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In this paper a novel architecture of Support Vector Machine classifiers utilizing binary decision tree 
(SVM-BDT) for solving multiclass problems is presented. The hierarchy of binary decision subtasks 
using SVMs is designed with a clustering algorithm. For consistency between the clustering model and 
SVM, the clustering model utilizes distance measures at the kernel space, rather than at the input space. 
The proposed SVM based Binary Decision Tree architecture takes advantage of both the efficient 
computation of the decision tree architecture and the high classification accuracy of SVMs. The SVM-
BDT architecture was designed to provide superior multi-class classification performance. Its 
performance was measured on samples from MNIST, Pendigit, Optdigit and Statlog databases of 
handwritten digits and letters. The results of the experiments indicate that while maintaining 
comparable or offering better accuracy with other SVM based approaches, ensembles of trees (Bagging 
and Random Forest) and neural network, the training phase of SVM-BDT is faster. During recognition 
phase, due to its logarithmic complexity, SVM-BDT is much faster than the widely used multi-class SVM 
methods like “one-against-one” and “one-against-all”, for multiclass problems. Furthermore, the 
experiments showed that the proposed method becomes more favourable as the number of classes in the 
recognition problem increases.

Povzetek: Predstavljena je metoda gradnje binarnih dreves z uporabo SVM za večrazredne probleme.

1 Introduction
The recent results in pattern recognition have shown that 
support vector machine (SVM) classifiers often have 
superior recognition rates in comparison to other 
classification methods. However, the SVM was 
originally developed for binary decision problems, and 
its extension to multi-class problems is not straight-
forward. How to effectively extend it for solving multi-
class classification problem is still an on-going research 
issue. The popular methods for applying SVMs to multi-
class classification problems usually decompose the 
multi-class problems into several two-class problems that 
can be addressed directly using several SVMs. 

For the readers’ convenience, we introduce the SVM 
briefly in section 2. A brief introduction to several 
widely used multi-class classification methods that 
utilize binary SVMs is given in section 3. The Kernel-
based clustering introduced to convert the multi-class 
problem into SVM-based binary decision-tree 
architecture is explained in section 4. In section 5, we 
discuss related works and compare SVM-BDT with other 
multi-class SVM methods via theoretical analysis and 
empirical estimation. The experimental results in section 
6 are presented to compare the performance of the 
proposed SVM-BDT with traditional multi-class 
approaches based on SVM, ensemble of decision trees

and neural network. Section 7 gives a conclusion of the 
paper.

2 Support vector machines for 
pattern recognition

The support vector machine is originally a binary 
classification method developed by Vapnik and 
colleagues at Bell laboratories [1][2], with further
algorithm improvements by others [3]. For a binary 
problem, we have training data points: {xi, yi}, i=1,...,l , 
yi{-1, 1}, xiRd. Suppose we have some hyperplane 
which separates the positive from the negative examples 
(a “separating hyperplane”). The points x which lie on 
the hyperplane satisfy w·x + b = 0, where w is normal to 
the hyperplane, |b|/||w|| is the perpendicular distance 
from the hyperplane to the origin, and ||w|| is the 
Euclidean norm of w. Let d+ (d-) be the shortest distance 
from the separating hyperplane to the closest positive 
(negative) example. Define the “margin” of a separating 
hyperplane to be d++d-. For the linearly separable case, 
the support vector algorithm simply looks for the 
separating hyperplane with largest margin. This can be 
formulated as follows: suppose that all the training data 
satisfy the following constraints:
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1 bi wx for 1iy ,       ( 1 )

    1 bi wx for 1iy ,       ( 2 )

These can be combined into one set of inequalities:

  01 by ii wx i ,       ( 3 )

Now consider the points for which the equality in Eq. 
(1) holds (requiring that there exists such a point) is 
equivalent to choosing a scale for w and b. These points 
lie on the hyperplane H1: xi · w + b = 1 with normal w
and perpendicular distance from the origin |1-b|/||w||. 
Similarly, the points for which the equality in Eq. (2) 
holds lie on the hyperplane H2: xi · w + b = -1, with 
normal again w and perpendicular distance from the 
origin |-1-b|/||w||. Hence d+ = d- = 1/||w|| and the margin is 
simply 2/||w||.

margin

origin

Figure 1 – Linear separating hyperplanes for the 
separable case. The support vectors are circled.

