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Abstract. Air pollution is a health hazard that has been brought to public atten-

tion in the recent years, due to the widespread networks of air quality measure-

ment stations. The importance of the problem brought the need to develop accu-

rate air prediction models. The coupled meteo-chemical simulation systems 

have already been demonstrated to correctly predict the episodes of high pollu-

tion events. Due to the complexity of these models, which simulate the emis-

sions, interactions and transport of pollutants in the atmosphere, setting up the 

correct parameters tailored for a specific area is a challenging task. In this paper 

we present an exhaustive analysis of the historical air pollution measurements, a 

detailed evaluation of an existing WRF-Chem based predictive model and pro-

pose an approach for improvement of that specific model.  We use a specific 

temperature-dependent way of scaling the initial chemical conditions of a 

WRF-chem simulation, which leads to significant reduction of the bias by the 

model. We present the analysis that led us into these conclusions, the setup of 

the model, and the improvements made by using this approach. 

Keywords: WRF-Chem ∙ Air pollution ∙ Prediction ∙ Simulation ∙ Initial condi-

tions ∙ PM10 modeling ∙ Temperature dependent 

1 Introduction 

The problem of air pollution has been in the focus of the public interest in our country 

in the past few years. The enabling reason for that was the availability of air pollu -

tion monitoring stations with publicly available data in real tim e [1, 2]. The data 

measured are showing consistently high pollution with PM10 and PM2.5 during win-

ter, often with high pollution events with measurements up to more than 10 times the 

limit of what is considered a safe concentration [3]. These episodes of extreme air 

pollution have increased the public interest in monitoring the pollution levels in real 

time, for the purpose of personal planning of outdoor activities and minimizing expo-

sure to hazardous air. 

A step towards in the direction of more effective planning and preparedness for 

minimizing exposure to hazardous air would be the creation of a reliable model for air 

pollution prediction. Few such systems have appeared in the recent years, with some 

of them still in the research phase, while others have been brought to the stage of 

user-accessible air quality prediction apps. These systems are based on a variety of 

different models, like WRF-Chem, SILAM, CAMS and others [4-8]. In this paper we 



are going to take a more detailed look in the WRF-Chem model and work on its im-

provement.  

Most of these models, while working relatively correctly throughout most of Eu-

rope, struggle to correctly predict the pollution concentrations in the area of the Bal-

kans. The discrepancy is mostly due to two factors, the first  one is the complex orog-

raphy, which often causes temperature inversions in the valleys of the larger towns, 

where localized extreme high concentrations of pollutants occur. The second one is 

the use of wood and other solid fuels for domestic space heating which is a large non-

industrial pollution source in these areas, further amplified by the orographic effect. 

These domestic emissions are hard to be modeled properly and are endemic to these 

areas. The pan-European prediction models focusing mostly on industrial and trans-

portation emissions often fail to integrate these domestic emissions properly on a 

local level. The combination of the two factors often leads to these models making 

incorrect predictions of the pollution in the larger urban areas in the Balkans. 

The solution to the problem caused by orography is increasing the simulation grid 

density around the urban areas, and thus improve the localized predictions. This is a 

fairly straightforward task, but due to the significantly increased computationa l de-

mand of the models, we are not be able to test it in our experiments for this paper.  

The second problem is a more challenging one, and we will try to tackle it in our 

research. Our hypothesis is that the total pollution emissions during the winter hav e a 

strong component originating from the domestic heating. As we expect that the cumu-

lative solid fuels combustion intensity (and therefore the pollutants emissions) de-

pends on the air temperature, we propose a temperature dependent scaling of the pol-

lution emissions. We will show that the improved accuracy of estimating the pollu-

tants emissions will cause an overall improvement of the correctness of the model. 

The base model we will be improving is a WRF-Chem model, which has al-ready 

been developed for our country [9] We will present the setup of that model in Section 

2, which we will refer to as ‘the initial model’. In Section 3 we will analyze the data 

from air pollution measurements and try to get insight and find patterns that will de-

fine our model. In Section 4 we elaborate the improved model and present our contri-

bution, based on the combined findings of the previous two chapters. Section 5 pre-

sents the results of the evaluation of the model, with a discussion on the obtained 

improvements. In the final section, we present our conclusion and further improve-

ments possible in future. 

