
Intel vs AMD: Matrix Multiplication Performance
Nenad Anchev, Marjan Gusev, Sasko Ristov and Blagoj Atanasovski

Ss. Cyril and Methodius University
Faculty of Information Sciences and Computer Engineering

Skopje, Macedonia
Email: nenad ancev@hotmail.com, {marjan.gushev,sashko.ristov}@finki.ukim.mk, blagoj.atanasovski@gmail.com

Abstract—Matrix-Matrix multiplication (MMM) is widely used
algorithm in today’s computations and researches. Many tech-
niques exist to speed up its execution. In this paper, we analyze
the performance of MMM varying matrix size in order to
determine its behavior and the region where it provides the best
performance. We also determine the best speedup and efficiency
in parallel implementation for different CPU architectures since
cache architecture and organization is very important for MMM
performance. Intel i7 and AMD Opteron CPUs are used as
an environment. Several achieved results are expected, but
there are also many unexpected. Superlinear speedup (speedup
greater than the number of used threads) and the efficiency
greater than 100% are achieved for each parallel implementation
only on AMD Opteron. We observe regions with performance
discrepancy for all three parameters for both CPUs.

Index Terms—HPC, CPU, Cache, Memory, Superlinear
Speedup

I. INTRODUCTION

MMM is a linear algebra algorithm which has been a
subject of research in industry and the science for a long time.
There are many techniques to speedup the algorithm: using
faster processors, modifying the algorithm for less operations,
using different hardware architecture. Since it is quite well
for parallelization (granular and scalable), huge speedup can
be achieved if it is scaled on many cores.

Various CPU vendors produce different CPU architectures.
In this paper we realize a systematic approach to analyze the
performance of two different CPUs, i.e. Intel i7 and AMD
Opteron using the same MMM algorithm. We choose these
CPUs since both have similar cache architecture. Both use
four cores with private L1 and L2 caches, and all cores share
the last level L3 cache.

Our goal is not to improve the ”slow(est)” dense MMM, but
we use it intentionally since it generates a lot of cache misses
and is a good benchmark for many cache parameters: cache
size, cache levels, replacement policy, set associativity, cache
line size, cache inclusivity / exclusivity etc. We measure the
response time for each test case and calculate the speed, and
speedup and efficiency in parallel executions.

The rest of the paper is organized as follows: Section II
describes the related work. In Section III we describe the
testing methodology used in our experiments. The next Sec-
tion IV elaborates the results using three parameters: speed,
speedup and efficiency for both platforms. We discuss the
results in Section V. Finally, Section VI concludes our work
and Section VI presents our plan for further work.

II. RELATED WORK

MMM algorithm is the most common used algorithm in
computations, as well as in research. Many authors analyze
their performance trying to speedup its execution with different
techniques classified in two main categories improving the al-
gorithm by reducing the operations or improving the algorithm
according to available multiprocessor, especially its cache
architecture and organization, since matrix multiplication is
cache intensive algorithm [1], i.e. each element is reused N
times, where N is the the matrix size. Both techniques are
important. In this paper we try to understand the behavior of
the MMM algorithm presented with the three most important
parameters: speed, speedup and efficiency, while the MMM
algorithm is executed on two different single-chip multi-core
multiprocessors with the same cache structure.

A. Speed Analisys

We found many papers that improve the algorithme accord-
ing to the available hardware. Hennessy and Patterson [2]
present 2D blocking matrices techniques as one of several
cache optimization that enormously decreases cache misses
and thus the execution time. Although this techniques increase
the operations, it reduces the high cache level misses and
accesses to main memory since block sizes are chosen as
the matrices can be stored in L1 cache. Gusev et al. even
improve the 2D blocking matrices by using rectangles instead
of squares. They reduce the performance drawbacks due to
associativity [3] for the processors with small associativity
(AMD) by reducing the height of the second matrix B blocks.
Williams et al. [4] used padding to the first element of each
submatrix to land on equidistant cache sets and thus reduce
the drawbacks due to cache set associativity.

