
Informatica 33 (2009) 233-241 233

A Multi-class SVM Classifier Utilizing Binary Decision Tree

Gjorgji Madzarov, Dejan Gjorgjevikj and Ivan Chorbev
Department of Computer Science and Engineering
Faculty of Electrical Engineering and Information Technology
Karpos 2 b.b., 1000 Skopje, Macedonia
E-mail: madzarovg@feit.ukim.edu.mk

Keywords: Support Vector Machine, multi-class classification, clustering, binary decision tree architecture

Received: July 27, 2008

In this paper a novel architecture of Support Vector Machine classifiers utilizing binary decision tree
(SVM-BDT) for solving multiclass problems is presented. The hierarchy of binary decision subtasks
using SVMs is designed with a clustering algorithm. For consistency between the clustering model and
SVM, the clustering model utilizes distance measures at the kernel space, rather than at the input space.
The proposed SVM based Binary Decision Tree architecture takes advantage of both the efficient
computation of the decision tree architecture and the high classification accuracy of SVMs. The SVM-
BDT architecture was designed to provide superior multi-class classification performance. Its
performance was measured on samples from MNIST, Pendigit, Optdigit and Statlog databases of
handwritten digits and letters. The results of the experiments indicate that while maintaining
comparable or offering better accuracy with other SVM based approaches, ensembles of trees (Bagging
and Random Forest) and neural network, the training phase of SVM-BDT is faster. During recognition
phase, due to its logarithmic complexity, SVM-BDT is much faster than the widely used multi-class SVM
methods like “one-against-one” and “one-against-all”, for multiclass problems. Furthermore, the
experiments showed that the proposed method becomes more favourable as the number of classes in the
recognition problem increases.

Povzetek: Predstavljena je metoda gradnje binarnih dreves z uporabo SVM za večrazredne probleme.

1 Introduction
The recent results in pattern recognition have shown that
support vector machine (SVM) classifiers often have
superior recognition rates in comparison to other
classification methods. However, the SVM was
originally developed for binary decision problems, and
its extension to multi-class problems is not straight-
forward. How to effectively extend it for solving multi-
class classification problem is still an on-going research
issue. The popular methods for applying SVMs to multi-
class classification problems usually decompose the
multi-class problems into several two-class problems that
can be addressed directly using several SVMs.

For the readers’ convenience, we introduce the SVM
briefly in section 2. A brief introduction to several
widely used multi-class classification methods that
utilize binary SVMs is given in section 3. The Kernel-
based clustering introduced to convert the multi-class
problem into SVM-based binary decision-tree
architecture is explained in section 4. In section 5, we
discuss related works and compare SVM-BDT with other
multi-class SVM methods via theoretical analysis and
empirical estimation. The experimental results in section
6 are presented to compare the performance of the
proposed SVM-BDT with traditional multi-class
approaches based on SVM, ensemble of decision trees

and neural network. Section 7 gives a conclusion of the
paper.

2 Support vector machines for
pattern recognition

The support vector machine is originally a binary
classification method developed by Vapnik and
colleagues at Bell laboratories [1][2], with further
algorithm improvements by others [3]. For a binary
problem, we have training data points: {xi, yi}, i=1,...,l ,
yi{-1, 1}, xiRd. Suppose we have some hyperplane
which separates the positive from the negative examples
(a “separating hyperplane”). The points x which lie on
the hyperplane satisfy w·x + b = 0, where w is normal to
the hyperplane, |b|/||w|| is the perpendicular distance
from the hyperplane to the origin, and ||w|| is the
Euclidean norm of w. Let d+ (d-) be the shortest distance
from the separating hyperplane to the closest positive
(negative) example. Define the “margin” of a separating
hyperplane to be d++d-. For the linearly separable case,
the support vector algorithm simply looks for the
separating hyperplane with largest margin. This can be
formulated as follows: suppose that all the training data
satisfy the following constraints:

234 Informatica 33 (2009) 233–241 G. Madzarov et al.

1 bi wx for 1iy , (1)

 1 bi wx for 1iy , (2)

These can be combined into one set of inequalities:

 01 by ii wx i , (3)

Now consider the points for which the equality in Eq.
(1) holds (requiring that there exists such a point) is
equivalent to choosing a scale for w and b. These points
lie on the hyperplane H1: xi · w + b = 1 with normal w
and perpendicular distance from the origin |1-b|/||w||.
Similarly, the points for which the equality in Eq. (2)
holds lie on the hyperplane H2: xi · w + b = -1, with
normal again w and perpendicular distance from the
origin |-1-b|/||w||. Hence d+ = d- = 1/||w|| and the margin is
simply 2/||w||.

margin

origin

Figure 1 – Linear separating hyperplanes for the
separable case. The support vectors are circled.

Note that H1 and H2 are parallel (they have the same
normal) and that no training points fall between them.
Thus we can find the pair of hyperplanes which gives the
maximum margin by minimizing ||w||2, subject to
constraints (3).

