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Abstract

In order to obtain an efficient wireless sensor network localization, several enhancements based on the decentralized
approach are proposed. These features can be used in the cases when multiple distance measurements are used as input,
where each node iteratively updates its estimated position using a maximum likelihood estimation method based on the
previously estimated positions of its neighbors. Three novel features are introduced. First, a backbone is constructed,
that is, a subset of nodes that are intermediaries between multiple beacon nodes, which guides the localization process of
the other (non-backbone) nodes. Second, the space is perturbed more often during the earlier time steps to avoid reaching
poor local minima in some cases regarding the localization optimization function. Third, for better localization of the
non-backbone (or peripheral) nodes and avoidance of the rigidity problem, 2-hop neighboring distances are approximated.
The introduced features are incorporated in a range-based algorithm that is fully distributed, shows good performance,
and is scalable to arbitrary network size.

1. Introduction

Wireless sensor networks (WSNs) have recently attracted
considerable research interest by providing unprecedented
opportunities for monitoring and controlling homes, cities,
and the environment. They consist of spatially distributed
smart autonomous sensors, networked through wireless links
and deployed in large numbers. Self-localization capability
is a highly desirable characteristic of wireless sensor net-
works. Sensor network localization algorithms estimate
the locations of sensors with initially unknown location
information by using knowledge of the positions of a few
sensors and inter-sensor measurements such as distance
and bearing measurements. Sensors with known location
information are called beacons or anchors and their loca-
tions can be obtained by using a global positioning system
(GPS), or by installing them at points with known coor-
dinates.

Many approaches for WSN localization have been stud-
ied in the literature. Overviews of WSN localization tech-
niques are presented in [1, 2, 3, 4]. For a survey of localiza-
tion in mobile WSNs, we refer to [5]. The spatio-temporal
cooperation for localization and navigation is extensively
studied in [6, 7].
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1.1. Previous work

Localization techniques can be broadly classified into
two categories: range-based and range-free. In large-scale
WSNs, where signal range is limited, range-based schemes
typically require a lot of beacon nodes to produce accu-
rate results. On the other hand, range-free schemes esti-
mate inter-node distances based on hop count information,
thus all target nodes can be localized with fewer beacon
nodes. Range-free techniques are those where node po-
sition estimation is not based on the distance estimation
between nodes but on the solution to heuristic or optimiza-
tion problems with a decentralized characteristic. The
typical range-free algorithms include Centroid [8], CPE
(Convex Position Estimation) [9], and DV-hop (Distance
Vector-hop) [10]. Centroid and CPE are simple, having
low complexity, but they require a normal node to have
at least three neighboring beacons. DV-hop algorithm can
handle the case where a normal node has less than three
neighbor beacons.

Since the quality of localization is easily affected by
node density and network conditions, range-free approaches
typically provide imprecise estimation of node locations.
Range-based approaches measure the Euclidean distances
among the nodes with certain ranging techniques and lo-
cate the nodes using geometric methods, such as time of
arrival (TOA), time difference of arrival (TDOA), and an-
gle of arrival (AOA).

Here we focus on range-based designs for sparse net-
works. Several range-based algorithms that address the
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network or beacon sparseness problem will be first re-
viewed. Savarese et al. [11] proposed a virtual-coordinate-
based algorithm TERRAIN to address the sparse beacon
problem. The algorithm constructs a virtual coordinate
system on each beacon and takes the advantage of the
property that the virtual coordinate holds the distance in-
formation between each node pair.

Other researchers utilized local maps to localize non-
beacon nodes [12], [13]. They first use distance measure-
ments between neighboring nodes to construct local maps,
and then stitch them together to form a global map. Sav-
vides et al. [14] used collaborative multilateration among
neighbors to compensate the ranging information short-
age, which localizes nodes by forming an over determined
system of equations with a unique solution set. Collab-
orative multilateration performs better than trilateration
in sparse networks. The disadvantage is that the collabo-
ration is restricted in neighbors, so that the performance
gain is limited.

Goldenberg et al [15] introduced the concept of finite
localization, which holds all candidate positions of each
node and prunes incompatible ones when other nodes join
the procedure. Given proper beacon distribution, the algo-
rithm is able to locate nodes in a globally rigid region, but
may fail to localize the regions that contain few beacons.
Wang et al [16] introduced the concept of component, by
which nodes are grouped into components which are able
to better share ranging and beacon knowledge. Operat-
ing on the granularity of components, the proposed design
relaxes two essential restrictions in localization: the node
ordering and the beacon distribution. Zhao et al [17] pro-
posed a combined and differentiated localization approach
for localization that exploits the strength of range-free ap-
proaches and range-based approaches using received sig-
nal strength indicator (RSSI). To achieve a better ranging
quality, the proposed algorithm incorporates virtual-hop
localization, local filtration, and ranging-quality aware cal-
ibration.

