
MMCacheSim: A Highly Configurable Matrix
Multiplication Cache Simulator

Blagoj Atanasovski, Sasko Ristov, Marjan Gusev, and Nenad Anchev

Ss. Cyril and Methodious University, Faculty of Information Sciences and Computer
Engineering,

Rugjer Boshkovikj 16, 1000 Skoipje, Macedonia
blagoj.atanasovski@gmail.com, sashko.ristov@finki.ukim.mk,

marjan.gushev@finki.ukim.mk, nenad ancev@hotmail.com

Abstract. Memory access is the bottleneck of all computations. CPU
cache is introduced to speed up accessing reused and local data. Matrix
multiplication is the most common representative of many linear alge-
bra algorithms which performance directly depends of the cache. Many
cache parameters exist and impact the overall computing performance
such as cache type, line, size, level, associativity, and replacement pol-
icy. Therefore an optimal architecture to execute certain compute and
memory intensive algorithm is desirable in most applications.

We have developed MMCacheSim simulator to predict matrix multipli-
cation performance on particular existing or non-existing multiprocessor.
MMCacheSim simulates the execution time and number of cache misses
that matrix multiplication algorithm performs with particular matrix
size and element size executing on processor with different cache size,
line, level associativity, and replacement policy.

Keywords: CPU Cache, Multiprocessor, HPC, Simulation

1 Introduction

Basic computer system is built on the Von Neumann concept (or Eckert-Mauchly
as recently recognized) with CPU, main memory and bus. The problem of match-
ing the speed of the instruction execution with the speed of fetching and storing
the data / instruction degrades the overall performance of the computer system.
Modern multiprocessors use multilayer cache memory system [9] to balance the
gap between CPU and main memory and to speedup data access. The cache size
is one of the most important cache parameters since larger caches reduce miss
rates, but unfortunately, require greater data access times.

The matrix multiplication algorithm provides similar performance (speed)
in the same cache region [14]. n-way set associative caches produce huge per-
formance drawbacks for cache intensive algorithms regardless of cache size [7].
Cache line speeds up the time locality, i.e. if sometimes a particular memory
location is referenced, then it is likely that near or even the same location will

be referenced again in the near future. The decision which cache line to be re-
placed if all the cache lines are fulfilled in the particular set depends on cache
replacement policy.

All these cache parameters impact the algorithm overall performance and
it is difficult to select the cache with optimal parameters for particular algo-
rithm. Even more, the same algorithm behaves differently for different input size
data. Applications provide better performance when they are executed on flex-
ible cache with reconfigurability [17]. Using a proper simulators to predict the
algorithm performance can save time and wasted money for unnecessary hard-
ware. They can be used to measure the performance of new proposed schemes [1].
The authors in [2] propose techniques to predict the performance impact using
hybrid analytical models. The authors in [19] propose a technique to overcome
inter-thread cache conflict misses on shared cache and develop a highly config-
urable multi-core cache contention MCCCSim simulator that reproduces parallel
instruction execution. A predictive model is proposed in [18] to allow fast and
accurate estimation of system performance degradation also due to shared cache
contention in parallel execution. The authors in [5] propose a statistical cache
model Statstack that models a fully associative cache with LRU replacement
policy and compared the results with the traditional cache simulator.

In this paper we present a trace driven simulation based MMCacheSim sim-
ulator that takes a list of memory addresses that represent the calls to main
memory and tracks the changes in the cache. An overview of several existing
cache simulators is presented in Section 2. The rest of the paper is organized as
follows: In Section 3 we describe the MMCAcheSim architecture and design. Sec-
tion 4 describes the real and simulated experiment environments and Section 5
presents the results of the simulation and experiments. Section 6 is devoted to
conclusion and future work.

2 Related Work

This section presents different purpose cache simulators that we found in the
literature. Dinero IV is the cache simulator that simulates a memory hierarchy
with various caches [4]. A DEW strategy [8] speeds up the simulation of multiple
combinations of cache parameters. It simulates only FIFO replacement policy.
The authors in [6] define a fully parameterizable models applicable to n-way
associative caches, but only for LRU replacement policy. Our MMCacheSim
simulates both FIFO and LRU cache replacement policies for all cache levels.

The authors in [10] propose a CMP$im simulator based on the Pin binary
instrumentation tool. It is a better simulator offering multi core support and
data gathering for all levels of the cache. However, the capturing the results is
more complex than our MMCacheSim. HC-Sim is also based on Pin that generate
traces during runtime and simulates multiple cache configurations in one run [2].
An on-line cache simulation using a retargetable application specific instruction
set simulator is provided in [13]. CMPSched$im evaluates the interaction of
operating system and chip multiprocessor architectures [11].

