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Abstract Instead of traditional (multi-class) learning approaches that assume label inde-
pendency, multi-label learning approaches must deal with the existing label dependencies
and relations. Many approaches try to model these dependencies in the process of learning
and integrate them in the final predictive model, without making a clear difference between
the learning process and the process of modeling the label dependencies. Also, the label
relations incorporated in the learned model are not directly visible and can not be (re)used
in conjunction with other learning approaches. In this paper, we investigate the use of label
hierarchies in multi-label classification, constructed in a data-driven manner. We first con-
sider flat label sets and construct label hierarchies from the label sets that appear in the
annotations of the training data by using a hierarchical clustering approach. The obtained
hierarchies are then used in conjunction with hierarchical multi-label classification (HMC)
approaches (two local model approaches for HMC, based on SVMs and PCTs, and two
global model approaches, based on PCTs for HMC and ensembles thereof). The experimen-
tal results reveal that the use of the data-derived label hierarchy can significantly improve
the performance of single predictive models in multi-label classification as compared to the
use of a flat label set, while this is not preserved for the ensemble models.
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1000 Ljubljana, Slovenia

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10844-016-0405-8-x&domain=pdf
mailto:gjorgji.madjarov@finki.ukim.mk
mailto:dejan.gjorgjevikj@finki.ukim.mk
mailto:ivica.dimitrovski@finki.ukim.mk
mailto:saso.dzeroski@ijs.si


J Intell Inf Syst

Keywords Multi-label · Hierarchical · Classification · Ranking · Learning

1 Introduction

Multi-label learning is concerned with learning from examples, where each example is asso-
ciated with multiple labels. For instance, a document can belong to multiple categories in
text categorization, a gene may be associated with multiple functions in bioinformatics,
an image may belong to multiple semantic categories in image classification etc. Instead
of traditional learning approaches that assume label independency and learn independent
mapping functions between the input space and the corresponding labels from the output
space, multi-label learning approaches should deal with the existing label dependencies and
relations.

In recent years, many different approaches have been developed for solving multi-label
problems (Zhang and Zhou 2014; Gibaja and Ventura 2015). Tsoumakas and Katakis (2007)
summarize them into two main categories: a) algorithm adaptation methods, and b) problem
transformation methods. Algorithm adaptation methods extend specific learning algorithms
to handle multi-label data directly. Problem transformation methods, on the other hand,
transform the multi-label classification problem into one or more single-label classification
problems (where each example is associated with a single label). Madjarov et al. (2012)
extend the categorization of multi-label methods with a third group of methods, namely,
ensemble methods. This group of methods consists of methods that use ensembles to make
multi-label predictions and their base classifiers belong to either problem transformation or
algorithm adaptation methods. Methods that belong to this group are RAkEL (Tsoumakas
and Vlahavas 2007), ensembles of classifier chains (ECC) (Read et al. 2009), ensembles
of Predictive Clustering Trees (Kocev et al. 2007; Kocev 2011), ensembles of multi-label
C4.5 trees (Clare and King 2001), Variable Pairwise Constraint projection for Multi-label
ensembles (Li et al. 2013), ensembles of Fading Random Trees (Kong and Yu 2011), etc.

In addition, Madjarov et al. (2012) presented an extensive experimental evaluation of the
most popular methods for multi-label learning using a wide range of evaluation measures
on a variety of datasets. The results reveal that the best performing methods over all eval-
uation measures are the ensemble method Random Forests of Predictive Clustering Trees
for Multi-target Classification (RF-PCTs for MTC) (Kocev 2011) and the single predictive
model Hierarchy Of Multi-label classifiERs (HOMER) (Tsoumakas et al. 2008), followed
by Binary Relevance (BR) (Tsoumakas and Katakis 2007), also a single predictive model.

BR decomposes the flat multi-label output space into n single-label output spaces (where
n is the total number of labels in the original multi-label learning problem). It builds one
classifier for each transformed output space, using all the examples labeled with the label
from that space as positive examples and all remaining examples as negative examples.
On the other hand, HOMER structures the flat multi-label output space into a tree-shaped
hierarchy first, and after that utilizes BR approach for solving the classification problems
defined in each node of the hierarchy. We believe that the better predictive performance of
HOMER as compared to BR comes as a result of the transformed output space that HOMER
is using while learning and during prediction.