The cooperation between the network nodes, i.e., the
exchange of messages, can be employed for different pur-
poses. Depending on which nodes are used as reference
points for each individual location estimation, the coop-
erative localization methods can be classified in two main
classes. Multi-hop localization methods, such as the afore-
mentioned ones, use the beacon nodes as individual refer-
ence points. There the cooperation takes place primarily
to estimate the distances between the non-beacon nodes
and the beacons, often located multiple hops away. Later,
these distances are used for calculating individual position
estimates by methods such as multilateration for exam-
ple. On the other hand, methods such as [18, 6] and the
one described in this paper perform iterative update of
the position estimate of every node by using the position
estimates of its neighbors as reference points.

Sensor network localization is a nonconvex optimiza-
tion problem that, however, can be converted to a Semi-
Definite Programming (SDP) problem by transforming the

quadratic embedding constraints to a matrix inequality,
which can be finally rewritten as a standard SDP prob-
lem. This approach has recently attracted considerable
attention; for example, a technique for localization of sen-
sors based on considering together local structures that are
fit together in an as-rigid-as-possible manner is proposed
recently in [19]. The local structures consist of reference
patches (set of four sensors) and reference triangles, both
obtained from inter-sensor distances.

In [20] the authors focused on the problem of sen-
sor network localization in the plane by considering the
group of algorithms that integrate local distance infor-
mation (patches) into a global structure determination.
Each patch is separately localized in a coordinate system
of its own using either the stress minimization approach or
by SDP. To every patch there corresponds an element of
the Euclidean group Euc(2) of rigid transformations in the
plane, and the goal is to estimate the group elements that
will properly align all the patches in a globally consistent
way. In [21], Shamsi and co-workers analyzed and deter-
mined sufficient conditions and formulations that guaran-
tee that the SDP relaxation is exact, i.e., give the correct
solution of the sensor localization problem. These con-
ditions can be useful for designing sensor networks and
managing connectivities in practice.

1.2. Our contribution

In this paper, we focus on introducing new features
that will improve the performances of decentralized algo-
rithms for localization that do not use centralized units
for computation and data gathering. The localization pro-
cess, however, is based on known global positions of some
of the network nodes. These are necessary for identify-
ing the absolute positions of the other nodes. Iterative
position estimation update is executed by each node using
the approximated distances from its neighbors. Hence, the
marginal distribution of each node is optimized since the
nodes’ locations are the component variables comprising
the joint distribution that describes the state space. How-
ever, optimizing the marginal distributions, as convenient
as it is, does not always optimize the joint distribution.
The aim of this paper is to present means by which one
can drive the optimization of the marginals in a direction
that will produce a better sample value of the joint dis-
tribution, i.e., a set of individual locations that has high
joint probability. We apply these improvement features to
an example algorithm, and illustrate how they enhance its
efficiency. They can also be applied on other algorithms
that optimize the marginals, such as [6] that uses graphical
models for example.

Comparing to other algorithms for localization, the
algorithm enhancements presented here introduce three
novel features. First, we take into account the fact that
some nodes are one to few hops away from mutliple bea-
cons, while others are connected to the beacons via longer
multi-hop routes (Fig. 1). More precisely, by taking ad-
vantage of the nodes that interconnect beacon nodes, we
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propose the construction of a backbone, that is, a subset
of nodes that are intermediaries between multiple beacon
nodes, which can then be used to guide the localization
process of other non-backbone nodes. Second, marginals
explore the state space more excitedly during the earlier it-
erations in order to target better joint distribution sample
value in the steady state, regarding the localization opti-
mization. Third, for better localization of the non-beacon
nodes and avoidance of the rigidity problem, the 2-hop
neighboring distance approximation is introduced. By us-
ing only local communication, the enhancements based al-
gorithm proves to be naturally fast (discussed further in
Section 3).

The outline of the remainder of the paper is as follows:
section 2 presents the properties of the proposed features
and explains the steps of an example algorithm that incor-
porates them, section 3 presents the results of the example
algorithm simulated on the computer generated networks
and its performance measures, and section 4 provides the
conclusion.

2. Improved features for localization: an example

Three improvement features are the main contribution
of this work and, therefore, we construct, as an example,
an algorithm on which these features have been applied. It
is range-based decentralized iterative algorithm that uses
known locations of the beacons. In this section we de-
scribe the characteristics of the algorithm and the basic
input that it requires. Motivated by the typical settings
where the algorithm is applied, the contributions of the
corresponding novel features are introduced.

