EDUCache Simulator for Teaching Computer
Architecture and Organization

Blagoj Atanasovski, Sasko Ristov, Marjan Gusev, and Nenad Anchev
Ss. Cyril and Methodius University
Faculty of Information Sciences and Computer Engineering,
Rugjer Boshkovik 16, PO Box 393,
1000 Skopje, Macedonia
Email: blagoj.atanasovski@gmail.com, {sashko.ristov, marjan.gushev} @finki.ukim.mk, nenad_ancev@hotmail.com

Abstract—Teaching computer architecture requires a lot of
effort by the instructor. Introduction of simulators can improve
the teaching process and increases student willingness and easier
ability to learn the material. There are many visual simulators
that cover courses about computer architecture and design. In
this paper we present our EDUCache simulator as a supporting
tool in the process of understanding the concepts of both
computer architecture and computer organization. It focuses on
understanding modern multi-layer, multi-cache and multi-core
multi-processors. Apart of EDUCache’s features to teach the
students about the fundamentals of computer architecture and
organization, it can be also used for performance engineering
of software systems, i.e. the students will also discover the
importance of necessity of computer architecture which will
increase their curiosity for hardware courses in general.

Index Terms—Cache; CPU; Education; Multi-processor; Per-
formance.

I. INTRODUCTION

The Computer Architecture and Organization course is
acknowledged as a significat part of the body of knowledge
and an important area in undergraduate computer science (CS)
curricula [1]]. Nevertheless, the problem arises since the high-
level programming languages do not provide clear picture of
how the program is executed by the computer. This makes
learning of computer architecture and organization to decrease
the student’s interest and deeper understanding.

Teaching computer architecture is very difficult process and
requires a lot of effort from both instructors and students [2].
It is in the first study year and it is almost always totally
new course for the students. Visual simulators lighten the
teaching process and significantly improve CS student interest
in hardware generally [3]. Teachers must select appropriate
hands-on exercises, assignments and projects. A nice survey
of hands-on assignments and projects is realized in [4].

Modern multi-processors use multilayer cache memory sys-
tem [S]] to balance the gap between CPU and main memory
and to speedup data access. Thus students must understand
not only the architecture, but the organization inside the
multi-processor. We have not found appropriate educational
simulator that will help the students to understand easily all
cache parameters and their impact to program execution. In
this paper we present our EDUCache simulator that visually
presents cache hit and miss, cache line fulfillment, cache

associativity problem [6], and all for both sequential and
parallel algorithm execution.

The rest of the paper is organized as follows. In Section
we discuss the related work in the literature about other
simulators similar to our EDUCache simulator. Section
describes the architecture of EDUCache simulator. EDUCache
user interface and different working modes are described
and depicted in Section Several demo case studies are
presented in Section The final Section is devoted on
conclusion and future work.

II. RELATED WORK

We found many visual simulators that help students to sur-
mount particular fundamental parts of computer architecture
and organization. However, there is no single simulator which
covers all topics in computer architecture [8]]. Most of visual
simulators are not designed to teach the students neither about
cache memory hierachy and organizarion, nor it’s internal
parameters such as cache size, cache line, cache associativity,
cache inclusivity etc.

Visual EduMIPS64 is a learning aid for instruction pipelin-
ing, hazard detection and resolution, exception handling, in-
terrupts, and memory hierarchies [9]. It is a very powerful
learning tool and it simulates the complete pipeline archi-
tecture of the MIPS64 processor, but it does not offer a
thorough overview on how the cache memory hierarchy works
or affects execution. Also the simulator requires the students
to be already familiar with the MIPS64 ISA before they are
able to use the simulator which is impossible for the first year
computer science students.

Dinero IV is the cache simulator that simulates a memory
hierarchy with various caches [10]. It is a powerful and accu-
rate tool but it can simulate only single core systems. However,
it is only a command line tool that offers neither visualizations
nor explanations when the students use it. The authors in
[L1] define a fully parameterizable models applicable to n-
way associative caches, but only for LRU replacement policy.
Our EDUCache simulator simulates both FIFO and LRU cache
replacement policies for all cache levels.

