
Hands-On Exercises to Support Computer Architecture
Students Using EDUCache Simulator

Sasko Ristov, Blagoj Atanasovski, Marjan Gusev, and Nenad Anchev
Ss. Cyril and Methodius University, Faculty of Information Sciences and Computer Engineering

Rugjer Boshkovikj 16, PO Box 393
Skopje, Macedonia

sashko.ristov@finki.ukim.mk, blagoj.atanasovski@gmail.com,
marjan.gushev@finki.ukim.mk, nenad_ancev@hotmail.com

ABSTRACT
EDUCache simulator is developed as a learning tool for un-
dergraduate students learning the course of Computer Ar-
chitecture and Organization. It gives explanations and de-
tails of the processor and exploitation of its cache memory.
This paper shows a set of laboratory exercises and several
case studies with examples how to use the EDUCache sim-
ulator in the learning process. These hands-on laboratory
exercises can be also used in learning software performance
engineering and to increase the student willingness to learn
more hardware based courses in their further studying.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems; K.3.2 [Computers and Education]: Computer
and Information Science Education; B.3.2 [Memory Struc-
tures]: Design Styles—Cache memories, Shared memory

General Terms
Verification

Keywords
Education, HPC, CPU Cache, Multiprocessor.

1. INTRODUCTION
The Computer Architecture and Organization course is de-
voted to help the students understand the concepts how
computers work. This course is usually in the first study
year and the teaching material is almost always totally new
for the students. Computer architecture is acknowledged as
a significant part of the body of knowledge and an impor-
tant area in undergraduate computer science curricula [1, 2].
Learning the course requires huge efforts by the students, es-
pecially in case of computer science students. They usually
do not want to know how the hardware (computer) works,
but they just want to use it as a necessary tool to execute

.

their software programs. Developing programs in some high-
level programming language, the students do not get a clear
picture of how they are executed by the computer. This de-
creases the students’ interest and deeper understanding in
learning of the course Computer Architecture and Organi-
zation. Therefore, it makes the teaching even more difficult
requiring a lot of effort from both instructors and students
[3]. Teachers must not only cover a body of knowledge,
but they must motivate students and make the course excit-
ing by selecting appropriate topics, such as which processor
should be learned [4].

Several methodologies are developed to teach the hardware
courses in general for computer science students. Reinbrecht
et al. [5] present a methodology that integrates functionally
verified ASIC soft cores into an FPGA in order to allow the
students to learn the fundamentals of hardware and its de-
signs challenges, not only development, but also verification
and physical implications. Practical work on real hardware
is very important [6, 7]. Using appropriate visual simulators
on hands-on exercises lightens the teaching process and can
significantly improve the students’ interest in hardware gen-
erally [8, 9]. The simulators or web online tools share the
laboratory equipment, thus removing the obstacles of cost,
time-inefficient use of facilities, inadequate technical sup-
port and limited access to design and laboratory resources
[10]. The most important task for the teachers is to select
appropriate hands-on exercises, assignments and projects.

Today’s modern multi-processors consist of multilayer cache
memory system [11] to speedup data access balancing the
gap between CPU and main memory. This complicates the
learning process even more since the students must learn
the organization inside the multi-processor, and not only the
architecture. We have developed EDUCache simulator [12]
that visually presents cache hits and misses, cache line fulfill-
ment, cache associativity problem [13], for both sequential
and parallel algorithm execution. In this paper we present
several hands-on exercises for EDUCache simulator that will
improve the teaching and alleviate the student learning pro-
cess. Several predefined examples for special memory pat-
terns that cover data locality and cache set associativity are
also presented.

The rest of the paper is organized as follows. In Section 2
we discuss the related work about improving the teaching
and learning of computer architecture and other hardware

courses for computer science students. Section 3 briefly de-
scribes the course Computer Architecture and Organization.
The EDUCache architecture, user interface and different
working modes are described in Section 4. The newly pro-
posed hands-on laboratory exercises and some predefined
examples are presented in Section 5. The final Section 6 is
devoted on conclusion and future work.

2. RELATED WORK
In this section we present the related work divided in two
parts: hands-on exercises and existing visual simulators.

2.1 Hands-on Exercises
Many authors point the importance of appropriate hands-on
exercises, assignments and projects to lighten the teaching
and learning process. A nice survey of hands-on assignments
and projects is published by Liang [14].

