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Abstract—Internet of Things (IoT) is everywhere and expand-
ing. While we all enjoy the benefits and the convenience of the
IoT services in our everyday life, very few of us are aware of the
security risks we are exposed to when IoT acquired data is not
properly handled. The sensitivity of this data requires increased
precaution in its protection and ability to validate the access
control correctness in design time.

In the IoT domain, the main focus is real time contextual
actuation based on a small amount of up-to-date data. Although
the raw IoT data has no deeper meaning, when a semantic
abstraction is added, it becomes suitable for reasoning, fusing and
actuation. With the semantics in hands, it is easier to integrate
the distributed IoT devices.

In this paper we evaluate the Linked Data Authorization
(LDA) platform for semantic data access control in the IoT
context. The LDA platform provides contextual protection of
semantic data using flexible security policies that can be validated
in design time. We demonstrate that this platform performs well
when protecting decent amount of fresh data with respect to the
context.
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I. INTRODUCTION

Throughout the history, the science and technology in their
essence are based on four scientific paradigms, each one
of them revolutionary in its time, superior to its ancestor
and innovative in the tools and methods used [1]. As a
result of the rapid development of the computer systems,
the storage devices, and network technologies, which became
cheap and easily affordable resource, huge amount of data
has been generated, stored and exchanged on daily bases. All
these advances gave rise to the fourth paradigm, known as
data exploration or e-Science [1] that unifies the first three
paradigms of empirical observations, theory, and computation
and simulation. The data-driven science made it possible for
the computers to generate models and programs, giving them
the ability to learn from large data sets. What made this
trend even more important in the last decade is the Internet
of Things (IoT) which connected diverse devices equipped
with sensors and embedded software helping them acquire and
exchange data. The services and the convenience of the IoT
become widely accepted and its presence has been constantly
growing. It is estimated that approximately 30 billion devices
will become connected by the year 2020 [1]. The growing
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popularity of the IoT imposes rapid growth of the amount
of generated and exchanged data. The amount of generated
traffic by these devices will reach 600 ZB per year by 2020,
275 times more than the estimated traffic exchanged between
the data centers and end users/devices [2].

Although the storage and networking technologies support
this trend, the main concern regarding the IoT data is its
protection. The data generated from the IoT devices represents
the individuals and their surrounding environment. These
information is highly sensitive and can harm the owners if
exposed to wrong entities. Moreover, the fact that 60% of
the devices in IoT are owned by ordinary people [2] gives
the security context even more critical importance. Another
alarming fact is that a great part of the industry generated IoT
data, also known as dark data [3], is stored but not deeply
examined since it is only used for regulating some process.
This data can become easy target for the attackers and impose
a security risk when the companies are unaware that the data
even exists.

The unawareness and incapability of the data owners adds
a risk of its exposure, in addition to the implicit vulnerability
caused by its very distributed and dynamic nature. Therefore,
it is crucial to focus on the access rights that will protect the
IoT generated data, from both malicious attackers, and from
the uninformed data owners. The access rights are technically
represented as security policies enforced by the authorization
systems. The security policy format should overcome the
heterogeneity of the devices and the data they generate, re-
garding precision, measurement unit and different serialization
formats. The large number of IoT devices that should be
protected requires ability to control the access for multiple
devices at once, based on the data nature, context and origin.

User’s authorization in distributed ubiquitous environments
is one of the challenges where improvements are needed.
The authorization is usually declared with policies that are
enforced by an access control module implementation. Even
though there are standards for policy definition, such as
XACML [4], most of the real systems have separate policy
formats and enforcement modules where the authentication is
their integration point. The separate authorization definition
is mainly due to the lack of integration in multi-domain
scenarios. Multiple research groups are targeting this problem,
but it is not trivial to determinate the most suitable solution in a
given context. Semantic Web technologies can address many



of the challenges that the IoT access control is facing with
today opening many opportunities, such as new approaches
of authentication using security policies based on a natural
language and interoperability using a common ontology [5].

In this paper we consider the semantically based LDA
platform III as a solution for contextual protection of data
access and evaluate its performance for use in IoT systems.
The rest of the paper is structured as follows. In Section
II, we give a short overview of the current solutions on
data security. Then, in section III we describe the LDA
platform as a solution for access control in heterogeneous
distributed systems. Afterwards, in Section IV, we present
the environment for measurement of the performance of the
LDA platform and evaluate the obtained results. Eventually,
we conclude our work in Section V.