CMP$im is a simulator based on the Pin binary instru-
mentation tool [12]. It is a better simulator offering multi
core support and data gathering for all levels of the cache.

However, the capturing the results is more complex than our
EDUCache simulator. HC-Sim simulator is also based on Pin
that generate traces during runtime and simulates multiple
cache configurations in one run [13]].

The authors in [14] designed a configurable cache system
simulator that helps students in understanding the process of
cache look up and writing elements in the cache memory.
They made it possible to configure the block size, the number
of blocks in a set and cache capacity, but only with a few
predefined values. Also, their implementation does not have
the support for multi-core cache systems. Misev and Gusev
have developed visual simulator for ILP dynamic out-of-
order executions [15], covering aspects on shelving, register
renaming, issuing, dispatch and other elements of out-of-order
executions.

Valgrind [16] with its module Cachegrind is the most used
profiler for cache behavior. Although Valgrind goes deep into
code and provides information about each function of the
program, it provides the information only for the first and
the last level cache. Modern multi-processors possess three
level caches and our EDUCache simulator can simulate middle
level L2 cache behavior. Another important advantage of our
simulator is its platform independence. Valgrind also does not
support shared memory parallel system when using threads,
such as openMP.

All these simulators were not primary developed for teach-
ing the cache memory although most of them are visual.
They lack educational features since they are built to complete
the simulation as fast as possible rather than to present the
architecture and organization of cache memory system in
a modern multi-processor. Our EduCache simulator offers
step by step simulation allowing the students to pause the
simulation and analyze the cache hits and misses in each cache
level.

III. DESCRIPTION OF EDUCACHE SIMULATOR FEATURES
AND INTERFACES

This section describes the main features and interfaces of
our proposed EDUCache simulator. It is a platform indepen-
dent simulator developed in JAVA which main simulation is
described by a set of Java classes, each for a different CPU
cache parameter. EDUCache simulator allows the students to
design a multi-layer cache system with different multi-core
multi-cache hierarchy and to analyze sequential and parallel
execution of particular algorithm.

A. Single-core or Multi-core Multi-processor

Students can create homogeneous multi-processor with one
or several cores with particular processor speed.

B. Chip Cores and Cache Owners

Each chip can have one ore several homogeneous cores.
Each core has access to some cache of different cache level
(generally L1 to L3). Particular cache can be owned by one,
several or all cores of the chip. In general, L1 and L2 caches
are dedicated per core in modern multi-processors, while L3
cache is shared among several or all cores in the chip.

C. Cache Parameters per Cache Level

Particular cache level parameters can vary. Cache is deter-
mined by cache memory size, cache line size, cache associa-
tivity and replacement policy. Even more, the “inclusivity”
among cache levels is also defined. EDUCache simulator
allows the students to configure all these cache parameters
and cache levels.

D. Data Statistics

EDUCache simulator collects various data about the config-
ured multi-processor system during its simulation. The most
important parameters are:

o The number of hits and misses for each CPU cache level

regardless it is shared or dedicated per core; and

o The number of hits and misses per core.

The logged data helps the students in their analysis of
different cache level behavior in each core.

IV. EDUCACHE USER INTERFACE

Each visual simulator devoted to teaching must have user
friendly graphical user interface. Our main focus was to
create an easy-to-use and easy-to-learn visual simulator. In
this section we describe the EDUCache user interface and its
working modes in details.

The EDUCache interface is visual and user friendly. It uses
the Multiple Document Inteface (MDI) paradigm. EDUCache
simulator works in two modes: Design and Simulation.

The students can design particular multi-processor in design
mode and save the multi-processor’s cache hierarchy and
parameters to use it in the simulation mode. Simulation mode
offers the students to load set of memory addresses and run
the simulation either with automated execution on intervals or
step by step on user input.

A. Design Mode

The students can configure various cache parameters and
levels to create instances of cache levels and share them among
chip cores. Fig. |I| depicts an overview of EDUCache user
interface in design mode.