Ackovska and Ristov [15] improved the hands-on labora-
tory exercises and new teaching methodology for the hard-
ware course Microprocessors and Micro-controllers. Their
changes improved the quality of grade distribution, hands-
on lab exercises, practical projects and course overall grade
distribution, without making the course easier. Hatfield and
Jin [16] designed and developed many laboratory exercises
to design and implementation of an operating model of a
pipelined processor.

Contrary to using the visual simulators, Wang [17] uses
FPGA-based configurable processors in hands-on exercises,
It offers exciting opportunities to develop and implement
both hardware and software of multi-core processor systems
on real hardware. Implementing the FPGA board motivated
the students and increased their interest in visual monitoring
of hardware and software [18].

2.2 Visual Simulators
There is no single simulator which covers all topics in com-
puter architecture and organization [8]. Some simulators are
designed to teach, some for data profiling. But we have not
found any simulator in the literature (beside the EDUCache
simulator) that is designed to teach the students about cache
memory, hierarchy and organization, neither it’s internal pa-
rameters such as cache size, cache line, cache associativity,
cache inclusivity etc. This section presents the simulators
related to computer architecture and organization.

Visual EduMIPS64 is a learning aid for instruction pipelin-
ing, hazard detection and resolution, exception handling,
interrupts, and memory hierarchies [19]. It is a very pow-
erful learning tool and it simulates the complete pipeline
architecture of the MIPS64 processor, but it does not offer
a thorough overview on how the cache memory hierarchy
works or affects execution. Also the simulator requires the
students to be already familiar with the MIPS64 ISA before
they are able to use the simulator which is impossible for
the first year computer science students.

Dinero IV is the cache simulator that simulates a memory
hierarchy with various caches [20]. It is a powerful and accu-
rate tool but it can simulate only single core systems. How-
ever, it is only a command line tool that offers neither visual-
izations nor explanations when the students use it. Fraguela

et al. [21] define a fully parameterizable models applicable
to n-way associative caches, but only for LRU replacement
policy. Our EDUCache simulator simulates both FIFO and
LRU cache replacement policies for all cache levels.

CMP$im is a simulator based on the Pin binary instrumen-
tation tool [22]. It is a better simulator offering multi core
support and data gathering for all levels of the cache. How-
ever, the capturing of results is more complex than our ED-
UCache simulator. HC-Sim simulator is also based on Pin
that generate traces during runtime and simulates multiple
cache configurations in one run [23].

Herruzo et al. [24] designed a configurable cache system
simulator that helps students in understanding the process
of cache look up and writing elements in the cache mem-
ory. They made it possible to configure the block size, the
number of blocks in a set and cache capacity, but only with
a few predefined values. Also, their implementation does
not have the support for multi-core cache systems. Misev
and Gusev have developed visual simulator for ILP dynamic
out-of-order executions [25], covering aspects on shelving,
register renaming, issuing, dispatch and other elements of
out-of-order executions.

Valgrind [26] with its module Cachegrind is the most used
profiler for cache behavior. Although Valgrind goes deep
into code and provides information about each function of
the program, it provides the information only for the first
and the last level cache. Modern multi-processors possess
three level caches and our EDUCache simulator can simulate
middle level L2 cache behavior. Another important advan-
tage of our simulator is its platform independence. Valgrind
also does not support shared memory parallel system when
using threads, such as openMP.

All these simulators were not primary developed for teaching
the cache memory although most of them are visual. They
lack educational features since they are built to complete
the simulation as fast as possible rather than to present the
architecture and organization of cache memory system in
a modern multi-processor. Our EDUCache simulator [12]
offers step by step simulation allowing the students to pause
the simulation and analyze the cache hits and misses in each
cache level. It’s power increases with appropriate hands-on
exercises.

3. THE COURSE COMPUTER ARCHITEC-
TURE AND ORGANIZATION

This section briefly describes the course Computer Architec-
ture and Organization.

The course’s main objective is to offer the students a clear
understanding of the main computer architectures, perfor-
mance of the computer parts and the whole computer sys-
tem. It also covers the topics of today’s modern multi-chip
and multicore multiprocessors, as well as the digital logic
circuits.