2 WRF-Chem Model 

The core meteo-chemical model setup we use is based on the WRF-Chem model. Its  

core is the Weather Research and Forecasting (WRF) Model, a  mesoscale numerica l 

weather prediction system designed for both atmospheric research and operational 

forecasting applications[10]. The WRF-Chem extension simulates the emission, 

transport, mixing, and chemical transformation of trace gases and aero -sols simulta-

neously with the meteorology [11].  



We use the setup of the simulation as proposed for a similar model [9], which we 

are going to describe in this section thoroughly. The initial and boundary me-

teorological conditions are prepared by WPS (WRF Preprocessing System) and  the 

initial chemical conditions are calculated by PREP-CHEM-SRC[12]. A crucial part of 

their setup is the addition of user-defined data, where they provide the grid of yearly 

emissions on the entire territory of the Republic of North Macedonia, aggregated  by 

economic sectors and sources. This grid of sector aggregated pollution sources is 

compiled by the MOEPP [13, 14], and with the addition of these data, they are able to  

correctly predict the episodes of high pollution in their evaluation domain.  

The meteorological module of the model is based on the Advanced Research WRF 

(ARW) core developed by the NCAR [15]. ARW is a non-hydrostatic mesoscale 

model with a compressible equation on C-grid staggering, using a terrain following 

hydrostatic pressure-vertical coordinate. It conserves mass, momentum, dry entropy, 

and scalars using a flux-conserving form for all prognostic equations. The numerical 

methods utilize third-order Runge-Kutta split-explicit time differencing, together with 

higher-order advection. 

The Weather Research and Forecasting model ARW is coupled with chemistry 

(WRF-Chem), as an efficient and flexible system for weather and air quality forecast . 

WRF-Chem was developed at NOAA/ESRL (National Oceanic and Atmospheric 

Administration/Earth System Research Laboratory) [16] and updated by incorporating 

complex gas-phase chemistry, aerosol treatments, and photolysis scheme [17]. The air 

quality component of WRF-Chem is fully consistent with the meteorological compo-

nent; both components use the same transport scheme (mass and scalar preserving), 

the same horizontal and vertical grids, the same physical schemes for subgrid scale 

transport, and the same time step for transport and vertical mixing. 

In the initial model, WRF-Chem v.4.0 released at NCEP in June 2018 is employed 

as a basis for the chemical transport forecast. The Regional Acid Deposition Model 

version 2 (RADM2) chemical mechanism for gas-phase chemistry schemes [18] is 

without kinetic pre-processor (KPP). In addition, the air quality modeling system 

includes also the Modal Aerosol Dynamics Model for Europe (MADE) [19], coupled 

with the SORGAM (Secondary Organic Aerosol Model) parameterization [20] for 

PM10 simulations. 

The urban emissions are derived from daily inventories built in the emission p re-

processor PREP-CHEM-SRC. The PREP-CHEM-SRC is a tool developed to estimate 

the emission fields of aerosols and trace gases from biomass burning (by satellite 

observations and inventories), biogenic, urban-industrial, biofuel use, and volcanic 

and agricultural waste burning sources for regional and global transport models based 

on available inventories and products [21]. The main objective of PREP-CHEM-SRC 

is to estimate the emission fields of the main trace gases and aerosols for use in at-

mospheric-chemistry transport models, such as WRF-CHEM. 