The main window contains 2 main frames. The panel on
the left side offers the students to select what kind of a cache
level instance they would like to create. The students should
create the cache levels with fulfilling the parameters such as
cache replacement policy, cache associativity, cache size (in
KB or MB), cache line size and Unique ID (UID) for that
particular cache level. The students use UIDs to create a chip
core instance configuring which previously created cache level
instances will be incorporated as L1, L2 or L3 caches for
particular CPU core. Fig. [T] also depicts an example how a
student can create very easily L3 cache level instance with
a FIFO replacement policy, 8 way set associativity, 64 byte
cache line, 512 KB L3 cache size and UID L3 FIFO.

The right frame of the window shows the previously created
instances with their type, UID and description. The grid shows
that 4 other instances have been previously created, two L1
and two L2 instances, as depicted in Fig. [I]

Save Configuration Exit

Create new: | L3 Cache 2 — | Type L
) C1_L1_FIFO L1 Level SizeBKB Assocd
_[Cache Level T Cache Core] C2_L1_FIFO L1 Level Size:BKB Assocd
Ci_Lz2 LRU L2 Level Size:256KB Assoc8
Choose replacement policy. & CZ_12 |RU L2 Level Size:256KB Assoc8
I_J LRU () FIFO () BitPFLRU
@ Associativity: 8
@ Size; | 512 |KB |¥
@ Line width: | %4 B
(=% uID: L3_FIFD
Create Level

Fig. 1: Overview of design mode of EDUCache simulator - Creating L3 cache instance

After creating an cache level instances, the students can cre-
ate a core selecting cache instances from the list of previously
created ones (visible in the table in the right frame) for each
cache level. Fig. 2] depicts a design of a core with UID C1 that
has L1 and L3 caches with FIFO replacement policy and L2
cache with LRU replacement policy. The EDUCache simulator
offers the students to configure the “inclusivity” among the
cache levels, as well.

Main advantage of our EDUCache simulator compared to
others is allowing the design of multi-processor with two or
more cores (for example C1, C2, C3 and C4) which can share
the same cache level instance. For example, choosing the same
instance (for example L3_FIFO) for all cores as L3 cache will
design a shared last level L3 cache. The students can configure
two by two cores to share last level cache, and can share L1
or L2 caches among more cores, as well.

Finally the students can save the created configuration that
represents a CPU chip. They configure which core instances
would like to include on the chip and they are prompted where
to save the configuration file. The configuration file format is
discussed in Appendix [A]

In order to alleviate the computer architecture learning
process and the usage of the simulator, we add additional
information icons next to each label. Fig. 3] depicts these icons
which give short explanations and directions to the students
of the purpose of the field they are configuring, but also
allows the students to learn and understand the features and
the purpose of the cache parameter represented with that field.
The explanations are shown as tool tip boxes when the students

e |¥ LI | 1ype
C1_L1_FIFQ L1 Level
he Core C2_L1_FIFQ L1 Level
C1_L2 LRU L2 Level
policy. & C2_1L? LRU L2 Level
() Bitpr=

In computing, cache algorithms (also frequently called
replacement algarithms or replacement policies)

are optimizing instructions - algorithms - that a computer
program or a hardware-maintained structure can follow to
manage a cache of information stored on the computer.
When the cache is full, the algorithm must choose which

items to discard to make room for the new ones.
B

Fig. 3: A tool tip explanation box showing information about
replacement policy

click on the icons or hold the mouse pointer over particular
icon.

Completing the design mode successfully, the students have
designed a multi-core chip with different caches as described
in this section. Now they can move to the simulation mode in
order to simulate some memory accesses and analyze which
of them will generate hit or miss in particular cache level of
particular core.

Save Configuration Exit

— A uiD Type Description
Create new: | Core v ™~ AL ' P
: C1_L1_FIFD L1 Level Size:BKB Assocd
[Cache leyvel I Cache Care] C2_L1_FIFO L1 Level S!ZEZBKB Assocd
C1_L2 LRU L2 Level Size: 256KB AssocB
_ — C2 12 LRU L2 Level Size:256KB Assoc:d
L1 Cache: | C1_L1_FIFO _ L3_FIFO L3 Level Size:512KB Assoc8

e] Are L1 and L2 inlcusive

L2 Cache: |C1_L2_LRU v

e] Are L2 and L3 inlcusive

L3 Cache: |L3_FIFO v
Core UID: c1
Create Core
L
- K /' 'I'

Fig. 2: Overview of design mode of EDUCache simulator - Creating a CPU core

B. Simulation Mode

If EduCache’s Design mode is a mode for configuration, the
Simulation mode is for working, simulating and analyzing.
After a configuration of the CPU chip with multiple cores
per chip and multiple cache levels per each core, the students
should load the memory addresses and then run the simulation
of accessing for those addresses.