3.1 Course Organization
The teaching of the course is organized in three parts: theo-
retical lectures with 2 classes per week, theoretical exercises

Figure 1: Overview of design mode of EDUCache simulator - Creating L3 cache instance

with 2 classes per week and practical exercises with 1 class
per week in laboratory. Lectures and theoretical exercises
are organized in larger groups of around 100 students, while
practical exercises are carried out in computer laboratories
in groups of up to 20 students, with each student working on
its own workstation. Prerequisites for enrolling in the course
are previously completed courses in Discrete Mathematic.

Theoretical lectures cover the computer abstractions and
technology, the computer language (MIPS), computer arith-
metic, the processor, memory, storage, and multichip multi-
core multiprocessors [27].

Theoretical exercises are divided in two parts. The first
midterm covers the topics: computer arithmetic, codes and
performance parameters, while the second part is devoted
on logic circuits. Hands-on laboratory exercises follow the
topics of theoretical exercises.

The course can be passed in two ways, i.e., through midterms
or final exam. The students must take the theoretical lecture
part and exercise part (plus logic circuits) in either way.

3.2 Course Obstacles
The previous section briefly describes the course organiza-
tion. We have analyzed the student results and determine
that they have more problems with the topics of theoretical
lectures compared to the exercises, and more precisely, the
material of the second midterm, i.e., the processor, memory,
I/O and parallelization. Our analysis show that although
these subjects are covered during the theoretical lectures,
neither theoretical nor practical exercises are provided for
these topics, since the exercises are devoted to the design of
logic circuits. Even more, IEEE Computer Society and ACM
stated that more attention should be given to the multi-core
processors architecture and organization, instead of the logic
design level [28].

Therefore, we developed the EDUCache simulator that cov-
ers these topics. In this paper, we present the hands-on lab-
oratory exercises that will make it even more appropriate
in the teaching process, mainly focused on multiprocessor,

cache and main memory.

4. EDUCACHE SIMULATOR
This section briefly describes the main features, interfaces
and user interface of the EDUCache simulator. More details
about the EDUCache simulator are presented in [12].

The EDUCache simulator is a platform independent simu-
lator developed in JAVA which main simulation is described
by a set of Java classes, each for a different CPU cache pa-
rameter. It allows the students to design a multi-layer cache
system with different multi-core multi-cache hierarchy and
to analyze sequential and parallel execution of particular al-
gorithm. Each chip can have one or several homogeneous
cores. Each core has access to some cache of different cache
level (generally L1 to L3). Particular cache can be owned
by one, several or all cores of the chip. In general, L1 and
L2 caches are private per core in modern multi-processors,
while L3 cache is shared among several or all cores.

Particular cache level parameters can vary. Cache is de-
termined by cache memory size, cache line size, cache as-
sociativity and replacement policy. EDUCache simulator
allows the students to configure all these cache parameters
and cache levels.

4.1 User Interface
The EDUCache simulator user interface is visual and user
friendly. It uses the Multiple Document Inteface (MDI)
paradigm. The EDUCache simulator works in two modes:
Design and Simulation.

4.1.1 Design Mode
The students can configure various cache parameters and
levels to create instances of cache levels and share them
among chip cores.

The students create the cache levels with unique ID (UID).
Figure 1 depicts an overview of EDUCache simulator user
interface in design mode and an example how a student can
very easily create an L3 cache level instance with a FIFO

Figure 2: Overview of design mode of EDUCache simulator - Creating a CPU core

Figure 3: Overview of Simulation mode - hit in L1 level of core C2, set #8, line #1, address 123416

replacement policy, 8 way set associativity, 64 byte cache
line, 512 KB L3 cache size and UID L3 FIFO.

After creating cache level instances, the students can create
a core, selecting cache instances from the list of previously
created ones (visible in the table in the right frame) for each
cache level. Figure 2 depicts a design of a core with UID C1
that has L1 and L3 caches with FIFO replacement policy
and L2 cache with LRU replacement policy.

Finally, the students can save the created configuration that
represents a CPU chip. They configure which core instances
would like to include on the chip and they are prompted
where to save the configuration file.

Completing the design mode successfully, the students have
designed a multi-core chip with different caches as described

in this section. Now they can move to the simulation mode
in order to simulate some memory accesses and analyze
which of them will generate hit or miss in particular cache
level of particular core.