As a consequence of this believe, Madjarov et al. (2015) investigated and evaluated the
utility of four different data-derived label hierarchies in the context of predictive clustering
trees for HMC in a global setting (Silla Carlos and Freitas 2011). The experimental results
show that the use of data-derived hierarchies results in improved predictive performance
and that more balanced hierarchies offer better representation of the label relationships.
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Multi-branch hierarchy (defined by balanced k-means clustering) outperforms binary hier-
archies (defined by agglomerative clustering with single and complete linkage and PCTs)
on datasets with higher number of labels used in the experiments.

This paper extends the aforementioned study on evaluation of different data-derived
label hierarchies in multi-label classification (Madjarov et al. 2015). We explore the use of
data-derived label hierarchies, constructed by using clustering approaches from the label
sets that appear in the annotations of the training examples. Firstly, we investigate the
utility of the data-derived hierarchies in the context of single predictive models. Four dif-
ferent types of single predictive models (Fig. 1) were constructed that correspond to: binary
classification, hierarchical single-label classification, multi-label classification and hierar-
chical multi-label classification. The first two approaches construct (an architecture of)
local predictive models, while the last two approaches construct global models. Secondly,
we evaluate and analyze the influence that the use of data-derived label hierarchies has on
ensemble approaches for HMC (in particular Random Forest ensemble method for MLC
and HMC in a local and a global setting). Finally, we investigate whether the conclusions
from the investigation on single models carry over to the ensemble models and whether it is
more beneficial to extract and use data-derived label hierarchies or just use the original, flat
organization of the labels in multi-label classification problems.

In order to answer to all of these questions we have compared:
1. The best performing problem transformation methods for MLC: the BR method

(Tsoumakas and Katakis 2007) and the HOMER method (Tsoumakas et al. 2008)
utilizing SVMs as a base classifiers,

Fig. 1 Schematic representation of the four different modeling tasks we consider to investigate how exploita-
tion of label hierarchy affects the performance. Single label classification a, builds a separate model for each
label, while hierarchical single label classification b, builds a separate model for each edge of the artificially
generated label hierarchy (each model is trained by using only data that is relevant to that edge). Both mod-
els build local classifier. Multi-label classification c and hierarchical multi-label classification d build one
global model which considers all the classes at once: the former approach (c) directly solves the flat multi-
label classification task, while the latter approach (d) exploits information about the artificially generated
label hierarchy
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2. Three different approaches based on PCTs (Blockeel et al. 1998), one for solving clas-
sical MLC problems (Kocev 2011) and two for solving HMC problems by using a local
and a global setting (Vens et al. 2008)), and

3. Ensembles of PCTs (Kocev 2011) for MLC (one of the best performing methods for
MLC (Madjarov et al. 2012)) and ensembles of PCTs for HMC (in a local and a global
setting).

The experimental evaluation is made on 11 benchmark multi-label datasets using 16
evaluation measures. The datasets come from five application domains: two from image
classification, one from gene function prediction, six from text classification, one from
music classification and one from video classification. The predictive performance of the
methods is assessed using six example-based measures, six label-based measures and four
ranking-based measures.

The remainder of this paper is organized as follows. Section 2 defines the tasks of
multi-label classification, multi-label ranking and hierarchical multi-label classification.
An overview of the base level algorithms for MLC and the approaches for HMC that are
experimentally compared in this work are given in Section 3 and Section 4. The general
use of data derived label hierarchies in multi-label classification is proposed in Section 5.
Section 6 describes the multi-label datasets, the evaluation measures and the experimen-
tal setup, while Section 7 presents and discusses the experimental results. Finally, the
conclusions and directions for further work are presented in Section 8.

2 The tasks of multi-label and hierarchical multi-label classification

In this section, we first define the task of multi-label learning and then the task of
hierarchical multi-label learning.

2.1 The task of multi-label classification (MLC)

Multi-label learning is concerned with learning from examples, where each example
is associated with multiple labels. These multiple labels belong to a predefined set of
labels. We can distinguish two types of tasks: multi-label classification and multi-label
ranking.

In the case of multi-label classification, the goal is to construct a predictive model that
will provide a list of relevant labels for a given, previously unseen example. On the other
hand, the task of multi-label ranking is understood as learning a model that associates with
a query example both a ranking of the complete label set and a bipartite partition of this set
into relevant and irrelevant labels (Brinker et al. 2006).