Simulators can be also used in the teaching process. Hardware courses in
software oriented curriculum require a lot of effort, both from instructors and
students [16]. The authors in [15] using visual simulators achieved significant
improvements in grade distribution and computer science student interest in
hardware. Visual EduMIPS64 helps teachers to better present the specific topics
of computer architecture and also help students to learn easier [12].

In this paper we present our MMCacheSim simulator and analyze if a success-
ful prediction of cache performance can be achieved by simulating the execution
of an algorithm and measuring the number of misses on different levels of CPU
cache. We build a model that can be easily configured to represent different
types of cache architectures with different replacement policies. A series of ex-
periments were performed for execution of dense matrix multiplication algorithm
varying matrix sizes on real world implementations and simulation with same
parameters for the CPU cache architecture.

3 MMCacheSim Simulator

This section presents the MMCacheSimulator architecture, design and class dia-
gram, and briefly describes its inputs and outputs. The MMCacheSim simulator
is implemented as a set of Java classes, each for different CPU cache parameter:

– Cache Line - Represents a single cache line. It is initialized with the size of
the cache line, the size of the elements saved inside it, and the address of the
first element saved inside. Contains methods for writing new elements in the
cache line and checking if an element is in the cache line;

– Cache Set - Represents a collection of cache lines available for both LRU and
FIFO implementations as cache replacement policies. It is initialized with the
associativity and line size. Contains methods for writing an address inside
the cache and with it replacing the obsolete one according to the chosen
replacing policy, checking whether an address is inside the given set;

– L1, L2, L3 Cache Levels - The actual cache memory, also available as LRU
and FIFO implementations initialized with the size, associativity and the
cache line size. Contains the cache sets, the data about misses and hits
made on that particular level and methods for reading from and writing to
the level;

– Processor Core - As a real processor core would have access to the cache.
Several cores may share same cache structures. The simulated model of a
core is initialized with instances of cache levels, by giving different cores the
same instance of a cache level we simulate sharing. A cache core has only
method to read a data element. If the element is not found in the cache levels
a cache miss is recorded;

Figure 1 depicts the class diagram of the LRUCore class. The CPU Core is
the class that contains the three Cache Levels. It contains the fields to measure
the number of cache misses and hits on each level for the memory calls that go
through particular core. The Cache Levels classes also contain fields about the

number of hits and misses they generated. Since a cache can be shared among
several CPU cores (mostly L3 cache), Cache Level also posses the information
about cache misses and hits per particular CPU core.

Fig. 1. MMCacheSim class diagram of a LRU Core

readData(memoryAddress) is the only method that is used during the sim-
ulation which goes through the Cache Levels searching if the required memory
address is present in some of them going from the lowest to the highest. A sam-
ple code for inclusive caches is given in Appendix. This method also contains
the logic that specifies the cache inclusivity. The readFromLx methods (where x
denotes the cache level) in the Cache Level classes return a Boolean indicating
whether the element is already stored in that Cache Level.

Figure 2 depicts the class diagram of the particular level LRUCache class.
The other two classes CacheSetLRU and CacheLine contains the necessary in-
formation about particular cache level associativity.

The MMCacheSim simulates execution of the simple dense matrix multipli-
cation algorithm. The simulation does not take into account the time required
for arithmetic operations and memory writes because we are looking for the

Fig. 2. MMCacheSim class diagram of the particular level LRUCache Class

effect that the cache produces when the same data is accessed multiple times
and the speedup that can be gained when parallelizing the execution. The input
for MMCacheSim is number of cores, cache levels, shared / dedicated cache per
core, cache line, cache size, and cache replacement policy for each cache as input
parameters. It returns the average clock cycles for cache hit per each cache level
and cache miss for last level cache. It also measures the total clock cycles.

4 Experiment Environment

The experiments are performed on the real multiprocessors with totally differ-
ent cache architectures. The first multiprocessor consists of 2 chips Intel(tm)
Xeon(tm) CPU X5680 @ 3.33GHz and 24GB RAM. Each chip has 6 cores, each
with 32 KB 8-way set associative L1 data cache dedicated per core and 256 KB
8-way set associative L2 cache dedicated per core. All 6 cores share 12 MB 16-
way set associative L3 cache. The second server has one chip AMD Phenom(tm)
9950 Quad-Core Processor @ 2.6 GHz and 8 GB RAM. The multiprocessor has
4 cores, each with 64 KB 2-way set associative L1 data cache dedicated per core,
and 512 KB 16-way set associative L2 cache dedicated per core. All 4 cores share
2 MB 32-way set associative L3 cache.