In this work, we are using the global anthropogenic emission data for gaseous spe-

cies (CO2, CO, NOx  = NO + NO2, SO2, NH3) compiled and distributed by the Emis-

sion Database for Global Atmospheric Research (EDGAR) system 

(http://www.mnp.nl/edgar) [22]. The EDGAR-HTAP project compiled a global emis-

sion data set with annual inventories for CH4, NMVOC, CO, SO2, NOx, NH3, 



PM10, PM2.5, BC, and OC and covering the period 2000–2005 for 10 aggregated 

sectors and on a global 0.1° × 0.1° resolution. The global emission data comes from 

the Reanalysis of the Tropospheric (RETRO) (http://retro.enes.org) (0.50  × 0.50) 

monthly 1960–2000 emission base and GOCART background emission data. The 

model uses anthropogenic emissions from a number of global and regional invento-

ries, biomass burning emissions from the Global Fire Emission Database, and biogen-

ic emissions from Model of Emissions of Gases and Aerosols from Nature (MEGAN) 

[23]. This data set is inserted in PREP-CHEM-SRC to estimate the emission fields 

over the user-specified simulation domain.  

Additionally, a  mobile emission inventory in the urban areas in Macedonia is add-

ed, with special emphasis on the city of Skopje. The mobile emission implemented in 

the system represents an emission inventory updated by the Ministry of Environmen-

tal and Physical Planning (MOEPP). The data emissions distributed by the GNFR 

sectors with a grid resolution of 0.1° × 0.1° lat/long are part of the Central Data Re-

pository of European Environment Information (EIONET) and Observing Network of  

Long-Range Transport and Pollution Convention (CLRTAP). The inventory data set 

represents emissions in kt (kilotons) per year for each grid cell by chemical species 

(including CO and NOx). The emission rates and the coordinates are positioned in the 

central point of each given grid. The emissions are provided using the gridded mobile 

inventory data sourced by the MOEPP with a resolution of 0.1°  × 0.1° lat/long with a 

surface area of about 11.10 km  × 8.539 km or 94.78 km2 approximately which  corre-

sponds at 40° latitude. The domain-averaged emission rates of CO and NOx for the 

central point of each grid box are then calculated by the given emission rates from the 

four adjacent points, using a bilinear interpolation method. 

The system employed four single model configurations defined on a Lambert pro-

jection. The basic numerical integration is performed with 5-km horizontal grid reso-

lution centered at 41.55° N, 21.45° E and covers North Macedonia, with parts of Ser-

bia, Bulgaria, Albania, and Greece. The grid network contains 70  × 70 grid points in 

both the east-west and north-south directions. The vertical grid in the model is com-

posed of 35 levels from the surface to about 30 km with 10 levels within 1 km above 

the model surface.  

 The model is initialized by the real boundary conditions using NCAR-NCEP’s fi-

nal analysis (FNL) data [24] having a spatial resolution of 0.25°  × 0.25° (~ 27.7 

km  × 27.7 km) and a 6-h temporal resolution or NCEP GFS data with the same spatial 

resolution. 

The described setup is what we will later refer to as the initial model and we will 

use this as the referent model that we will further improve [19]. Although it is a  rela-

tively good model for predicting the peaks of urban air pollution in winter, t he model 

as described shows a temperature dependent bias (as shown in Fig. 4). The cause for 

this bias will be presented in the next section, following with our proposed improve-

ments. 



3 Analysis of Measured Pollution Data 

In order to understand the distribution of the air pollution and find patterns of correla -

tion, we analyzed the publicly available pollution measurements data. The sources we 

used are a combination from the pollution monitoring stations operated by the 

MOEPP and the ones from the various other networks (crowdsourced sensors, exper-

imental and research sensors). The available data was measured over a time period  of  

few years and it is publicly available [25]. 

 

Fig. 1. Normalized monthly distribution of various pollutants 

The data we were mostly interested in were the PM10 measurements. Most of the 

measurement stations have sensors that measure this parameter, and the fact  that  it  is 

a  pollutant that often gets the public attention due to the extreme measured values in 

winter, makes it the most interesting parameter to analyze and predict. The prepro-

cessing of the data we did was minimal: removal of negative values and removal of 

values above 1300 ug/m3 for the PM10 and PM2.5. The upper limit was set at this val-

ue, as it is slightly above the official confirmed record high measured value, for which 

the initial model has been specifically evaluated for [9]. Therefore, the values above 

were considered outliers. We should mention here that we should be very careful with 

the filtering of outliers, as most of the standard outlier filters would likely fail by 

removing the rare extremely high values of air pollution, and might label them as 

outliers. 