The task of multi-label learning is defined as follows (Kocev et al. 2013):

Given:

– An input space X that consists of vectors of values of primitive data types (nominal
or numeric), i.e., ∀xi ∈ X , xi = (xi1 , xi2 , ..., xiD ), 1 ≤ i ≤ N , where N is the
number of vectors in the input space and D is the size of the vector (or number of
descriptive attributes),

– an output space Y that is defined as Y = 2L, i.e. the set of subsets of finite set of
different labels L = {λ1, λ2, ..., λQ} (Q > 1 and Yi ⊆ L)
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– a set of examples E, where each example is a pair of a vector and a label set from the
input and output space respectively, i.e., E = {(xi,Yi)|xi ∈ X ,Yi ⊆ L, 1 ≤ i ≤ N}
where N is the number of examples of E (N = |E| = |X |), and

– a quality criterion q, which rewards models with high predictive performance and
low computational complexity.

If the task at hand is multi-label classification, then the goal is to

Find: a function h: X → 2L from the input space to the label power-set (which assigns
a set of labels to each example) such that h maximizes q.

On the other hand, if the task is multi-label ranking, then the goal is to

Find: a function f : X × L → R, such that f maximizes q, where R gives the ranking
for a given label and for a given example.R is a set of values on which a total strict order
exists, typically a set of real non-negative values which can be totally ordered.

An extensive bibliography of learning methods for solving multi-label learning problems
can be found in Madjarov et al. (2012), Zhang and Zhou (2014), and Gibaja and Ventura
(2015).

2.2 The task of hierarchical multi-label classification (HMC)

Hierarchical classification differs from the multi-label classification in the following: the
labels are organized in a hierarchy. An example that is labeled with a given label is auto-
matically labeled with all its ancestor-labels (this is known as the hierarchy constraint (Vens
et al. 2008)). Furthermore, an example can be labeled simultaneously with multiple labels
that can follow multiple paths from the root label. This task is called hierarchical multi-label
classification (HMC).

Here, the output space Y is defined with a label hierarchy (L, ≤h), where L is a
set of labels and ≤h is a partial order representing the ancestor-descendant relationship
(∀ λ1, λ2 ∈ L : λ1 ≤h λ2 if and only if λ1 is an ancestor of λ2) structured as a tree
(Kocev et al. 2013). Each example from the set of examples E is a pair of a vector and a
set from the input and output space respectively, where the set satisfies the hierarchy con-
straint, i.e., E = {(xi,Yi )|xi ∈ X ,Yi ⊆ L, λ ∈ Yi ⇒ ∀λ′ ≤h λ : λ′ ∈ Yi , 1 ≤ i ≤ N}
where N is the number of examples of E (N = |E|). The quality criterion q, rewards
models with high predictive performance and low complexity as in the task of multi-label
classification.

An extensive bibliography of learning methods for hierarchical classification scattered
across different application domains is given by Silla Carlos and Freitas (2011).

3 Algorithms for multi-label classification

In this section we give a detailed description of the algorithms for MLC that are used in the
experimental comparison in this work.

3.1 Binary relevance

The simplest strategy in the multi-label setting is the one-against-all strategy, also referred
to as the Binary Relevance (BR) method (Tsoumakas and Katakis 2007). It addresses the
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multi-label learning problem by learning one classifier for each label, using all the examples
labelled with that label as positive examples and all remaining examples as negative. When
making a prediction, each binary classifier predicts whether its label is relevant for the
given example or not, resulting in a set of relevant labels. In the ranking scenario, the labels
are ordered according to the probability associated to each label by the respective binary
classifier.

The most important and widely relevant advantage of BR is its low computational com-
plexity relative to other methods. It is theoretically simple and intuitive. Its assumption of
label independence makes it suited to contexts where new examples may not necessarily
be relevant to any known labels or where label relationships may change over the test data.
Given a constant number of examples, BR scales linearly with the size of the known label
set.

3.2 Predictive clustering trees

Predictive Clustering Trees (PCTs) (Blockeel et al. 1998)1 are a generalization of the deci-
sion tree approach (Breiman et al. 1984). They can be used for a variety of learning tasks
including different types of prediction and clustering. This includes both multi-target/multi-
label classification and hierarchical multi-label classification.