5 The Results of the Experiments

The first performed test is to determine the number of CPU cycles needed to
access different levels of the cache in the simulated architectures. The same
experimental tests are executed on both servers.

Figure 3 depicts the comparison of the simulation of matrix multiplication
on a cache with FIFO replacement policy and cache parameters as Intel CPU.

The vertical axis represents the average number of memory accesses MA to each
element of a matrix calculated as defined in (1). The values for total memory
access cycles from the simulator are calculated as defined in [9]. The results prove
the accuracy even for performance drawbacks due to cache associativity.

Fig. 3. Comparison CPU cycles for memory access for MMCacheSim simulation and
sequential execution on Xeon server with FIFO replacement policy

MA =
TotalMemoryAccessCycles

N3
(1)

We run the simulation with LRU replacement policy for Phenom(tm) as it
is AMD CPU and Opteron has LRU / PLRU replacement policy [3]. Figure 4
depicts the comparison of the number of CPU cycles used for memory access
for Phenom server, LRU replacement policy, sequential execution. Because this
simulation did not fit the experimental results we made two other simulations
changing the replacement policy, since it was the only variable in the process.
The simulation does not match neither for FIFO replacement policy as depicted
in Figure 5.

The final experiment was to simulate with a new replacement policy Bit-
Pseudo-LRU. Each cache line is associated with a MRU bit (most recently used)
in this cache replacement policy. When the line is read the MRU bit is set to 1.
When all lines in a cache set have their MRU bits set to 1, they are reset to 0. If
some cache line should be replaced then the cache line in a set with the largest
index that has a MRU bit 0 is replaced. Figure 6 depicts that the simulation
is much closer to the experimental values. The simulation is still stepping away
as the sizes of the matrices exceed the size of the cache memory. A possible
explanation to the differences are: the authors in [3] show that the L3 cache

Fig. 4. Comparison of CPU cycles used for memory access for sequential execution on
Phenom CPU and MMCacheSim simulation with LRU cache replacement policy

Fig. 5. Comparison of CPU cycles used for memory access for sequential execution on
Phenom CPU and MMCacheSim simulation with FIFO replacement policy

at the Opteron processors uses some kind of pseudo-LRU cache replacement
policy. The way of choosing the line inside the set seems to be different than
the proposed Bit-PLRU policy. This is a logical explanation of the differences
between simulated and experimental results, with the assumption that the cache
replacement policy described in [3] is used in Phenom processors too. However
this shows the ability to use the simulator not just to find favorable configurations
for a certain algorithm but to research the configuration of a computer system
when data for it are not available.

Fig. 6. Comparison of CPU cycles used for memory access for sequential execution on
Phenom CPU and simulate with Bit-PLRU replacement policy

6 Conclusion and Future Work

Our MMCacheSim simulator simulates both FIFO and LRU cache replacement
policies and the authors are working on implementation of other policies. All
levels of cache hierarchy can be simulated. It is platform independent since the
cache parameters are input parameters in the simulator.

This paper presents the simple implementation of our MMCacheSim simula-
tor with its’ features to simulate not only Matrix Multiplication algorithm exe-
cution, but any algorithm by giving a trace of memory accesses. MMCacheSim
allows to change:

– The hierarchy between cache levels, to be shared between cores or dedicated;
– The inclusivity between different cache levels;
– The size of the cache memory, the associativity, cache line sizes
– Replacement policy, with ability to have different cache replacement policies

per different cache levels.

The main contribution of MMCacheSim is to determine the most appropriate
CPU cache architecture to achieve the best performance.

We will continue to improve MMCacheSim in order to decrease the time
required for the results of simulation. Also we plan to implement additional
utility classes to automate the process of building the required configurations to
make the computer architecture teaching and learning process most appropriate.

References

1. An, B.S., Yum, K.H., Kim, E.J.: Scalable and efficient bounds checking for
large-scale cmp environments. In: Proc. of the Int. Conf. on Par. Arch. and
Compilation Techniq. pp. 193–194. PACT ’11, IEEE Comp. Soc. (2011)

2. Chen, Y.T., Cong, J., Reinman, G.: Hc-sim: a fast and exact l1 cache simu-
lator with scratchpad memory co-simulation support. In: Proc. of the 7-th
IEEE/ACM/IFIP Int. conf. on HW/SW codesign and system synthesis. pp.
295–304. CODES+ISSS ’11, ACM, New York, NY, USA (2011)

3. Conway, P., Kalyanasundharam, N., Donley, G., Lepak, K., Hughes, B.:
Cache hierarchy and memory subsystem of the amd opteron processor. IEEE
Micro 30(2), 16–29 (Mar 2010)