Note that H1 and H2 are parallel (they have the same 
normal) and that no training points fall between them. 
Thus we can find the pair of hyperplanes which gives the 
maximum margin by minimizing ||w||2, subject to 
constraints (3).

Thus we expect the solution for a typical two 
dimensional case to have the form shown on Fig. 1. We 
introduce nonnegative Lagrange multipliers αi, i = 1,..., l, 
one for each of the inequality constraints (3). Recall that 
the rule is that for constraints of the form ci ≥ 0, the 
constraint equations are multiplied by nonnegative
Lagrange multipliers and subtracted from the objective 
function, to form the Lagrangian. For equality 
constraints, the Lagrange multipliers are unconstrained. 
This gives Lagrangian:
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We must now minimize Lp with respect to w, b, and 
maximize with respect to all αi at the same time, all 
subject to the constraints αi ≥ 0 (let’s call this particular 
set of constraints C1). Now this is a convex quadratic 
programming problem, since the objective function is 
itself convex, and those points which satisfy the 

constraints also form a convex set (any linear constraint 
defines a convex set, and a set of N simultaneous linear 
constraints defines the intersection of N convex sets, 
which is also a convex set). This means that we can 
equivalently solve the following “dual” problem: 
maximize LP, subject to the constraints that the gradient 
of LP with respect to w and b vanish, and subject also to 
the constraints that the αi ≥ 0 (let’s call that particular set 
of constraints C2). This particular dual formulation of the 
problem is called the Wolfe dual [4]. It has the property 
that the maximum of LP, subject to constraints C2, occurs 
at the same values of the w, b and α, as the minimum of 
LP, subject to constraints C1.

Requiring that the gradient of LP with respect to w
and b vanish gives the conditions:
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Since these are equality constraints in the dual 
formulation, we can substitute them into Eq. (4) to give
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Note that we have now given the Lagrangian different 
labels (P for primal, D for dual) to emphasize that the 
two formulations are different: LP and LD arise from the 
same objective function but with different constraints; 
and the solution is found by minimizing LP or by 
maximizing LD. Note also that if we formulate the 
problem with b = 0, which amounts to requiring that all 
hyperplanes contain the origin, the constraint (6) does not 
appear. This is a mild restriction for high dimensional 
spaces, since it amounts to reducing the number of 
degrees of freedom by one.

Support vector training (for the separable, linear case) 
therefore amounts to maximizing LD with respect to the 
αi, subject to constraints (6) and positivity of the αi, with 
solution given by (5). Notice that there is a Lagrange 
multiplier αi for every training point. In the solution, 
those points for which αi > 0 are called “support vectors”, 
and lie on one of the hyperplanes H1, H2. All other 
training points have αi = 0 and lie either on H1 or H2

(such that the equality in Eq. (3) holds), or on that side of 
H1 or H2 such that the strict inequality in Eq. (3) holds. 
For these machines, the support vectors are the critical 
elements of the training set. They lie closest to the 
decision boundary; if all other training points were 
removed (or moved around, but so as not to cross H1 or 
H2), and training was repeated, the same separating 
hyperplane would be found. 

The above algorithm for separable data, when applied 
to non-separable data, will find no feasible solution: this 
will be evidenced by the objective function (i.e. the dual 
Lagrangian) growing arbitrarily large. So how can we 
extend these ideas to handle non-separable data? We 
would like to relax the constraints (1) and (2), but only 
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when necessary, that is, we would like to introduce a 
further cost (i.e. an increase in the primal objective 
function) for doing so. This can be done by introducing 
positive slack variables ei; i = 1,..., l, in the constraints, 
which then become:

ii eb  1wx for 1iy ,       ( 8 )

    ii eb  1wx for 1iy ,       ( 9 )

.0 iei      ( 10 )

Thus, for an error to occur, the corresponding ei must
exceed unity, so Σiei is an upper bound on the number of 
training errors. Hence a natural way to assign an extra 
cost for errors is to change the objective function to be 
minimized from ||w||2/2 to ||w||2/2 + C(Σiei), where C is a 
parameter to be chosen by the user, a larger C
corresponding to assigning a higher penalty to errors.