The rest of the pollutants were filtered with the threshold of 5 sigma values of the 

data. This is larger than the standard of 3 sigmas, due to the fact that the distribution 

here is not Gaussian: it is significantly skewed, with a cutoff below 0. Another reason 

we were not very interested in a more thorough outlier removal is that we only intend 

to use the data in an aggregated form, by taking monthly and hourly averages over the 

entire available data. The eventual outliers would not seriously affect the conclusions 



that we would draw from the aggregated data, therefore we consider that the effort to 

remove the outliers in this case would be unnecessary for our purpose. 

 

Fig. 2. Normalized hourly distributions of various pollutants in January 

The plots that a re crucial in improving the model can be seen in Fig. 1 and Fig. 2. 

Figure 1 shows the average monthly distribution of various pollutants. As we can see, 

for almost all of the pollutants, the peak concentrations occur in winter, while the 

measured pollution in summer was relatively low. The only exception here are the 

tropospheric ozone concentrations, which show a peak in summer. This is related to 

the increased solar radiation, and the atmospheric processes that create the ozone ou t  

of the oxygen. We can confirm that hypothesis in Fig. 2 and Fig. 3, where the ozone 

concentrations are the highest around noon. 

 



Fig. 3. Normalized hourly distributions of various pollutants in July 

Figure 2 shows a bimodal distribution of the rest of the pollutants, except for SO2,  

for which we determined that the data quality is low and therefore we would not ana-

lyze it. The bi-modal distribution of PM10, PM2.5, CO and NO2 has two peaks: a 

lower one in the morning hours, corresponding with the early commute, and a higher 

one in the late afternoon, starting with the evening commute and continuing with the 

sharp increase, peaking before midnight. We conclude that the morning peak is 

caused by the traffic pollution and partly due to the home heating. The  process of 

pollution caused by home heating is more pronounced in the late evening: at these 

hours, the traffic calms down from the evening commute, and most of the popula t ion  

is at home. Given that a majority of the population uses solid fuels for space heating 

[26], this is a  plausible hypothesis [27].  

Another hint to this hypothesis is the plot in Figure 3. Here we present the data 

from July in a similar way as in Fig. 2. However, we do not see such a pronounced 

bimodal distributions with large peaks over night. All of the other pollution sources, 

like traffic and industry are present in July, however, the pollution from domestic 

heating is lacking. This supports the hypothesis that the combustion of solid fuels for 

space heating is a significant cause for the increased pollution at winter. In the next 

chapters, we will propose a modification of the setup for the WRF-Chem model pre-

sented in the previous chapter, and will experimentally test a  model that takes modi-

fied initial chemical conditions (polluta nts emissions) based on the temperature. 

4 Temperature Dependent Model 

All the data we have seen so far points towards the need of a temperature dependent 

model for the initial chemical conditions. Both the behavior of the measured air pollu -

tion, and the temperature-dependent bias of the model are strong indicators for that. 

We propose that by scaling the initial chemical conditions by the predicted tempera-

tures over our simulation domain, we would expect improvements in the predictions. 

A concrete proposal for a temperature dependent model will be presented in this chap-

ter. 

If we take the average value of PM10 at each degree of Celsius predicted by our 

model and subtract the average measured value at the stations for the same tem pera -

ture, we will get a measure that represents the average temperature dependent bias of 

the model. This is shown in Figure 4, where we present the measured and simulated 

data for the first half of 2019 over all of the measurement points in the country (X- 

temperature in Celsius, Y- Bias). The simulated data is sourced by the initial mode, 

running online for day to day predictions [9]. We can notice that the initial setup of 

the model is highly temperature biased, namely, there is a large underestimation of the 

pollution at low tempera tures. The temperature dependent bias seems to have a nega -

tive linear dependence by the temperature, but only at temperatures below 15 degrees 

Celsius. In temperatures above that point, the model does not show a temperature 

dependent bias. 