Fig.] depicts the Simulation mode. Its main window
consists of:

¢ Simulation Control Menu Bar;
o Loaded Address Trace Frame;
¢ Verbose Output Frame; and

o Visual Representation Frame.

Let’s explain their purpose and layout in more details.

1) Simulation Control Menu Bar: The menu bar is the
central control hub for the simulation process. It contains 2
menus, Simulation and Construction as depicted in Fig [3]

Construction menu has two options, i.e. “Create New
Configuration” and “Load Configuration”. The former opens
Design Mode, while the latter prompts for a location of a
configuration file. The Simulation menu has options to load a
study case file, to load a trace file, to start the simulation, to
pause it, to stop it completely, and to enter into step by step
working mode.

All options except Load Study Case in Simulation menu
are disabled at the beginning when no configuration is loaded
in the EDUCache simulator. The particular menu items are
enabled after the appropriate configuration file is loaded.

Ca
C2_L1_FIFO :
Start L
{ C2 L2 LRU | (
Step-By-Step { L3_FIFO | L
G 153437
C1: 123440 L
Type: Level 1
G2 123448 o (
. FIFD
C1: 123456
C2: 123464 L L
Cirrm: OWD

Fig. 5: Menu bar in Simulation Mode

2) Loaded Address Trace Frame: Loaded Address Trace
Frame is located on the top of the left side and shows the
contents of the trace file. The items are consisted of two parts.
The first part is a core’s UID showing which core should read
the address. The second part is the physical address that is
loaded. The item that is being examined is highlighted during
the simulation.

3) Verbose Output Frame: Verbose Output Frame is placed
on the bottom of the window as output pane. EDUCache
simulator gives the student the explanation of the whole cache
lookup process while the simulation is running. It shows the
addresses that are read by cores, the search in L1 cache and

Simulation Construction Next
Cache Sets Cache Lines Cache Line Info
Address Trace C2_L1_FIFO x x :
C2:123400 Set#1 r_‘\ Cache Line#1 |4 Line number: 1 A
C1: 123408 C2_12 LRU | — Cache Line#2 Loaded Addresses:
C2:123416 Cache Line #3 123400
. : 123408
C1:123424 L3_FIFO | Set#3 Cache Line #4 123416
C2:123432 [— 493424
Setfd
C1: 123440
Type: Level 1 123432
C2: 123448 eF ro Set#5 L
C1: 123456 ' ;‘;gi‘;g
02 123464 Assoc: 4 Set#6
C1: 123472 e ==
Set#3 '
Set#9 [/
=
A aman v v v
c1 e a ¥ T «T_ 7 S =
Verbose Qutput
Core: C2

Reading address: 123416
Looking up L1 set: #8
L1 hit; Cache Line #1

Fig. 4: Overview of Simulation mode - hit in L1 level of core C2, set #8, line #1, address 123416

selecting the set in which the address is supposed to map, the
result, i.e. cache hit or miss, the cache line number if it is hit
and the evicted line if the chosen set was full and read miss
is generated. The whole output is written out to a text file for
later revision and analysis.

4) Visual Representation Frame: Visual Representation
Frame is the main feature of simulation mode and is the third
frame of the window. EDUCache gives a visual representation
to the lookup process. This frame is divided in 4 parts, each
representing a different level of the cache level architecture:

o Core Pane - each tab in this pane contains the information
for particular CPU core. For example, C1 and C2 are the
cores that are depicted in Fig.] Selecting each of these
tabs shows the designed cache levels in selected core pre-
sented as buttons with the UIDs of the instances chosen
as captions. The students click the cache level buttons to
obtain the information about that cache instance and the
cache sets for that level that are loaded in the Cache Sets
Pane.

Cache Sets Pane - this pane presents the cache sets for
selected cache level instance of selected core in Core Pane
according its design (cache set associativity).