Thus we expect the solution for a typical two
dimensional case to have the form shown on Fig. 1. We
introduce nonnegative Lagrange multipliers αi, i = 1,..., l,
one for each of the inequality constraints (3). Recall that
the rule is that for constraints of the form ci ≥ 0, the
constraint equations are multiplied by nonnegative
Lagrange multipliers and subtracted from the objective
function, to form the Lagrangian. For equality
constraints, the Lagrange multipliers are unconstrained.
This gives Lagrangian:

l

i
i

l

i
iiip byL

11

2

2

1
 wxw , (4)

We must now minimize Lp with respect to w, b, and
maximize with respect to all αi at the same time, all
subject to the constraints αi ≥ 0 (let’s call this particular
set of constraints C1). Now this is a convex quadratic
programming problem, since the objective function is
itself convex, and those points which satisfy the

constraints also form a convex set (any linear constraint
defines a convex set, and a set of N simultaneous linear
constraints defines the intersection of N convex sets,
which is also a convex set). This means that we can
equivalently solve the following “dual” problem:
maximize LP, subject to the constraints that the gradient
of LP with respect to w and b vanish, and subject also to
the constraints that the αi ≥ 0 (let’s call that particular set
of constraints C2). This particular dual formulation of the
problem is called the Wolfe dual [4]. It has the property
that the maximum of LP, subject to constraints C2, occurs
at the same values of the w, b and α, as the minimum of
LP, subject to constraints C1.

Requiring that the gradient of LP with respect to w
and b vanish gives the conditions:

i

iii yw x , (5)

0
i

ii y . (6)

Since these are equality constraints in the dual
formulation, we can substitute them into Eq. (4) to give

l

ji
jijiji

i
iD yyL

,2

1
xx , (7)

Note that we have now given the Lagrangian different
labels (P for primal, D for dual) to emphasize that the
two formulations are different: LP and LD arise from the
same objective function but with different constraints;
and the solution is found by minimizing LP or by
maximizing LD. Note also that if we formulate the
problem with b = 0, which amounts to requiring that all
hyperplanes contain the origin, the constraint (6) does not
appear. This is a mild restriction for high dimensional
spaces, since it amounts to reducing the number of
degrees of freedom by one.

Support vector training (for the separable, linear case)
therefore amounts to maximizing LD with respect to the
αi, subject to constraints (6) and positivity of the αi, with
solution given by (5). Notice that there is a Lagrange
multiplier αi for every training point. In the solution,
those points for which αi > 0 are called “support vectors”,
and lie on one of the hyperplanes H1, H2. All other
training points have αi = 0 and lie either on H1 or H2

(such that the equality in Eq. (3) holds), or on that side of
H1 or H2 such that the strict inequality in Eq. (3) holds.
For these machines, the support vectors are the critical
elements of the training set. They lie closest to the
decision boundary; if all other training points were
removed (or moved around, but so as not to cross H1 or
H2), and training was repeated, the same separating
hyperplane would be found.

The above algorithm for separable data, when applied
to non-separable data, will find no feasible solution: this
will be evidenced by the objective function (i.e. the dual
Lagrangian) growing arbitrarily large. So how can we
extend these ideas to handle non-separable data? We
would like to relax the constraints (1) and (2), but only

A MULTI-CLASS SVM CLASSIFIER... Informatica 33 (2009) 233–241 235

when necessary, that is, we would like to introduce a
further cost (i.e. an increase in the primal objective
function) for doing so. This can be done by introducing
positive slack variables ei; i = 1,..., l, in the constraints,
which then become:

ii eb 1wx for 1iy , (8)

 ii eb 1wx for 1iy , (9)

.0 iei (10)

Thus, for an error to occur, the corresponding ei must
exceed unity, so Σiei is an upper bound on the number of
training errors. Hence a natural way to assign an extra
cost for errors is to change the objective function to be
minimized from ||w||2/2 to ||w||2/2 + C(Σiei), where C is a
parameter to be chosen by the user, a larger C
corresponding to assigning a higher penalty to errors.

How can the above methods be generalized to the
case where the decision function (f(x) whose sign
represents the class assigned to data point x) is not a
linear function of the data? First notice that the only way
in which the data appears in the training problem, is in
the form of dot products, xi · xj. Now suppose we first
mapped the data (Figure 2) to some other (possibly even
infinite dimensional) Euclidean space H, using a
mapping which we will call Ф:

Hd R: , (11)

Then of course the training algorithm would only depend
on the data through dot products in H, i.e. on functions of
the form Ф(xi) · Ф(xj). Now if there were a “kernel
function” K such that K(xi, xj) = Ф(xi) · Ф(xj), we would
only need to use K in the training algorithm, and would
never need to explicitly even know what Ф is. The kernel
function has to satisfy Mercer’s condition [1].One
example for this function is Gaussian:

2

2

2
exp,

ji
jiK

xx
xx , (12)

In this particular example, H is infinite dimensional,
so it would not be very easy to work with Ф explicitly.
However, if one replaces xi · xj by K(xi, xj) everywhere in
the training algorithm, the algorithm will happily
produce a support vector machine which lives in an
infinite dimensional space, and furthermore do so in
roughly the same amount of time it would take to train on
the un-mapped data. All the considerations of the
previous sections hold, since we are still doing a linear
separation, but in a different space. But how can we use
this machine? After all, we need w, and that will live in
H. But in test phase an SVM is used by computing dot
products of a given test point x with w, or more
specifically by computing the sign of

 bKybyf
ss N

i
iii

N

i
iii

 11

,)(xsxsx (13)

where the si are the support vectors. So again we can
avoid computing Ф(x) explicitly and use the K(si, x) =
Ф(si) · Ф(x) instead.