 

 

Fig. 4. Average temperature-dependent bias of the initial WRF-Chem setup over all measure-

ment points 

The authors of [9] describe that the user defined emissions were defined on a total 

yearly basis, and were fed to the model indiscriminately of  the season. This deviates 

from what we have presented in Section 3, where a seasonal variation was shown. As 

we have explained, we expect that the seasonal variation is due to the hypothesis we 

postulated for domestic space heating emissions. Namely, these emissions occur al-

most exclusively in winter, and are expected to be temperature dependent. The nega-

tive temperature dependence may be explained by the fact that the heating intensity, 

and therefore the combustion of solid fuels is higher at lower temperatures.  

In order to improve the temperature dependent bias of the model seen in Figure 4, 

we will do a modification in the initial chemical conditions to include temperature 

dependent scaling. The scaling is done only in the data provided by the MOEPP for 

urban mobile emissions. More specifically, we only scale the data from the sector of 

“other stationary combined” emissions, which contains, and mostly consists of the 

emissions coming from domestic heating sources.  

The scaling of the emissions is done in the following way: for each emission cell of 

the grid that contains an urban area, we multiply the “other stationary combined” 

source by a factor F. The factor depends on the average predicted temperature for that  

cell box for the period we intend to run the simulation. The average temperature for 

the cell box is calculated by averaging the predicted temperatures for all of the simu-

lation nodes within that cell, over the entire period we intend to do our simulation run.  

The visualization of the cell boxes where the pollution is given, and our simulation 

nodes from which we get the temperatures are given in Figure 5. 

 Once the average temperature is calculated, we need to calculate the scaling factor 

F. For average temperatures above 15 degrees Celsius, F=0.1, and for temperatures 
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below that point, we increase F by 0.15 for the drop of each degree Celsius below 15 

degrees Celsius. The formula for scaling is the following one: 

 F=0.1, T>=15C;  (1) 

 F=0.1+(0.15* (15C-T)), T<15  (2) 

These modified user defined emissions are fed into the PREP-CHEM-SRC program, 

and the rest of the simulation workflow is unchanged from the one presented in Chap-

ter 2. With this approach, we only change the emission that come from the domestic 

heating sources, by making them follow a temperature-dependent formula which is 

hypothesized to match the reality. The reasoning behind this is that the domestic heat-

ing is intensified when the temperatures drop, and is almost non-existent when the 

average temperatures are above 15 degrees celsius. 

 

Fig. 5. A map of the wider Skopje area with the GIS data we use in our system 

We should also point that our initial conditions are static, i.e. we do not modify these 

conditions during the simulation run. Feeding dynamic initial conditions into the 

WRF-Chem model is a challenging task. However, when using the model for day -to-

day predictions, we would rarely use simulation domain larger than 3 days, over 

which the average temperatures are very unlikely to change. Thus, we expect that the 

cost benefit of integrating over dynamic initial conditions would be small. 



5 Evaluation 

We have evaluated the proposed model by doing 24 simulation runs for intervals of 

five days each. The simulation periods were distributed evenly across the year, as we 

have simulated five day intervals starting at the first and 16-th day of every month. I n  

this way, we expect to simulate a variety of different meteorological and meteo -

chemical conditions, as well as be able to produce enough data to evaluate the tem-

perature-related bias of the model for each of the measurement point locations sepa-

rately. 

 

Fig. 6. Measured and predicted values for Karposh in winter 

Due to the regional variation and bias of the model, we selected the wider Skopje area 

for a detailed evaluation, given that the temperature dependent bias, and the general 

bias was calculated over this area. The model is easily extensible over the other re-

gions as well in the same way as done for this region, but due to the high population 

density, we decided to focus our attention on the Skopje region. The methodology of 

evaluation was to calculate the predictions at every point in space where a measure-

ment station exists. As the measurement stations do not match with the nodes in our 

simulation grid, the predictions at these specific points were calculated by taking the 

interpolated values of the nearby simulation nodes. We took all the values at the simu-

lation nodes in radius of 5 kilometers around the measurement point, and calculated 

the interpolated value by taking a weighted average, where the weights are inversely 

dependent on the distance between the measurement point and the simulation nodes. 