B. Speedup Analisys

Achieving linear speedup when the algorithm is scaled is
imperative. However, even superlinear speedup is achieved
by many authors, but without detailed explanation [5], [6].
Al-Jaroodi et al. [7] found superlinear speedup for matrix
multiplication explaining that more processors have more
cache and thus parallel execution will generate smaller number
of cache misses. However, they do not explain why superlinear
speedup is achieved just for 2 and 3 processors, and not for 4
and more processors where more cache capacity is available.
Kolberg et al. [8] found superlinear speedup for MMM on 16
processors using MPI, but not for 32 or 64, despite increased



cache memory. More detailed but also incomplete analysis is
performed in [9] and [10].

Ristov and Gusev [11] introduced more detailed analysis
about superlinear speedup. They proved experimentally that
superlinear speedup region exist and scaling the MMM on
more cores choosing the matrix size from the superlinear
region will lead to superlinear speedup regardless of the
number of processors. Superlinear speedup is achieved in
cloud virtual environment and even on Windows platform
in Windows Azure [12], despite the virtualization layer. It
can be achieved on multi-GPU implementation [13] due to
configurable cache memory of Fermi architecture, as well.
Jenks in [14] found superlinear speedup with parallel execution
of matrix multiplication algorithm using MPI and transposing
one source matrix, thus reducing the cache misses. Adding
parallel overheads in order to Increasing both cache reuse and
fine-grained parallelism by adding parallel overheads can lead
to superlinear speedup [15].

We determine superlinear speedup for MMM as well. But
we found another reason, i.e. implicit prefetching due to shared
last level L3 cache.

C. Efficiency Analisys

We have not found any paper that analyzes the efficiency
while scaling the MMM. In this paper we will try to under-
stand if scaling the resources will increase or decrease the
efficiency on both multiprocessors. We have set a hypothesis
that the efficiency decreases when the resources are increased
for the same problem size.

III. TESTING METHODOLOGY

This section presents the testing methodology used for the
experiments in order to provide reliable results.

A. Testing Algorithm

We use Dense MMM algorithm with squared matrices
CN ·N = AN ·N · BN ·N as test data. Matrices elements are
stored as double precision numbers with size ME = 8 bytes
each. Each element cij of matrix C is calculated as inner
product of row i of matrix A and column j of matrix B, for
each i, j = 0, 1, · · · , N−1. Cache miss occurs if an element is
not present in the cache and the processor needs to load it from
main memory, which is much expensive operation. Increasing
the matrix size N will occupy the cache faster, thus increase
the cache miss ratio and the total execution time.

We are not interested in speeding up the algorithm by
reducing the number of operations, but we use this algorithm
since it is cache intensive.

One thread in sequential implementation multiplies the
whole matrix AN ·N and matrix BN ·N . For parallel implemen-
tation, each thread multiplies the row block matrix AN ·N/P

and the whole matrix BN ·N , where P ∈ {2, 3, 4} denotes
the total number of parallel threads and used CPU cores.
Both implementations are executed without any optimization
or adaptation to a certain CPU architecture.

A single thread in sequential implementation executes N3

sums and N3 products, or total 2 ·N3 operations. Each thread

L4 – Main Memory

CPU

C0

L1

L2

C1

L1

L2

C2

L1

L2

C3

L1

L2

L3

Fig. 1. CPUs cache architecture

CPU L1D L1I L2 L3
Intel i7 32KB 32KB 256KB 8MB

AMD Opteron 64KB 64KB 512KB 2MB

TABLE I
CACHE SIZE FOR I7 AND OPTERON CPUS

in parallel implementation executes average 2 · N/P · N2

operations. This means that the algorithm performs 2 · N3

operations, both for sequential and parallel execution.