2.1. Range measurement

Range-based algorithms utilize locally measured neigh-
boring distances for better estimation. There are various
methods for measuring distances between sensor nodes:
received signal strength indicator (RSSI), time of arrival
(ToA), time difference of arrival (TDoA), round-trip time
of arrival (RToA), ultra-wide bandwidth (UWB) [2, 6],
among others. However, most of these methods are prone
to errors due to various reasons, like obstacles or the envi-
ronment anisotropy itself. A single distance measurement
(point estimate) is potentially highly inaccurate and can
influence the localization results heavily. Hence, assum-
ing noisy distance measurements, probability estimation
of a distance is obtained by taking multiple point esti-
mates. The mean and variance of the set of these point
estimates between each neighboring pair are recorded dur-
ing the initialization step. 20 point estimations are used
to approximate the normal distribution of the mean. This
information is used as an input to the algorithm subse-
quently.

2.2. Beacon nodes

For absolute localization the locations of the beacon
nodes are needed as an input. They can be predefined or
obtained by GPS units. As it might be expensive to at-
tach a GPS unit to every node in a network of hundreds or
thousands of nodes, only a small percentage of the nodes
is assumed to be equipped with such capability. It is also
assumed that there are at least three non-collinear beacons
in the observed network, as that is the lowest number of
beacons required for unambiguous localization in a two-
dimensional space. There has not been made any other
assumption about the distribution of their locations, be-
cause they are typically unknown or uncontrollable during
the deployment process.

2.3. Graph backbone

Consider a wireless sensor network described with a
graph G = (V,E), where for convenience we write V =
{1, 2, . . . , n}; we assume that the first l nodes 1, . . . , l are
beacons. We further assume that the graph is simple (un-
weighted and undirected); let A = [aij ] be its correspond-
ing adjacency matrix. Edge between two nodes in the
network exists if their distance is lower than a predefined
range Rmax.

From the graph G we construct directed graph G1 =
(V,E1) as follows. Assume that i and j are neighbors (that
is, aij = 1), then: if both i and j are non beacon nodes,
both arcs ij and ji exist; if one node is a beacon node
and the other one is not, only arc from the beacon node
to non beacon node exists; and finally, if both i and j are
beacons, no arcs between these two nodes exist. In other
words, the undirected links of the beacons are replaced by
outgoing links in the graph G1, so that beacon state is
not influenced by the states of other nodes. The resulting
graph G1 is directed graph containing at least l+1 strongly
connected components: l leader nodes (the beacons) with
no in-links and other components containing the rest n− l
nodes. Let A1 = [a

(1)
ij ] be the adjacency matrix of the

graph G1.
As a preprocessing step, we run a linear process based

on the leader nodes [22]. Suppose that the l beacon nodes
are leaders. We associate a membership vector mi with
each node i: a probabilistic vector of size l that states
to what degree the node is related to each of the leader
nodes. Hence

∑
j mi,j = 1. During the execution of the

process, each beacon node i ≤ l has constant membership
vector mi = ei, where ei is the unit vector with its i-th
component equal to 1. At each time step, every non beacon
node i > l updates its membership vector according to the
update rule

mi(t+ 1) = mi(t) + ε

n∑
j=1

a
(1)
ij (mj(t)−mi(t)) (1)

where ε ∈ (0, 1/∆) is the step size, and ∆ is the maximum
degree in the network. Eq. (1) holds for the beacon nodes
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as well. In matrix form we can write

M(t+ 1) = (I − εL1)M(t) (2)

where the membership vectors mT
i (t) are rows of the row-

stochastic membership n × l matrix M(t) and L1 is the
Laplacian matrix of the graph G1. In an explicit form the
matrix M(t) can be written as:

M(t) =



1 0 . . . 0
0 1 . . . 0
. . .
0 0 . . . 1

ml+1,1(t) ml+1,2(t) . . . ml+1,l(t)
...

mn1(t) mn2(t) . . . mnl(t)


.

The process (2) converges exponentially fast, as it rep-
resents linear difference equation [23]. The equilibrium
membership matrix is

M∗ =
[
v1 . . .vl

]
=



1 0 . . . 0
0 1 . . . 0
. . .
0 0 . . . 1

m∗l+1,1 m∗l+1,2 . . . m∗l+1,l
...

m∗n1 m∗n2 . . . m∗nl


where each vi, i = 1, l, is an eigenvector of the Laplacian
L1 corresponding to the zero eigenvalue and

∑
j m
∗
i,j = 1.

The final membership vectors of the non-beacon nodes
m∗i do not depend on their initial values mi(0), but only
on the eigenvectors of the Laplacian, hence on the net-
work/graph topology, and on the initial values of the lead-
ers, which are trivially equal to mi(0) = ei for all i =
1, . . . , l. As shown in [22], for a given non-beacon node i,
the values of m∗ij in the row i of the matrix M∗ correspond
to ‘influence’ the beacons j = 1, . . . , l have on the node i.
Therefore, all non-beacon nodes can be grouped/arranged
in l communities by using the following rule: the node i
belongs to community k if mik > mij for all j = 1, . . . , l.
However, since in general m∗ij 6= 0, the membership vector
describes the node’s involvement in each community.