Figure 6 shows the measured values for PM10 concentrations at the Karposh 

measurement station, for a period of 5 days during winter. We can notice that alt-



hough the initial model predicts the pattern of the curve relatively well, it does tend to 

overestimate the pollution over the entire period. We can also notice that with our 

proposed improved model, we are able to follow the observed curve with our predic-

tions more tightly, which points to a significant improvement. 

A similar pattern, though with a significantly larger differences can be observed for 

a period of 5 days during the summer. Due to the previously mentioned temperature 

dependent bias, the initial model tends to significantly overpredict the pollu tion levels 

in these conditions. On the other hand, our improved model tends to drastically mini-

mize the discrepancy between the measured and predicted values during summer, 

when the pollution emissions are much lower than the yearly averages. 

 

Fig. 7. Measured and predicted values for Karposh in summer. 

It is worth noting that the improvements proposed in these paper do not change the 

shape of the curve, and we can still notice the exact same spikes and holes in the 

curve in both of the charts. This is due to the fact that our work was focused on mod-

eling the initial  and boundary chemical conditions in the simulation. These are kept 

constant over the entire simulation run, so it is reasonable to expect that they might 

only linearly shift the curve by a certain amplitude factor. In order to be able to 

change the curve shape, we would need to intervene in the chemical simulation model 

itself, or simulate with dynamic initial and boundary conditions. This might be inter-

esting for future work, but it is well beyond the scope of our current research. 



 

Fig. 8. Temperature dependent bias of the initial model versus our improved model, for the 

stations Centar and Karposh 

Figure 8 (should put a table here instead) shows the bias of the model at two stations, 

Centar and Karposh. We can note that our model shows a smaller bias in general for 

both stations, as well as a flatter curve. The flatter curve is a clear indicator that in 

comparison to the base model, the temperature dependent bias has been decreased  by  

our proposed improvements. 

6 Conclusion and Future Work 

In this paper, we first presented a general overview of the air pollution prediction 

models, which are becoming increasingly important in simulating the air pollution in 

urban areas. Our detailed overview was focused on the WRF-Chem model, where we 

evaluated a concrete setup of the model, tailored for the conditions of the wider Skop-

je region. Then we were able to propose a possible improvement of the initial chemi-

cal conditions used by the model. Our hypothesis was supported by the data measured 

from the network of air pollution sensors, which also indicated to a temperature de-

pendent bias of the model. Combining the two findings, we managed to quantitatively 

measure the deviations of the model from the observed values, and based on that we 

proposed an improvement for the initialization of the initial chemical conditions. 

Our proposed change to the model resulted in measurable improvements in predic-

tions. The total bias of the model, evaluated over the entire simulated data, was de-

creased from 205.28 to 40.15 for the measurement station in Centar, 179.67 to  32 .79  

for Karposh, and the charts presented show that we are now able to make predictions 

that tightly follow the curves of the observed values. 

However, the new model still has regional variations, which points out to a region-

al-dependent bias. In this paper we focused our improvements for the wider Skopje 
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area, but any future work should address this issue of  regional bias, by providing 

specific scaling factors for every region separately, with the same methods elaborated  

here   that we employed for the Skopje region. This issue of regional variations might 

also be caused by the relatively coarse simulation grid we use (5km x 5km horizontal-

ly).  Due to the constraints on computational power, we were not able to test a  model 

with a finer simulation mesh and this could also be an interesting topic for further 

research. The coarse mesh might also be the cause for the regional variations, which 

is to be investigated as well. 

Finally, our future work may also be directed towards a model that will have a 

learning property and be able to improve itself dynamically on the base of the calcu-

lated bias of its previous predictions. This would be useful in practical application, 

where the model would be brought to online service for making day to day pollution 

predictions. 
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