

Dataflow Computing: A Trend in HPC
Nenad Anchev

1
, Blagoj Atanasovski

2
, Sasko Ristov

3
 and Marjan Gusev

4

Abstract –There are several approaches used for high

performance computing. One is a computer cluster of tightly

connected computers linked over a LAN to appear as a single

system. Another one is Grid computing as a federation of loosely

coupled computer resources from multiple locations to be used

when needed. A number of problems exist that the von Neumann

principle of control flow yields poor results compared to a data

flow implementation of the same problem. Recent advances in

the area of creating accessible dataflow engines give us a reason

to revisit this idea. In this paper, we give an overview of current

available computing types for high performance and compare

their usability for certain problems against a dataflow

implementation that uses FPGAs.

Keywords – HPC, Data flow, FPGA, Grid

I. INTRODUCTION

There is an age old philosophical question, does technology

drive the development of society or is it the other way around.

In a similar way in the computing world we can pose the same

question, does the increase in computing power and

innovation of how computing is done leads to processing and

storing more data and work with more information or does the

need to process and derive more information from the

available data push the limits of innovation and results in

more and more powerful computers. Either way all can agree

that the amount of data processed every day is on a steep rise.

The limits on the data sets size that are feasible to process in a

reasonable amount of time were on the order of Exabyte [1].

Common knowledge taught as early as undergraduate

students in their first courses of Computer Architecture is the

rate at which computing speed and memory speed have

increased through time is very unbalanced. This has resulted

in creating solutions ranging from changing the inside CPU

architecture to use prefetching and caching, through

optimizing compilers for optimal reordering up to developing

entire paradigms for programming. To handle the amounts of

big data the possibilities of dataflow computing, which has the

data at its focus, should be taken in consideration.

In this paper we give an overview of dataflow computing,

compare it to other established HPC approaches and a way to

make it feasible.

II. COMPARISON OF HPC PLATFORMS

The mentioned platforms in this section are not different in

their computational architecture (except the GPUs) but more

or less in their organization and connection, on how the data is

transferred to the computing elements and the results gathered

after the computing is done. We cover the characteristics of 4

established HPC approaches: cluster, grid, cloud and general

purpose GPU computing.

A. Computer Clusters

A form of distributed system consisting of a set of

interconnected working and available computing nodes

(computers) connected with a local network. The activities of

the nodes are controlled by a special software middleware

layer that is present on all the nodes allowing the system to be

perceived as one cohesive computing unit. Computer clusters

rely on a centralized management approach in contrast to grid

computing. Typically clusters use the same or similar types of

machines, they are tightly coupled and use dedicated network

connections, share resources as a common home directory and

use an MPI implementation for passing messages between

nodes. [2]

The benefits are the low cost, complexity for configuring

and operating them because of the off-the-shelf components

that can be added as needed, which helps with the elasticity

required to add or remove resources proportional to the

workload. Tightly coupled clusters connected with high speed

networks are optimized to create supercomputers. The

benefits of low cost and elasticity are those compared to

buying monolith supercomputers where many processors are

connected on an ultra-speed bus. Figure 1 depicts a Beowulf

cluster, a model created by identical nodes from commodity-

grade hardware networked in a LAN.

The programming model relies on the use of MPI for using

parallelism, sending and gathering messages. Programs

created for a single processor must be rewritten to include the

MPI directives, but are simpler than creating programs for a

custom supercomputer operating system.

B. Grid computing

The federation of computer resources from multiple

locations to reach a common goal. The name is an analogy of

the electrical power grid. It can be thought of as a distributed

system similar to cluster computing whose nodes are more

loosely coupled, heterogeneous and dispersed on distant

locations. The idea is to create parallel computing based on

complete computers connected to a private or public network

via standard interfaces instead of the approach of traditional

supercomputers.

1Nenad Anchev is with the Faculty of Computer Science and

Engineering - Skopje, 16 Rugjer Boshkovikj, Skopje 1000, Republic
of Macedonia, E-mail: anchev.nenad@students.finki.ukim.mk.

2Blagoj Atanasovski is with the Faculty of Computer Science and

Engineering – Skopje, 16 Rigjer Boshkovikj, Skopje 1000, Republic

of Macedonia, E-mail: atanasovski.blagoj@students.finki.ukim.mk
3Sasko Ristov is with the Faculty of Computer Science and

Engineering – Skopje, 16 Rugjer Boshkovikj, Skopje 1000, Republic

of Macedonia, E-mail: sashko.ristov@finki.ukim.mk.

 4Marjan Gusev is with the Faculty of Computer Science and
Engineering – Skopje, 16 Rugjer Boshkovikj, Skopje 1000, Republic

of Macedonia, E-mail: marjan.gushev@finki.ukim.mk.

Figure 1. Beowulf cluster

. A characteristic of grid computers is that they can be

formed from computing resources belonging to multiple

administrative domains, allowing them to share the costs and

computing power. A disadvantage is the lack of central

control over the hardware, so there is no uptime guarantee and

problem with trustworthiness.

The programming model is the same as the model for

cluster computing with more thought given to decreasing

inter-node communication.