4.1.2 Simulation Mode
After a configuration of the CPU chip with multiple cores
per chip and multiple cache levels per each core, the students
should load the memory addresses and run the simulation.

Figure 3 depicts the Simulation mode. Its main window
consists of:

• Simulation Control Menu Bar - is the central control
hub for the simulation process. It contains 2 menus,
i.e., Simulation and Construction. The latter creates

new or loads the existing configuration file for a core.
The former loads a study case file, trace file, and op-
erates the simulations (start, pause, stop, or step by
step working mode);

• Loaded Address Trace Frame - shows the contents of
the trace file, i.e., which core should read the address
and the physical address that is loaded.

• Verbose Output Frame - shows the addresses that are
read by cores, the search in L1 cache and selecting the
set in which the address is supposed to map, the result,
i.e. cache hit or miss, the cache line number if it is hit
and the evicted line if the chosen set was full and read
miss is generated; and

• Visual Representation Frame - is the main feature of
simulation mode which gives a visual representation to
the lookup process. It represents different levels of the
cache level architecture: Core Pane, Cache Sets Pane,
Cache Lines Pane, and Cache Line Info Pane.

5. HANDS-ON EXERCISES FOR
EDUCACHE SIMULATOR

This section presents how the EduCache simulator can be
used as a tool in the laboratory exercises to introduce the
students of the basic concepts of processor and its cache
memory.

5.1 General Terms
All hands-on laboratory exercises are based on the same
concept. Each hands-on exercise starts with an explanation
of the goal and objectives. A brief coverage of the required
topics is presented next. This will remind the student about
the topics to learn or revise in order to be able to prepare
for the exercise and complete it. The exercises should be
given to the students a week before the exercise, in order to
be prepared [15].

The objectives are step by step guides on what the student
is supposed to do, e.g., configure the simulator, create a cer-
tain architecture, execute a simulation or analyze the results
from an executed simulation. The guidelines are posed as
simple instructions or as learning objectives. Questions are
placed between the guidelines alerting the students which
areas require more attention. At the end, the students must
answers all questions, the configuration file of the simulator
and the simulation result file.

5.2 The Hands-on Exercises
This section presents the hands-on laboratory exercises for
EDUCache simulator. We present several exercises, some of
which can be gathered or divided according to the available
time for the hands-on laboratory exercises.

5.2.1 Exercise 1: Intro to EDUCache Environment
The first laboratory exercise is designed to introduce the
EDUCache simulator to the students. The exercise goes
over the different types of files that the simulator uses. The
basic commands require the students to go through a simula-
tion and to analyze the results. Learning objectives include:
EDUCache design and simulating modes, loading a cache
configuration file, and basic cache memory elements. The

exercise concludes with running a simulation on a loaded
trace file, creating a new trace file and running the simula-
tion again, finishing with an analysis of the statistics that
the simulator presents after the simulation is finished.

Although this exercise does not require a lot of effort by
the students, it should be graded. Otherwise, the students
could not pay enough attention on learning the elementary
controls of the simulator, which will cause them to have a
trouble with later exercises.

5.2.2 Exercise 2: Different Cache Parameters
The second laboratory exercise aims to present the basic
parameters of cache memory to the students. That is, the
size, associativity and the principles of multiple cache levels.
The learning objective of this exercise is the students to un-
derstand how these parameters impact on specific program
execution. The principles of time and data locality are cov-
ered. The simulator is used to create multiple configurations
with different parameters regarding to the cache size. Sim-
ulation is realized on a single memory trace. The students
must observe into the results of the simulation and compare
to find how the different sizes effect the program execution.

The final part of the exercise is to determine the smallest
size for a cache level that gives the same performance as
an infinite cache size. The grading should include optional
questions for extra credit to inspire the students to show
interest in the exercises since this exercise contains a sig-
nificant number of tasks (and objectives) that the students
must complete.

5.2.3 Exercise 3: Overview of Cache Set Associativ-
ity and Replacement Policies

The third laboratory exercise goes over the concepts of cache
set associativity and replacement policies as one of the more
complex cache memory parameters. The exercise shows the
impact of these parameters on a specific program execution.
The students must create configurations and use them to
execute and analyze multiple simulations.