The membership vectors determine the communities
that are formed around the beacons driven by their in-
fluences [22]. As a result, most of a beacon’s community
nodes will have similar membership vectors, with its re-
spective component as the dominant one. Therefore, the
(Euclidian) distance between the membership vectors of
two neighboring nodes provides an additional information
regarding the structure of the network. For example, if the
distance is large it indicates that those two nodes belong
to two different communities and their shared edge inter-
mediates in between. When considering only the compo-
nents of the respective beacons, this distance would be the
largest on average for edges that are placed on the shortest
path between the beacons.

We consider a new undirected weighted graph G2 =
(V,E,w), whose nodes and edges are the same as in G,
and the weight function w : E → R is defined as wij =
‖m∗i −m∗j‖, where ‖·‖ is the Euclidian distance. Let Ni be
the set of all neighbors of the node i. The node strength
(weighted degree) defined as

si =
∑
j∈Ni

‖m∗i −m∗j‖,

serves as a (simple) node centrality metric of G2. A non-
beacon node with high strength has large weight of at least
one of its neighbors’ links and therefore the node interme-
diates between at least two communities (or two beacons).
Finally, we define graph backbone as a set of non-beacon
nodes for which the node strength is greater than the av-
erage, that is{

k : sk >
1

n− l

n∑
i=l+1

si, k = l + 1, . . . n

}
.

Figure 1 illustrates the main concepts introduced in
this section. As an example we consider a network with
3 beacons (represented by squares) and 47 non beacon
nodes. Colors of the non beacon nodes are mixtures of
the beacon nodes’ colors in correspondence to their mem-
bership vectors. Thus, the color of a non beacon node i is a
mixture of 3 beacon nodes’ colors in a ratio mi1 : mi2 : mi3

such that
∑3

j=1mij = 1. The largest value of mij de-
termines the dominant color but also the community to
which node i belongs. Link widths are proportional to
‖m∗i − m∗j‖. Node size reflects its strength. The graph
backbone has 16 nodes; these nodes are represented with
diamonds.

2.4. Probabilistic iterative approach

As mentioned earlier, the proposed algorithm is itera-
tive, i.e., each node iteratively updates its own location es-
timation using the neighbors’ location estimates from the
previous iteration. As the set of location estimates from
every node represents a variable of the joint distribution,
this process corresponds to optimization of the marginal
distributions with their maximums taken as the final out-
come.

The algorithm is formulated as follows: Given a set of
location estimates {xi|i ∈ Nk} in time t and a set of means
and variances of measured distances {(µki, σ

2
ki)|i ∈ Nk},

where Nk is the set of neighbors of node k, the algorithm
searches for the best location estimate of node k in time
step t+ 1. To determine this, for each point x of the con-
sidered space, it calculates the likelihood for the location
of node k by the formula

P (x = xk) ∝
∏
i∈Nk

N (‖x− xi‖;µki, σ
2
ki), (3)
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Figure 1: Membership vectors and the graph backbone. The bea-
cons are represented by squares. Colors of the non beacon nodes
are mixtures of the beacon nodes’ colors in correspondence to their
membership vectors. Link widths are proportional to ‖m∗

i −m∗
j‖.

Node size reflects the node strength of a non-beacon node. Bea-
con sizes are chosen arbitrarily. The identified backbone nodes are
represented with diamonds.

where N is the normal density function. Furthermore, the
negative log likelihood function can be written as

−lnP (x = xk) =
1

2

∑
i∈Nk

(‖x− xi‖ − µki)
2

σ2
ki

+ const, (4)

whose gradient is

d(−lnP (x = xk))

dx
=
∑
i∈Nk

(‖x− xi‖ − µki)

σ2
ki

x− xi

‖x− xi‖
(5)

Employing this gradient in a typical gradient descent algo-
rithm, the maximum likelihood estimation for the location
of node k can be calculated. Visualization of the likeli-
hood function in a two-dimensional plane is shown in Fig.
2. In the case when there are not enough neighbors, the
localization estimate cannot be done unambiguously (Fig.
2(a) and 2(b)). On the other hand, the maximum likeli-
hood can produce good results with 3 or more neighbors,
as illustrated in Fig. 2(c). However, resulting from the
probabilistic approach and the potential near-collinearity,
the location likelihood function can have local maxima,
see Fig. 2(d), whose basins of attraction may span signifi-
cant area. Therefore, performing the maximum likelihood
estimation multiple times from different initial positions
increases the likelihood of finding the global maximum.
In the simulations, the estimations are performed from 5
evenly distributed initial positions gathered from the local
information.