II. RELATED WORK

The vast variety of protocols used by the IoT devices
requires many work hours to make the different protocol de-
vices communicate flawlessly. Furthermore, the different data
format, units and precision make their integration even harder.
The raw sensory data does not have any deeper meaning for
the humans, but when the abstraction is added to the sensory
data, it becomes more suitable for the reasoning process used
to produce perceptions. The Semantic Web technologies [6]
provide a solid ground for abstraction of real world processes
and knowledge, and this is already accepted in the IoT
community. The Semantic Web technologies define standards
for machine-readable and technology agnostic representation
of real world concepts [7]. The RDF standard [7] models the
knowledge using graph structure composed of multiple quads
of the form: < Subject, Predicate,Object,Graph >, where
Subject is the concept that is being described, Predicate is
an attribute or a feature of the Subject, Object is the object
assigned as a value to the Predicate, and Graph is a logical
group of the triples < Subject, Predicate,Object > that
enable a logical organization of the semantic triples within
a dataset.

The Semantic Sensor Networks (SSN) ontology [8], [9]
is one of the most influential semantic achievements in the
IoT domain. It is defined using the Ontology Web Language
(OWL) [10] and provides abstraction of the IoT devices,
their properties and observations. Even though this ontology
does not model the different measurement units, it allows
integration with other domain ontologies for this purpose [8],
[11], [12]. This ontology is mainly used to annotate IoT
acquired data streams [11], [13]. On the other hand, the work
in [12], [14], [15] represents the devices as sensor services
using SemSOS ontology [15]. The impact of the different
semantic formats regarding CPU cycles, power consumption,
and packet size is analyzed in [16], where the authors conclude
that the Entity Notation is the most optimal for semantic data
representation in resource-constrained environments. However,
even though the semantically represented data introduces some
performance drawbacks, it provides data abstraction and easier

combination of the raw sensory data, leading towards smarter
and better observations.

In order to control who can access the data, the entities
must be authenticated. There are multiple solutions for authen-
tication in distributed ubiquitous environments, such as single-
sign-on services [17], WebID [18] [19] and OAuth [20]. There
are also frameworks that enable integration and combination
[21] of these services. The access control of the authenticated
users is handled by the authorization process.

The general trend for authorization in IoT relies on securing
the communication channel with Transport Layer Security
(TLS) or Datagram TLS (DTLS) [22], [23] which do not
provide an option for contextual and partial data protection.
The necessity for context-aware access control is already
considered in [24], [25], where the authors emphasize the
importance of emergency security policies, but there is no
explicit policy format presented. The work in [26], [27] define
a secure view, read, aggregate and join operations for IoT data
streams, without decentralized policy management. In [28],
data owner embeds the policies in the generated stream and
lets the stream processors or brokers decide whom to distribute
the information. The work in [29], [30] analyses securing
machine-to-machine communication for cloud managed IoT
devices with the use of an extended Information Flow Control
model [31].

In [11], the data and the device discovery information are
represented in semantic format, enabling the same policy to
protect the device discovery. A comprehensive policy model
will enable easy maintenance of the policies [32]. One example
is the architecture defined in [11], which allows policies to
be stored and retrieved by each gateway using the SPARQL
endpoints. Even though there is considerate work that includes
the streaming data in the semantic web [33], [34], there are still
challenges that need to be addressed regarding access control
over semantic streams.

III. LDA PLATFORM OVERVIEW

In our previous work [32], we defined the Linked Data
Authorization (LDA) platform, which defines a flexible and
maintainable policy language and rules for its enforcement.
This platform is intended to protect a semantically annotated
data stored in multiple locations. The semantic data standards
are chosen since they provide the Resource Definition Frame-
work (RDF) [7] for representation of heterogeneous data from
multiple devices and the Ontology Web Language (OWL) [10]
to define a structure to the data.

The LDA platform offers the data owners to define security
policies for controlling the access to their data, also referred
to as guarded data. The guarded data is represented in RDF.
The protection rules are defined as security policies using
an extension of the widely accepted semantic web query
language SPARQL [35]. The native form of the language is
used to define which portion of the data is protected, while its
extension is used to define the query operation and the dataset
the policy is activated for.



The LDA platform enables enforcement of contextual poli-
cies through the Intent Provider component, which injects
the contextual information (obtained from the request) in
a separate graph referred to as Intent. This component is
pluggable and extensible, which enables the use of dynamic
contextual evidences.