How can the above methods be generalized to the 
case where the decision function (f(x) whose sign 
represents the class assigned to data point x) is not a 
linear function of the data? First notice that the only way 
in which the data appears in the training problem, is in 
the form of dot products, xi · xj. Now suppose we first 
mapped the data (Figure 2) to some other (possibly even
infinite dimensional) Euclidean space H, using a 
mapping which we will call Ф:

  

Hd R: ,     ( 11 )

Then of course the training algorithm would only depend 
on the data through dot products in H, i.e. on functions of 
the form Ф(xi) · Ф(xj). Now if there were a “kernel 
function” K such that K(xi, xj) = Ф(xi) · Ф(xj), we would 
only need to use K in the training algorithm, and would 
never need to explicitly even know what Ф is. The kernel 
function has to satisfy Mercer’s condition [1].One 
example for this function is Gaussian:
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In this particular example, H is infinite dimensional, 
so it would not be very easy to work with Ф explicitly. 
However, if one replaces xi · xj by K(xi, xj) everywhere in
the training algorithm, the algorithm will happily 
produce a support vector machine which lives in an 
infinite dimensional space, and furthermore do so in 
roughly the same amount of time it would take to train on 
the un-mapped data. All the considerations of the 
previous sections hold, since we are still doing a linear 
separation, but in a different space. But how can we use 
this machine? After all, we need w, and that will live in 
H. But in test phase an SVM is used by computing dot 
products of a given test point x with w, or more 
specifically by computing the sign of
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where the si are the support vectors. So again we can 
avoid computing Ф(x) explicitly and use the K(si, x) = 
Ф(si) · Ф(x) instead.

Figure 2 – General principle of SVM: projection
of data in an optimal dimensional space.

3 An overview of widely used multi-
class SVM classification methods

Although SVMs were originally designed as binary 
classifiers, approaches that address a multi-class problem 
as a single “all-together” optimization problem exist [5], 
but are computationally much more expensive than 
solving several binary problems.

A variety of techniques for decomposition of the 
multi-class problem into several binary problems using 
Support Vector Machines as binary classifiers have been 
proposed, and several widely used are given in this 
section.

3.1 One-against-all (OvA)
For the N-class problems (N>2), N two-class SVM 
classifiers are constructed [6]. The ith SVM is trained 
while labeling the samples in the ith class as positive 
examples and all the rest as negative examples. In the 
recognition phase, a test example is presented to all N   
SVMs and is labelled according to the maximum output 
among the N classifiers. The disadvantage of this method 
is its training complexity, as the number of training 
samples is large. Each of the N classifiers is trained using 
all available samples.

3.2 One-against-one (OvO)
This algorithm constructs N(N-1)/2 two-class classifiers,
using all the binary pair-wise combinations of the N   
classes. Each classifier is trained using the samples of the 
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first class as positive examples and the samples of the 
second class as negative examples. To combine these 
classifiers, the Max Wins algorithm is adopted. It finds 
the resultant class by choosing the class voted by the 
majority of the classifiers [7]. The number of samples 
used for training of each one of the OvO classifiers is 
smaller, since only samples from two of all N classes are 
taken in consideration. The lower number of samples 
causes smaller nonlinearity, resulting in shorter training 
times. The disadvantage of this method is that every test 
sample has to be presented to large number of classifiers 
N(N-1)/2. This results in slower testing, especially when 
the number of the classes in the problem is big [8].

3.3 Directed acyclic graph SVM 
(DAGSVM)

Introduced by Platt [1] the DAGSVM algorithm for 
training an N(N-1)/2 classifiers is the same as in one-
against-one. In the recognition phase, the algorithm
depends on a rooted binary directed acyclic graph to 
make a decision [9]. DAGSVM creates a model for each 
pair of classes. When one such model, which is able to 
separate class c1 from class c2, classifies a certain test 
example into class c1, it does not really vote “for” class 
c1, rather it votes “against” class c2, because the example 
must lie on the other side of the separating hyperplane 
than most of the class c2 samples. Therefore, from that 
point onwards the algorithm ignores all the models 
involving the class c2. This means that after each 
classification with one of the binary models, one more 
class can be thrown out as a possible candidate, and after 
only N-1 steps just one candidate class remains, which 
therefore becomes the prediction for the current test 
example. This results in significantly faster testing, while 
achieving similar recognition rate as One-against-one.

