
1

Implementation of novel faculty e-services for
workflow automatization

Dimitar Kitanovski, Aleksandar Stojmenski, Kostadin Mishev,
Ivan Chorbev, Vesna Dimitrova

”Ss. Cyril and Methodius” University in Skopje
Faculty of Computer Science and Engineering

”Rugjer Boshkovikj” 16, 1000 Skopje, Republic of Macedonia

Abstract—This paper presents a brief overview of the concepts
for collaboration between various systems developed for the
Faculty of Computer Science and Engineering in Skopje. Web
technologies such as the HTTP, originally designed for human-to-
machine communication, is utilized for machine-to-machine com-
munication, more specifically for transferring machine-readable
data in web service formats such as JSON. By using this kind
of web technology and communication we can create various
software applications suitable for various needs.This kind of web
based software applications enable automatization and drastically
eased and accelerated the entire procedure whose initial steps in
the past was manually.

This paper gives a brief overview of two novel systems which
are integrated in the faculty software architecture. Software’s for
master thesis submission and student surveys are integrated as a
part of the core systems. The system’s network is collaborating
using web services, central authentication services and data
sharing which is based on cross-platform interfaces.

Keywords: faculty systems; collaboration; systems
integration; web services; administration; cross-platform

I. INTRODUCTION

Workflows automatization is a complex process that inte-
grates process automation tools to replace manual and paper-
based processes. Workflow Automation refers to the design,
execution, and automation of processes based on workflow
rules where human tasks, data or files are routed between
people or systems based on pre-defined business rules. This
paper describes two software applications that are used to
improve the work processes of the faculty. In order to develop
this kind of software applications that are easy to integrate into
existing system architecture and maintenance, novel software
design practices are required. For this purpose, different design
patterns are used to facilitate the communication between
systems and integration to the current system architecture.
Different problems and their possible solutions are presented,
regarding systems lifecycle, architecture, process, interface,
synchronization and security. Each application endpoint ex-
ports OAuth2 security protocol functionalities for system
authentication and authorization. Following the principles of
the OAuth2 protocol, each server authenticates the users
using bearer tokens. Furthermore, the communication proto-
col adopts the JSON data format as a primary exchanging
throughput over a HTTP communication channel. [1]

II. BACKGROUND WORK

Although a lot of work and progress has already been done
in the area of web services in the past years, efforts have been
mostly focused on service description models and languages,
and on automated service discovery and composition[2]. The
term Web services is used frequently nowadays, although
sometimes it is very ambiguous. Existing definitions of the
terms vary from generic to specific and restrictive. One
definition is that a Web service is seen as an application
accessible to other applications over the Web [3]. This is
a very open definition meaning that anything with a URL
address is a Web service. It can include a CGI script or
refer to a program accessible over the Web with a stable
API, published with additional descriptive information on
some service directory. A more precise definition is provided
by the UDDI consortium, which characterizes Web services
as “self-contained, modular business applications that have
open, Internet-oriented, standards-based interfaces” [4]. This
definition is more detailed, placing the emphasis on the need
for being compliant with Internet standards. In addition, it
requires the service to be open, which essentially means that
it has a published interface that can be invoked across the
Internet. In spite of this clarification, the definition is still not
precise enough. For instance, it is not clear what it is meant by
a modular, self contained business application. A step further
in refining the definition of Web services is the one provided
by the World Wide Web consortium (W3C), and specifically
the group involved in the Web Service Activity: “a software
application identified by a URI, whose interfaces and bindings
are capable of being defined, described, and discovered as
XML artifacts. A Web service supports direct interactions with
other software agents using XML-based messages exchanged
via Internet-based protocols”. The W3C definition is quite
accurate and also hints at how Web services should work.
The definition stresses that Web services should be capable of
being “defined, described, and discovered,” thereby clarifying
the meaning of “accessible” and making more concrete the
notion of “Internet-oriented, standards-based interfaces.” [5]
[6] It also states that Web services should be “services” similar
to those in conventional middleware. Not only they should be
“up and running,” but they should be described and advertised
so that it is possible to write clients that bind and interact
with them. In other words, Web services are components that