As mentioned earlier, the purpose of the cooperation in
our algorithm is position estimation utilizing neighboring

(a) Node with one neighbor (b) Node with two neighbors

(c) Node with three neighbors (d) Node with three near-
collinear neighbors

Figure 2: Location likelihood function of a node, given its neighbors’
locations. Its actual location is marked with blue and its direct
neighbors are marked with red. Its estimated position is marked
with green.

estimates. In every iteration each node produces a point
estimate of its location and transmits it to its neighbors.
The information needed for a node’s estimate is the loca-
tions of its neighbors received in the previous iteration.

Typically, distributed gradient descent is performed in
most algorithms for analytically guaranteed convergence of
the algorithm. However, the fixed point at which the sys-
tem converges is not guaranteed to be the globally optimal
state as the optimization function is usually not convex.
Distributed gradient descent is highly prone to local min-
ima of the joint distribution, since the steady convergence
does not allow extensive exploring of the space. Addi-
tionally, it performs large number of iterations. In our
approach, instead of using the gradient of the negative
log likelihood for new position estimate in each iteration,
we rely on the maximum likelihood optimal value. Fur-
thermore, the optimal value is calculated using potentially
different neighbors in each iteration (sampled according
to the node strengths) during the earlier stages, for better
exploration of the state space (further discussed in Sec-
tion 2.7). After certain number of iterations (35 in our
simulations), each node continues with gradient descent-
like position estimation, which provides convergence. In
most cases, however, the algorithm converges prior to this
switching.

2.5. 2-hop neighborhood

Decentralized localization algorithms usually suffer from
using only locations from the direct neighbors. When not
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enough neighbors are connected, likelihood function can
have multiple global maxima. Fig. 2(a) and Fig. 2(b)
illustrate this case. Clearly, as a way to solve the global
maxima problem, one solution would be to introduce more
neighbors in some manner. Presuming the nodes use their
maximal range to communicate, i.e., new direct neighbors
cannot be added, the 2-hop neighbors are used (neighbors
of the direct neighbors that are not also neighbors).

More generally, given a randomly deployed wireless
sensor network, its global rigidity is not guaranteed. Global
rigidity is considered to be a condition for the solvability of
the network localization problem [3]. The rigidity problem
is illustrated in Fig. 3. For the given graph, two config-
urations are possible, shown on Fig. 3(a) and Fig. 3(b).
However, considering the wireless sensor network scenario,
it should be taken into account that two non-neighboring
nodes should not be in close proximity. Reason for this
presumption is the communication range of the units, that
is, a non-neighboring node must not be within the com-
munication range of a given node. Consequently, for the
given example, correct representation should only be the
configuration in Fig. 3(b).

Information about the 2-hop neighboring locations can
be received by message forwarding from the direct neigh-
bors in the same iteration. As a result, the nodes broadcast
information twice during a single iteration. We denote the
union of 1-hop and 2-hop neighbors of node i with N2

i .
However, since direct distance measurements are not pos-
sible, they need to be approximated, i.e., the means and
variances of their distributions need to be estimated.

Given one direct neighbor i to a referent node k, the
task is to approximate the distance to node j, a direct
neighbor of node i that is not neighbor with node k. The
normal distributions of the distances between both neigh-
boring pairs, characterized by their means and variances,
are present as available information. Taking into account
the rigidity argument, it is desirable nodes k and j to be
localized further away from each other than they are from
node i. Therefore, Gaussian addition, or convolution that
also results in normal distribution, is introduced. So, the
initial estimations for the mean and variance of the dis-
tance between k and j through the node i are

µkj,i = µki + µij (6)

σ2
kj,i = σ2

ki + σ2
ij (7)

However, an underlying assumption here is that these
three nodes are collinear, which most often is not the case.
Hence, we should presume a better angle between the two
neighboring segments (ki and ij) than π (Fig. 3(c)). As
there is also low probability that node j is positioned on
the circle with center k and radius R (with minimal possi-
ble angle between the neighboring segments), we presume
that the neighboring segments occupy the middle angle
between the minimal and the maximal possible. This is
illustrated in Fig. 3(c). Therefore, the formula for the

k

i

j

m

(a) Possible configuration of a non
globally rigid graph

R    

j

k

i

m

(b) Non globally rigid graph configuration, con-
strained by the communication range

       μij

     μkj,i

     R

μij        

    μij

μki         

k

m

j

i

j

j

α

(c) Approximation of 2-hop distance through one di-
rect neighbor. The neighboring segments, ki and ij,
occupy the middle angle (α) between the minimal pos-
sible (yielding 2-hop distance R) and the maximal pos-
sible angle (π)

Figure 3: Illustration of the global rigidity problem. While a non
globally rigid graph can be represented by multiple configurations
(two in this example), the communication range constraints the pos-
sible locations of the 2-hop neighbors.
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mean looks like

µ2
kj,i = µ2

ki + µ2
ij − 2µkiµij cosα (8)

where

cosα = −

√
R2 − (µki − µij)2

4µkiµij
; (9)