3.4 Binary tree of SVM (BTS)
This method uses multiple SVMs arranged in a binary 
tree structure [10]. A SVM in each node of the tree is 
trained using two of the classes. The algorithm then 
employs probabilistic outputs to measure the similarity 
between the remaining samples and the two classes used 
for training. All samples in the node are assigned to the 
two subnodes derived from the previously selected 
classes by similarity. This step repeats at every node until 
each node contains only samples from one class. The 
main problem that should be considered seriously here is 
training time, because aside training, one has to test all 
samples in every node to find out which classes should 
be assigned to which subnode while building the tree. 
This may decrease the training performance considerably 
for huge training datasets.

4 Support vector machines utilizing 
a binary decision tree

In this paper we propose a binary decision tree 
architecture that uses SVMs for making the binary 
decisions in the nodes. The proposed classifier 

architecture SVM-BDT (Support Vector Machines 
utilizing Binary Decision Tree), takes advantage of both 
the efficient computation of the tree architecture and the 
high classification accuracy of SVMs. Utilizing this 
architecture, N-1 SVMs needed to be trained for an N
class problem, but only at most  N2log SVMs are 

required to be consulted to classify a sample. This can 
lead to a dramatic improvement in recognition speed 
when addressing problems with big number of classes.

An example of SVM-BDT that solves a 7 - class 
pattern recognition problem utilizing a binary tree, in 
which each node makes binary decision using a SVM is
shown on Figure 3. The hierarchy of binary decision 
subtasks should be carefully designed before the training 
of each SVM classifier.

The recognition of each sample starts at the root of 
the tree. At each node of the binary tree a decision is 
being made about the assignment of the input pattern into 
one of the two possible groups represented by 
transferring the pattern to the left or to the right sub-tree. 
Each of these groups may contain multiple classes. This 
is repeated recursivly downward the tree until the sample 
reaches a leaf node that represents the class it has been 
assigned to.

There exist many ways to divide N classes into two 
groups, and it is critical to have proper grouping for the 
good performance of SVM-BDT.

For consistency between the clustering model and 
the way SVM calculates the decision hyperplane, the 
clustering model utilizes distance measures at the kernel 
space, rather than at the input space. Because of this, all 
training samples are mapped into the kernel space with 
the same kernel function that is to be used in the training 
phase.

SVM

SVM SVM

SVM 6

2 3 7

1,2,3,4,5,6,7  

2,3,4,7 1,5,6

2,3

4

SVM

4,7

51

SVM
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Figure 3: Illustration of SVM-BDT.

The SVM-BDT method that we propose is based on 
recursively dividing the classes in two disjoint groups in 
every node of the decision tree and training a SVM that 
will decide in which of the groups the incoming 
unknown sample should be assigned. The groups are 
determined by a clustering algorithm according to their 
class membership.
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Let’s take a set of samples x1, x2, ..., xM each one 
labeled by yi  {c1, c2, ..., cN} where N is the number of 
classes. SVM-BDT method starts with dividing the 
classes in two disjoint groups g1 and g2. This is 
performed by calculating N gravity centres for the N
different classes. Then, the two classes that have the 
biggest Euclidean distance from each other are assigned 
to each of the two clustering groups. After this, the class 
with the smallest Euclidean distance from one of the 
clustering groups is found and assigned to the 
corresponding group. The gravity center of this group is 
then recalculated to represent the addition of the samples 
of the new class to the group. The process continues by 
finding the next unassigned class that is closest to either 
of the clustering groups, assigning it to the corresponding 
group and updating the group’s gravity center, until all 
classes are assigned to one of the two possible groups.

This defines a grouping of all the classes in two 
disjoint groups of classes. This grouping is then used to 
train a SVM classifier in the root node of the decision 
tree, using the samples of the first group as positive 
examples and the samples of the second group as 
negative examples. The classes from the first clustering 
group are being assigned to the first (left) subtree, while 
the classes of the second clustering group are being 
assigned to the (right) second subtree. The process 
continues recursively (dividing each of the groups into 
two subgroups applying the procedure explained above), 
until there is only one class per group which defines a 
leaf in the decision tree.
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Figure 4: SVM-BDT divisions of the seven classes.

