Cyril and Methodius Univer-
sity, Skopje,Macedonia, in 2005 and 2009, respec-
tively, and the Ph.D. degree from the Universidad
Politécnica de Madrid, Madrid, Spain. He is cur-
rently an Assistant Professor with the Faculty of
Computer Science and Engineering, Saints Cyril

and Methodius University. His research interests are multimedia distribution
systems, computer networks, and semantic web.

IGOR MISHKOVSKI was born in Skopje, Mace-
donia, in 1981. He received the master’s degree
in computer science and engineering from Saints
Cyril and Methodius University, Skopje, in 2008,
and the Ph.D. degree from the Politecnico di
Torino, Torino, Italy, in 2012. After he received
the Ph.D. degree, he was elected as an Associate
Professor with the Faculty of Computer Science
and Engineering, Saints Cyril and Methodius Uni-
versity, in 2012. His research interests include

complex networks and modeling dynamical processes, network science,
computer networks, semantic web, and operating systems.

DIMITAR TRAJANOV was the Dean of the Fac-
ulty of Computer Science and Engineering, Saints
Cyril and Methodius University, Skopje, from
2011 to 2015, where he is currently the Head
of Department of Information Systems and Net-
work Technologies, Faculty of Computer Sci-
ence and Engineering. He is the Leader of the
Regional Social Innovation Hub established as
a co-operation between UNDP and the Faculty
of Computer Science and Engineering. He has

authored over 130 journal and conference papers and seven books. He has
been involved in more than 40 international and national scientific and
applicative projects as a project lead or a participant. His research interests
include data science, semantic web, big data, open data, social innovation,
e-commerce, entrepreneurship, technology for development, mobile devel-
opment, ad hoc networks, parallel processing, reliability, and system-on-chip
design.

VOLUME 6, 2018 1213

	INTRODUCTION
	LINKED DATA AUTHORIZATION DESIGN PRINCIPLES
	FLEXIBILITY
	OPERATION COVERAGE
	GRANULARITY
	CONTEXT AWARENESS
	CONTEXT-DATA-REQUESTER ASSOCIATION
	AGGREGATED DATA SHARING
	CONFLICT RESOLUTION

	MAINTAINABILITY
	CONFLICT DETECTION
	PROTECTED DATA COVERAGE

	CORRECTNESS VALIDATION
	UNDERSTANDABILITY

	RELATED WORK
	LDA PLATFORM ARCHITECTURE
	POLICY LANGUAGE
	POLICY COMBINATION
	POLICY LANGUAGE SYNTAX

	ENFORCEMENT MODULE
	POLICY ALIGNMENT
	ALLOWED DATA EXTRACTION
	READ OPERATION PROTECTION
	DELETE OPERATION PROTECTION
	INSERT OPERATION PROTECTION
	MANAGE OPERATION PROTECTION

	AUTHORIZATION PRINCIPLES SUPPORT IN THE LDA PLATFORM
	POLICY TO SPARQL
	POLICY COVERAGE
	MINIMAL INTENT BINDING EXTRACTION
	CONFLICT DETECTION
	PROTECTED/UNPROTECTED DATA

	PLATFORM IMPLEMENTATION AND VALIDATION
	TECHNICAL IMPLEMENTATION DETAILS
	PLATFORM USE-CASE VALIDATION
	POLICY's PROTECTED DATA D(I, p)
	POLICY's MINIMAL INTENT BINDINGS
	POLICY's COVERAGE
	CONFLICT DETECTION

	UNPROTECTED DATA EXTRACTION

	LDA PLATFORM EVALUATION
	PERFORMANCE EVALUATION

	CONCLUSION
	REFERENCES
	Biographies
	RISTE STOJANOV
	SASHO GRAMATIKOV
	IGOR MISHKOVSKI
	DIMITAR TRAJANOV