The Intent Provider module intercepts the request and cre-
ates an Intent from the provided evidences. Then, it passes the
Intent to the Enforcement module to build a temporal dataset
containing the allowed data for the Intent. In this process,
the Enforcement module combines the security policies and
creates a query for temporal dataset creation. Eventually,
it submits the query to the underlying semantic database,
which, in our case, is the TDB database. Then, the originally
requested query is executed against the temporal dataset.

IV. EVALUATION

As expected, every authorization system introduces certain
authorization overhead. The main overhead introduced in the
LDA platform is the temporal dataset creation. The policy
activation and combination steps are carried out completely in
memory, while the dataset construction is carried out by the
underlaying storage engine, which usually uses multiple I/O
disk operations. Therefore, the main focus of the evaluation
is to determine the dependency of the execution time with
respect to the dataset size, the allowed data size and the
type of the queries used to construct the allowed data. For
the purpose of the LDA platform performance evaluation, we
generated groups of incremental test datasets containing quads
following the sensory data ontology [?]. The initial dataset
DS0 contains only one Sensor associated to its owner User
and no Observations. Each following dataset is generated by
adding quads for a new Sensor with multiple Observations.
The first group of datasets has increments of 100, 200, . . . .,
600 observations, the next group 1000, 2000, . . . , 6000 and so
on, until we reach a total of 24 datasets. With this progression
the largest dataset DS24 reaches the size of approximately
2.3 ∗ 106 instances i.e. 9.2 ∗ 106 quads.

We also generated four different groups of test SPARQL
queries that we run against the test datasets. The first group of
test query returns all the observations for a given sensor (sim-
ple queries), the next group additionally filters the observations
that fulfill certain condition (filter queries), the third group
is formed of queries that filter the observations that fulfill
certain condition with respect to aggregated value (aggregate
queries), and the last group combines the result of multiple
sensors using the set union and minus operations (composite
queries). All these queries return incremental result sizes, since
the observations for the sensors were generated incrementally
in the datasets.

In Figure 1 we show the average execution time obtained
from evaluating the simple query group against all datasets.
From the results we can observe that the execution time does
not depend on the dataset size, but it does depend only on the
size of the results returned by the queries. It is important to
emphasize that we only show the average execution times for

those queries that return results. Therefore, the length of each
plot line shortens as the number of results increases, resulting
in a single point for the query that returns 6 ∗ 105 results, that
can be obtained only from the largest dataset DS24.

Fig. 1. Execution time dependency on dataset size for different simple queries

Similar results are obtained for all other evaluated query
groups, but we do not display due to space limitation. How-
ever, we did sublime the dependency of the average execution
time of the queries on the result size for all query groups
in Figure 2. From the figure we can conclude that all query
groups have near linear dependency on the result size. Notably,
the aggregate query group is the slowest one since it processes
all the observations in order to obtain the aggregation.

Fig. 2. Execution time dependency on query result size for different groups
of queries for dataset DS24

Despite the apparently unacceptable average execution times
for more than 0.5 ∗ 106 result quads, the main focus in
the IoT domain is real time contextual actuation based on
a small amount of fresh data. The sensitivity of this data



requires increased precaution in its protection and ability to
validate the correctness of the security policies in design time,
which is the strong side of the LDA platform. In the IoT
context, we face with small amount of contextual data where
proper protection is crucial, hence, under these constrains,
the LDA platform proves to provide acceptable performance.
Additionally, it is noteworthy to mention that the largest query
result set corresponds to a temperature measurement for 4.5
years obtained on a minute interval.

V. CONCLUSION

In this paper we emphasize that the Semantic data annota-
tion can unify and align the raw sensory data originating from
the IoT devices. On one hand, this data is usually personal
and highly sensitive, requiring strong protection, while on the
other hand, it needs to be shared with an actuation systems in
order to be beneficial for its owners and the wider community.

Despite its significance, there is not much of a progress
in the field of protecting semantically annotated IoT data.
The LDA platform tackles this problem, but it infers some
performance issue. In order to determine its applicability in the
IoT domain, in this paper, we conducted a thorough evaluation
of its performance for different dataset sizes, query types and
query result sizes. The results from our analysis show that the
LDA platform authorization performance does not depend on
the dataset size, but only on the quantity of the allowed data.
Considering the nature of the IoT domain, characterized by
actuation based on small amounts of recent contextual data,
the LDA platform proves to offer flexible, maintainable and
testable protection with acceptable performance.
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