For example, Figure 4 illustrates grouping of 7 
classes, while Figure 3 shows the corresponding decision 
tree of SVMs. After calculating the gravity centers for all 
classes, the classes c2 and c5 are found to be the furthest 
apart from each other, considering their Euclidean
distance and are assigned to group g1 and g2 accordingly. 
The closest to group g1 is class c3, so it is assigned to the 
group g1, followed by recalculation of the g1’s gravity 
center. In the next step, class c1 is the closest to group g2, 
so it is assigned to that group and the group’s gravity 
center is recalculated. In the following iteration, class c7

is assigned to g1 and class c6 is assigned to g2, folowed 
by recalculating of group’s gravity centers. Finally class 
c4 is assigned to g1. This completes the first round of 
grouping that defines the classes that will be transferred 
to the left and the right subtree of the root node. The 
SVM classifier in the root is trained by considering 
samples from the classes {c2, c3, c4, c7} as positive 
examples and samples from the classes {c1, c5, c6} as 
negative examples.

The grouping procedure is repeated independently for 
the classes of the left and the right subtree of the root,
which results in grouping c7 and c4 in g1,1 and c2 and c3 in 
g1,2 in the left node of the tree and c1 and c5 in g2,1 and c6

in g2,2 in the right node of the tree. The concept is 
repeated for each SVM associated to a node in the 
taxonomy. This will result in training only N-1 SVMs for 
solving an N-class problem.

5 Related work and discussion
Various multi-class classification algorithms can be 
compared by their predictive accuracy and their training 
and testing times. The training time T for a binary SVM 
is estimated empirically by a power law [13] stating that 
T≈αMd, where M is the number of training samples and 
 is a proportionality constant. The parameter d is a 
constant, which depends of the datasets and it is typically 
in the range [1, 2]. According to this law, the estimated 
training time for OvA is

d
OvA MNT  ,       ( 11 )

where N is the number of classes in the problem.
Without loss of generality, let's assume that each of 

the N classes has the same number of training samples. 
Thus, each binary SVM of OvO approach only requires 
2M/N samples. Therefore, the training time for OvO is:
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The training time for DAGSVM is same as OvO.
As for BTS and SVM-BDT, the training time is 

summed over all the nodes in the  N2log   levels.

In the ith level, there are 2i-1 nodes and each node uses 
2M/N for BTS and M/2i-1 for SVM-BDT training 
samples. Hence, the total training time for BTS is:
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and for SVM-BDT is:
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It must be noted that TSVM-BDT in our algorithm does 
not include the time to build the hierarchy structure of 
the N classes, since it consumes insignificant time 
compared to the quadratic optimization time that 
dominates the total SVM training time. On the other 
hand, in the process of building the tree, BTS requires 
testing of each trained SVM with all the training samples 
in order to determine the next step, therefore significantly 
increasing the total training time.

According to the empirical estimation above, it is 
evident that the training speed of SVM-BDT is 
comparable with OvA, OvO, DAGSVM and BTS. 

In the testing phase, DAGSVM performs faster than 
OvO and OvA, since it requires only N-1 binary SVM 
evaluations. SVM-BDT is even faster than DAGSVM 
because the depth of the SVM-BDT decision tree is 

 N2log in the worst case, which is superior to N-1,

especially when N>>2. 
While testing, the inner product of the sample’s 

feature vector and all the support vectors of the model 
are calculated for each sample. The total number of 
support vectors in the trained model directly contributes 
to the major part of the evaluation time, which was also 
confirmed by the experiments.

A multistage SVM (MSVM) for multi-class problem 
has been proposed by Liu et al. [11]. They use Support 
Vector Clustering (SVC) [12] to divide the training data 
into two parts that are used to train a binary SVM. For 
each partition, the same procedure is recursively repeated 
until the binary SVM gives an exact label of class. An
unsolved problem in MSVM is how to control the SVC 
to divide the training dataset into exact two parts. 
However, this procedure is painful and unfeasible, 
especially for large datasets. The training set from one 
class could belong to both clusters, resulting in decreased 
predictive accuracy.