Cache Lines Pane - this pane presents the cache lines of
selected cache set in Cache Sets Pane.

Cache Line Info Pane - this pane presents the addresses
located of selected single cache line in Cache Line Pane.
It shows the loaded addresses in selected cache line and
it can be also configured to show statistics about the
selected cache line as number of cache writes and number
of cache reads.

Visual Representation Frame is repeatedly updated during
the simulation. The whole process can be described with the
following sequence:

A memory address is read from the trace file along with
the information which core is doing the reading.
Lookup begins by checking the L1 level of the selected
core.

A cache set is chosen depending on the physical address,
the set associativity and number of cache sets.

The cache lines are searched for the required element in
the chosen set.

— If the required element is found in one of the cache
lines, then it is highlighted green in the Cache
Line Info pane. The cache line containing the found
element in the Cache Lines Pane is highlighted also
green. The corresponding cache set of the Cache Sets
Pane and L1 cache level instance in the Core Pane
are also highlighted green.

If the required element is not found in L1, then the
same elements that are described in the previous step
will be highlighted, but with red indicating that cache
miss is generated. Lookup process will continue in
L2 and if L2 cache miss occurs, analogue items
are highlighted with red and the similar process
continues for L3 cache.

The verbose output is produced and showed during the
process in the Verbose Output Pane.

C. EDUCache Simulation

In this section we present the procedure of lookup the
particular address in the caches. Fig. [6] presents the activity
diagram.

In the following two sections we will describe the simulation
of L1 cache hit. and L1 miss and hit in lower cache level.

1) Simulation of L1 Cache Hit: Fig. [4| depicts an example
of a L1 cache hit. It shows that the second core C2 is about to
require the physical address 123416. Looking at the L1 cache
size, associativity and number of sets, EDUCache simulator
calculates that this address should be mapped into set number
8. Set #8 contains 4 cache lines. Two steps before, C2 core
required the address 12400 and it wrote into Cache Line
#1 along with the items of the whole cache line, i.e. up to
address 123456, including the required address 123416. Thus,
L1 cache hit will occuer and the address in the Cache Line
Info Pane, Cache Line #1, Set #8 and C2_L1_FIFO are all
highlighted green.

2) Simulation of L1 Cache Miss and Hit in Lower Cache
level: When a cache miss occurs in a particular cache level,
then all the cache level, cache set and cache lines that were
looked up are highlighted with a red. Fig. |/| depicts the
scenario of L1 cache miss and successful lookup cache level
L2, i.e. L1 cache miss and L2 cache hit. The EDUCache
simulator highlights L1 elements with red and L2 elements
with green. The results from this lookup are also seen in the
verbose output.

V. DEMO CASE STUDIES

Cases studies are special files containing a reference to both
a configuration file and trace file. Their purpose is to set up
a practical example with a certain goal. Using these demo
case studies will not only help the students in understanding
computer architecture and organization focusing on CPU cache
memory, but also will help in determining the average number
of clocks per particular cache level hit or miss.

In this section we propose several demo case studies that
will simulate some extremes.

A. Always Cache Hit

The first example is a trace file that will always generate
cache hits for the loaded configuration. That is, always access
the elements stored in particular cache level. Sorting a small
array of elements is a practical algorithm that will generate
always a cache hit.

B. Always Cache Misses due to Cache Capacity Problem

The other extreme example is always generating cache
misses due to cache capacity problem. That is, none of the
required elements can be found in a particular cache level.
Accessing the elements of one column in huge-enough squared
matrix in raw major will produce always cache miss. The
detailed analysis for storing the matrix elements in the cache
can be found in [7]].

C. Always Cache Misses due to Cache Associativity Problem

Next extreme example is always generating cache misses
due to cache associativity problem. That is, none of the
required elements can be found in a particular cache set. The
authors in [6] give a comprehensive analysis how, when and
why maximum performance drawbacks appear when using set
associative cache. Accessing the elements of one column for
characteristic matrices in raw major will produce always cache
miss since all the column elements will be stored in one cache
set, and the rest of the cache will be empty.