B. Testing Environment

Our testing environment consists of two different vendor
CPUs, i.e. Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz and
Quad-Core AMD Opteron(tm) Processor 8347, each with 4
cores, as depicted in Fig. 1. Each core has its own private L1
and L2 caches and all 4 cores share L3 cache. Table I presents
the details about cache size of both CPUs, where L1D and L1I
denote for L1 data and instruction cache, correspondingly.

Both servers are configured with the same runtime environ-
ment: Linux Ubuntu 10.10 operating system is installed on
both machines and C++ with OpenMP is compiled with gcc
compiler.

C. The Experiments

We realize 4 experiments on both platforms. Each experi-
ment consists of series of test cases varying matrix size from
N = 1 to N = 1100.

1) Sequential Implementation - Experiment 1: Sequential
execution is realized with one thread on one core C0 as
depicted on Fig. 1. This experiment uses C0 core with its
private L1 and L2 caches, as well as the whole L3 Cache.

2) Experiments 2, 3 and 4 - Parallel Implementations:
Three experiments are realized using 2, 3 and 4 processors.
Each processor has its own private L1 and L2 caches, but now
share L3 cache.



D. Test Data
We measure the execution time T (P ) for each test case

(different matrix size N ) in each experiment (different number
of processors P ). We use T (P ) to calculate the Speed V (P ),
the Speedup S(P ) and the Efficiency E(P ) using well known
definitions (1), (2) and (3).

We calculate the speed V (P ) by dividing the number of
operations and measured execution time as defined in (1), both
for sequential and parallel execution, i.e. for P ∈ {1, 2, 3, 4}.

V (P ) =
2 ·N3

T (P )
(1)

The speedup S(P ) for parallel execution (for P ∈ {2, 3, 4})
is calculated as ratio of sequential and parallel execution time
by (2).

S(P ) =
T (1)

T (P )
(2)

Finnaly, the efficienacy E(P ) is calculated for parallel
execution (for P ∈ {2, 3, 4}) as ratio of the speedup and
the number of processors (3). We will use the efficiency to
determine which parallel implementation provides the best
speedup per core.

E(P ) =
S(P )

P
(3)

E. Test Goals
The test experiments have two goals. The first goal is

to model multiprocessor’s behavior, i.e. speed, speedup and
efficiency as a function of matrix size for cache intensive
MMM algorithm on both environments. The second goal is
to determine which platform provides better performance.

F. Testing Regions
Gusev and Ristov [1] define different cache regions L1, L2,

L3 and L4 where matrix multiplication behaves differently.
The L1 region is determined with those matrix sizes that can
be stored in L1 cache. Then we expect the highest processor
speed and the smallest number of cache misses. L2 region is
determined when the matrices size is such that the matrices can
not be stored in L1 cache, but fit in the L2 cache generating
cache misses in L1, but not for L2. Respectively in L3 region
L2 generates cache misses but data fits in L3. The region after
this point is called L4 region presenting main memory or Level
4 cache.

IV. RESULTS OF THE EXPERIMENTS

In this section we present the results of the experiments
realized in two CPUs with the same cache distribution, but
different cache size, as explained in Section III-B.

A. Results on Intel i7 CPU
We measure the execution time for each number of proces-

sors P ∈ {1, 2, 3, 4}. In this section we analyze the results of
calculated Speed V (P ), Speedup S(P ) and Efficiency (E(P )
for each experiment defined in Section III-C while executed
on Intel i7 processor.

Fig. 2. Speed for MMM as a function of matrix size while executed on
different number of Intel i7 cores

1) Speed on Intel i7 CPU: The speed for each test case of
all four experiments while executed on Intel i7 processor is
depicted in Fig. 2.

We observe three regions (A, B, and C going from left to
the right) with different speed behavior for each experiment.
The speed increases in region A while N increases until region
B where it saturates. Then it decreases in region C which is
more emphasized for the experiments with greater number of
processors. However, the three regions are different for each
experiment and their ranges are presented in Table II.

