
Optimal Cache Replacement Policy for Matrix
Multiplication

Nenad Anchev, Marjan Gusev, Sasko Ristov, and Blagoj Atanasovski

Ss. Cyril and Methodious University, Faculty of Computer Science and Engineering,
Rugjer Boshkovikj 16, 1000 Skoipje, Macedonia

nenad ancev@hotmail.com, marjan.gushev@finki.ukim.mk,

sashko.ristov@finki.ukim.mk, blagoj.atanasovski@gmail.com

Abstract. Matrix multiplication is compute intensive, memory demand
and cache intensive algorithm. It performs O(N3) operations, demands
storing O(N2) elements and accesses O(N) times each element, where
N is the matrix size. Implementation of cache intensive algorithms can
achieve speedups due to cache memory behavior if the algorithms fre-
quently reuse the data. A block replacement of already stored elements
is initiated when the requirements exceed the limitations of cache size.
Cache misses are produced when data of replaced block is to be used
again. Several cache replace policies are proposed to speedup different
program executions.
In this paper we analyze and compare two most implemented cache re-
placement policies First-In-First-Out (FIFO) and Least-Recently-Used
(LRU). The results of the experiments show the optimal solutions for
sequential and parallel dense matrix multiplication algorithm. As the
number of operations does not depend on cache replacement policy, we
define and determine the average memory cycles per instruction that the
algorithm performs, since it mostly affects the performance.

Keywords: FIFO, HPC, LRU, Performance, Speedup

1 Introduction

CPU runs a particular program by accessing data from the memory, executing
basic operations addition or multiplication and storing the results in the mem-
ory. The main bottleneck in the process is the data access in memory which is
approximately up to 1000 times slower than floating point operation execution
[7]. Introducing memory hierarchy based on caches in CPU speeds up the execu-
tion of programs that reuse the same data, i.e. cache intensive algorithms. This
paper focuses on dense matrix multiplication algorithm.

Most modern multiprocessors use three layer n-way associative cache memory
to speedup main memory access. The cache size grows but the access time and
miss penalty rise going from the lowest L1 to L3 cache. The effect of exploiting
last level shared cache affinity is considerable, due its sharing among multiple
threads and high reloading cost [14]. Intel introduces Intel Smart Cache into
their newest CPUs to improve their performance [8].



However, cache memory speeds up the execution only when matrix data fits
in the cache. When the problem size exceeds a particular cache size then the
cache misses start generating and the performance decreases. Two drawbacks
appear in this case [5]. If a cache block is replaced after a particular matrix
element is accessed then the next access to this element will generate a cache
miss. The second drawback refers to a situation when there is an access to
another matrix element from the same cache block (line) but in meantime the
block was replaced. Inefficient usage of cache is possible if matrix elements map
onto a small group of same cache sets and initiate a significant number of cache
misses due to cache associativity [17].

Cache replacing policy also impacts the algorithm performance, i.e. which
cache line will be replaced from some cache set to place the requested data from
some of next level caches or main memory into the cache that generated miss.
Three basic cache replacement policies are suggested: Random, Least-Recently-
Used (LRU) and First-In-First-Out (FIFO) [7]. Several improvements are pro-
posed for LRU. LRU Insertion Policy (LIP) places the incoming line in the LRU
position instead of the MRU [15]. The authors in [2] propose even better replace-
ment policy, i.e. a Score-Based Memory Cache Replacement Policy. Adaptive
Subset Based Replacement Policy for High Performance Caching is proposed in
[6], i.e. to divide one cache set into multiple subsets and victims should be always
taken from one active subset when cache miss occurs. Map-based adaptive inser-
tion policy estimates the data reuse possibility on the basis of data reuse history
[9]. The authors in [11] propose Dueling CLOCK cache replacement policy that
has low overhead, captures recency information in memory accesses and exploits
the frequency pattern of memory accesses compared to LRU. A new replace-
ment algorithm PBR L1 is proposed for merge sort which is better than FIFO
and LRU [3]. The authors in [12] propose LRU-PEA replacement policy that
enables more intelligent replacement decisions due to the fact that some types of
data are less commonly accessed depending on which bank they reside in. The
authors in [10] propose cache replacement using re-reference interval prediction
to outperform LRU in many real world game, server, and multimedia applica-
tions. However, improving replacing policies requires either additional hardware
or modification of existing. PAC-PLRU replacing policy utilizes the prediction
results generated by the existing stride prefetcher and prevents these predicted
cache blocks from being replaced in the near future [18].