A set of address traces is given and the students’ task is
to observe and conclude the optimal replacement policy for
each address trace. The exercise also offers the possibility
to create experimental configurations which do not usually
appear in real systems, such as certain cache levels with
certain replacement policy. Another set of objectives takes
a look at the influence of the set associativity.

5.3 The Demo Examples
In this section we present several demo examples for charac-
teristic memory access patterns in order to lighten the learn-
ing and understanding the processor and its cache memory
architecture and organization.

5.3.1 Example 1: Cache Miss due to "Loosely" Data
This example demonstrates the continuous cache misses for
the loosely data. Table 1 presents the example of cache
parameters. The trace file forces the access of the elements
with 8B offset since we want to force a cache miss for each
memory read (each read accesses the element of different

Figure 4: Simulation of Example 3

Parameter L1 L2 L3
Size 32B 64B 128B

Associativity 2 2 4
Replacement FIFO FIFO FIFO
Cache line 8B 8B 8B

Table 1: Example 1 that generates cache misses

Parameter L1 L2 L3
Total reads 50 50 50
Cache hits 0 0 0

Cache misses 50 50 50

Table 2: Results of the simulation of the Example 1

cache line). Total 50 reads are realized and the results of
the simulation are presented in Table 2.

5.3.2 Example 2: Each Second Access is Cache Hit
due to Data Locality

This example accesses pairs of elements such that each pair
is placed in the unique cache line. The cache parameters
are presented in Table 3. Total 10 reads are realized. The
results of the simulation are presented in Table 4. That is,
we forced 5 pairs of miss and hit in L1 cache.

Parameter L1 L2 L3
Size 128B 192B 256B

Associativity 4 4 8
Replacement LRU LRU LRU
Cache line 32B 32B 32B

Table 3: Example 2 that generates cache hits for the second
access

Parameter L1 L2 L3
Total reads 10 5 5
Cache hits 5 0 0

Cache misses 5 5 5

Table 4: Results of the simulation of the Example 2

Parameter L1 L2 L3
Total reads 42 1 1
Cache hits 41 0 0

Cache misses 1 1 1

Table 5: Results of the simulation of the Example 3

5.3.3 Example 3: Always Cache Hit due to Data Lo-
cality

This example demonstrates how the set associative cache
memory generates cache hits for ”tightly” data (data local-
ity) of a single cache line. The cache parameters are the
same as the Example 2 presented in Table 3. Since we want
to generate a cache hit for each memory access, all addresses
in the memory trace are in the range of a single cache line.
Total 42 reads are realized. The results of the simulation
are presented in Table 5. That is, 1 cache miss is generated
by the first access, and 41 cache hits by all others.

Figure 4 depicts a hit occurring on L1 cache always in the
same cache line, as the rightmost pane shows the other cache
lines are empty because all the required elements have been
loaded into a single cache line Line #3.

5.3.4 Example 4: Cache Associativity Problem
This example demonstrates how the set associative cache
memory can generate continuous cache misses if the data
access are always in the same cache set, i.e., cache associa-
tivity problem [13]. The cache parameters are presented in

Figure 5: Simulation of Example 4

Parameter L1 L2 L3
Size 16B 32B 64B

Associativity 2 2 4
Replacement FIFO FIFO FIFO
Cache line 8B 8B 8B

Table 6: Configuration for Example 4

Parameter L1 L2 L3
Total reads 15 15 3
Cache hits 0 12 0

Cache misses 15 3 3

Table 7: Results of the simulation of the Example 4

Table 6. Total 15 reads are realized, but only 3 different
addresses are accessed. The results of the simulation are
presented in Table 7.

This example results in constant L1 cache misses because of
constant eviction of cache lines in the same set. Because we
want to generate a cache miss by looking up the same cache
set (in our case CacheSet#0) for each memory read, all
addresses in the memory trace must satisfy Block address =
X ·Number of cache sets.

For our configuration, the cache line is 4 bytes, which yields
that if the address in main memory is N bytes long, the
block address will be the first N − 2 bits [11].

Figure 5 depicts a step in the simulation of this exercise.
While reading the element stored in address 0 generates a
cache miss on the Level 1 cache, because the previous read
replaced it from the cache set.

Reading the element will generate cache hit in the Level 2.
The rightmost panel shows the loaded addresses in CacheLine#0
in CacheSet#0.