The PCT framework views a decision tree as a hierarchy of clusters. The top-node of
a PCT corresponds to one cluster containing all data, which is recursively partitioned into
smaller clusters while moving down the tree. The leaves represent the clusters at the lowest
level of the hierarchy and each leaf is labeled with its cluster’s prototype (prediction).

PCTs are built using greedy recursive top-down induction (TDI) algorithm, similar to
that of C4.5 (Quinlan 1993) or CART (Breiman et al. 1984). The learning algorithm starts
by selecting an attribute (feature) test for the root node. Based on this test, the training set
is partitioned into subsets according to the test outcome. This is recursively repeated to
construct the subtrees. The partitioning process stops when a stopping criterion is satisfied
(e.g., the number of instances in the induced subsets is smaller than some predefined value;
the length of the path from the root to the current subset exceeds some predefined value,
etc.). In that case, the prediction is calculated and stored in a leaf.

One of the most important steps in the TDI algorithm is the test selection procedure. For
each node, an attribute (test) is selected from the input space by using a heuristic function
computed on the training examples. The goal of the heuristic is to guide the algorithm
towards small trees with good predictive performance. The heuristic used in this algorithm
for selecting the attribute tests in the internal nodes is the reduction in variance caused by
partitioning the instances, where the variance V ar(E) is defined by (1) for multi-target
classification and (3) for hierarchical multi-label classification. Maximizing the variance
reduction maximizes cluster homogeneity and improves predictive performance.

3.2.1 PCTs for multi-target classification

Multi-target prediction (Kocev 2011) is concerned with learning from examples, where each
example is associated with multiple targets. If the targets are continuous variables then the
task is referred to as multi-target regression. If the targets are discrete variables, then we

1The PCT framework is implemented in the CLUS system, which is available at http://www.cs.kuleuven.be/
∼dtai/clus.

http://www.cs.kuleuven.be/~dtai/clus
http://www.cs.kuleuven.be/~dtai/clus
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have a task of multi-target classification. In the multi-label scenario, each discrete target
variable is a binary variable (it holds 1 if the corresponding label is relevant to the instance
and 0 otherwise).

For the task of predicting of discrete targets, the variance function V ar(E) is computed
as the sum of the Gini indices (Breiman et al. 1984) of the variables from the target vector,
i.e.,

V ar(E) =
T∑

i=1

Gini(E, �i) (1)

where T is the number of target attributes and �i is the i-th target attribute. Gini(E, �i) =
1 − ∑M

j=1 p2
j where pj is the fraction of records in E of the j -th class in the �i target

attribute and M is the number of classes in the same target attribute. The prototype function
returns a vector of probability distributions over the values for each discrete target. In the
case of multi-label learning, it returns a vector of probabilities that an example is labeled
with each of the labels from the original label set L. An example arriving in the leaf is
labeled with label λi if its corresponding probability from the vector of probabilities is above
some threshold τ (e.g. chosen by a domain expert).

3.2.2 Random forests of PCTs for MTC

In this subsection, we explain how PCTs for MTC are used in the context of an ensemble
classifier. An ensemble is a set of (base) classifiers. A new example is classified by the
ensemble by combining the predictions of the member classifiers. The predictions can be
combined by taking the average (for regression tasks), the majority vote (for classification
tasks) (Breiman 2001), or more complex combinations.

Averaging is applied to combine the predictions of the different trees. The leaf’s proto-
type is the proportion of examples of different classes that belong to it. As for the single
PCT, a threshold should be specified to make a prediction.

We consider the random forest ensemble learning technique that constructs different
classifiers by making different bootstrap samples (Breiman 1996) of the training set on one
hand, and by randomly changing the feature set during learning on the other hand. More
precisely, at each node in the decision tree, a random subset of the input attributes is taken,
and the best feature is selected from this subset (instead of the set of all attributes). The
number of attributes that are retained is given by a function f of the total number of input
attributes x (e.g., f (x) = x, f (x) = √

x, f (x) = ⌊
log2 x

⌋ + 1, ...).

4 The use of hierarchies in hierarchical multi-label classification

An extensive bibliography of learning methods for hierarchical classification scattered
across different application domains is given by Silla Carlos and Freitas (2011). Based on
the existing literature, they propose a unifying framework for hierarchical classification,
including a taxonomy of hierarchical classification problems and methods, and clarify the
similarities and differences between a number of types of problems and methods. They also
present a conceptual comparison of these types of problems and methods at a high level of
abstraction, discussing their advantages and disadvantages.