TABLE II
DIFFERENT SPEED BEHAVIOR

Exp. Region A Region B Region C
1 [1,102] [102,380] [380,1100]
2 [1,135] [135,380] [380,1100]
3 [1,275] [275,380] [380,1100]
4 [1,295] [295,380] [380,1100]

Speed drawbacks are observed for N = 128 and more
emphasized for N = 256 for all experiments due to cache
set associativity [3]. The drawback is more emphasized while
using more processors since all processors force for the same
set and more cache misses are generated.

Another unexpected speed behavior is in the region N =
[312, 580] where its value is discrepant. Another discrepant
region is for matrix size N > 932. We believe that this
discrepancy happens due to cache line, L2 and L3 cache
capacity and associativity. We will analyze these unexpected
results in more details in our further research analyzing the
cache misses, the address of the first element of matrices and
matrix pattern in the cache and main memory.

We can conclude that the maximum performance (speed)
can be achieved when the matrices A and B can be fit in L3
cache, i.e. around N = 380. After this point, the speed starts
to decrease for each experiment.

2) Speedup on Intel i7 CPU: The achieved speedup for the
three experiments with parallel implementation compared to
sequential execution is depicted in Fig. 3.



Fig. 3. Speedup for MMM executed as a function of matrix size while
executed on different number of Intel i7 cores

Fig. 4. Efficiency for MMM executed as a function of matrix size while
executed on different number of Intel i7 cores

The speedup in the three experiments with parallel imple-
mentation satisfies Gustafson’s Law [16], i.e. it is sublinear in
each test case. The speedup rises and saturates until its limit,
i.e. S(P )→ P for each experiment.

Two unexpected results, i.e. a small positive peak for N =
342 and the discrepant speedup in the region for matrix size
N > 736, will be analyzed in more details in our future work.

3) Efficiency on Intel i7 CPU: Fig. 3 depicts the efficiency
for the three experiments with parallel implementation. All
three experiments have similar curves for the efficiency, where
experiment 2 is the most efficient implementation in front of
experiment 3 and 4, i.e. E(2) > E(3) > E(4) for each test
case. We can conclude that adding more resources reduces the
efficiency, and the efficiency increases for greater matrix size
N . However, the best choice should be the maximum speed.

B. Results on AMD Opteron CPU

In this section we analyze the results of calculated Speed
V (P ), Speedup S(P ) and Efficiency (E(P ) for each test case
for all experiments executed on AMD Opteron processor.

1) Speed on AMD Opteron CPU: The speed for each test
case of all four experiments while executed on AMD processor

Fig. 5. Speed for MMM as a function of matrix size while executed on
different number of AMD Opteron cores

Fig. 6. Speedup for MMM executed as a function of matrix size while
executed on different number of AMD Opteron cores

is depicted in Fig. 5. We observe that the speed for sequential
execution behaves different than those for parallel execution.

We can model the V (1) behavior in four regions, i.e.
increasing, maximum, decreasing and saturating, while in-
creasing the matrices size N . But very unexpected behavior
appears for speed for parallel execution. There are two ranges
N = [81, 84] and N = [217, 218] with local maximums. After
the second maximum, the speed starts to decrease and then
saturates.

Starting from N = 325, the speed is also discrepant for
AMD CPU, and even more than Intel i7 CPU.

2) Speedup on AMD Opteron CPU: Fig. 6 depicts the
achieved speedup for the three experiments with parallel
implementation.

We determine a phenomenon for the speedup. Apart of the
Gustafson’s Law that the maximum speedup is linear, we
observe a superlinear speedup regions for each experiment
with parallel implementation. Table III presents the regions
and maximum values of the achieved speedup. All superlinear
regions begin for the same matrix size N = 435, but they
are greater when more cores are used. Even more, the super-



TABLE III
SPEEDUP REGIONS AND MAXIMUM VALUES

Parameter Exp. 2 Exp. 3 Exp. 4
Superlinear region [435, 517] [435, 657] [435, 1100]

Max. speedup Smax 2.64 4.07 5.58
Nmax (Smax point) 456 456 476

Fig. 7. Efficiency for MMM executed as a function of matrix size while
executed on different number of AMD Opteron cores

linear speedup region for 4 cores is infinite (until measured
N = 1100).