6. CONCLUSION AND FUTURE WORK
EDUCache visual simulator offers the students a tool to de-
sign their own CPU core with multi level cache memories.
It simulates cache misses and hits in particular cache set
and memory location for sequential and parallel execution
of an algorithm. The students can interactively learn about
the cache hierarchy, architecture and organization of private
cache level per core or shared cache level among all or a
group of cores, the cache capacity and associativity prob-
lem, cache line, cache replacement policy, data locality etc.

This paper presents several hands-on laboratory exercises to
support the students for the course Computer Architecture
and Organization, i.e., using the EDUCache simulator they
will better understand the architecture and organization of
the modern processor and its cache memory. Several pre-
defined examples are also presented to lighten the learning
process and increase the students willingness for the course
Computer Architecture and Organization. This will help
the students to develop their algorithms to achieve maxi-
mum performance using the same hardware resources.

We will introduce the EDUCache simulator and the hands-
on exercises to this semester in courses Computer Architec-
ture and Organization and Parallel and Distributed Process-
ing, and survey the students about the impact to students’
willingness for learning the processor and its cache memory.
Additional analysis will be realized after finishing the course
this year to determine the results of the exams for the top-
ics that cover the EDUCache simulator and the proposed
hands-on exercises and examples.

7. REFERENCES
[1] R. Shackelford, A. McGettrick, R. Sloan, H. Topi,

G. Davies, R. Kamali, J. Cross, J. Impagliazzo,
R. LeBlanc, and B. Lunt, “Computing curricula 2005:
The overview report,” SIGCSE Bull., vol. 38, no. 1,
pp. 456–457, Mar. 2006.

[2] M. Stojcev, I. Milentijevic, D. Kehagias, R. Drechsler,
and M. Gusev, “Computer architecture core of
knowledge for computer science studies,” Cyprus
Computer Society J., vol. 5, no. 4, pp. 39–42, 2003.

[3] M. Stolikj, S. Ristov, and N. Ackovska, “Challenging
students software skills to learn hardware based
courses,” in Information Technology Interfaces (ITI),
Proceedings of the ITI 2011 33rd International
Conference on, june 2011, pp. 339 –344.

[4] A. Clements, “Arms for the poor: Selecting a
processor for teaching computer architecture,” in
Frontiers in Education Conference (FIE), 2010 IEEE,
2010, pp. T3E–1–T3E–6.

[5] C. Reinbrecht, J. Da Silva, and E. Fabris, “Applying
in education an FPGA-based methodology to
prototype ASIC soft cores and test ICs,” in
Programmable Logic (SPL), 2012 VIII Southern
Conference on, 2012, pp. 1–5.

[6] I. Kastelan, D. Majstorovic, M. Nikolic, J. Eremic,
and M. Katona, “Laboratory exercises for embedded
engineering learning platform,” in MIPRO, 2012 Proc.
of the 35th Int. Conv., 2012, pp. 1113–1117.

[7] J. Qian, R. Wang, S. Shi, Y. Zhu, and Z. Xie,
“Simplifying and integrating experiments of hardware
curriculums,” in Computer Science and Information
Technology (ICCSIT), 2010 3rd IEEE International
Conference on, vol. 9, 2010, pp. 610–614.

[8] B. Nikolic, Z. Radivojevic, J. Djordjevic, and
V. Milutinovic, “A survey and evaluation of simulators
suitable for teaching courses in computer architecture
and organization,” Education, IEEE Transactions on,
vol. 52, no. 4, pp. 449 –458, nov. 2009.

[9] S. Ristov, M. Stolikj, and N. Ackovska, “Awakening
curiosity - hardware education for computer science
students,” in MIPRO, 2011 Proceedings of the 34th
International Convention, IEEE Conference
Publications, 2011, pp. 1275 –1280.

[10] D. Pop, D. G. Zutin, M. E. Auer, K. Henke, and H.-D.
Wuttke, “An online lab to support a master program
in remote engineering,” in Proceedings of the 2011
Frontiers in Education Conference, ser. FIE ’11.
USA: IEEE Computer Society, 2011, pp.
GOLC2–1–1–GOLC2–6.

[11] J. L. Hennessy and D. A. Patterson, “Computer
Architecture, Fifth Edition: A Quantitative
Approach,” MA, USA, 2012.