In this paper we focus on two most common cache replacement policies, LRU
and FIFO and their impact on dense matrix multiplication performance. A tool
for automatic computation of relative competitive ratios for a large class of re-
placement policies, including LRU, FIFO, and PLRU can be found in [16]. LRU
has a gap of 50% optimal replacement policies [1]. We realize series of experi-
ments for sequential and parallel execution of dense matrix multiplication on dif-
ferent hardware infrastructure with LRU and FIFO cache replacement policies.
The rest of the paper is organized as follows. Section 2 describes the dense ma-
trix multiplication algorithm and its parallel implementation and Section 3 the
hardware infrastructure and runtime environment for the experiments. In Sec-



tion 4 we present the results of the experiments and analyze which replacement
policy is better for both for sequential and parallel dense matrix multiplication
algorithm. Section 5 is devoted to conclusion and future work.

2 The Algorithm

We choose squared matrices with dimension N . For all i, j = 0, 1, . . . , N − 1 the
result product matrix CN ·N = [cij ] is defined in (1) by multiplying the multiplier
matrix AN ·N = [aij ] and the multiplicand matrix BN ·N = [bij ]. More details
about algorithm complexity are given in [4]. To exploit maximum performance
for parallel execution on P processing elements we use dynamic schedule directive
of OpenMP with chunk = 1 [13].

cij =

N−1∑
k=0

aik · bkj (1)

2.1 Algorithm Definitions and Analysis

In this section we analyze the algorithm execution. For better presentation and
analysis we use CPU clock cycles instead of execution time. Relation (2) derives
the total execution clock cycles (TC) as a sum of clock cycles needed for opera-
tion execution (CC) and clock cycles needed for accessing the matrix elements
(MC) [7].

TC = CC + MC (2)

CC does not depend neither of CPU architecture nor cache size, associativity
and replacement policy, but directly depends of matrix size N . CPU executes
N3 sums and N3 multiplications or total 2 ·N3 floating points operations. MC
is more interesting for analysis. It depends on matrix size N , but also on cache
size, associativity and replacement policy.

More important parameters for analysis are the average values of TC, MC
and CC defined in the next three definitions.

Definition 1 (Average Total Cycles Per Instruction) CPIT (N) for par-
ticular matrix size N is defined as a ratio of total number of clock cycles and
total number of instructions given in (3).

CPIT (N) =
TC

2 ·N3
(3)

Definition 2 (Average Memory Cycles Per Instruction) CPIM (N)
for particular matrix size N is defined as a ratio of total number of memory cy-
cles and total number of instructions given in (4).

CPIM (N) =
MC

2 ·N3
(4)



Definition 3 (Average Calculation Cycles Per Instruction) CPIC(N)
for particular matrix size N is defined as a ratio of total number of calculation
cycles CC and total number of instructions given in (5).

CPIC(N) =
CC

2 ·N3
(5)

We measure speed, TC, CC, MC for each matrix size, number of cores in
defined testing environments. We calculate CPIT (N), CPIM (N) and CPIC(N)
and analyze the distribution of CPIM (N) in CPIT (N). All the experiments are
realized both for sequential and parallel execution.

2.2 Measurement Methodology

This section describes how we measure TC, CC, MC to calculate CPIT (N),
CPIM (N) and CPIC(N). We measure total execution time TT for each exper-
iment with algorithm described in (1) and then calculate TC as defined in [7]
and calculate CPIT (N) using (3).

To measure MC we developed another algorithm defined in (6). This algo-
rithm performs the same floating point operations on constant operands and
writes the results in matrix C elements. The difference is that it does not read
from memory or some cache the elements of matrices A and B.

cij =

N−1∑
k=0

a · b (6)

Executing this algorithm we measure its execution time CT for each exper-
iment and then calculate the difference from TC and CT . Then we calculate
MC as defined in [7] using CPU speed for particular processor and calculate
CPIM (N) using (4).