More detailed explanation of the demo case study file
structure is given in Appendix

VI. CONCLUSION AND FUTURE WORK

This paper describes our EDUCache visual simulator that
can be used for teaching in details the undergraduate computer
architecture students the CPU cache memory architecture and
organization. It allows the students to comprehend todays
multi-core multi-layer cache architectures and organization
configuring each cache parameter independently. It simulates
cache misses and hits in particular cache set and memory
location for sequential and parallel execution of particular
algorithm.

Our EDUCache simulator has several advantages over other
educational simulators in computer architecture and organiza-
tion area. The students can interactively learn:

o The hierarchy in cache levels (L1 to L3);

o Cache owners, i.e. either particular cache level is dedi-
cated per core or shared among all cores or even shared
among several CPU cores;

o The ”inclusivity” between different cache levels, i.e.
inclusive or exclusive;

e The size of the cache memory, the n-way cache set
associativity, cache line sizes; and

o Cache replacement policy, with ability to have different
cache replacement policies per different cache levels.

The most important benefit of our EDUCache simulator is
its ability not only to teach the students about the funda-
mentals of computer architecture and organization, but also
performance engineering of software systems, i.e. they will
discover the importance of necessity of computer architecture.
We believe that it will increase their willingness to teach a
hardware based courses beside software based.

Our EDUCache simulator is newly developed and has not
been implemented yet in the classes. We plan to introduce our
simulator in courses 1) computer architecture and organization
and 2) parallel and distributed processing next semester and
to survey the students about its features, user interface and the
positive impact to student willingness for learning hardware
courses in general.

We will use EDUCache simulator in our further research
to determine the optimal hardware platform to maximize the
speed and speedup of cache intensive algorithms for sequential
and parallel execution.

3 Start

-

A

Gead physical address)

v

Lookup L1

Lookup address

dress Lookup

~

' Determine Set # '

Lookup address

Gighlight Elements Red

CSearch Cache Lines of SeD

Lookup L2
Miss on L2 Lookup address

\,

Gighlight elements greer)

/

Lookup L3
<N\«

Miss on L3

GVrite new address to Ievels)

| \/.\/

W/~

End

Fig. 6: Activity diagram of the steps that update the visual representation

APPENDIX
EDUCACHE INTERFACES

EDUCacheSim uses a number of files for keeping data
or using them as input. There are 3 types of files: Chip
Configuration File (CCF), Address Trace File (ATF) and Study
Case File (SCF).

A. CCF File

The CCF is the product of design mode and it is used as an
input in simulation mode. It contains the information about the
architecture created for a chip. It defines the number of cores
per chip, describes each of the cache level instances chosen
for each core and gives the relationship between them. The
file has an XML structure which makes the simulator inter-
operable with other similar systems. The root of the file is a

Configuration tag that contains two children, CacheLevels and
CacheCores. CacheLevels has 3 or more children (at least one
child for every type of cache level). These children have the
tag CacheLevel and each child must have the following items:

e UID - the id of the level instance

o Level the type of cache level (1, 2 or 3)
e RP replacement policy

e Size the size in bytes

o LWidth the line width in bytes

The first level CacheCores tag has at least one child,
representing a single core. A Core tag contains 6 items:

e UID id of the core L1 UID of a L1 instance L2 UID of

a L2 instance L3 UID of a L3 instance L1InclL2 true if
L1 is inclusive with L2 L2InclLL.3 true if L2 is inclusive

Simulation Construction Next Change D
Cache Sets
Address Trace C2_L1_FIFO .
C2: 123400 Set#1 r_"\
C1: 123408 C2_L2 |RU Set#2
C2: 123416
C1:123424 L3_FIFO Set#3
C2: 123432
C1: 123440 Sl
C2: 123448 Set#5
C1: 123456
C2: 123464 Set#6
C1: 123472
Set#7
"y
Set#3
Set#9 h
- N ==
CPU1 | CPUZ o —
Verbose Output

uore: Lz
Reading address: 123464
Looking up L1 set: #9

L1 miss

Looking up L2 set: #3393
L2 hit

Cache Lines Cache Line Info
Cache Line #1 & Line number: 1 A
—_— T
Cache Line #2 Loaded Addresses:
EMPTY

Cache Line #3
Cache Line #4

Fig. 7: Overview of simulation mode of EDUCache simulator, L.1 miss and L2 hit while reading the address 123464

with L3

Listing [I] shows an exact structure of a cache configuration
file as it would look in XML.