[12] B. Atanasovski, S. Ristov, M. Gusev, and N. Anchev,
“EDUCache simulator for teaching computer
architecture and organization,” in Global Engineering
Education Conference (EDUCON), 2013 IEEE, March
2013, pp. 1015–1022.

[13] M. Gusev and S. Ristov, “Performance gains and
drawbacks using set associative cache,” Journal of
Next Generation Information Technology (JNIT),
vol. 3, no. 3, pp. 87–98, 31 Aug 2012.

[14] X. Liang, “A survey of hands-on assignments and
projects in undergraduate computer architecture
courses,” in Advances in Computer and Information
Sciences and Engineering, T. Sobh, Ed. Springer
Netherlands, 2008, pp. 566–570.

[15] N. Ackovska and S. Ristov, “Hands-on improvements
for efficient teaching computer science students about

hardware,” in Global Engineering Education
Conference (EDUCON), 2013 IEEE, March 2013, pp.
295–302.

[16] B. Hatfield and L. Jin, “Improving learning
effectiveness with hands-on design labs and course
projects for the operating model of a pipelined
processor,” in Frontiers in Education Conference
(FIE), 2010 IEEE, 2010, pp. F1E–1–F1E–6.

[17] X. Wang, “Multi-core system education through a
hands-on project on fpgas,” in Frontiers in Education
Conference (FIE), 2011, 2011, pp. F2G–1–F2G–6.

[18] J. H. Lee, S. E. Lee, H.-C. Yu, and T. Suh, “Pipelined
cpu design with fpga in teaching computer
architecture,” Education, IEEE Transactions on,
vol. 55, no. 3, pp. 341–348, 2012.

[19] D. Patti, A. Spadaccini, M. Palesi, F. Fazzino, and
V. Catania, “Supporting undergraduate computer
architecture students using a visual mips64 cpu
simulator,” Education, IEEE Transactions on, vol. 55,
no. 3, pp. 406 –411, aug. 2012.

[20] J. Edler and M. D. Hill, “Dinero iv trace-driven
uniprocessor cache simulator,” 2012. [Online].
Available:
http://pages.cs.wisc.edu/˜markhill/DineroIV/

[21] B. B. Fraguela, R. Doallo, and E. L. Zapata,
“Automatic analytical modeling for the estimation of
cache misses,” in Proceedings of the International
Conference on Parallel Architecture and Compilation
Techniques (PACT ’99). IEEE Comp. Society, 1999,
pp. 221–231.

[22] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob,
“Cmpsim: A pin-based on-the-fly multi-core cache
simulator,” in The Fourth Annual Workshop MoBS,
co-located with ISCA ’08, 2008.

[23] Y.-T. Chen, J. Cong, and G. Reinman, “Hc-sim: a fast
and exact l1 cache simulator with scratchpad memory
co-simulation support,” in Proc. of the 7-th
IEEE/ACM/IFIP Int. conf. on HW/SW codesign and
system synthesis (CODES+ISSS ’11). USA: ACM,
2011, pp. 295–304.

[24] E. Herruzo, J. Benavides, R. Quislant, E. Zapata, and
O. Plata, “Simulating a reconfigurable cache system
for teaching purposes,” in Microelectronic Systems
Education (MSE ’07). IEEE International Conference
on, 2007, pp. 37 –38.

[25] A. Misev and M. Gusev, “Visual simulator for ILP
dynamic OOO processor,” in WCAE ’04, Proceedings
of the workshop on Computer architecture education:
in conduction with the 31st International Symposium
on Computer Architecture, E. F. Gehringer, Ed.
ACM, USA, 2004, pp. 87 –92.

[26] Valgrind, “System for debugging and profiling linux
programs,” [retrieved: March, 2013]. [Online].
Available: http://valgrind.org/

[27] D. A. Patterson and J. L. Hennessy, “Computer
organization and design, forth edition: The
hardware/software interface,” MA, USA, 2009.

[28] ACM/IEEE-CS Joint Interim Review Task Force,
“Computer science curriculum 2008: An interim
revision of cs 2001, report from the interim review task
force,” 2008. [Online]. Available: http://www.acm.
org/education/curricula/ComputerScience2008.pdf