The same local maximums exist as for the speed since V (1)
is constant in those regions. And another local speedup max-
imum appears in superlinear region as presented in Table III.

We can conclude that maximum speedup can be achieved
in the region around Nmax for particular number of cores.

3) Efficiency on AMD Opteron CPU: The efficiency for
the three experiments with parallel implementation is depicted
in Fig. 7. Two interesting results are achieved. The first, we
achieved a regions where the efficiency is greater than 1
(100%) because of achieved superlinear speedup. The second,
there are two regions where the efficiency behaves differently.
That is, the experiment 2 is the most efficient implementation
in front of experiment 3 and 4, i.e. E(2) > E(3) > E(4)
for test cases in the region N < 416. For N ≥ 416, the
maximum efficiency is achieved for the experiment 4, in front
of experiment 3 and 2, i.e. E(4) > E(3) > E(2).

We can conclude that adding more resources reduces the
efficiency, and the efficiency increases for greater matrix size
N . However, the best choice should be the maximum speed.

V. DISCUSSION

The results show superlinear speedup region for MMM
without any optimization on AMD Opteron processor using
P ∈ {2, 3, 4} cores.

Let’s explain in more details the reasons that lead to
superlinear speedup, and only on AMD Opteron CPU. Since
both CPUs are on different frequency, we will use CPU clocks.
The total number of clocks TC can be expressed as a sum of
the clocks that CPU spends on arithmetic operations (CC) and

the clocks for memory access (MC), i.e.

TC = CC +MC

CC is constant for both CPUs while using the same number
of cores and therefore it satisfies the Gustafson’s Law. The
sum of all clocks spent by all cores for parallel execution will
be greater than the sequential due to extra operations required
for creating the threads and CPU idle state because not all the
cores start and finish the execution at the same time.

Let’s analyze the MC now. Each matrix element should be
accessed N times. The best performance can be achieved if
each element is loaded from the main memory only the first
time and other N − 1 times from L1 cache. The hypothesis
set by many authors about superlinear speedup for matrix
multiplication is that the reason for superlinear speedup is
due to greater capacity of private cache memory per core
in parallel execution will generate less cache misses than
the sequential execution. However, our results show different
reason for superlinear speedup.

We claim that more cache capacity in parallel execution
is only one of possible conditions for superlinear speedup
achievement. In this paper, we present that the superlinear
speedup appears when the problem size can not be stored
completely in L3 cache, that is, it does not appear due to
greater cache capacity in parallel execution, but the main factor
for its existence is the shared L3 cache. This allows a kind
of implicit prefetch of the matrix elements. This explains the
larger speedup in the main memory region in the shared cache
scenario, especially for the experiment with 4 cores. In parallel
execution, when one of the cores loads a chunk of a matrix in
the cache, it makes an implicit shared cache prefetch to other
processors. This scenario is more important in a LRU cache
replacement policy, where the matrix B takes more recent
hits than the first one A. Therefore, the additional speedup
than expected is achieved since the whole matrix B is shared
among the cores.

Although we determined another possibility for superlinear
speedup existence, it has been achieved only on AMD Opteron
CPU, and not on Intel i7 processor, despite the same cache
structure (the same number of cores, private L1 and L2 caches
and shared L3 cache).

But, let’s analyze in more details the speed for Intel i7.
According to Gusev and Ristov [1] and the L3 cache size of i7
presented in Table ??, L3 region should be until N = 724 (two
matrices can be stored in L3 cache size of 8MB). However,
Fig. 2 depicts that the L3 region ends around N = 380, which
seems like L3 cache is not shared among all cores, but only
a quarter of 8MB, i.e. 2MB is private per core. This could be
the reason why superlinear speed is not achieved on Intel i7.