One of the dimensions along which the hierarchical classification methods differ is the
way of using (exploring) the hierarchical label structure in the learning and prediction
phases. Silla Carlos and Freitas (2011) reviewed three different approaches: the top-down
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(or local) approach that uses local information to create a set of local classifiers; the global
(or big-bang) approach, where a single classifier coping with the entire class hierarchy is
learned; or the flat approach, that ignores the class relationships, typically building models
that predict only the leaf nodes.

4.1 Local approaches for solving HMC problems

In the task of hierarchical multi-label classification, there are three different types of local
approaches that can be used (Silla Carlos and Freitas 2011): Local classifiers per level,
local classifiers per node, and local classifiers per parent node. The local classifiers per
level approach constructs one classifier for each level of the hierarchy. The local classi-
fiers per node approach constructs a classifier for each node from the hierarchy, except the
root. There are several policies for selecting the positive and negative examples that can be
used to train the local classifiers. The local classifiers per parent node approach constructs
a classifier for each non-leaf node from the hierarchy. A multi-label classifier for each par-
ent node is learned, e.g. by transforming the MLC problem by using the binary relevance
scheme and learning binary classifiers for each child node in the hierarchy.

4.1.1 Architectures of PCTs and random forests of PCTs for hierarchical classification

Vens et al. (2008) investigated the performance of the local classifiers per node and per par-
ent node approaches over a large collection of (native) hierarchical multi-label datasets from
functional genomics. The conclusion of the study was that the last approach (called hierar-
chical single-label classification - HSC) performs better in terms of predictive performance,
smaller total model size and faster induction times.

We will keep the notation HSC here, but would like to emphasize that this approach per-
forms hierarchical multi-label classification and not hierarchical single-label classification
as the term suggests.

The approach of Predictive Clustering Trees for Hierarchical Single-label Classification
(PCTs for HSC) by Vens et al. (2008), constructs a decision tree classifier for each edge
(connecting a label λwith its direct parent label parent(λ))2 in the hierarchy, thus creating an
architecture of classifiers. The corresponding tree predicts membership to label λ, using the
instances that belong to parent(λ). The construction of this type of tree uses few instances:
only instances labeled with parent(λ) are used for training. The instances labeled with label
λ are positive instances, while the ones that are labeled with parent(λ), but not with λ are
negative. The resulting tree predicts the conditional probability P(λ|parent(λ)), where for
the top-level labels, all training examples are used.

To make predictions for a new instance, PCTs for HSC use the product rule P(λ) =
P(λ|parent(λ)) · P(parent(λ)) (for non top-level labels). This rule applies the trees
recursively for each node (label) of the hierarchy, starting from the tree for a top-level label.

Kocev (2011) extends the approach of Vens et al. (2008) of using PCTs for HSC by apply-
ing ensembles as local classifiers at each branch, instead of single decision trees (PCTs).
The method of Random Forests of PCTs for HSC (RF-PCTs for HSC) constructs a random

2We use the term parent(λ) for the direct parent label (the label at the previous level that is directly connected
to λ) and the term ancestor for all parent labels from the root of the hierarchy to the parent(λ) (including
parent(λ)).
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forest ensembles of PCTs for each edge (connecting a label λ with its direct parent label
parent(λ)) in the hierarchy, thus creating an architecture of ensembles. All other settings for
this method are the same as for the PCTs for HSC. We will refer to the two approaches as
HSC architectures of PCTs and ensembles of PCTs.

4.1.2 The hierarchy architecture of SVM classifiers in HOMER

The approach taken by HOMER is to use local classifiers for solving HMC tasks. After
learning a hierarchy on the flat label space by applying an unsupervised (clustering)
approach to the label part of the data, HOMER constructs a hierarchical architecture of
SVM classifiers that follows the hierarchy on the label space. In each internal node of the
hierarchy, a BR architecture of binary SVMs is created. Since the BR architecture contains
one SVM for each descendant label of the internal node, this architecture is the same as the
HSC architecture, the only difference being that PCTs for binary classification are used in
PCTS for HSC and SVMs for binary classification are used in HOMER.

