
Some Optimization Techniques of the Matrix Multiplication Algorithm

Nenad Anchev, Marjan Gusev, Sasko Ristov, and Blagoj Atanasovski
Ss. Cyril and Methodius University, Skopje, Macedonia

Faculty of Computer Sciences and Engineering
E-mail: nenad_ancev@hotmail.com, {marjan.gushev, sashko.ristov}@finki.ukim.mk,

blagoj.atanasovski@gmail.com

Abstract. Dense matrix-matrix multiplication al-
gorithm is widely used in large scientific applications,
and often it is an important factor of the overall per-
formance of the application. Therefore, optimizing
this algorithm, both for parallel and serial execution
would give an overall performance boost. In this pa-
per we overview the most used dense matrix multi-
plication optimization techniques applicable for mul-
ticore processors. These methods can speedup the
multicore parallel execution focusing on reducing the
number of memory accesses and improving the algo-
rithm according to hardware architecture and organi-
zation.

Keywords. HPC, CPU, Cache, Performance

1. Introduction

Modern computer systems are far from sim-
ple. The basic Von-Neumann’s idea has evolved
through the decades with the purpose of gaining
more performance by adding less hardware. As
stated in Moore’s law, the evolution of processor
and memory systems has brought a possibility to
obtain greater computational speeds, but compli-
cating the hardware design.

This complex hardware makes problems to
achieve the maximum performance. The existing
design bottlenecks make the applications to be
far away from maximum performance specified
by maximum hardware speed. Therefore we usu-
ally have to be satisfied by getting near-optimal
performance from the hardware, at an expensive
price [1].

The price we have to pay for this performance
is building a complex algorithm that resolves the
known bottlenecks of the specific architecture.
And this algorithm will only show its best results
only on the considered processor architecture. A
minor architectural change will usually result in
sharp performance drop.

Furthermore, modern computer systems use
massive parallelism and we have to consider the
parallel algorithm optimization. Issues coming
from the use of shared resources or communi-
cation between the threads have to be carefully
resolved, without creating additional bottlenecks
or even deadlocks.

However, having a supercomputer, grid or
cluster is not enough to achieve the speedup for
a particular algorithm. The algorithm should
be granular and scalable in order to utilize the
hardware resources well. Dense matrix-matrix
and matrix-vector multiplications are such algo-
rithms since no data dependency exists and each
processor can work with its own data.

Dense matrix-matrix multiplication is a typ-
ical scenario in scientific applications. There
are many papers which propose improvements
of this algorithm or even new algorithms. Here,
we analyze the simplest of these algorithms pre-
sented in Listing 1 since it can be easy paral-
lelized.

Listing 1: The simplest matrix multiplication algorithm

f o r (i = 0 ; i < N; i ++)
f o r (j = 0 ; j < N; j ++)

f o r (k = 0 ; k < N; k ++)
c [i ∗ N + j] += a [i ∗ N + k]

∗ b [k ∗ N + j] ;

The performances of this algorithm are far
from optimal while executed on a single-core
processor. Regardless of its speed, there is a sig-
nificant room for improvement. Its bottlenecks
will be presented here, one by one. Furthermore,
there is a need for an efficient parallelization in
order to efficiently exploit the performance of a
multi-core, multi-chip machine, or even multi-
computer.

The rest of the paper is organized as follows.
In Section 2 we explain the algorithm and the
main bottlenecks that appear in parallel execution
in modern processors. Section 3 proposes well

known techniques to optimize the parallel execu-
tion. Section 4 concludes our work and presents
our plans for future work.

2. Algorithm Bottlenecks

The bottlenecks of the sequential algorithm and
the parallelization challenges are presented in
this section.

2.1. Redundant Operations

Reducing the number of executable machine op-
erations in the algorithm execution is a great
challenge. In this case we aim not to change
the arithmetic operations leading to change of the
algorithm itself or its structure. We are target-
ing at the unnecessary multiplications to compute
the element address i.e. the "(i ∗ N)", which is
executed in a loop, even though its value is un-
changed throughout the iterations.