Figure 2 – General principle of SVM: projection
of data in an optimal dimensional space.

3 An overview of widely used multi-
class SVM classification methods

Although SVMs were originally designed as binary
classifiers, approaches that address a multi-class problem
as a single “all-together” optimization problem exist [5],
but are computationally much more expensive than
solving several binary problems.

A variety of techniques for decomposition of the
multi-class problem into several binary problems using
Support Vector Machines as binary classifiers have been
proposed, and several widely used are given in this
section.

3.1 One-against-all (OvA)
For the N-class problems (N>2), N two-class SVM
classifiers are constructed [6]. The ith SVM is trained
while labeling the samples in the ith class as positive
examples and all the rest as negative examples. In the
recognition phase, a test example is presented to all N
SVMs and is labelled according to the maximum output
among the N classifiers. The disadvantage of this method
is its training complexity, as the number of training
samples is large. Each of the N classifiers is trained using
all available samples.

3.2 One-against-one (OvO)
This algorithm constructs N(N-1)/2 two-class classifiers,
using all the binary pair-wise combinations of the N
classes. Each classifier is trained using the samples of the

236 Informatica 33 (2009) 233–241 G. Madzarov et al.

first class as positive examples and the samples of the
second class as negative examples. To combine these
classifiers, the Max Wins algorithm is adopted. It finds
the resultant class by choosing the class voted by the
majority of the classifiers [7]. The number of samples
used for training of each one of the OvO classifiers is
smaller, since only samples from two of all N classes are
taken in consideration. The lower number of samples
causes smaller nonlinearity, resulting in shorter training
times. The disadvantage of this method is that every test
sample has to be presented to large number of classifiers
N(N-1)/2. This results in slower testing, especially when
the number of the classes in the problem is big [8].

3.3 Directed acyclic graph SVM
(DAGSVM)

Introduced by Platt [1] the DAGSVM algorithm for
training an N(N-1)/2 classifiers is the same as in one-
against-one. In the recognition phase, the algorithm
depends on a rooted binary directed acyclic graph to
make a decision [9]. DAGSVM creates a model for each
pair of classes. When one such model, which is able to
separate class c1 from class c2, classifies a certain test
example into class c1, it does not really vote “for” class
c1, rather it votes “against” class c2, because the example
must lie on the other side of the separating hyperplane
than most of the class c2 samples. Therefore, from that
point onwards the algorithm ignores all the models
involving the class c2. This means that after each
classification with one of the binary models, one more
class can be thrown out as a possible candidate, and after
only N-1 steps just one candidate class remains, which
therefore becomes the prediction for the current test
example. This results in significantly faster testing, while
achieving similar recognition rate as One-against-one.

3.4 Binary tree of SVM (BTS)
This method uses multiple SVMs arranged in a binary
tree structure [10]. A SVM in each node of the tree is
trained using two of the classes. The algorithm then
employs probabilistic outputs to measure the similarity
between the remaining samples and the two classes used
for training. All samples in the node are assigned to the
two subnodes derived from the previously selected
classes by similarity. This step repeats at every node until
each node contains only samples from one class. The
main problem that should be considered seriously here is
training time, because aside training, one has to test all
samples in every node to find out which classes should
be assigned to which subnode while building the tree.
This may decrease the training performance considerably
for huge training datasets.

4 Support vector machines utilizing
a binary decision tree

In this paper we propose a binary decision tree
architecture that uses SVMs for making the binary
decisions in the nodes. The proposed classifier

architecture SVM-BDT (Support Vector Machines
utilizing Binary Decision Tree), takes advantage of both
the efficient computation of the tree architecture and the
high classification accuracy of SVMs. Utilizing this
architecture, N-1 SVMs needed to be trained for an N
class problem, but only at most N2log SVMs are

required to be consulted to classify a sample. This can
lead to a dramatic improvement in recognition speed
when addressing problems with big number of classes.

An example of SVM-BDT that solves a 7 - class
pattern recognition problem utilizing a binary tree, in
which each node makes binary decision using a SVM is
shown on Figure 3. The hierarchy of binary decision
subtasks should be carefully designed before the training
of each SVM classifier.

The recognition of each sample starts at the root of
the tree. At each node of the binary tree a decision is
being made about the assignment of the input pattern into
one of the two possible groups represented by
transferring the pattern to the left or to the right sub-tree.
Each of these groups may contain multiple classes. This
is repeated recursivly downward the tree until the sample
reaches a leaf node that represents the class it has been
assigned to.