In the hierarchy (tree) on the label space used by HOMER, the leaves represent the labels
of the original MLC problem, while each internal node m contains the union of the label
sets of its children (i.e., the meta-label μm). In the learning phase, a training example is con-
sidered annotated with a meta-label μm, if it is annotated with at least one of the (original)
labels from μm. An example hierarchy of labels and classifiers produced by HOMER for a
multi-label classification task with 8 labels is given in Fig. 2.

In the prediction phase, HOMER starts from the root and follows a recursive process
forwarding the test instance x to the child node m only if μm is among the predictions of
the multi-label classifier. The union of the predicted labels in the leaves of the tree are the
relevant labels for an instance x. For example, let’s say that according to the predictions
obtained by the multi-label classifiers in the nodes of the tree from Fig. 2 the labels μ1, μ2,
λ3, μ5 and λ5 were assigned to an example x. Only the leaf labels λ3 and λ5 are declared as
relevant labels for that example x.

Fig. 2 An example of label hierarchy defined over the flat label space of the emotions dataset by using
balanced k-means clustering method where k is set to 2 (λi - original label, μi - artificially defined meta-
label)
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While the prediction phase of HOMER is similar to that of PCTs for HSC, there is
an important difference. HOMER only forwards a testing instance to the child nodes that
correspond to the meta-labels predicted to be relevant for the instance. As a consequence,
no probability (and ranking) is produced for the original labels that belong to meta-labels
predicted to be irrelevant.

4.2 Global approaches for solving HMC problems

Although the problem of hierarchical multi-label classification can be tackled by the local
approaches, learning a single global model for all labels (in the hierarchy) can have some
advantages (Kocev 2011). The total size of the global classification model is typically
smaller as compared to the total size of all the local models learned by any of the local clas-
sifier approaches. Also, in the global classifier approach, a single classification model is
built from the training set, taking into account the label hierarchy and relationships. During
the test phase, each test example is classified using the induced model, in a process that can
assign labels to a test example at potentially every level of the hierarchy.

4.2.1 PCTs and random forests of PCTs for hierarchical multi-label classification

To apply PCTs to the task of HMC, the example labels are represented as vectors with
Boolean components. The components in the vector correspond to the labels in the hierarchy
traversed in a depth-first manner. The k-th component of the vector is 1 (vk = 1) if the
example is labeled with label λk and 0 otherwise. If vk = 1, then vj = 1 for all vj ’s on the
path from the root to vk .

The variance of a set of examples E is defined as the average squared distance between
each example’s label vector vi and the mean label vector v̄ of the set, i.e.,

v̄ = 1

|E|
|E|∑

i=1

vi (2)

V ar(E) = 1

|E|
∑

ei∈E

d(vi, v̄)2 (3)

where each component of v̄ is the proportion of examples v̄k in the leaf that are labeled with
label λk .

The higher levels of the hierarchy are more important: an error at the upper levels costs
more than an error at the lower levels. Considering this, a weighted Euclidean distance is
used (4):

d(v1, v2) =
√√√√

|v|∑

k

w(λk)(v1k
− v2k

)2 (4)

where vik is the k’th component of the class vector vi of the instance ei, and w(λk) are
the class weights. The class weights decrease with the depth of the class in the hierarchy,
w(λk) = w0 · w(λj ), where λj is the parent of λk .

Each leaf in the tree stores the mean v̄ of the vectors of the examples that are sorted into
that leaf. An example arriving in the leaf can be labeled with label λk if v̄k is above some
threshold tk (that can be chosen by a domain expert).
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Random forests of PCTs for HMC are considered in the same manner as the random for-
est of PCTs for MTC. In the case of HMC the ensemble is a set of PCTs for HMC. A new
example is classified by the ensemble by combining the predictions of the member classi-
fiers by taking the majority vote (Breiman 2001). Like in PCTs for HMC, the predictions of
the random forest ensemble of PCTs for HMC satisfy the hierarchy constraint (an example
that is labeled with a given label is automatically labeled with all its ancestor-labels).

5 The use of data derived label hierarchies in multi-label classification

In this study we investigate the use of label hierarchies, constructed in a data-driven manner
in conjunction with HMC approaches (local and global) (Silla Carlos and Freitas 2011) and
ensemble methods capable for solving HMC classification problems.