Especially this refers to reducing the number
of memory accesses. A typical example is the
implicit fetching of the matrix C. As the result
matrix is not initialized, we will not have to read
its value. Moreover, we would like to calculate
the final value of each element and use only one
write per each element.

2.2. Short Loops

Modern processors tend to use deep pipelines, of-
ten 20 or more levels of depth [2]. This could
be an obstacle in programs which have high fre-
quency of branch instructions, as in our case. If
we translate the "single" one line instruction in
the nested loops, it will have 11 simple arithmetic
instructions and 3 memory accesses, together
with the unnecessary ones. This will cause the
processor pipeline to be underutilized by empty-
ing it even before it is actually full, degrading the
algorithm performance [3].

2.3. Cache Usage

The worst bottleneck in this algorithm is the ir-
rational cache usage. When matrices become
larger, cache memory becomes too small to keep
them whole inside, and cache misses are gener-
ated. This problem is known as cache capacity
problem [4]. However, cache capacity is not the

Figure 1: Non transposed second matrix

only problem that occurs within caches. Cache
replacement policy also impacts the algorithm
performance [5].

As dense matrix-matrix multiplication algo-
rithm is memory-intensive and more importantly
- cache intensive [6], we should try to optimize
it by using the cache hierarchy as effectively and
efficiently as possible. Cache associativity is also
a huge problem, since only a small number of
sets may be used for particular column of the sec-
ond matrix [7].

The cache misses in this algorithm comes
from many reasons. The first was described ear-
lier, i.e. unnecessary implicit reading and storing
the result matrix elements in the cache.

The second point where we could gain perfor-
mance is the strided memory access of the sec-
ond matrix, illustrated in Figure 1. Strided mem-
ory access means that the space locality supposed
by the cache memory is not used in the expected
way. As matrices in program language C are
represented in row-major order, a serious cache
memory leak occurs. When we fetch a cache line
from the main memory, we use only one element
of it, thus filling the cache with unnecessary data.

The third point producing performance draw-
back occurs when the cache is not enough to
hold even one matrix [4]. In this case, the same
parts of the matrix are loaded in the cache multi-
ple times, thus producing unnecessary expensive
communication with the main memory. Reduc-
ing the memory access by improving the usage of
the data that is already stored in the cache should
improve the performance.

2.4. Parallelization challenges

The simplest and most efficient method to paral-
lelize this algorithm is to distribute the compu-
tations equally to all available processors. This
would be a fairly easy task, but we should con-
sider the cache architecture of the processor cores
when we distribute the computation on each of
the cores.

The task distribution should also care about
efficient cache usage, having in mind the ded-
icated and shared levels of the cache hierar-
chy. Dedicated cache per core means more cache
available at the system, but shared cache has an
advantage of providing the result of one expen-
sive load for all cores sharing the cache [8]. It
also provides superlinear speedup region for par-
allel implementation [9].

3. Optimization Techniques

Knowing the bottlenecks of the algorithm, we
will propose methods and techniques to resolve
them and boost the performance. We will also
explain our view for an efficient parallelization
of this algorithm.

3.1. Operation Reduction

Reducing the redundant operations is the easiest
task described here. The only thing that needs
to be done here is to push the multiplications in
the outermost loop possible. This should directly
reduce the processor cycles that were wasted in
repeating the same computation . The other thing
that can be done here is to modify the calculation
of the final result. The intermediate sums can be
stored in a temporary variable, which should be
written only once to the result matrix, when it has
the final value. This will also reduce the need to
keep part of the result matrix in the cache and the
number of memory writes.

3.2. Loop Unrolling

This technique is used to solve two of the pre-
sented issues: the problem of short loops and to
a lesser extent, it will reduce the number of oper-
ations. We propose only a partial loop unrolling,
with just a few iterations of the innermost loop
unrolled. This will produce enough straight-line

assembly code for a more efficient pipeline us-
age. Furthermore, it will reduce the number of
operations by reducing the branch instructions
by times of the unroll factor. Partially unrolled
loops can also be tuned to process as much ele-
ments as a cache line contains, and thus be com-
bined with the prefetch technique. However, this
point would be further discussed in the next Sec-
tion 3.3.