There exist many ways to divide N classes into two
groups, and it is critical to have proper grouping for the
good performance of SVM-BDT.

For consistency between the clustering model and
the way SVM calculates the decision hyperplane, the
clustering model utilizes distance measures at the kernel
space, rather than at the input space. Because of this, all
training samples are mapped into the kernel space with
the same kernel function that is to be used in the training
phase.

SVM

SVM SVM

SVM 6

2 3 7

1,2,3,4,5,6,7

2,3,4,7 1,5,6

2,3

4

SVM

4,7

51

SVM

1,5

Figure 3: Illustration of SVM-BDT.

The SVM-BDT method that we propose is based on
recursively dividing the classes in two disjoint groups in
every node of the decision tree and training a SVM that
will decide in which of the groups the incoming
unknown sample should be assigned. The groups are
determined by a clustering algorithm according to their
class membership.

A MULTI-CLASS SVM CLASSIFIER... Informatica 33 (2009) 233–241 237

Let’s take a set of samples x1, x2, ..., xM each one
labeled by yi {c1, c2, ..., cN} where N is the number of
classes. SVM-BDT method starts with dividing the
classes in two disjoint groups g1 and g2. This is
performed by calculating N gravity centres for the N
different classes. Then, the two classes that have the
biggest Euclidean distance from each other are assigned
to each of the two clustering groups. After this, the class
with the smallest Euclidean distance from one of the
clustering groups is found and assigned to the
corresponding group. The gravity center of this group is
then recalculated to represent the addition of the samples
of the new class to the group. The process continues by
finding the next unassigned class that is closest to either
of the clustering groups, assigning it to the corresponding
group and updating the group’s gravity center, until all
classes are assigned to one of the two possible groups.

This defines a grouping of all the classes in two
disjoint groups of classes. This grouping is then used to
train a SVM classifier in the root node of the decision
tree, using the samples of the first group as positive
examples and the samples of the second group as
negative examples. The classes from the first clustering
group are being assigned to the first (left) subtree, while
the classes of the second clustering group are being
assigned to the (right) second subtree. The process
continues recursively (dividing each of the groups into
two subgroups applying the procedure explained above),
until there is only one class per group which defines a
leaf in the decision tree.

7
7

7
7

7

7 7

2

2

2

2
2
2

2

3
3

3
3

3

3
3

4
4

4
4

4

4 4

1
1

1
1

1 1

1

6

6

6

6 6

6
6

5
5

5
5
55

5

Figure 4: SVM-BDT divisions of the seven classes.

For example, Figure 4 illustrates grouping of 7
classes, while Figure 3 shows the corresponding decision
tree of SVMs. After calculating the gravity centers for all
classes, the classes c2 and c5 are found to be the furthest
apart from each other, considering their Euclidean
distance and are assigned to group g1 and g2 accordingly.
The closest to group g1 is class c3, so it is assigned to the
group g1, followed by recalculation of the g1’s gravity
center. In the next step, class c1 is the closest to group g2,
so it is assigned to that group and the group’s gravity
center is recalculated. In the following iteration, class c7

is assigned to g1 and class c6 is assigned to g2, folowed
by recalculating of group’s gravity centers. Finally class
c4 is assigned to g1. This completes the first round of
grouping that defines the classes that will be transferred
to the left and the right subtree of the root node. The
SVM classifier in the root is trained by considering
samples from the classes {c2, c3, c4, c7} as positive
examples and samples from the classes {c1, c5, c6} as
negative examples.

The grouping procedure is repeated independently for
the classes of the left and the right subtree of the root,
which results in grouping c7 and c4 in g1,1 and c2 and c3 in
g1,2 in the left node of the tree and c1 and c5 in g2,1 and c6

in g2,2 in the right node of the tree. The concept is
repeated for each SVM associated to a node in the
taxonomy. This will result in training only N-1 SVMs for
solving an N-class problem.

5 Related work and discussion
Various multi-class classification algorithms can be
compared by their predictive accuracy and their training
and testing times. The training time T for a binary SVM
is estimated empirically by a power law [13] stating that
T≈αMd, where M is the number of training samples and
 is a proportionality constant. The parameter d is a
constant, which depends of the datasets and it is typically
in the range [1, 2]. According to this law, the estimated
training time for OvA is

d
OvA MNT , (11)

where N is the number of classes in the problem.
Without loss of generality, let's assume that each of

the N classes has the same number of training samples.
Thus, each binary SVM of OvO approach only requires
2M/N samples. Therefore, the training time for OvO is:

 dd
d

OvO MN
N

MNN
T

 22

2

1
, (12)

The training time for DAGSVM is same as OvO.
As for BTS and SVM-BDT, the training time is

summed over all the nodes in the N2log levels.