In particular, we derive label hierarchies considering the label sets that appear in the
annotations of the training examples from the original (flat) classification problem. In this
way, we first structure the label co-occurrence relationships that exist hidden in the output
space of the multi-label classification problems in a hierarchy and after that, use that (data-
derived) hierarchy to map the original classification problem into a hierarchical multi-label
one. This artificially generated hierarchical multi-label classification problem could be con-
sidered as a separate (newly defined) hierarchical multi-label classification task and it could
be tackled by global (big-bang) (Madjarov et al. 2015) or local approaches (Silla Carlos and
Freitas 2011) for HMC.

An example hierarchy of labels generated by using the balanced k-means cluster-
ing method from the emotions multi-label classification task (used in the experimental
evaluation) is given in Fig. 2. The original label space of the emotions dataset has six
labels {λ1, λ2, . . . , λ6} and each example from the dataset originally is labeled with one
or more labels. Table 1 shows five examples from the emotions dataset with their orig-
inal labels (third column - original labels) and the corresponding hierarchical labels
(fourth column - hierarchical labels) obtained by using the label hierarchy from Fig. 2
(HL = {μ1, μ2, μ3, μ4, μ5, λ1, λ2, λ3, λ4, λ5, λ6}). Each example in the transformed,
HMC dataset is actually labeled with multiple paths of the hierarchy, defined from the root
to the leaves (represented by the relevant labels for the corresponding example in the original
MLC dataset).

Table 1 Five examples from the emotions dataset with their original labels and the corresponding
hierarchical labels obtained by using the label hierarchy from Fig. 2

Example Features Original labels sets Hierarchical labels set

(F1, F2,..., FD)

x1 x11, x12, ..., x1D {λ1} {μ1, μ2, μ4,λ1}
x2 x21, x22, ..., x2D {λ3,λ5} {μ1, μ2, μ3, μ5,λ3,λ5}
x3 x31, x32, ..., x3D {λ6} {μ1, μ3, μ5,λ6}
x4 x41, x42, ..., x4D {λ1,λ6} {μ1, μ2, μ3, μ4, μ5,λ1,λ6}
x5 x51, x52, ..., x5D {λ1,λ2,λ6} {μ1, μ2, μ3, μ4, μ5,λ1,λ2,λ6}
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5.1 Generating a label hierarchy on a multi-label output space

There exist many possible ways to structure the output space of a flat MLC problem.
This process is critical for the good performance of the HMC methods on the transformed
problems. One can use classical hierarchical clustering algorithms, such as hierarchical
agglomerative and divisive clustering, some partitioning algorithms employed at each node
of the hierarchy, or graph-based clustering approaches (Madjarov et al. 2015).

When we build the hierarchy over the label space, there is only one constraint that we
should take care of: the original MLC task should be defined by the leaves of the label
hierarchy. In particular, the labels from the original MLC problem represent the leaves of the
tree hierarchy (Fig. 2), while the labels that represent the internal nodes of the tree hierarchy
are so-called meta-labels (that model the correlation among the original labels).

In this work, we employ the approach of balanced k-means proposed by Tsoumakas
et al. (2008) for deriving the hierarchy on the output space of the (original) MLC prob-
lem. It showed best performance in comparison between four different approaches that was
recently made by Madjarov et al. (2015). In that comparison, only global approaches for
HMC were considered.

The balanced k-means clustering approach extends the well-known k-means algorithm
with an explicit constraint on the size of each cluster. The algorithm consider only the label
dataWn of the examples at the current node n of the hierarchy.Wn = [wij ], where the value
of wij (i = 1...|En| and j = 1...|Ln|) is 1 if the i-th example of En is labeled with the label
λj ∈ Ln and 0 otherwise. En is the set of examples that belong to the node n and Ln ⊆ L
is the set of labels considered in the node n (for the top level node - root node Ln = L). For
example, for the node of the hierarchy on Fig. 2, corresponding to the meta-label μ3 only
the label data from λ4, λ5 and λ6 is considered.

For the node n, the algorithm accepts as input the set of labels Ln, the label data Wn of
the examples that belong to that node, the number of partitions (clusters) k and the number
of iterations it . It outputs k disjoint subsets of Ln with approximately equal sizes. Figure 3
shows the balanced k-means algorithm in pseudo-code.