Listing 1: XML structure of a CCF

<Configuration>
<CacheLevels>
<CacheLevel>
<UID>id of instance </UID>
<Level >[1,2,3]</Level>
<RP>[FIFO,LRU,BPLRU] </RP>
<Size>number in bytes </Size>
<LWidth>line width in bytes </LWidth>
</CacheLevel >

<CacheLevel>

</CacheLevel >
</CacheLevels>
<CacheCores>
<Core>
<UID>UID of core </UID>
<L1>UID of L1</L1>
<L2>UID of L2</L2>
<L3>UID of L3</L3>
<L1InclL2 >[true , false]</L1InclL2>
<L2InclL3 >[true , false] </L2InclL3>
</Core>

<Core>
</Core>

</CacheCores>
</Configuration>

B. ATF File

The ATF file has a fairly simple structure as shown in
Listing [2] It has a number of lines where each line consists

of two comma separated values. The first value is a UID of
a core created previously in some other CCF File and is used
to show which core should read the following address. The
second value is a physical address of a data element in main
memory that the core will try to use. Commentary can be
added at the beginning of the file, each line beginning with a
% character.

Listing 2: Example of an ATF file with commentary

\%Sample address trace file, assuming cores Cl and C2
Cl, 123392
C2, 123400
Cl, 123408
C2, 123416
C. SCF File

A SCF File contains the data about activities designed for
the student to observe the working of the simulator on a
particular chip configuration and trace file. it also has a XML
structure as CCF File. The root of the file is a StudyCase node.
The root node has 5 direct children:

o Title of the study case

o Goal what the students should learn

o Activities description of steps to take

o ChipConfig URI to a chip configuration file
e AddressTrace URI to address trace file

The Activities child is the only complex element. It is
consisted of a list of children nodes named Activity. Each
activity node has two children. The first one is Name, for that
step, and the second one is Requirement or what the students
should observe. Listing 3| shows the structure of the SCF Files.

Listing 3: XML structure of a SCF File

<StudyCase>
<Title >String </Title >
<Goal>String </Goal>
<Activities >

<Activity >
<Name>String </Name>
<Requirement>String
</Requirement>
</Activity >
<Activity >
</Activity >

</Activities >

<ChipConfig >URI</ChipConfig>

<AddressTrace >URI</AddressTrace>
</StudyCase>

D. Simulator Output File

The Simulator Output File is generated while the simulation
is running. It is basically a dump file for the verbose output
log shown in the Verbose Output pane. During the simulation
the lookups to the cache are explained in a readable form.
After the simulation ends the statistics gathered are appended
at the beginning of the file so that a student seeking only this
information does not have to scroll through the whole output.

ACKNOWLEDGMENT

This work was partially financed by the Faculty of Computer
Science and Engineering at the ”Ss. Cyril and Methodius”
University.

REFERENCES

[1] R. Shackelford, A. McGettrick, R. Sloan, H. Topi, G. Davies, R. Kamali,
J. Cross, J. Impagliazzo, R. LeBlanc, and B. Lunt, “Computing curricula
2005: The overview report,” SIGCSE Bull., vol. 38, no. 1, pp. 456457,
Mar. 2006.

[2] M. Stolikj, S. Ristov, and N. Ackovska, “Challenging students software
skills to learn hardware based courses,” in Information Technology Inter-
faces (ITI), Proceedings of the ITI 2011 33rd International Conference
on, june 2011, pp. 339 —344.

[3] S.Ristov, M. Stolikj, and N. Ackovska, “Awakening curiosity - hardware
education for computer science students,” in MIPRO, 2011 Proceedings
of the 34th International Convention, IEEE Conference Publications,
may 2011, pp. 1275 —1280.

[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

X. Liang, “A survey of hands-on assignments and projects in un-
dergraduate computer architecture courses,” in Advances in Computer
and Information Sciences and Engineering, T. Sobh, Ed. Springer
Netherlands, 2008, pp. 566-570.