In this manner, the 2-hop distance given one mutual
neighbor between two non-neighboring nodes k and j is ap-
proximated. However, node k and node j can have more
than one mutual neighbor. In this case, the 2-hop means
and variances produced from every mutual neighbor are
combined to refine the final approximation. Product of
Gaussian probability density functions is used for that pur-
pose, so the final formulas look like

µkj =

∑
i∈Nk∩Nj

µkj,i/σ
2
kj,i∑

i∈Nk∩Nj

1/σ2
kj,i

(10)

σ2
kj =

1∑
i∈Nk∩Nj

1/σ2
kj,i

(11)

Additionally, in many practical cases the communica-
tion range R is not fixed and equal for every node in the
network. Although R usually depends on the transmission
power of the node, the environmental conditions can af-
fect the communication channel and consequently decrease
R. We denote with Rmax the maximal communication
range that can be achieved in ideal conditions, i.e., that
depends only on the transmission power. Further, we as-
sume that the actual communication range R ∈ (0, Rmax]
is distributed with some known distribution PRmax

, pa-
rameterized with Rmax. Therefore, Eq. (9) can be formu-
lated by

cosα = −
∫ Rmax

0

PRmax(R)

√
R2 − (µki − µij)2

4µkiµij
dR (12)

Similarly, we can further approximate k-hop distances,
for k > 2, causing k broadcasts in a single iteration, and
even more - causing increase of the message lengths. With
sufficiently large k, each node can receive information from
significant percentage of the network nodes. Given the
huge communication increment, a question arises whether
decentralization is actually achieved. Additional question
is how much the localization results are improved by in-
creasing k. Here, we only use 2-hop distances; they do
not cause communication overload and they address the
rigidity problem adequately.

2-hop distance approximations have particular impor-
tance for the localization of the peripheral nodes, i.e.,
nodes with low connectivity to the beacon nodes. Dur-
ing the early iteration steps it is desirable that they are
able to localize themselves further away from the backbone
nodes. In that sense, 2-hop distance approximations give
“direction” of the localization of a peripheral node.

2.6. Initialization and execution

Frequently used initialization approach ([24, 25]) is the
localization of nodes that have multiple beacon nodes as
neighbors at first, and then iterative localization of the
rest of the nodes. This requires the beacon nodes to be
placed close to one another centrally in the network. Other
approaches require the beacon nodes to be placed on the
boundary of the network [18, 26]. However, in most cases
beacon assignment or beacon placement cannot be con-
trolled, hence our algorithm does not depend on such as-
sumptions. As stated earlier, the beacon nodes are ran-
domly selected from the set of nodes at the beginning of
the simulation process.

In our approach a node generates a position estimate
if any of its neighbors (1-hop or 2-hop) have previously
made position estimates. Initially only the beacon nodes
have estimates, and in a few iterations every node in the
network would have initial position estimate.

The algorithm then runs until every node’s change in
position estimate becomes negligibly small compared to
the one from the previous iteration (Euclidean distance).
However, there is no guarantee that the system will end up
in the most optimal state. As most of the nodes will find
their globally optimal position estimates, some clusters of
nodes might end up in local optima. Certainly, there is
interdependence of the outcomes of the position estima-
tion process of the nodes. An inaccurate position estimate
has the potential to inflict corruption to the position esti-
mates of the other nodes, as the estimation process spreads
from the beacon nodes to the rest of the network. Clearly,
the nodes that are fairly connected, i.e., backbone nodes,
are less likely to produce inaccurate estimates than the
non-backbone nodes (peripheral nodes). Therefore, it is
important to give more significance to the estimates of the
backbone nodes than to the peripheral ones; particularly,
the backbone nodes should not be influenced by the pe-
ripheral nodes during the initial time steps. The objective
of this selective interdependence is better overall localiza-
tion of the backbone and subsequent improved localization
of the peripheral nodes; using 2-hop distance approxima-
tions they will localize themselves further away from the
backbone.

2.7. Activation time and space exploration

The localization process is structured around the back-
bone: non-backbone nodes (that is, nodes with a smaller
node strength) start the process later and are localized
by using (already localized) backbone nodes. For this
purpose, we introduce an activation function which is a
linearly decreasing function that assigns activation time
to each node in accordance to its node strength. Back-
bone nodes are activated in the first iteration. We also set
the maximal activation time step, tactmax, at which even the
nodes with zero node strength have to be activated. The
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activation function has the following form:

fact(si) =
1− tactmax

1
n−l

∑n
j=l+1 sj

si + tactmax.