C. Cloud computing

The disadvantages of having multiple administrative

domains and unguaranteed uptime can be avoided if cloud

computing is used. It represents the use of computing

resources delivered as a service over a network, usually the

Internet. Characteristics of cloud computing are the elasticity

and scalability of resources via dynamic provisioning, multi

tenancy for sharing resources and costs, and in public clouds

the management of the platform is taken care of. The Cloud is

rarely used for HPC reasons. It can be used when a lot of

computing power is needed for short periods, otherwise the

constant price of sending the huge data needed by HPC

applications keeping it in the cloud and shifting the results

back would accumulate over time to match the price required

to buy and implement cluster.

D. General Purpose computing with GPUs (GPGPU)

GPGPU has been defined as the use of Graphical

Processing Units to handle computing traditionally handled by

the CPU. This kind of computing can be done only on newer

generation GPUs that offer a complete set of instructions for

doing operations on arbitrary bits. GPUs are designed to work

with streams of records that require similar computation.

GPUs process data independently so there is no shared or

static data. Multiple inputs and outputs can be defined, but a

piece of memory cannot be both readable and writeable.

GPGPU applications require large data sets, high parallelism

and minimal dependency between elements to avoid memory

access latency and achieve speedup. A popular parallel

programming platform and programming model created by

NVIDIA that is implemented in their GPU products is CUDA

[5]. Figure 2 shows the processing flow in a typical CUDA

application where the numerous cores of the GPU would be

used to run an application in parallel. The flow begins by

sending the data from the main memory to the graphics card

memory and instructing the GPU cores what kind of

processing to do. Each of the cores runs in parallel and in the

end the result is copied back to the main memory.

III. WHAT IS DATAFLOW COMPUTING

Dataflow computing can be seen both as a different

architecture and as a completely different programming model

needed for that architecture. It is a direct contrast to the

traditional control flow architecture. The execution of

instructions is determined based on the availability of input

arguments of the instructions. Dataflow architectures were a

major research topic in 1970s. The two types of dataflow

machines that have been researched were static and dynamic

ones. Static designs use conventional memory addresses to tag

the dependencies. Dynamic designs use content-addressable

memory, where they use tags to facilitate parallelism. These

designs were supposed to execute programs by first loading

them into CAM, when all of the operands tagged for an

instruction are available the instruction is marked as ready.

There were several problems with these architectures, such as

the inability to build a large enough CAM to contain all the

dependencies of an executing program.

Dataflow can be also viewed from a programming model

perspective, a type of software architecture. The increasing

demand for processing of larger data quantities requires a

model that has been designed to handle enormous flows of

data through high-speed computations.

Figure 2. Processing flow on CUDA [3]

The idea of dataflow computing has been hindered for

decades by the success of the supercomputers. The drawbacks

of dataflow computing, namely the specialized hardware

needed for every different program, instead of the

programmable nature of the control-flow computers, meant

that dataflow computing was unfeasible compared to control

flow computing.

With the appearance of field programmable gate arrays, the

idea for dataflow computing was given a rebirth. The FPGAs

property of “reprogrammable hardware” was crucial for the

rebirth of this idea.

So, let’s compare the two paradigms. On one side we have

the well-known control flow architecture, CPU and main

memory, connected with a bus. Memory is filled with

instructions from a compiled program written in some

programming language (control logic), and application input

data. During the execution of a program, instructions and data

are being transferred to the processor and being executed. The

output data is then returned back to the memory. The data-

flow architecture with FPGAs (Maxeler) works as follows:

First, a data-flow code is being written. The code is compiled

to a configuration file, which describes the way in which

FPGAs are configured. Then the FPGAs are configured, and

they are ready to do the computing, as soon as data arrives in

them. In the execution part, input data is streamed into the

dataflow engine, the engine does all the computation

according to the configuration, and the output is streamed

back to the memory.

As we can notice, in dataflow computing there is no

instruction stream (program code) in the stage of execution.

Instead, instructions are “written” on the FPGA at the

compilation stage. This is the main advantage of the data-flow

computing, as it gets rid of all the problems associated with

the “unpredictable” instruction stream, so all the techniques

for resolving these problems in modern processors become

obsolete. This is one of the main contributors for the achieved

speedup, compared to control flow architectures.

The other obvious advantage of this technology is the high

level of optimization and fine tuning that an FPGA allows.

Here we are not limited by the bottlenecks of modern

computers, and we have a relatively greater degree of freedom

in “programming” our own hardware, allowing us to boost

performance and speedup algorithms many times. However,

this can be also viewed as a drawback. Dataflow

programming and FPGA configuration is a relatively new

paradigm, which requires a different way of thinking and

coding, and very few people are able to successfully program

dataflow logic.

The only major bottleneck in dataflow computing is the

transfer of data streams onto, and from the dataflow engine.

As Maxeler dataflow engines have to be attached to a regular

computer via PCI Express bus, data transfer rates are limited.

This bottleneck reduces the usability of dataflow engines only

for compute intensive algorithms, with small I/O.