In the ith level, there are 2i-1 nodes and each node uses
2M/N for BTS and M/2i-1 for SVM-BDT training
samples. Hence, the total training time for BTS is:

dd

N

i

i
d

N

i

d
i

BTS

MN
N

M

N

M
T

1
log

1

1

log

1

1

2

2

22

22

, (13)

and for SVM-BDT is:

238 Informatica 33 (2009) 233–241 G. Madzarov et al.

d
N

i

d

i
i

BDTSVM M
M

T

2log

1
1

1

2
2 , (14)

It must be noted that TSVM-BDT in our algorithm does
not include the time to build the hierarchy structure of
the N classes, since it consumes insignificant time
compared to the quadratic optimization time that
dominates the total SVM training time. On the other
hand, in the process of building the tree, BTS requires
testing of each trained SVM with all the training samples
in order to determine the next step, therefore significantly
increasing the total training time.

According to the empirical estimation above, it is
evident that the training speed of SVM-BDT is
comparable with OvA, OvO, DAGSVM and BTS.

In the testing phase, DAGSVM performs faster than
OvO and OvA, since it requires only N-1 binary SVM
evaluations. SVM-BDT is even faster than DAGSVM
because the depth of the SVM-BDT decision tree is

 N2log in the worst case, which is superior to N-1,

especially when N>>2.
While testing, the inner product of the sample’s

feature vector and all the support vectors of the model
are calculated for each sample. The total number of
support vectors in the trained model directly contributes
to the major part of the evaluation time, which was also
confirmed by the experiments.

A multistage SVM (MSVM) for multi-class problem
has been proposed by Liu et al. [11]. They use Support
Vector Clustering (SVC) [12] to divide the training data
into two parts that are used to train a binary SVM. For
each partition, the same procedure is recursively repeated
until the binary SVM gives an exact label of class. An
unsolved problem in MSVM is how to control the SVC
to divide the training dataset into exact two parts.
However, this procedure is painful and unfeasible,
especially for large datasets. The training set from one
class could belong to both clusters, resulting in decreased
predictive accuracy.

There are different approaches for solving multi-class
problems which are not based on SVM. Some of them
are presented in the following discussion. However, the
experimental results clearly show that their classification
accuracy is significantly smaller than the SVM based
methods.

Ensemble techniques have received considerable
attention within the recent machine learning research
[16][17][18][19]. The basic goal is to train a diverse set
of classifiers for a single learning problem and to vote or
average their predictions. The approach is simple as well
as powerful, and the obtained accuracy gains often have
solid theoretical foundations [20][20][21]. Averaging the
predictions of these classifiers helps to reduce the
variance and often increases the reliability of the
predictions. There are several techniques for obtaining a
diverse set of classifiers. The most common technique is
to use subsampling to diversify the training sets as in
Bagging [21] and Boosting [20]. Other techniques
include the use of different feature subsets for every

classifier in the ensemble [23], to exploit the randomness
of the base algorithms [24], possibly by artificially
randomizing their behavior [25], or to use multiple
representations of the domain objects. Finally, classifier
diversity can be ensured by modifying the output labels,
i.e., by transforming the learning tasks into a collection
of related learning tasks that use the same input
examples, but different assignments of the class labels.
Error-correcting output codes are the most prominent
example for this type of ensemble methods [22].

Error-correcting output codes are a popular and
powerful class binarization technique. The basic idea is
to transform an N-class problem into n binary problems
(n > N), where each binary problem uses a subset of the
classes as the positive class and the remaining classes as
a negative class. As a consequence, each original class is
encoded as an n-dimensional binary vector, one
dimension for each prediction of a binary problem (+1
for positive and −1 for negative). The resulting matrix of
the form {−1, +1} N×n is called the coding matrix. New
examples are classified by determining the row in the
matrix that is closest to the binary vector obtained by
submitting the example to the n classifiers. If the binary
problems are chosen in a way that maximizes the
distance between the class vectors, the reliability of the
classification can be significantly increased. Error-
correcting output codes can also be easily parallelized,
but each subtask requires the total training set.
Similar to binarization, some approaches suggest
mapping the original multiple classes into three clsses. A
related technique where multi-class problems are mapped
to 3-class problems is proposed by Angulo and Catal’a
[26]. Like with pairwise classification, they propose
generating one training set for each pair of classes. They
label the two class values with target values +1 and −1,
and additionally, samples of all other classes are labeled
to a third class, with a target value of 0. This idea leads to
increased size of the training set compared to the binary
classification. The mapping into three classes was also
used by Kalousis and Theoharis [27] for predicting the
most suitable learning algorithm(s) for a given dataset.
They trained a nearest-neighbor learner to predict the
better algorithm of each pair of learning algorithms. Each
of these pairwise problems had three classes: one for
each algorithm and a third class named “tie”, where both
algorithms had similar performances.

Johannes Fürnkranz has investigated the use of round
robin binarization (or pair-wise classification) [28] as a
technique for handling multi-class problems with
separate-and-conquer rule learning algorithms (aka
covering algorithms). In particular, round robin
binarization helps Ripper [29] outperform C5.0 on multi-
class problems, whereas C5.0 outperforms the original
version of Ripper on the same problems.