Despite the nonexistence of superlinear speedup on Intel i7,
the speed ratio is much greater than the frequency of the AMD
Opteron CPU.

VI. CONCLUSION

This paper analyzes the MMM algorithm executed on two
different vendor CPUs, i.e. Intel i7 and AMD Opteron, each



with 4 cores with the same cache structure (private L1 and L2
caches per core, and shared L3 cache), but different cache
capacities and set associativity. The three most important
parameters for MMM are measured and analyzed: the speed,
speedup and efficiency varying the matrix size in order de-
termine the different behaviors of the algorithm for different
cache regions: L1, L2, L3 and L4.

The speed as a function of matrix size has similar curves
on Intel i7 CPU. All of them have three regions with different
speed behavior: increasing, saturating and decreasing. Two
regions are detected where the performance is discrepant.
However, the achieved speed on AMD Opteron behaves dif-
ferent. Sequential execution is characterized with four regions:
increasing, saturating, decreasing and again saturating. The
speed for parallel implementations has two local maximums in
the first saturating region for sequential execution. The speed is
discrepant in the whole region for matrix size greater than 325
for AMD Opteron, and it is even greater than the discrepancy
for Intel i7 CPU. The maximum speed for AMD Opteron can
be achieved at the end of L2 region and for Intel i7 in L3

region.
The speedup as a function of matrix size for each parallel

execution complies with the Gustafson’s Law for Intel i7. It
is greater for greater matrix size and saturates towards linear
speedup.

Superlinear speedup is achieved on AMD Opteron for
all parallel executions. The main reason is not only due to
greater cache capacity to store the matrix elements in parallel
execution, because it appears in shared L3 region instead
of private L2 region. We determine that superlinear speedup
appear because the shared last level cache allows implicit
prefetching of the matrix elements in parallel execution, i.e.
when one of the cores loads a chunk of a matrix in the cache,
it makes an implicit shared cache prefetch to other processors
since they will access those elements in cache instead of
main memory. Additionally, the superlinear region is wider
for parallel execution with greater number of cores, being the
infinite (in the analyzed region) for parallel execution with 4
cores.

Both CPUs have different behavior for the efficiency also.
Adding more resources on Intel i7 processor increases the
speedup, but reduces the efficiency, i.e. the efficiency is greater
when using smaller number of cores in parallel execution. The
same holds for AMD Opteron but only in the left - sublinear
region for smaller matrix size. Despite our hypothesis and
Gustafson’s Law, in superlinear region (for greater matrix size
until the analyzed N = 1100) both the speedup and efficiency
are saturated, but now adding the more resources will increase
the efficiency as well.

VII. FUTURE WORK

Many unexpected results are observed: speed, speedup and
efficiency discrepant regions, local maximums, speedup peaks,
etc which will be the subject of our further research. In this
paper we used the ”slow” dense MMM without optimization to
determine different vendor CPU performance on ”slow” cache

intensive algorithm. Our future work will be directed towards
analyzing specific optimization techniques on different pro-
cessor architectures, and their contribution of achieving even
greater speeds and resolving specific bottlenecks. Moreover,
other compute and cache intensive algorithms may be ana-
lyzed to achieve better performance on specific CPU cache
architectures.

In this paper we determine the region where maximum
performance (speed) is achieved and the best scaling (speedup
and efficiency) on single chip multicore shared memory
multiprocessor. We will try to model the performance on
other multiprocessors like multichip multicore or multichip
singlecore, also with different cache organization.

REFERENCES

[1] M. Gusev and S. Ristov, “Matrix multiplication performance analy-
sis in virtualized shared memory multiprocessor,” in MIPRO, 2012
Proceedings of the 35th International Convention, IEEE Conference
Publications, 2012, pp. 264–269.

[2] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth
Edition: A Quantitative Approach. MA, USA: Elsevier, 2012.