4. Edler, J., Hill, M.D.: Dinero iv trace-driven uniprocessor cache simulator
(2012), http://pages.cs.wisc.edu/~markhill/DineroIV/

5. Eklov, D., Hagersten, E.: Statstack: Efficient modeling of lru caches. In: Per-
formance Analysis of Systems Software (ISPASS), 2010 IEEE International
Symposium on. pp. 55 –65 (march 2010)

6. Fraguela, B.B., Doallo, R., Zapata, E.L.: Automatic analytical modeling for
the estimation of cache misses. In: Proc. of the Int. Conf. on Par. Arch. and
Compilation Techniq. pp. 221–. PACT ’99, IEEE Comp. Society (1999)

7. Gusev, M., Ristov, S.: Performance gains and drawbacks using set associative
cache. Journal of Next Generation Information Technology (JNIT) 3(3), 87–
98 (31 Aug 2012)

8. Haque, M.S., Peddersen, J., Janapsatya, A., Parameswaran, S.: Dew: a fast
level 1 cache simulation approach for embedded processors with fifo replace-
ment policy. In: Proc. of the Conf. on Design, Automation and Test in
Europe. pp. 496–501. DATE ’10 (2010)

9. Hennessy, J.L., Patterson, D.A.: Computer Architecture, Fifth Edition: A
Quantitative Approach (2012)

10. Jaleel, A., Cohn, R.S., Luk, C.K., Jacob, B.: Cmpsim: A pin-based on-the-fly
multi-core cache simulator. In: The Fourth Annual Workshop on Modeling,
Benchmarking and Simulation (MoBS), co-located with ISCA’2008 (2008)

11. Moses, J., Aisopos, K., Jaleel, A., Iyer, R., Illikkal, R., Newell, D., Makineni,
S.: Cmpsched$im: Evaluating os/cmp interaction on shared cache manage-
ment. In: Performance Analysis of Systems and Software, 2009. ISPASS
2009. IEEE International Symposium on. pp. 113 –122 (april 2009)

12. Patti, D., Spadaccini, A., Palesi, M., Fazzino, F., Catania, V.: Supporting
undergraduate computer architecture students using a visual mips64 cpu
simulator. Education, IEEE Transactions on 55(3), 406 –411 (aug 2012)

13. Ravindran, R., Moona, R.: Retargetable cache simulation using high level
processor models. Aust. Comput. Sci. Commun. 23(4), 114–121 (Jan 2001)

14. Ristov, S., Gusev, M.: Superlinear speedup for matrix multiplication. In:
Information Technology Interfaces, Proceedings of the ITI 2012 34th Inter-
national Conference on. pp. 499–504 (2012)

15. Ristov, S., Stolikj, M., Ackovska, N.: Awakening curiosity - hardware edu-
cation for computer science students. In: MIPRO, 2011 Proc. of the 34th
Int. Convention, IEEE Conference Publications. pp. 1275 –1280 (may 2011)

16. Stolikj, M., Ristov, S., Ackovska, N.: Challenging students software skills to
learn hardware based courses. In: Information Technology Interfaces (ITI),
Proceedings of the ITI 2011 33rd Int. Conf. on. pp. 339 –344 (june 2011)

17. Tao, J., Kunze, M., Nowak, F., Buchty, R., Karl, W.: Performance advantage
of reconfigurable cache design on multicore processor systems. International
Journal of Parallel Programming 36(3), 347–360 (Jun 2008)

18. Xu, C., Chen, X., Dick, R.P., Mao, Z.M.: Cache contention and application
performance prediction for multi-core systems. In: ISPASS’10. pp. 76–86
(2010)

19. Zwick, M., Durkovic, M., Obermeier, F., Bamberger, W., Diepold, K.: Mc-
ccsim - a highly configurable multi core cache contention simulator. Tech.
rep., Lehrstuhl fr Datenverarbeitung, TU Mnchen (2009)

Appendix: Sample Code for readData(memoryAddress)

i f (l 1 c a c h e . readFromL1 (addressInMemory)) {
cache h i t sL1++;

}
else {

cache missesL1++;
i f (l 2 c a c h e . readFromL2 (addressInMemory)) {

cache h i t sL2++;
}
else {

cache missesL2++;
i f (l 3 c a c h e . readFromL3 (addressInMemory)) {

cache h i t sL3++;
}
else {

cache missesL3++;
L3 cache . writeToL3 (addressInMemory ,

e l e m e n t s i z e) ;
}
l 2 c a c h e . writeToL2 (addressInMemory ,

e l e m e n t s i z e) ;
}
l 1 c a c h e . writeToL1 (addressInMemory , e l e m e n t s i z e) ;

}