Another bottleneck of the dataflow computing, which

comes from the immaturity of the FPGA technology, is the

low working frequency of the FPGAs, which currently is in

the range of 200MHz. This is 10 times lower compared to

modern processors, which slightly lowers the potential of

speedup at dataflow engines. However, this may be also seen

as an advantage, as power consumption is much lower at these

frequencies than at the GHz order at the modern processors.

Maxeler states that power consumption per computation is 30

times lower at their technologies compared to standard control

flow multiprocessor. With the advance of the FPGA

technology, working frequencies may be increased, but the

power consumption is still predicted to be lower than

conventional computers.

IV. DATAFLOW PROGRAMMING

The dataflow computing platform, as a computing platform,

was already presented in the previous section. Here we are

going to present the dataflow platform as a programming

paradigm. As we mentioned in the previous section, dataflow

computing lacks the existence of instructions as defined in the

well-known computer architectures. Instead, we are

configuring FPGAs to manipulate the input data streams, and

produce the output stream. The code is compiled similarly, but

the lowest level of code here describes the configuration of

the FPGAs, which are then being “programed” to solve the

particular problem. After the configuration is finished, the

dataflow engine may be running, when the input data streams

are provided. Here, we are going to describe the programming

paradigm of a particular dataflow implementation, Maxeler’s

dataflow engines.

Maxeler offers a specialized Java-like programming

language for dataflow engine programming. It offers a

modified Eclipse IDE, MaxCompiler which compiles the

high-level programming code down to FPGA configuration

files, and MaxelerOS, which has the task to deal with the

FPGA configuration, and communication of the dataflow

engine with the host computer. Except for the Java-like

dataflow code, a C code is required for the host part. The C

code has the task to transfer data to, and from the dataflow

engine, and possibly do some minimal computation to avoid

being idle while the dataflow engine does the bulk of the

computation.

Figure 3. Comparison of control flow and data flow architectures [4]

The Java-like dataflow programming code consists of two

main objects: kernels, and managers. Kernels are objects that

describe what kind of hardware building blocks are going to

be put in the dataflow engine, how and which computations

are going to be done on the data streams, and when and on

which part of the data streams will these blocks operate.

When a kernel programmed, the most difficult part is the

translation of nested loops and conditional statements to

dataflow logic. Nested loops are unrolled, whenever it is

possible, or programmed with counters and stream offsets,

which temporary memorize part of the streams in the local

memory, and then stream then again them to the kernel.

Conditional statements pose less challenge to be translated, as

kernels allow elements that conditionally select or process

certain elements of the stream, while ignoring others.

Coding a kernel in dataflow programming is somewhat

similar to coding a function or routine in control flow

programming. While on the other hand, the manager is similar

to the main function in a code that usually dispatches data to

particular functions, and then collects the results. More

specifically, the manager here deals only with the task of

connecting and synchronizing input and output streams

from/to particular kernels, host machine, local dataflow

engine memory, and other additional dataflow engines if such.

When considering the data streams, it is important to note

that the working frequencies of multiple kernels, dataflow

memory, and inter-dataflow communication buses are similar,

so there are no wasted cycles or synchronization problems.

However, communication with the host machine is usually

slower, which the dataflow engine resolves by adding empty

computation cycles, similar to filling the processor-memory

gap in the conventional computers.

Except for reducing the communication with the host, other

points that should be considered while programming and

optimizing a Maxeler dataflow engine are the follows:

 - Finding a convenient way of transforming nested

cycles. This usually implies that the whole logic of a nested

cycle should be rethinked again in order to comply with the

dataflow paradigm. This is the hardest part of the code

translation in dataflow logic. Unsuitable or non-optimal

conversion may even produce performances that are worse

than conventional computers.

 - Using as much as parallelism and pipelining as

possible. The number of used adders, multipliers, and

comparators on an FPGA is limited, and finding an

implementation that uses most of the available ones implies

much greater efficiency.

The way of rethinking and reprogramming the application

in dataflow logic is the most important (or probably, the only)

factor that defines the achieved performance and speedup. The

experience and the higher level of understanding of dataflow

logic allow a programmer to write an optimal dataflow code.

V. CONCLUSION

Different approaches for today’s hunger of computation

exist. All of them offer huge computing power. However, the

customers should select the computing platforms according to

their price, availability, performance, adaptability,

interoperability, portability, cost etc. In this paper we present

the most common platforms used today for high performance

computing, their architecture, use, advantages and

disadvantages. We also present the dataflow architecture and

programming model as a new platform that can be used for

the same goal. Dataflow computing emerges as one of the

ideal platform. It is cost and performance effective.

REFERENCES

[1] Francis, Matthew (2012-04-02). "Future telescope array drives

development of exabyte processing". Retrieved 2012-10-24.
[2] Baker, Mark, et al. "Cluster computing and applications."

Encyclopedia of Computer Science and Technology

45.Supplement 30 (2002): 87-125.

[3] The image is published under the Creative Commons licence,

taken from en.wikipedia.org/wiki/File:CUDA_processing_flow

_(En).PNG as seen on 6.4.2013.

[4] The image is taken from www.maxeler.com/technology/

dataflow-computing/ as seen on 10.4.2013
[5] NVIDIA CUDA Home Page www.nvidia.com/object/cuda

_home_new.html