2

can be integrated into more complex distributed applications.
The W3C also states that XML is part of the solution. Indeed,
XML is so popular and widely used today that, just like HTTP
and Web servers, it can be considered as being part of Web
technology. There is little doubt that XML will be the data
format used for many Web-based interactions. Note that even
more specific definitions exist. For example, in the online
technical dictionary Webopedia, a Web service is defined as
“a standardized way of integrating Web-based applications
using the XML, SOAP, WSDL, and UDDI open standards
over an Internet protocol backbone. XML is used to tag the
data, SOAP is used to transfer the data, WSDL is used for
describing the services available, and UDDI is used for listing
what services are available” [7]. Specific standards that could
be used for performing binding and for interacting with a Web
service are mentioned here. These are the leading standards
today in Web services. As a matter of fact, many applications
that are “made accessible to other applications” do so through
SOAP, WSDL, UDDI, and other Web standards. However,
these standards do not constitute the essence of Web services
technology: the problems underlying Web services are the
same regardless of the standards used. This is why, keeping the
above observations in mind, we can adopt the W3C definition
and proceed toward detailing what Web services really are and
what they imply.

Web services were developed as a solution to (or at least
as a simplification of) the system integration problem[8].
The main benefit they bring is that of standardization, in
terms of data format (JSON), interface definition language
(WSDL), transport mechanism (SOAP) and many other in-
teroperability aspects. Standardization reduces heterogeneity
and makes it therefore easier to develop business logic that
integrates different (Web service-based) applications. Web
services also represent the most promising technologies for the
realization of service-oriented architectures (SOAs), not only
within, but also outside companies’ boundaries, as they are
designed to enable loosely-coupled, distributed interaction [9].
While standardization makes interoperability easier, it does not
remove the need for design patterns that include adapters and
mediators. Different Web services may still support different
interfaces and protocols. For example, although two map or
driving direction services may support JSON or XML and use
SOAP over HTTP as transport mechanism, they may still pro-
vide operations that have different names, different parameters,
and different business logic or protocols. In addition, other
opportunities enabled by Web services have an implication
in terms of adaptation needs. In fact, having loosely-coupled
and B2B interactions imply that services are not designed
having interoperability with a particular client in mind (as
it was often the case with CORBA-style integration) [10].
They are designed to be open and possibly without knowledge,
at development time, about the type and number of clients
that will access them, which can be very large. The possible
interactions that a Web service can support are specified
at design time, using what is called a business protocol or
conversation protocol. A business protocol specifies message
exchange sequences that are supported by the service, for
example expressed in terms of constraints on the order in

which service operations should be invoked. Another studied
solution is to make system integration with ActiveXML which
utilities peer-to-peer interaction between nodes and specifies
special data design and ActiveXML web services[11].

III. SYSTEMS ARCHITECTURE

The Faculty of Computer Science and Engineering con-
tinues the development of e-platform for student and staff
services by providing new e-services and their adaptation
with machine interfaces to the central data repository. Such
services provide simplification and acceleration of the Faculty
administrative workflows by providing easy-to-use interfaces
avoiding congestion and bottle-neck scenarios. The system
architecture that is discussed in this paper consists of several
different subsystems which work as a part of the architecture
provided in [12]. That means that the core of the subsystems
is a common part which ties the entities as soft links providing
scalable and reusable patterns for the purpose of interoperable
services.

A. Architecture Core

The core of the service architecture is implemented in
Microsoft .NET MVC technology. The authentication process
is handled by the Central Authentication Service (CAS) which
is implemented in Java. The CAS service involves a back-
end service, that does not have its own HTTP interface, but
communicates with a web application. The Service manager
implements a protocol which is platform independent (JSON
based). All applications and services in the system are com-
municating and synchronizing using this protocol. The service
manager is implemented in C Web Api and is used as a
mediator for control messages exchange, storing permission
access rules, identifying the status of the services (running,
failed, blocked. . .) and enabling intra service communication.
As a result of successful authentication, the user obtains JWT
token which is passed as authentication header, providing
stateless communication between the client browser and the
server. The JWT token is used as a key reference for the
user credentials. Users identity management is handled by
Active Directory. Active Directory is interconnected with the
CAS service and serves information about the user credentials.
CAS service queries the AD to enable user single sign on
authentication for multiple third-party services. User autho-
rization i.e. the role of each user for specific service is
handled by each service individually. That means that each
services implements its own many-to-many relationship which
stores the information about the grant tickets associated to
each user in the application. If the user does not contain
any grant to the application, he will not be able to access
it. The authorization is handled immediately after successful
authentication to the CAS service. It is provided authentication
by the user group. That means that is the user is a part of the
group students, he will obtain different grant that the user
from the group professors. This properties can be overridden
by specifying the grant for each user individually. The grant
with higher weight i.e. with stronger permissions wins the
authorization process. The intercommunication among this