6 Experimental results
In this section, we present the results of our experiments
with several multi-class problems. The performance was
measured on the problem of recognition of handwritten
digits and letters.

A MULTI-CLASS SVM CLASSIFIER... Informatica 33 (2009) 233–241 239

Here, we compare the results of the proposed SVM-
BDT method with the following methods:

1) one-against-all (OvA);
2) one-against-one (OvO);
3) DAGSVM;
4) BTS;
5) Bagging
6) Random Forests
7) Multilayer Perceptron (MLP, neural network)
The training and testing of the SVMs based methods

(OvO, OvA, DAGSVM, BTS and SVM-BDT) was
performed using a custom developed application that
uses the Torch library [14]. For solving the partial
binary classification problems, we used SVMs with
Gaussian kernel. In these methods, we had to optimize
the values of the kernel parameter σ and penalty C. For
parameter optimization we used experimental results.
The achieved parameter values for the given datasets are
given in Table 1.

Table 1. The optimized values for σ and C for the used
datasets.

MNIST Pendigit Optdigit Statlog

σ 2 60 25 1.1

C 100 100 100 100

We also developed an application that uses the same
(Torch) library for the neural network classification.
One hidden layer with 25 units was used by the neural
network. The number of hidden units was determined
experimentally.

The classifications based on ensembles of decision
trees [30] (Bagging and Random Forest) was performed
by Clus, a popular decision tree learner based on the
principles stated by Blockeel et al. [31]. There were 100
models in the ensembles. The pruning method that we
used was C4.5. The number of selected features in the
Random Forest method was M2log , where M is the

number of features in the dataset.
The most important criterion in evaluating the

performance of a classifier is usually its recognition rate,
but very often the training and testing time of the
classifier are equally important.

In our experiments, four different multi-class
classification problems were addressed by each of the
eight previously mentioned methods. The training and
testing time and the recognition performance were
recorded for every method.

The first problem was recognition of isolated
handwritten digits (10 classes) from the MNIST
database. The MNIST database [15] contains grayscale
images of isolated handwritten digits. From each digit
image, after performing a slant correction, 40 features
were extracted. The features are consisted of 10
horizontal, 8 vertical and 22 diagonal projections [25].
The MNIST database contains 60.000 training samples,
and 10.000 testing samples.

The second and the third problem are 10 class
problems from the UCI Repository [33] of machine

learning databases: Optdigit and Pendigit. Pendigit has
16 features, 7494 training samples, and 3498 testing
samples. Optdigit has 64 features, 3823 training
samples, and 1797 testing samples.

The fourth problem was recognition of isolated
handwritten letters – a 26-class problem from the
Statlog collection [34]. Statlog-letter contains 15.000
training samples, and 5.000 testing samples, where each
sample is represented by 16 features.

The classifiers were trained using all available
training samples of the set and were evaluated by
recognizing all the test samples from the corresponding
set. All tests were performed on a personal computer
with an Intel Core2Duo processor at 1.86GHz with the
Windows XP operating system.

Tables 2 through 4 show the results of the
experiments using 8 different approaches (5 approaches
based on SVM, two based on ensembles of decision trees
and one neural network) on each of the 4 data sets. The
first column of each table describes the classification
method. Table 2 gives the prediction error rate of each
method applied on each of the datasets. Table 3 and table
4 shows the testing and training time of each algorithm,
for the datasets, measured in seconds, respectively.

The results in the tables show that SVM based
methods outperform the other approaches, in terms of
classification accuracy. In terms of speed, SVM based
methods are faster, with different ratios for different
datasets. In overall, the SVM based algorithms were
significantly better compared to the non SVM based
methods.

The results in table 2 show that for all datasets, the
one-against-all (OvA) method achieved the lowest error
rate. For the MNIST, Pendigit and Optdigit datasets, the
other SVM based methods (OvO, DAGSVM, BTS and
our method - SVM-BDT) achieved higher, but similar
error rates. For the recognition of handwritten letters
from the Statlog database, the OvO and DAGSVM
methods achieved very similar error rates that were about
1.5% higher than the OvA method. The BTS method
showed the lowest error rate of all methods using one-
against-one SVMs. Our SVM-BDT method achieved
better recognition rate than all the methods using one-
against-one SVMs, including BTS. Of the non SVM
based methods, the Random Forest method achieved the
best recognition accuracy for all datasets. The prediction
performance of the MLP method was comparable to the
Random Forest method for the 10-class problems, but
noticeably worse for the 26-class problem.

The MLP method is the fastest one in terms of
training and testing time, which is evident in Table 3 and
Table 4. The classification methods based on ensembles
of trees were the slowest in the training and the testing
phase, especially the Bagging method. Overall, the
Random Forest method was more accurate than the other
non SVM based methods, while the MLP method was
the fastest.

The results in Table 3 show that the DAGSVM
method achieved the fastest testing time of all the SVM
based methods for the MNIST dataset. For the other
datasets, the testing time of DAGSVM is comparable

240 Informatica 33 (2009) 233–241 G. Madzarov et al.

with BTS and SVM-BDT methods and their testing time
is noticeably better than the one-against-all (OvA) and
one-against-one (OvO) methods. The SVM-BDT method
was faster in the recognition phase for the Pendigit
dataset and slightly slower than DAGSVM method for
the Statlog dataset.