CC and CPIC(N) are calculated as defined in (7) and (5).

CC = TC −MC (7)

3 The Testing Environment

Two servers with different CPUs with different cache replacement policies are
used: FIFO and LRU. Both servers are installed with Linux Ubuntu 10.10. C++
with OpenMP support is used for parallel execution.

FIFO testing hardware infrastructure consists of one Intel(R) Xeon(R) CPU
X5680 @ 3.33GHz and 24GB RAM. It has 6 cores, each with 32 KB 8-way set
associative L1 and 256 KB 8-way set associative L2 cache. All 6 cores share 12
MB 16-way set associative L3 cache. Each experiment is executed using different
matrix size N for different number of cores from 1 to 6. Tests are performed by
unit incremental steps for matrix size and number of cores.



LRU testing hardware infrastructure consists of one CPU Quad-Core AMD
Phenom(tm) 9550. It has 4 cores, each with 64 KB 2-way set associative L1
and 512 KB 16-way set associative L2 cache. All 4 cores share 2 MB 32-way set
associative L3 cache. Each experiment is executed using different matrix size N
on different number of cores from 1 to 4. Tests are performed by unit incremental
steps for matrix size and number of cores.

4 Results of the Experiments

This section presents and compares the results of the experiments on two CPUs
with different replacement policies.

4.1 Results for CPU with FIFO Cache Replacement Policy

Figure 1 depicts the results of measured speed. SpeedT (i) denotes the speed in
gigaFLOPS for algorithm execution on i cores where i = 1, 2, ..., 6.

Fig. 1. Speed for execution on FIFO CPU.

CPIT (N) presents another perspective of the experiment. Figure 2 depicts
the results for algorithm execution on 1, 2, ..., 6 cores for each matrix size 128 <
N < 1000. We can conclude that executing the dense matrix multiplication
algorithm on more cores needs more average cycles per core for each matrix size
N . Also, the speed decreases by increasing the matrix size N .

The next experiment analyzes the decomposition of the average total cycles
per instruction on average calculation cycles per instructions and average mem-
ory cycles per instruction. Figure 3 depicts the decomposition of CPIT (N) on
CPIM (N) and CPIC(N) for sequential execution. The left graph depicts the



Fig. 2. CPIT (N) for execution on FIFO CPU.

absolute decomposition of CPIT (N). The conclusion is that CPIC(N) is almost
constant with average value of 4.93 cycles per instruction. More important is that
CPIM (N) follows CPIT (N), i.e. CPIT (N) depends directly of average memory
cycles per instruction. The right graph depicts the relative value of CPIM (N)
to CPIT (N). CPIM (N) has a trend to equalize with CPIT (N) as N grows.

Fig. 3. Decomposed CPIT (N) for sequential execution on FIFO CPU, absolute (left)
and relative (right)

4.2 Results for CPU with LRU Cache Replacement Policy

Figure 4 depicts the results of measured speed. SpeedT (i) denotes the speed
in gigaFLOPS for algorithm execution on i cores where i = 1, 2, ..., 6. We can
conclude that there is a huge performance drawback after N > 362 which is



entrance in the L4 region, i.e. the region where elements of matrices A and B
cannot be placed in L3 cache and thus producing L3 cache miss.

Fig. 4. Speed for execution on LRU CPU.

CPIT (N) presents better the information. Figure 5 depicts results for exe-
cutions on 1, 2, 3 and 4 cores for each matrix size 128 < N < 1000. We can see 2
regions, Region 1 for N < 362 and Region 2 for N > 362. The former presents
the L1 and L2 cache regions, i.e. dedicated per core regions where matrices can
be stored completely in L1 and L2 caches correspondingly. In this region sequen-
tial execution provides the worst CPIT (N) compared to parallel execution. The
latter presents L3 and L4 regions, i.e. shared memory regions where matrices
can and cannot be stored completely in L3 cache correspondingly. In this region
sequential execution provides the best CPIT (N) compared to parallel execution.