3

services is realized with REST JSON-based web services by
using the ASP.NET Web API Framework. Such core enables
development of software applications that will facilitate the
workflow among students, administrative and teaching staff in
the faculty with implementation of several use-case scenarios.
The current system architecture contained systems for student
request service, consultation management service, absence
workflow automatization, diploma thesis submission. . . . Two
new systems are modulary added to the architecture, namely
systems for master studies submission and student surveys.

B. Master thesis submission
This system is developed in order to facilitate the whole

process of master thesis submission, approval and status
tracking. Having in mind that the problem is complex, the
system itself contains number of workflows in order to cover
all the possible scenarios.

In order to implement the process of master thesis sub-
mission, we identified the following steps in forementioned
workflow:

• The first step of the master thesis submission process
is actually a set of several sub-processes conducted by
the student and his supervisor. First of all, the student
chooses a supervisor and delivers documents which are
necessary for the master thesis application. Then the
supervisor approves the proposed documents and assigns
a committee for the particular master thesis.

• Then the documents are being verified by the faculty stu-
dent affairs, the secretary and the vice-dean for academic
affairs. If some of the documents is missing or is not
in the appropriate format, it can be resubmitted by the
student, taking him few steps back. In every step, all of
the involved roles have access to the documents which
are uploaded or changed in the system.

• Next is uploading the draft version of the thesis and its
validation by the mentor and the faculty administration.
If the student hasn’t uploaded a draft version within
a year, the attaching master thesis status automatically
closes and the whole process is pushed back to the
beginning. Otherwize, the validation takes place from the
mentor,members of the committee, the secretary of fac-
ulty and the member of Teaching Scientific Commission.
In this chain of validation, if something is not valid, the
student is obliged to make the requested changes in the
proposal.

• The last step of the master thesis submission process is
submitting the final text of the thesis and determining
a date for public defence. In this step, the committee
members, can create notes for the completeness of the
thesis. After the comments, the secretary approves again
and the public defence is being scheduled.

C. Student surveys
The faculty framework used to have this kind of system, but

due to legacy frameworks and migrating to IDP authorization
and authentication [13], the application was rebuilt using mod-
ern state-of-art frameworks such as Angular 6 and ASP.NET
Core.[14] [15]

1) Workflow description: After completion of whole
semester, the Faculty of Computer Science and Engineering
opens schedule on the system for surveys, which allows all
students to evaluate the professors who is teaching to them.The
software requires from students login with their IKnow ac-
count,so if the login pass successfully, the user receives his
own identifier (token) by the IKnow system. When each
student logs in, the survey system performed synchronization
with IKnow system which results by taking the appropriate
courses. The appropriate courses are courses that the student
listened in past semester for which the faculty has created a
schedule. Once the whole process is carried out, the student
has the opportunity to evaluate the professors for the relevant
subjects. When a student chooses a particular subject for which
he wants to evaluate the professors, the student gets a form he
student gets a form to select the appropriate teaching assistants
(if the subject is taught by more teaching assistants), while
the professors are taken directly from IKnow system. Once
the student has finished the process, he has the opportunity to
answer a couple of questions about the teaching process that
he follow ie to evaluate his professors and teaching assistants.
After this step, the student has the opportunity to save his
answers. When the student saves the answers,the database on
which is connected this system, created appropriate record.
The record contains data about the list of grades that the
student filled in form for the appropriate course. In the end,
the student is redirected to the home page where the courses of
the semester for which he has created a schedule is displayed,
and the corresponding subject for which the student answered
is removed from that list.