Table 2. The prediction error rate (%) of each method for
every dataset

Classifier MNIST Pendigit Optdigit Statlog

OvA 1.93 1.70 1.17 3.20

OvO 2.43 1.94 1.55 4.72

DAGSVM 2.50 1.97 1.67 4.74

ВТЅ 2.24 1.94 1.51 4.70

SVM-BDT 2.45 1.94 1.61 4.54

R. Forest 3.92 3.72 3.18 4.98

Bagging 4.96 5.38 7.17 8.04

MLP 4.25 3.83 3.84 14.14

Table 3. Testing time of each method for every dataset
measured in seconds

Classifier MNIST Pendigit Optdigit Statlog

OvA 23.56 1.75 1.63 119.50

OvO 26.89 3.63 1.96 160.50

DAGSVM 9.46 0.55 0.68 12.50

ВТЅ 26.89 0.57 0.73 17.20

SVM-BDT 25.33 0.54 0.70 13.10

R. Forest 39.51 3.61 2.76 11.07

Bagging 34.52 2.13 1.70 9.76

MLP 2.12 0.49 0.41 1.10

Table 4. Training time of each method for every dataset
measured in seconds

Classifier MNIST Pendigit Optdigit Statlog

OvA 468.94 4.99 3.94 554.20

OvO 116.96 3.11 2.02 80.90

DAGSVM 116.96 3.11 2.02 80.90

ВТЅ 240.73 5.21 5.65 387.10

SVM-BDT 304.25 1.60 1.59 63.30

R. Forest 542.78 17.08 22.21 50.70

Bagging 3525.31 30.87 49.4 112.75

MLP 45.34 2.20 1.60 10.80

In terms of training speeds, it is evident in Table 4
that among the SVM based methods, SVM-BDT is the
fastest one in the training phase. For the three 10-class
problems the time needed to train the 10 classifiers for
the OvA approach took about 4 times longer than
training the 45 classifiers for the OvO and DAGSVM
methods. Due to the huge number of training samples in

the MNIST dataset (60000), SVM-BDT’s training time
was longer compared to other one-against-one SVM
methods. The huge number of training samples increases
the nonlinearity of the hyperplane in the SVM, resulting
in an incresed number of support vectors and increased
training time. Also, the delay exists only in the first level
of the tree, where the entire training dataset is used for
training. In the lower levels, the training time of divided
subsets is not as significant as the first level’s delay.

In the other 10 class problems, our method achieved
the shortest training time. For the Statlog dataset, the
time needed for training of the 26 one-against-all SVMs
was almost 7 times longer than the time for training the
325 one-against-one SVMs. The BTS method is the
slowest one in the training phase of the methods using
one-against-one SVMs. It must be noted that as the
number of classes in the dataset increases, the advantage
of SVM-BDT becomes more evident. The SVM-BDT
method was the fastest while training, achieving better
recognition rate than the methods using one-against-one
SVMs. It was only slightly slower in recognition than
DAGSVM.

7 Conclusion
A novel architecture of Support Vector Machine
classifiers utilizing binary decision tree (SVM-BDT) for
solving multiclass problems was presented. The SVM-
BDT architecture was designed to provide superior
multi-class classification performance, utilizing a
decision tree architecture that requires much less
computation for deciding a class for an unknown sample.
A clustering algorithm that utilizes distance measures at
the kernel space is used to convert the multi-class
problem into binary decision tree, in which the binary
decisions are made by the SVMs. The results of the
experiments show that the speed of training and testing
are improved, while keeping comparable or offering
better recognition rates than the other SVM multi-class
methods. The experiments showed that this method
becomes more favourable as the number of classes in the
recognition problem increases.

References

[1] V. Vapnik. The Nature of Statistical Learning
Theory, 2nd Ed. Springer, New York, 1999.

[2] C. J. C. Burges. A tutorial on support vector
machine for pattern recognition. Data Min. Knowl.
Disc. 2 (1998) 121.

[3] T. Joachims. Making large scale SVM learning
practical. in B. Scholkopf, C. Bruges and A. Smola
(eds). Advances in kernel methods-support vector
learning, MIT Press, Cambridge, MA, 1998.

[4] R. Fletcher. Practical Methods of Optimization. 2nd
Ed. John Wiley & Sons. Chichester (1987).

[5] J. Weston, C. Watkins. Multi-class support vector
machines. Proceedings of ESANN99, M.
Verleysen, Ed., Brussels, Belgium, 1999.

A MULTI-CLASS SVM CLASSIFIER... Informatica 33 (2009) 233–241 241

[6] V. Vapnik. Statistical Learning Theory. Wiley,
New York, 1998.

[7] J. H. Friedman. Another approach to
polychotomous classification. Technical report.
Department of Statistics, Stanford University, 1997.