There are different approaches for solving multi-class 
problems which are not based on SVM. Some of them 
are presented in the following discussion. However, the 
experimental results clearly show that their classification 
accuracy is significantly smaller than the SVM based 
methods.

Ensemble techniques have received considerable 
attention within the recent machine learning research
[16][17][18][19]. The basic goal is to train a diverse set 
of classifiers for a single learning problem and to vote or 
average their predictions. The approach is simple as well 
as powerful, and the obtained accuracy gains often have 
solid theoretical foundations [20][20][21]. Averaging the 
predictions of these classifiers helps to reduce the 
variance and often increases the reliability of the 
predictions. There are several techniques for obtaining a 
diverse set of classifiers. The most common technique is 
to use subsampling to diversify the training sets as in 
Bagging [21] and Boosting [20]. Other techniques 
include the use of different feature subsets for every 

classifier in the ensemble [23], to exploit the randomness 
of the base algorithms [24], possibly by artificially 
randomizing their behavior [25], or to use multiple 
representations of the domain objects. Finally, classifier 
diversity can be ensured by modifying the output labels, 
i.e., by transforming the learning tasks into a collection 
of related learning tasks that use the same input 
examples, but different assignments of the class labels. 
Error-correcting output codes are the most prominent 
example for this type of ensemble methods [22].

Error-correcting output codes are a popular and 
powerful class binarization technique. The basic idea is 
to transform an N-class problem into n binary problems 
(n > N), where each binary problem uses a subset of the 
classes as the positive class and the remaining classes as 
a negative class. As a consequence, each original class is 
encoded as an n-dimensional binary vector, one 
dimension for each prediction of a binary problem (+1 
for positive and −1 for negative). The resulting matrix of 
the form {−1, +1} N×n is called the coding matrix. New 
examples are classified by determining the row in the 
matrix that is closest to the binary vector obtained by 
submitting the example to the n classifiers. If the binary 
problems are chosen in a way that maximizes the
distance between the class vectors, the reliability of the 
classification can be significantly increased. Error-
correcting output codes can also be easily parallelized, 
but each subtask requires the total training set.
Similar to binarization, some approaches suggest 
mapping the original multiple classes into three clsses. A
related technique where multi-class problems are mapped 
to 3-class problems is proposed by Angulo and Catal’a 
[26]. Like with pairwise classification, they propose 
generating one training set for each pair of classes. They 
label the two class values with target values +1 and −1, 
and additionally, samples of all other classes are labeled 
to a third class, with a target value of 0. This idea leads to 
increased size of the training set compared to the binary 
classification. The mapping into three classes was also 
used by Kalousis and Theoharis [27] for predicting the 
most suitable learning algorithm(s) for a given dataset. 
They trained a nearest-neighbor learner to predict the 
better algorithm of each pair of learning algorithms. Each 
of these pairwise problems had three classes: one for 
each algorithm and a third class named “tie”, where both 
algorithms had similar performances.

Johannes Fürnkranz has investigated the use of round 
robin binarization (or pair-wise classification) [28] as a 
technique for handling multi-class problems with 
separate-and-conquer rule learning algorithms (aka 
covering algorithms). In particular, round robin 
binarization helps Ripper [29] outperform C5.0 on multi-
class problems, whereas C5.0 outperforms the original 
version of Ripper on the same problems.

6 Experimental results
In this section, we present the results of our experiments 
with several multi-class problems. The performance was 
measured on the problem of recognition of handwritten 
digits and letters.
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Here, we compare the results of the proposed SVM-
BDT method with the following methods:

1) one-against-all (OvA);
2) one-against-one (OvO);
3) DAGSVM;
4) BTS;
5) Bagging
6) Random Forests
7) Multilayer Perceptron (MLP, neural network)
The training and testing of the SVMs based methods 

(OvO, OvA, DAGSVM, BTS and SVM-BDT) was 
performed using a custom developed application that 
uses the Torch library [14]. For solving the partial 
binary classification problems, we used SVMs with
Gaussian kernel. In these methods, we had to optimize 
the values of the kernel parameter σ and penalty C. For 
parameter optimization we used experimental results.
The achieved parameter values for the given datasets are 
given in Table 1.