3.3. Transposition

Transposition has the task to deal with the strided
memory access of the second matrix. As ex-
plained in the previous section, the cache space
locality is not used for the caching of the second
matrix, and the cache is filled with useless data.

If we transpose the second multiplier matrix,
we could fix the problem of strided data access.
Transposing the matrix before the multiplication,
adds additional operations and memory access,
but increases the performance. This "anomaly"
could be explained as following: Matrix multi-
plication memory complexity is O(N3) for each
matrix. Because of the strided access, the sec-
ond matrix produces cache misses more often,
which generally makes N3 "slow" memory ac-
cesses. This is much more visible for larger ma-
trices.

When we have the second matrix transposed,
the N3 "slow" operations are speeded up, be-
cause cache is now used more optimally, as it is
not filled with unnecessary data. This produces
visible speedup. On the other hand, the transposi-
tion creates additional "slow" operations. Trans-
posing a matrix, means that either the reading, or
the writing should be strided. Results show that
strided write produces better performance than
strided read. [1]. But the number of operations
needed to transpose a matrix is N2, which means
that we add N2 slow operations to speedup N3

operations, which seems rational for larger ma-
trices. Jenks [10] found superlinear speedup
(speedup greater than the number of processors)
with parallel execution of matrix multiplication
algorithm using MPI and transposing one matrix.

3.4. Blocking

Blocking is a well-proven technique which
boosts the performance of the matrix multiplica-

Figure 2: Blocking matrix multiplication [11]

tion algorithm. It deals with optimizing the cache
usage by reducing the memory access. In few
words, blocking means that we turn a memory-
intensive algorithm into cache-intensive, by us-
ing the data already loaded in the cache as long as
can be used. The algorithm multiplies submatri-
ces or blocks of matrices with same size b instead
of multiplying the entire row of the first matrix
with the entire column of the second. Figure 2
depicts the algorithm. It means that after the
data is removed from the cache, all the compu-
tations on it are already done from the cache, and
it won’t need to be loaded again. This would be
a result of using an optimal blocking algorithm.
Another thing that we should care when using
blocking is to fill the cache with data size equal
to the cache size. Larger data sets will mean that
certain cache line would be replaced, which we
try to avoid, and smaller data sets won’t use the
maximum available performance [11].

In parallelized algorithm, blocking should
also care about the cache sharing between cores.
It should keep the shared data in the shared
cache, so that all of the cores that share this data
will use it. It should also care that cores won’t
compete about shared cache with their private
data, which would mean mutual overwriting of
private data by the cores.

3.5. Prefetch

This technique is used to hide the memory la-
tency. Modern processors have multiple exe-
cution units, which means that data access and
computation will be realized by separate subunits
in the processor. [2] This gives us the idea to

prefetch the data necessary for the next instruc-
tions, while the current instructions are execut-
ing. It will reduce the memory latency, and the
waiting cycles of the execution units.

As we proposed to transpose the second ma-
trix before multiplying it, we will analyze the
prefetch used both in the transposition, and in the
multiplication algorithm.

Combining blocking and prefetching can im-
prove the performance of transposition algorithm
up to 5 times at PowerPC architecture [12]. As
we don’t have data reuse (every element is read
and written only once), blocking wouldn’t help
much here, and this improvement can be greatly
attributed to prefetch. By further applying the
improvements to the drawbacks due to cache as-
sociativity and cache line [7], there is a room for
further improvement here. Williams et al. [13]
used padding to the first element of each subma-
trix to land on equidistant cache sets.