There are two main building blocks which are shown on
Fig. 1:

Fig. 1. Application architecture

2) System architecture: The implemented system archi-
tecture follows the interoperability standards considering the
heterogeneity of the external services which are used for
data harvesting. IKnow synchronization is made by using
RESTful services. Login services are implemented by using
Shibboleth protocol. The core architecture of the system is
presented in Fig. represents a very simple and flexible coupled
solution which is effortless to maintain and expand. The survey

4

application is made by using ASP.NET Core technology which
is intended for microservices architecture development. In
the implementation of the front-end application, Angular 6
is used. Non-relational database MongoDb, is used as data
storage. The reason that we decided to user MongoDB is
its performances in write operations and large-scale abilities.
The communication between client application and survey
application is made by using RESTful services which rises
the separability and functionality tier. We use the following
synchronization processes:

• Students synchronization with iKnow per semester
• Courses synchronization with iKnow per student
• Teachers synchronization with iKnow per course

All database writes are anonymous. We do not keep track of
the users which have filled the surveys in order to keep privacy.
In the other side, we keep information about the user that he
has completed the answering of the survey. This architecture
provides the concept of federalization of survey services for
all faculties in the University. The management and support
are centralized, placed in FCSE, providing efficient control of
software upgrades and improvements.

IV. CONCLUSION

Faculty of Computer Science and Engineering continues the
development of e-platform for student and staff services by
providing new e-services and their adaptation with machine
interfaces to the central data repository. Such services provide
simplification and acceleration of the Faculty administrative
workflows by providing easy-to-use interfaces avoiding con-
gestion and bottle-neck scenarios.In this paper we present
novel services implemented in FCSE and UKIM as well. After
the success implementation of the system for management of
the process for diploma thesis defense, FCSE decides to im-
plement an online solution for workflow automatization of the
process for master thesis defense. The implementation of such
process is more complex, but facilitates the user interactions.
The main goal in implementation is adaptation of the same
software and offering as a functional component to the other
faculties in UKIM. Also, we develop a software for student
survey answering considering the new legislations in teaching
staff assessment. The main idea behind implementation of
this software is to improve the concept of survey answering
among the students and gathering the general opinion about
the quality of the curricula and education globally at the
faculty. All of the novel services provide scalable architecture.
Also, inter-service communication is improved by adding
microservice components in implementation of the new one.
Central authorization, user management, the concept of single
point of responsibility and interoperability improve the quality
of e-services and facilitate the future upgrades with novel
services.

REFERENCES

[1] Beatriz Plaza. Google analytics for measuring website performance.
[2] Fabio Casati Daniela Grigori Hamid R. Motahari Nezhad Benatallah,

Boualem and Farouk Toumani. Developing adapters for web services
integration.

[3] M.P. Papazoglou. Service-oriented computing: Concepts, characteristics
and directions.

[4] UDDI Consortium. Uddi executive white paper, nov. 2001.
[5] Microsoft sql server. https://www.microsoft.com/en-us/server-

cloud/products/sql-server/.
[6] Microsoft web api. http://www.asp.net/web-api.
[7] E. Al-Masri and Q.H. Mahmoud. Investigating web services on the

world wide web.
[8] H. Kuno V. Machiraju G. Alonso, F. Casati. Web services: Concepts,

architectures, and applications.
[9] F. Casati B. Benatallah and F. Toumani. Web services conversation mod-

eling: A cornerstone for ebusiness automation. ieee internet computing,
8(1), 2004.

[10] E. Pimentel J. Troya A. Vallecillo C. Canal, L. Fuentes. L. bordeaux et
al. when are two web services compatible?. vldb tes’04. toronto, canada.
2004.

[11] Omar Benjellourn Ioana Manolescu Tova Milo Abitrboul, Serge and
Roger Weber. ”active xml: Peer-to-peer data and web services integra-
tion.” inproceedings of the 28th international conference on very large
data bases, pp. 1087-1090.

[12] E. Pimentel J. Troya A. Vallecillo C. Canal, L. Fuentes. L. bordeaux et
al. when are two web services compatible?. vldb tes’04. toronto, canada.
2004.

[13] I. Dimitrovski V. Dimitrova K. Mishev, A. Stojmenski and I. Chorbev.
Cloud services for faculty workflow automatization.

[14] J Lowy. Programming wcf services.
[15] B. Green and S Seshadri. Angularjs.