J. L. Hennessy and D. A. Patterson, “Computer Architecture, Fifth
Edition: A Quantitative Approach,” MA, USA, 2012.

M. Gusev and S. Ristov, “Performance gains and drawbacks using set
associative cache,” Journal of Next Generation Information Technology
(JNIT), vol. 3, no. 3, pp. 87-98, 31 Aug 2012.

S. Ristov and M. Gusev, “Achieving maximum performance for matrix
multiplication using set associative cache,” in The 8th International
Conference on, Computing Technology and Information Management
(ICCM2012), IEEE Conference Publications, ser. ICNIT ’12, vol. 2,
2012, pp. 542-547.

B. Nikolic, Z. Radivojevic, J. Djordjevic, and V. Milutinovic, “A
survey and evaluation of simulators suitable for teaching courses in
computer architecture and organization,” Education, IEEE Transactions
on, vol. 52, no. 4, pp. 449 —458, nov. 2009.

D. Patti, A. Spadaccini, M. Palesi, F. Fazzino, and V. Catania, “Support-
ing undergraduate computer architecture students using a visual mips64
cpu simulator,” Education, IEEE Transactions on, vol. 55, no. 3, pp.
406 —411, aug. 2012.

J. Edler and M. D. Hill, “Dinero iv trace-driven uniprocessor
cache simulator,” 2012. [Online]. Available: http://pages.cs.wisc.edu/
~markhill/Dinerol V/

B. B. Fraguela, R. Doallo, and E. L. Zapata, “Automatic analytical
modeling for the estimation of cache misses,” in Proceedings of the
International Conference on Parallel Architecture and Compilation
Techniques, ser. PACT °99. IEEE Comp. Society, 1999, pp. 221-231.
A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob, “Cmpsim: A pin-based
on-the-fly multi-core cache simulator,” in The Fourth Annual Workshop
on Modeling, Benchmarking and Simulation (MoBS), co-located with
ISCA’2008, 2008.

Y.-T. Chen, J. Cong, and G. Reinman, “Hc-sim: a fast and exact 11
cache simulator with scratchpad memory co-simulation support,” in
Proceedings of the 7-th IEEE/ACM/IFIP International conference on
HW/SW codesign and system synthesis, ser. CODES+ISSS *11. New
York, NY, USA: ACM, 2011, pp. 295-304.

E. Herruzo, J. Benavides, R. Quislant, E. Zapata, and O. Plata,
“Simulating a reconfigurable cache system for teaching purposes,” in
Microelectronic Systems Education, 2007. MSE ’07. IEEE International
Conference on, june 2007, pp. 37 -38.

A. Misev and M. Gusev, “Visual simulator for ilp dynamic ooo pro-
cessor,” in WCAE ’04, Proceedings of the 2004 workshop on Computer
architecture education: held in conduction with the 31st International
Symposium on Computer Architecture, E. F. Gehringer, Ed. ACM New
York, NY, USA, june 2004, pp. 87 -92.

Valgrind, “System for debugging and profiling linux programs,”
[retrieved: Nov, 2012]. [Online]. Available: http://valgrind.org/

http://pages.cs.wisc.edu/~markhill/DineroIV/
http://pages.cs.wisc.edu/~markhill/DineroIV/
http://valgrind.org/

	Introduction
	Related Work
	Description of EDUCache Simulator Features and Interfaces
	Single-core or Multi-core Multi-processor
	Chip Cores and Cache Owners
	Cache Parameters per Cache Level
	Data Statistics

	EDUCache User Interface
	Design Mode
	Simulation Mode
	Simulation Control Menu Bar
	Loaded Address Trace Frame
	Verbose Output Frame
	Visual Representation Frame

	EDUCache Simulation
	Simulation of L1 Cache Hit
	Simulation of L1 Cache Miss and Hit in Lower Cache level

	Demo Case Studies
	Always Cache Hit
	Always Cache Misses due to Cache Capacity Problem
	Always Cache Misses due to Cache Associativity Problem

	Conclusion and Future Work
	Appendix: EDUCache Interfaces
	CCF File
	ATF File
	SCF File
	Simulator Output File

	References