Table 1. The optimized values for σ and C for the used 
datasets.

MNIST Pendigit Optdigit Statlog

σ 2 60 25 1.1

C 100 100 100 100

We also developed an application that uses the same 
(Torch) library for the neural network classification. 
One hidden layer with 25 units was used by the neural 
network. The number of hidden units was determined
experimentally.

The classifications based on ensembles of decision 
trees [30] (Bagging and Random Forest) was performed 
by Clus, a popular decision tree learner based on the 
principles stated by Blockeel et al. [31]. There were 100 
models in the ensembles. The pruning method that we 
used was C4.5. The number of selected features in the 
Random Forest method was  M2log , where M is the 

number of features in the dataset.
The most important criterion in evaluating the 

performance of a classifier is usually its recognition rate, 
but very often the training and testing time of the 
classifier are equally important.

In our experiments, four different multi-class 
classification problems were addressed by each of the 
eight previously mentioned methods. The training and 
testing time and the recognition performance were 
recorded for every method.

The first problem was recognition of isolated 
handwritten digits (10 classes) from the MNIST 
database. The MNIST database [15] contains grayscale 
images of isolated handwritten digits. From each digit 
image, after performing a slant correction, 40 features 
were extracted. The features are consisted of 10 
horizontal, 8 vertical and 22 diagonal projections [25]. 
The MNIST database contains 60.000 training samples, 
and 10.000 testing samples.

The second and the third problem are 10 class 
problems from the UCI Repository [33] of machine 

learning databases: Optdigit and Pendigit. Pendigit has 
16 features, 7494 training samples, and 3498 testing 
samples. Optdigit has 64 features, 3823 training 
samples, and 1797 testing samples. 

The fourth problem was recognition of isolated 
handwritten letters – a 26-class problem from the 
Statlog collection [34]. Statlog-letter contains 15.000 
training samples, and 5.000 testing samples, where each 
sample is represented by 16 features.

The classifiers were trained using all available 
training samples of the set and were evaluated by 
recognizing all the test samples from the corresponding 
set. All tests were performed on a personal computer 
with an Intel Core2Duo processor at 1.86GHz with the
Windows XP operating system.

Tables 2 through 4 show the results of the 
experiments using 8 different approaches (5 approaches 
based on SVM, two based on ensembles of decision trees 
and one neural network) on each of the 4 data sets. The 
first column of each table describes the classification 
method. Table 2 gives the prediction error rate of each 
method applied on each of the datasets. Table 3 and table 
4 shows the testing and training time of each algorithm, 
for the datasets, measured in seconds, respectively.

The results in the tables show that SVM based 
methods outperform the other approaches, in terms of 
classification accuracy. In terms of speed, SVM based 
methods are faster, with different ratios for different 
datasets. In overall, the SVM based algorithms were
significantly better compared to the non SVM based 
methods.

The results in table 2 show that for all datasets, the 
one-against-all (OvA) method achieved the lowest error 
rate. For the MNIST, Pendigit and Optdigit datasets, the 
other SVM based methods (OvO, DAGSVM, BTS and 
our method - SVM-BDT) achieved higher, but similar 
error rates. For the recognition of handwritten letters 
from the Statlog database, the OvO and DAGSVM 
methods achieved very similar error rates that were about 
1.5% higher than the OvA method. The BTS method 
showed the lowest error rate of all methods using one-
against-one SVMs. Our SVM-BDT method achieved
better recognition rate than all the methods using one-
against-one SVMs, including BTS. Of the non SVM 
based methods, the Random Forest method achieved the 
best recognition accuracy for all datasets. The prediction 
performance of the MLP method was comparable to the 
Random Forest method for the 10-class problems, but 
noticeably worse for the 26-class problem.

The MLP method is the fastest one in terms of 
training and testing time, which is evident in Table 3 and 
Table 4. The classification methods based on ensembles 
of trees were the slowest in the training and the testing 
phase, especially the Bagging method. Overall, the 
Random Forest method was more accurate than the other 
non SVM based methods, while the MLP method was 
the fastest.