Figure 6 depicts the decomposition of CPIT (N) on CPIM (N) and CPIC(N)
for sequential execution. The left graph depicts the absolute decomposition of
CPIT (N). CPIC(N) is almost constant to the average value of 7.17 cycles per
instruction. More important is that CPIM (N) follows CPIT (N), i.e. CPIT (N)
depends directly of average memory cycles per instruction. The right graph de-
picts the relative value of CPIM (N) to CPIT (N). As depicted, CPIM (N) has
a trend to equalize with CPIT (N) as N grows for N · (N + 1) < 2MB. This is
the case when matrix BN ·N and one row od matrix A1·N can be placed in the
L3 cache. CPIM (N) relative remains constant for greater N .

4.3 LRU and FIFO Cache Replacement Policy Comparison

In this section we compare the results between performance of FIFO and LRU
cache replacement policies.

Speed Comparison Comapring figures 1 and 4 we can conclude that both
infrastructures have a region around entrance to L3 region when the speed begins



Fig. 5. CPIT (N) for execution on LRU CPU.

Fig. 6. Decomposed CPIT (N) for sequential execution on LRU CPU, absolute (left)
and relative (right)

to fall down to a local maximum. The graphs show that the speed decrease is
more emphasized in LRU rather than FIFO. However, it is because L3 region
in LRU begins for N > 362 and for FIFO CPU for N > 886. Therefore the real
comparison should be the regions N > 362 on LRU CPU with N > 886 on FIFO
CPU, which are the beginning of L4 region.

CPIT (N) Comparison Comparing figures 2 and 5 we can conclude that
both infrastructures have similar curves for CPIT (N) for particular region. The
important conclusion is that FIFO CPU needs more cycles per core for each
matrix size N regardless of cache region (dedicated or shared). However, the
LRU CPU has different features. Sequential execution has the best CPIT (N) in
dedicated per core L1 and L2 regions and parallel execution on greater number
of cores in shared L3 and L4 regions.



CPIT (N) Decomposition Comparison Comparing figures 3 and 6 (left) we
can conclude that both infrastructures have similar curves for CPIT (N). The
graphs show that CPIT (N) is greater in LRU than FIFO. However, the real
comparison should be the regions N > 362 on LRU CPU with N > 886 on
FIFO CPU as explained in the previous subsection. CPIM (N) is almost parallel
compared to CPIT (N) for all matrix size N in both infrastructures. Also, the
similar result is the fact that CPIC(N) is almost constant for each matrix size
N for both CPUs.

CPIM(N) Comparison Comparing figures 3 and 6 (right) we can conclude
that CPIM (N) is relative more closer to CPIT (N) in LRU than FIFO. However,
it is because L3 region in LRU begins for N > 362 and for FIFO CPU for
N > 886. Therefore the real comparison should be the regions N > 362 on LRU
CPU with N > 886 on FIFO CPU, which are the beginning of L4 region and the
relative values in LRU CPU are better than FIFO CPU. LRU CPU has average
of 59.77% in the region of N = 362 and FIFO CPU has average 65.84% in the
region of N = 886.

5 Conclusion and Future Work

In this paper we determine that both cache replacement policies provide similar
speed and average cycles per instruction CPIT (N) for sequential and parallel
execution. However, the results show that LRU replacement policy provides best
CPIT (N) for sequential execution in dedicated per core cache memory. Parallel
execution provides the best CPIT (N) in shared memory LRU CPU, i.e. LRU
produces greater speedup than FIFO and is more appropriate rather than FIFO
cache replacement policy for dense matrix multiplication algorithm.

Our plan for future work is to analyze the performance of other cache re-
placement policies for sequential and parallel execution, as well as other compute
intensive, memory demanding and cache intensive algorithms. With appropriate
simulator we can compare different replacement policies with the same cache
size, associativity and cache levels.