Prefetching could also improve performance
at the multiplication part itself. However, we
should not expect such a great improvement here,
because the data from the cache is reused (by us-
ing ideal blocking, every element in the cache
would be used N times). This means that we al-
ready have optimized the access time for the (n-
1) times the element is used. The expected mem-
ory access speedup in the multiplication part, if
a perfect blocking algorithm is used is defined
in (1), where EMS denotes for Expected Mem-
ory Speedup, MAT denotes for Memory Access
Time, CAT denotes for Cache Acces Time and
ATERC denotes for Average Times Of Element
Reloading In Cache

EMS =
1

N
· MAT

CAT
·ATERC (1)

Prefetching could only improve the first time
the element is read from the main memory, which
means that we should not expect larger improve-
ment here. Any improvement should be expected
for very small matrices, where (1/N) would be
larger, and for very large matrices where only
small parts of them can fit into the cache. Here,
even by using blocking, there would still be a
need of frequent memory access, and prefetching
would lead to some improvement here.

A sort of implicit prefetch occurs when we
have a shared cache. When one core accesses
data needed for all of the cores, it implicitly
makes a prefetch for the other cores, which won’t
have to make an expensive load from the main
memory [8].

3.6. Linear algebra (BLAS, LAPACK, AT-
LAS, ...)

There are special highly optimized implementa-
tions of matrix-matrix multiplication algorithm
which produce maximum performance for their
target architecture. However, these algorithms
usually differ from the basic algorithm analyzed
here. Some authors [14] propose their own im-
plementations of these algorithms, which will
further boost the performance. But these im-
plementations differ from the concept of sim-
ple matrix-matrix multiplication, and the opti-
mization techniques used there would be differ-
ent from those analyzed here. The analysis of
some of these algorithms will be part of our fu-
ture work.

3.7. Data-flow computing

One of the promising, but still not widely used
methods, is the use of data-flow computing en-
gines as a matrix multipliers. This approach
would give us the freedom to construct a ma-
trix multiplier as a complete hardware solution
Knowing the algorithm’s requirements, our ideal
data-flow hardware would avoid most of its bot-
tlenecks described here.

The whole programming concept is different
here. There would be no redundant operations,

except if we don’t create them accidentally. Short
loops wouldn’t create any drawbacks, and we
would have an explicit control over the memory
and the caching. The level of parallelism would
be the number of parallel multipliers and adders
we create, and the way we interconnect them.
Overall, we would have direct control over the
constructed hardware, which promises a slightly
improved performance.

However, the price we have to pay for this will
be paid in programming effort. The concept of
data-flow programming is still in an initial phase,
and requires a paradigm shift, so the potential
problems and drawbacks that may appear for the
ordinary programmer are still unknown.

4. Conclusion and Future Work

We have presented the main bottlenecks of the
simple dense matrix-matrix multiplication algo-
rithm. We have also made an overview of the
common optimization techniques for matrix mul-
tiplication algorithm, and the things we have to
care when parallelizing this algorithm.

All techniques for optimization that speed up
the algorithm execution can be classified in three
main classes:

• Optimization of the algorithm by changing
the order and the number of operations -
Partial loop unrolling, reducing operations,
etc;

• Optimization according to memory re-
sources - Transposing the second ma-
trix, Prefetching, Optimizing cache usage,
Blocking; and

• Using parallel implementation - using the
features of granularity and scalability of the
algorithm.

Most of the techniques here are presented in
many other papers, which usually concentrate
on a single technique and the performance ob-
tained by it. Here, we made an overview of
them, and showed the advantages and the chal-
lenges of combining them together. Our inten-
tion here is to make a guideline of practical op-
timization and parallelization of this algorithm,
and which characteristics of the target architec-
ture should be considered when implementing

this algorithm. The points presented here may
be a basic guideline of optimization of similar
memory-intensive algorithms. This analysis can
be used for other similar algorithms, of linear al-
gebra, such as matrix-vector multiplication.