The results in Table 3 show that the DAGSVM 
method achieved the fastest testing time of all the SVM 
based methods for the MNIST dataset. For the other 
datasets, the testing time of DAGSVM is comparable 
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with BTS and SVM-BDT methods and their testing time 
is noticeably better than the one-against-all (OvA) and 
one-against-one (OvO) methods. The SVM-BDT method 
was faster in the recognition phase for the Pendigit 
dataset and slightly slower than DAGSVM method for 
the Statlog dataset.  

Table 2. The prediction error rate (%) of each method for 
every dataset

Classifier MNIST Pendigit Optdigit Statlog

OvA 1.93 1.70 1.17 3.20

OvO 2.43 1.94 1.55 4.72

DAGSVM 2.50 1.97 1.67 4.74

ВТЅ 2.24 1.94 1.51 4.70

SVM-BDT 2.45 1.94 1.61 4.54

R. Forest 3.92 3.72 3.18 4.98

Bagging 4.96 5.38 7.17 8.04

MLP 4.25 3.83 3.84 14.14

Table 3. Testing time of each method for every dataset
measured in seconds

Classifier MNIST Pendigit Optdigit Statlog

OvA 23.56 1.75 1.63 119.50

OvO 26.89 3.63 1.96 160.50

DAGSVM 9.46 0.55 0.68 12.50

ВТЅ 26.89 0.57 0.73 17.20

SVM-BDT 25.33 0.54 0.70 13.10

R. Forest 39.51 3.61 2.76 11.07

Bagging 34.52 2.13 1.70 9.76

MLP 2.12 0.49 0.41 1.10

Table 4. Training time of each method for every dataset
measured in seconds

Classifier MNIST Pendigit Optdigit Statlog

OvA 468.94 4.99 3.94 554.20

OvO 116.96 3.11 2.02 80.90

DAGSVM 116.96 3.11 2.02 80.90

ВТЅ 240.73 5.21 5.65 387.10

SVM-BDT 304.25 1.60 1.59 63.30

R. Forest 542.78 17.08 22.21 50.70

Bagging 3525.31 30.87 49.4 112.75

MLP 45.34 2.20 1.60 10.80

In terms of training speeds, it is evident in Table 4 
that among the SVM based methods, SVM-BDT is the 
fastest one in the training phase. For the three 10-class
problems the time needed to train the 10 classifiers for 
the OvA approach took about 4 times longer than 
training the 45 classifiers for the OvO and DAGSVM 
methods. Due to the huge number of training samples in 

the MNIST dataset (60000), SVM-BDT’s training time 
was longer compared to other one-against-one SVM
methods. The huge number of training samples increases 
the nonlinearity of the hyperplane in the SVM, resulting 
in an incresed number of support vectors and increased 
training time. Also, the delay exists only in the first level 
of the tree, where the entire training dataset is used for 
training. In the lower levels, the training time of divided 
subsets is not as significant as the first level’s delay.

In the other 10 class problems, our method achieved 
the shortest training time. For the Statlog dataset, the 
time needed for training of the 26 one-against-all SVMs 
was almost 7 times longer than the time for training the 
325 one-against-one SVMs. The BTS method is the 
slowest one in the training phase of the methods using
one-against-one SVMs. It must be noted that as the 
number of classes in the dataset increases, the advantage 
of SVM-BDT becomes more evident. The SVM-BDT 
method was the fastest while training, achieving better 
recognition rate than the methods using one-against-one 
SVMs. It was only slightly slower in recognition than 
DAGSVM.

7 Conclusion
A novel architecture of Support Vector Machine 
classifiers utilizing binary decision tree (SVM-BDT) for 
solving multiclass problems was presented. The SVM-
BDT architecture was designed to provide superior 
multi-class classification performance, utilizing a 
decision tree architecture that requires much less 
computation for deciding a class for an unknown sample. 
A clustering algorithm that utilizes distance measures at 
the kernel space is used to convert the multi-class 
problem into binary decision tree, in which the binary 
decisions are made by the SVMs. The results of the 
experiments show that the speed of training and testing 
are improved, while keeping comparable or offering 
better recognition rates than the other SVM multi-class 
methods. The experiments showed that this method 
becomes more favourable as the number of classes in the 
recognition problem increases.
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