[3] M. Gusev and S. Ristov, “Performance gains and drawbacks using set
associative cache,” Journal of Next Generation Information Technology
(JNIT), vol. 3, no. 3, pp. 87–98, 31 Aug 2012.

[4] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrix-vector multiplication on emerging mul-
ticore platforms,” Parallel Comput., vol. 35, no. 3, pp. 178–194, 2009.

[5] D. J. Lee and T. J. Downar, “The application of posix threads and
OpenMP to the U.S. nrc neutron kinetics code parcs,” in Proceedings
of the International Workshop on OpenMP Applications and Tools:
OpenMP Shared Memory Parallel Programming, ser. WOMPAT ’01.
London, UK, UK: Springer-Verlag, 2001, pp. 90–100.

[6] R. Blikberg and T. Sørevik, “Nested parallelism: Allocation of threads
to tasks and OpenMP implementation,” Sci. Program., vol. 9, no. 2,3,
pp. 185–194, Aug. 2001.

[7] J. Al-Jaroodi, N. Mohamed, H. Jiang, and D. Swanson, “An agent-based
infrastructure for parallel java on heterogeneous clusters,” in Proc. of the
IEEE Int. Conf. on Cluster Computing, ser. CLUSTER ’02. Washington,
DC, USA: IEEE Computer Society, 2002, pp. 19–.

[8] M. Kolberg, G. Bohlender, and D. Claudio, “Improving the performance
of a verified linear system solver using optimized libraries and parallel
computation,” in High Performance Computing for Computational Sci-
ence - VECPAR 2008, J. M. Palma and et al., Eds. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 13–26.

[9] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris,
“Performance evaluation of the sparse matrix-vector multiplication on
modern architectures,” J. Supercomp., vol. 50, no. 1, pp. 36–77, 2009.

[10] X. Martorell, J. Labarta, N. Navarro, and E. Ayguad, “A library imple-
mentation of the nano-threads programming model,” in Euro-Par, Vol.
II’96, 1996, pp. 644–649.

[11] S. Ristov and M. Gusev, “Superlinear speedup for matrix multiplication,”
in Information Technology Interfaces, Proceedings of the ITI 2012 34th
International Conference on, 2012, pp. 499–504.

[12] M. Gusev and S. Ristov, “Superlinear speedup in windows azure
cloud,” in 2012 IEEE 1st International Conference on Cloud Networking
(CLOUDNET) (IEEE CloudNet’12), Paris, France, Nov 2012, pp. 173–
175.

[13] D. P. Playne and K. A. Hawick, “Comparison of gpu architectures
for asynchronous communication with finite-differencing applications.”
Concurrency and Computation: Practice and Experience, vol. 24, no. 1,
pp. 73–83, 2012.

[14] S. Jenks, “Multithreading and thread migration using MPI and myrinet,”
in Proceedings of the Parallel and Distributed Computing and Systems,
ser. PDCS’04, 2004.

[15] A. M. Castaldo and R. C. Whaley, “Scaling lapack panel operations
using parallel cache assignment,” SIGPLAN Not., vol. 45, no. 5, pp.
223–232, Jan. 2010.

[16] J. L. Gustafson, “Reevaluating Amdahl’s law,” Communication of ACM,
vol. 31, no. 5, pp. 532–533, May 1988.


	Introduction
	Related Work
	Speed Analisys
	Speedup Analisys
	Efficiency Analisys

	Testing Methodology
	Testing Algorithm
	Testing Environment
	The Experiments
	Sequential Implementation - Experiment 1
	Experiments 2, 3 and 4 - Parallel Implementations

	Test Data
	Test Goals
	Testing Regions

	Results of the Experiments
	Results on Intel i7 CPU
	Speed on Intel i7 CPU
	Speedup on Intel i7 CPU
	Efficiency on Intel i7 CPU

	Results on AMD Opteron CPU
	Speed on AMD Opteron CPU
	Speedup on AMD Opteron CPU
	Efficiency on AMD Opteron CPU


	Discussion
	Conclusion
	Future Work
	References