Further, during the earlier time steps, it is likely that some
of the nodes will produce inaccurate position estimates.
To lower their influence, we limit the number of neighbors
that each node uses for producing its estimate. In this way,
during every iteration each node explores different sets of
neighbors (instead of executing the maximum likelihood
from multiple initial positions) and chooses the one which
results with the highest maximum likelihood value for the
new position estimate. Since nodes with high strength are
less likely to produce inaccurate estimations as opposed
to other nodes, node strength is used during the weighted
sampling process. The set Nact

i (t) ⊆ N2
i of which the node

i samples in time t is the set of activated neighbors of node
i. The number of used neighbors increases linearly with
the time step. Consequently, nodes with high strength are
most influential during the initial time steps. Backbone
nodes are preferred over the other nodes.

Avoidance of local minima of some groups of nodes is
possible with this feature. The minima usually occurs at
highly connected groups of nodes with small strength. If
during the initial steps, most of the nodes belonging to
such group have inaccurate position estimates, they are
more likely to get stuck in local minima due to the inner
influence (high connectivity) in the group.

The good position estimates of the high strength nodes
do not influence them enough to get the whole group out of
the local minima. However, by introducing the limitation
of used neighbors and activation times, we tackle the local
minima problem as well. Since the low strength nodes are
more likely to choose a subset of their neighbors consisted
of high strength nodes, the inner group influence decreases
and the group can escape local minima during the initial
iterations.

Similar to the simulated annealing, during the earlier
iterations, the algorithm is unstable. It is more sensitive to
estimation changes, especially to the high strength nodes.
Thus, by exploring the space more extensively, it is capa-
ble of escaping local minima in some cases. Later, when
every node uses all of its neighbors for position estima-
tion, the algorithm converges towards a good configura-
tion. The rate at which this happens, however, depends
on the average node strength. Networks in which there
is high percentage of beacon nodes, hence high average
node strength, naturally require less time for localization.
On the other hand, networks with low percentage of bea-
con nodes or their bad topological placements (in terms
of uniform placement and influence), hence with low aver-
age node strength, require more time to explore the state
space. So, as a rule of thumb for the number of used

neighbors of node i in each time step t we use

min

3 +
t

3(n− l)

n∑
j=l+1

sj , | Nact
i (t) |

.
3. Simulation results

Simulations were performed on computer generated net-
works in order to measure the precision of the algorithm.
The settings that we used are commonly used in the liter-
ature - consisting of 50 nodes placed on a unit square with
communication range of 0.3 or 0.25 with average degree
of 10.5 and 7.6 in the network, respectively. We also per-
formed simulations on networks containing obstacle of size
0.3 × 0.3 placed in the center with communication range
of 0.3 and average degree of 9.9. The distance approxima-
tions were calculated from 20 normal distribution samples
with mean equal to the actual distance and standard de-
viation equal to 10 percent of the distance. We varied the
number of beacons from the minimal of 3 to 25. The results
are obtained with respect to the non-beacon nodes only.
Although the beacons were chosen randomly, for better
performance assessment the beacon sets that consisted of
nearly collinear beacons were resampled. That happened
most often for the case with three beacons. Principal com-
ponent analysis was applied to check whether the selected
beacons are approximately collinear: if the set of beacon
coordinates retained 95 percent of its variance by reducing
the dimensionality to one dimension it is resampled. We
do this to exclude the cases where there can be no unam-
biguous localization due to the collinearity of the chosen
beacons, i.e., due to the symmetry that they produce. Ba-
sically, we exclude the cases that generate unfair negative
impact on the performance of any localization algorithm.
We do not take into account any other constraints of the
beacon deployment. The figures produced for each num-
ber of beacons were averaged over 100 sampled networks.
The results are presented in Fig. 4.
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Figure 4: Average localization error as a function of the number of
beacons. Performance of the networks with communication range of
0.3 is marked with red color, while the results for the networks with
range 0.25 are marked with blue. Green denotes performance of the
networks with communication range of 0.3 and an obstacle placed in
the center. The inset image shows the average number of time steps
needed for convergence of the algorithm.
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We calculate the average localization error, that is, the
average Euclidean distance between the actual and esti-
mated locations. Other localization metrics are presented
in [27]. As can be seen from the figure, the results show
good performance. Even for the case with three beacons,
the average localization error is below 0.03 for networks
with communication range 0.3, while it is around 0.08 for
the ones with range of 0.25. The networks that contain
obstacle show worse performance with small number of
beacons, as expected. We can also assert from the fig-
ure that the performance improves significantly when the
number of beacons become greater or equal to 10 percent
of the network size. The inset shows the average number
of iteration steps carried out per number of beacons. As
can be seen, this number gradually decreases from 80-100
to 40 iterations. Hence there is a trade-off between the
number of beacons in the network and the communication
needed for the algorithm to terminate. In addition, there
are two broadcast messages sent from each node in every
iteration, due to the 2-hop neighboring information ex-
change. The networks with greater communication range
show better performance as expected, due to the greater
average degree of the nodes.