Our future work will consist of implemen-
tation of presented techniques for optimization
to basic matrix multiplication algorithm. We
will analyze the performance boost provided by
each of these techniques, and the overall speedup
gained when they are used in combination. The
proposed analysis would be realized by tuning
the algorithm for different processors with differ-
ent cache architecture and organization (different
cache size, cache line, cache levels, cache asso-
ciativity, cache replacement policy, etc), for the
purpose of analyzing which cache level is cru-
cial for the performance. A dataflow computing
implementation will also be part of our future re-
search. We also plan to analyze the BLAS imple-
mentations of this algorithm, and the techniques
used at those implementations, for the purpose of
obtaining even greater performances.

References

[1] G. Hager and G. Wellein, “Introduction to
high performance computing for scientists
and engineers,” USA, 2010.

[2] V. Milutinovic, “Issues in microprocessor
and multiprocessor systems,” 1999.

[3] G. Hager, T. Zeiser, J. Treibig, and
G. Wellein, “Optimizing performance on
modern HPC systems: Learning from
simple kernel benchmarks,” in Computa-
tional Science and High Perf. Computing II.
Springer Berlin Heidelberg, 2006, vol. 91,
pp. 273–287.

[4] J. L. Hennessy and D. A. Patterson, Com-
puter Architecture, Fifth Edition: A Quan-
titative Approach. USA: Elsevier, 2012.

[5] N. Anchev, M. Gusev, S. Ristov, and
B. Atanasovski, “Optimal cache replace-
ment policy for matrix multiplication,” in
ICT Innovations 2012, S. Markovski and
M. Gusev, Eds. Springer Verlag / Berlin
Heidelberg, 2013, vol. AISC 257, pp. 71–
80.

[6] S. Ristov, M. Gusev, M. Kostoska, and
K. Kiroski, “Virtualized environments in
cloud can have superlinear speedup,” in
Proceedings of the Fifth Balkan Conference
in Informatics, ser. BCI ’12. New York,
NY, USA: ACM, 2012, pp. 8–13.

[7] M. Gusev and S. Ristov, “Performance
gains and drawbacks using set associative
cache,” Journal of Next Generation Infor-
mation Technology (JNIT), vol. 3, no. 3, pp.
87–98, 31 Aug 2012.

[8] M. Jacquelin, L. Marchal, and Y. Robert,
“Complexity analysis and performance
evaluation of matrix product on multicore
architectures,” in Proceedings of the 2009
International Conference on Parallel Pro-
cessing, ser. ICPP ’09. USA: IEEE Com-
puter Society, 2009, pp. 196–203.

[9] S. Ristov and M. Gusev, “Superlinear
speedup for matrix multiplication,” in Proc.
of the 34th Int. Conf. on Information Tech-
nology Interfaces, ITI 2012, IEEE Confer-
ence Publications, 2012, pp. 499–504.

[10] S. Jenks, “Multithreading and thread migra-
tion using MPI and myrinet,” in Proceed-
ings of the Parallel and Distributed Com-
puting and Systems, ser. PDCS’04, 2004.

[11] M. Gusev, S. Ristov, and G. Velkoski,
“Hybrid 2d/1d blocking as optimal matrix-
matrix multiplication,” in ICT Innovations
2012, S. Markovski and M. Gusev, Eds.
Springer Verlag / Berlin Heidelberg, 2013,
vol. AISC 257, pp. 13–22.

[12] G. Mateescu, G. H. Bauer, and R. A.
Fiedler, “Optimizing matrix transposes us-
ing a power7 cache model and explicit
prefetching,” SIGMETRICS Perf. Eval.
Rev., vol. 40, no. 2, pp. 68–73, Oct. 2012.

[13] S. Williams, L. Oliker, R. Vuduc, J. Shalf,
K. Yelick, and J. Demmel, “Optimization
of sparse matrix-vector multiplication on
emerging multicore platforms,” Par. Com-
put., vol. 35, no. 3, pp. 178–194, Mar. 2009.

[14] R. A. V. D. Geijn and J. Watts, “Summa:
Scalable universal matrix multiplication al-
gorithm,” Tech. Rep., 1997.