References

1. Al-Zoubi, H., Milenkovic, A., Milenkovic, M.: Performance evaluation of
cache replacement policies for the spec cpu2000 benchmark suite. In: Pro-
ceedings of the 42nd annual Southeast regional conference. pp. 267–272.
ACM-SE 42, ACM, New York, NY, USA (2004)

2. Duong, N., Cammarota, R., Zhao, D., Kim, T., Veidenbaum, A.: SCORE: A
Score-Based Memory Cache Replacement Policy. In: Emer, J. (ed.) JWAC
2010 - 1st JILP Worshop on Computer Architecture Competitions: cache
replacement Championship. Saint Malo, France (2010)

3. Gupta, R., Tokekar, S.: Proficient pair of replacement algorithms on l1 and
l2 cache for merge sort. J. OF COMPUTING 2(3), 171–175 (Mar 2010)



4. Gusev, M., Ristov, S.: Matrix multiplication performance analysis in virtual-
ized shared memory multiprocessor. In: MIPRO, 2012 Proc. of the 35th In-
ternational Convention, IEEE Conference Publications. pp. 264–269 (2012)

5. Gusev, M., Ristov, S.: Performance gains and drawbacks using set associative
cache. Journal of Next Generation Information Technology (JNIT) 3(3), 87–
98 (31 Aug 2012)

6. He, L., Sun, Y., Zhang, C.: Adaptive Subset Based Replacement Policy for
High Performance Caching. In: Emer, J. (ed.) JWAC 2010 - 1st JILP Wor-
shop on Computer Architecture Competitions: cache replacement Champi-
onship. Saint Malo, France (2010)

7. Hennessy, J.L., Patterson, D.A.: Computer Architecture, Fifth Edition: A
Quantitative Approach (2012)

8. Intel: Intel smart cache (May 2012), http://www.intel.com/content/www/
us/en/architecture-and-technology/intel-smart-cache.html

9. Ishii, Y., Inaba, M., Hiraki, K.: Cache Replacement Policy Using Map-based
Adaptive Insertion. In: Emer, J. (ed.) JWAC 2010 - 1st JILP Worshop
on Computer Architecture Competitions: cache replacement Championship.
Saint Malo, France (2010)

10. Jaleel, A., Theobald, K.B., Steely, Jr., S.C., Emer, J.: High performance
cache replacement using re-reference interval prediction (rrip). SIGARCH
Comput. Archit. News 38(3), 60–71 (Jun 2010)

11. Janapsatya, A., Ignjatović, A., Peddersen, J., Parameswaran, S.: Dueling
clock: adaptive cache replacement policy based on the clock algorithm. In:
Proceedings of the Conference on Design, Automation and Test in Europe.
pp. 920–925. DATE ’10 (2010)

12. Lira, J., Molina, C., González, A.: Lru-pea: a smart replacement policy for
non-uniform cache architectures on chip multiprocessors. In: Proceedings of
the 2009 IEEE international conference on Computer design. pp. 275–281.
ICCD’09, IEEE Press, Piscataway, NJ, USA (2009)

13. OpenMP: (2012), https://computing.llnl.gov/tutorials/openMP/
14. Pimple, M., Sathe, S.: Architecture aware programming on multi-core sys-

tems. International Journal of Advanced Computer Science and Applications
(IJACSA) 2, 105–111 (2011)

15. Qureshi, M.K., Jaleel, A., Patt, Y.N., Steely, S.C., Emer, J.: Adaptive in-
sertion policies for high performance caching. SIGARCH Comput. Archit.
News 35(2), 381–391 (Jun 2007)

16. Reineke, J., Grund, D.: Relative competitive analysis of cache replacement
policies. SIGPLAN Not. 43(7), 51–60 (Jun 2008)

17. Ristov, S., Gusev, M.: Achieving maximum performance for matrix multi-
plication using set associative cache. In: Computing Technology and Infor-
mation Management (ICCM2012), 2012 The 8th Int. Conf. on. ICNIT ’12,
vol. 2, pp. 542–547 (2012)

18. Zhang, K., Wang, Z., Chen, Y., Zhu, H., Sun, X.H.: Pac-plru: A cache re-
placement policy to salvage discarded predictions from hardware prefetch-
ers. In: Proceedings of the 2011 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing. pp. 265–274. CCGRID ’11, IEEE
Computer Society, Washington, DC, USA (2011)