The outage probability Pout(eth) was computed as well
(introduced in [6]): the average percentage of mislocalized
nodes is calculated for a specified allowable error eth (tol-
erance threshold). This says should an acceptable error
is specified, what percentage of nodes would have local-
ization error larger than that acceptable error. Simula-
tions were ran on both scenarios described in [6], with 100
and 50 non-beacon nodes and 13 beacon nodes, commu-
nication range of 0.2, averaged over 20 sampled networks
with average degrees of 11.8 and 6.5, respectively. The
results are presented in Fig. 5. For networks with 100
non-beacon nodes, 99 percent of the nodes are correctly
localized (1 percent are in outage) with allowable error
of only 0.033, whereas the same success rate is achieved
with 10-fold higher allowable error of 0.3 in the case of 50
non-beacon nodes. On the other hand, 10 percent of the
nodes are in outage should the allowable error is 0.02 and
0.045 for the case with 100 and 50 non beacon nodes, re-
spectively. Hence, 90 percent of the non beacon nodes are
correctly localized for small allowable error, even in the
sparse network case.

To examine whether the algorithm can be scaled, we
compare results obtained from networks with 50, 100, 500
and 1000 nodes with number of beacons equal to 10 per-
cent of the number of nodes. The network radius ranges
are set to produce average node degree of about 10. We
calculate the average localization error, averaged over 10
sampled networks. As can be seen from the results in Fig.
6, the localization error drops as the network size grows.
Increasing the network size while maintaining the average
degree constant can be interpreted as viewing the nodes
on a different resolution scale. Hence, a decrease in the
global error can be expected. However, the relative (to
the communication range) error does not decrease signif-
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Figure 5: Outage probability per allowable error for networks of 100
and 50 non beacon nodes with 13 beacons and radius range 0.2,
deployed on a unit square.

icantly. Also note that the threshold at which the algo-
rithm terminates produces resolution limit; beyond that,
the error does not decrease with the network size. On the
other hand, the average number of performed iterations
is roughly constant. We can conclude that the algorithm
scales good with the network size, in terms of performance
as well as time steps needed for convergence. It also per-
forms well with low number of beacon nodes, 10 percent
in this case.
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Figure 6: Comparison of average localization error and number of it-
erations for networks with different sizes. The network radius ranges
are set to produce average node degree of about 10. 10 sampled
networks are used for averaging.

Sample execution of the algorithm is presented on Fig.
7 on a network with 500 nodes and 10 beacons (Fig. 7(a)).
The progress illustrates the properties of the algorithm.
The early activation of the backbone nodes can be ob-
served in iteraction 20 (Fig. 7(b)). Subsequent activation
of the peripheral nodes and their localization away from
the backbone, aided by the 2-hop distance approximations,
is shown in iteration 40 (Fig. 7(c)). Finally, almost com-
plete recovery of the original positions can be observed
before termination of the algorithm, in iteration 80 (Fig.
7(d)).

4. Conclusion

In this paper we introduced several novel features in-
corporated in an example of distributed, cooperative algo-
rithm for WSN localization. Based on these features, the
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(a) Actual placement of the nodes (b) Iteration 20. High strength nodes

(c) Iteration 40. 2-hop distance approximation (d) Iteration 80. Fill network position estimation

Figure 7: Sample execution of the algorithm on network with 500 nodes, 10 beacons and communication range 0.09. In (a) the actual network
deployment is depicted. In (b), (c) and (d) the estimation states at iteration 20, 40 and 80 are depicted, respectively. Beacon nodes are
denoted with squares and distinguished by color. Non beacon nodes are denoted with circles; their size depicts node strength and color is
mixture of the beacon nodes’ colors in correspondence to their membership vectors.
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process of localization, in addition to known beacon lo-
cations, uses multiple distance measurements (point esti-
mates) in order to calculate a mean and variance that rep-
resent the distance distribution more accurately. No ad-
ditional assumptions, such as certain beacon distribution
are necessary. Node strength is introduced as a measure
of the connectivity of a node toward the beacons. High
strength nodes are topologically located between the bea-
cons, i.e., are placed on the relatively short paths between
them. The expanding localization estimation is structured
around these nodes that comprise the network backbone.
Each node estimates its location by using its neighbors’
locations from the previous iteration. Initially not every
neighbor is used in the estimation process. In this way, we
successfully tackle the local optima problem and localize
the backbone of the network more efficiently. Hence, the
neighbors that are used are sampled from the set of all
active neighbors according to their node strength. Also,
nodes are activated in accordance to their node strength.
Furthermore, each node also uses its 2-hop neighbors’ lo-
cations to avoid the rigidity problem, i.e., to deal with
the situations where there is not enough information from
the direct neighbors to produce unambiguous localization.
For that purpose, we introduced 2-hop neighboring dis-
tance approximation. The simulation results from com-
puter generated networks suggest that algorithms that in-
corporate the proposed features cope well with the known
challenges of WSN localization. The obtained results are
good even in the case of small number of beacons, while
the performances are scalable with the network size.
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