[8] P. Xu, A. K. Chan. Support vector machine for
multi-class signal classification with unbalanced
samples. Proceedings of the International Joint
Conference on Neural Networks 2003. Portland,
pp.1116-1119, 2003.

[9] Platt, N. Cristianini, J. Shawe-Taylor. Large margin
DAGSVM’s for multiclass classification. Advances
in Neural Information Processing System. Vol. 12,
pp. 547–553, 2000.

[10] B. Fei, J. Liu. Binary Tree of SVM: A New Fast
Multiclass Training and Classification Algorithm.
IEEE Transaction on neural networks, Vol. 17, No.
3, May 2006.

[11] X. Liu, H. Xing, X. Wang. A multistage support
vector machine. 2nd International Conference on
Machine Learning and Cybernetics, pages 1305-
1308, 2003.

[12] A. Ben-Hur, D. Horn, H. Siegelmann, V. Vapnik.
Support vector clustering. Journal of Machine
Learning Research, vol. 2:125-137, 2001.

[13] J. Platt. Fast training of support vector machines
using sequential minimal optimization. In Advances
in Kernel Methods - Support Vector Learning.
Pages 185-208, Cambridge, MA, 1999. MIT Press.

[14] R. Collobert, S. Bengio, J. Mariéthoz. Torch: a
modular machine learning software library.
Technical Report IDIAP-RR 02-46, IDIAP, 2002.

[15] __, MNIST, MiniNIST, USA
http://yann.lecun.com/exdb/mnist

[16] T. G. Dietterich. Machine learning research: Four
current directions. AI Magazine, 18(4): 97–136,
Winter 1997.

[17] G. Dietterich. Ensemble methods in machine
learning. In J. Kittler and F. Roli (eds.) First
International Workshop on Multiple Classifier
Systems, pp. 1–15. Springer-Verlag, 2000a.

[18] D. Opitz and R. Maclin. Popular ensemble methods:
An empirical study. Journal of Artificial
Intelligence Research, 11:169–198, 1999.

[19] E. Bauer and R. Kohavi. An empirical comparison
of voting classification algorithms: Bagging,
boosting, and variants. Machine Learning, 36:105–
169, 1999.

[20] Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application
to boosting. Journal of Computer and System
Sciences, 55(1):119–139, 1997.

[21] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[22] T. G. Dietterich and G. Bakiri. Solving multiclass
learning problems via error-correcting output codes.
Journal of Artificial Intelligence Research, 2:263–
286, 1995.

[23] S. D. Bay. Nearest neighbor classification from
multiple feature subsets. Intelligent Data Analysis,
3(3):191–209, 1999.

[24] J. F. Kolen and J. B. Pollack. Back propagation is
sensitive to initial conditions. In Advances in
Neural Information Processing Systems 3 (NIPS-
90), pp. 860–867. Morgan Kaufmann, 1991.

[25] T. G. Dietterich. An experimental comparison of
three methods for constructing ensembles of
decision trees: Bagging, boosting, and
randomization. Machine Learning, 40(2):139–158,
2000b.

[26] C. Angulo and A. Catal`a. K-SVCR. A multi-class
support vector machine. In R. L´opez de M´antaras
and E. Plaza (eds.) Proceedings of the 11th
European Conference on Machine Learning
(ECML-2000), pp. 31–38. Springer-Verlag, 2000.

[27] A. Kalousis and T. Theoharis. Noemon: Design,
implementation and performance results of an
intelligent assistant for classifier selection.
Intelligent Data Analysis, 3(5):319–337, 1999.

[28] Johannes Fürnkranz, Round robin classification,
The Journal of Machine Learning Research, 2,
p.721-747, 3/1/2002

[29] W. W. Cohen. Fast effective rule induction. In A.
Prieditis and S. Russell (eds.) Proceedings of the
12th International Conference on Machine
Learning (ML-95), pp. 115–123, Lake Tahoe, CA,
1995. Morgan Kaufmann.

[30] D. Kocev, C. Vens, J. Struyf and S. Dˇzeroski.
Ensembles of multi-objective decision trees.
Proceedings of the 18th European Conference on
Machine Learning (pp. 624–631) (2007). Springer.

[31] H. Blockeel, J. Struyf. Efficient Algorithms for
Decision Tree Cross-validation. Journal of Machine
Learning Research 3:621-650, 2002.

[32] D. Gorgevik, D. Cakmakov. An Efficient Three-
Stage Classifier for Handwritten Digit Recognition.
Proceedings of 17th Int. Conference on Pattern
Recognition, ICPR2004. Vol. 4, pp. 507-510, IEEE
Computer Society, Cambridge, UK, 23-26 August
2004.

[33] C. Blake, E. Keogh and C. Merz. UCI Repository of
Machine Learning Databases, (1998). Statlog Data
Set, http://archive.ics.uci.edu/ml/datasets.html
[Online]

[34] Statlog Data Set, http://archive.ics.uci.edu/ml/-
datasets/Letter+Recognition [Online]

242 Informatica 33 (2009) 233–241 G. Madzarov et al.