The distance between the label λj (λj ∈ Ln, j = 1...|Ln|) and the r-th cluster center cr

(out of k) within the labels data Wn in the n-th node is calculated by (5).

distance(λj , cr ,Wn) =
√√√√

|En|∑

i=1

(cri − wij )
2 (5)

5.2 Solving MLC problems by using global approaches for HMC

Figure 4 gives the pseudo-code of the general scenario for solving a MLC problem by using
data-derived label hierarchies and global approaches for HMC. The scenario first defines
the hierarchy, then solves the HMC problem by using a global approach for HMC. It finally
transforms the HMC predictions PH of the global model into a flat MLC representation.

Etrain and Etest are the training and testing examples, whileWtrain is only the label part
(label data) of the training set. Using the label hierarchy derived from the label data,Wtrain

is transformed into new hierarchically organized label dataWtrain
H . Etrain

H and Etest
H are the

corresponding hierarchical multi-label datasets obtained by transforming the original (flat)
multi-label datasets (Etrain and Etest ) into hierarchical form.

PH are the predictions for the examples of the hierarchical multi-label dataset Etest
H ,

while P are the predictions for the original labels. PH are represented as vectors of proba-
bilities (one vector for one example), where each probability is associated to only one label
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Fig. 3 Balanced k-Means

from the hierarchy (meta-label representing an internal node or original label representing a
leaf). In the context of global approaches for HMC, predictions P in the original multi-label
scenario can be obtained by using different approaches for transforming the hierarchical

Fig. 4 The general scenario for solving flat MLC problems by using local/global approaches for HMC: Line
10 is used for the local approaches, and line 11 for the global ones
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multi-label predictions PH . In this work, we propose the simplest approach: only the prob-
abilities for the leaves from the hierarchical predictions PH are evaluated, while the other
probabilities (for the meta-labels) are simply ignored.

5.3 Solving MLC problems by using local approaches for HMC

After the transformation of the original MLC problem into a HMC one, the new HMC
problem can be also solved by a hierarchical multi-label local learning approach. There are
different ways of using local information to create local classifiers, and although most of
them are referred to as top-down in the literature, they are very different during the training
phase and slightly different in the test phase.

Only line 10 of the pseudo-code in Table 4 needs to be changed (with line 11) to obtain
an algorithm for solving MLC problems by using data-derived label hierarchies with local
approaches for HMC. The algorithm still defines the label hierarchy first and then solves the
HMC problem by using a local approach for HMC. It also extracts the predictions for the
leaves of the hierarchy (that are actually the predictions for the original labels) and evaluates
the performance (instead of the global one).

6 Experimental design

In this section, we present the experimental design used to compare the methods for flat
MLC and for MLC via HMC. In particular, we compare:

– The BR method and the HOMER method (BR as a flat MLC approach and HOMER
as MLC via local HMC approach, both of them using SVM architectures as base
classifiers);

– PCTs for multi-target classification (as flat MLC approach), HSC architectures of PCTs
for binary classification (as a MLC via local HMC approach) and PCTs for HMC (as a
MLC via global HSC approach).

We also compare ensembles of PCTs in the same settings as the single trees:

– ensembles of PCTs for multi-target classification with HSC architectures of ensembles
of PCTs for binary classification and

– ensembles of PCTs for HMC (the latter two based on the artificially defined label
hierarchy).

We first briefly describe the benchmark multi-label datasets. We then give a short
overview of the evaluation measures typically applied to asses the predictive performance
of methods for multi-label learning. Next, we present the specific setup and the instantia-
tion of the parameters for the compared multi-label learning methods. Finally, we present
the procedure for statistical evaluation of the experimental results.

6.1 Datasets

We use eleven multi-label classification benchmark problems used in previous studies and
evaluations of methods for multi-label learning. We include benchmark datasets of different
size and from different application domains. Table 2 presents the basic statistics of the
datasets. We can note that the datasets vary in size from 391 to 60000 training examples,
from 202 to 27856 testing examples, from 72 to 2150 features, from 6 to 983 labels, and
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Table 2 Description of the benchmark problems in terms of application domain (domain), number of train-
ing (#tr.e.) and test (#t.e.) examples, number of features (D), total number of labels (Q) and label cardinality
(lc)

domain #tr.e. #t.e. D Q lc

emotions multimedia 391 202 72 6 1.87

scene multimedia 1211 1159 294 6 1.07

yeast biology 1500 917 103 14 4.24

medical text 645 333 1449 45 1.25

enron text 1123 579 1001 53 3.38

corel5k multimedia 4500 500 499 374 3.52

tmc2007 text 21519 7077 500 22 2.16

mediamill multimedia 30993 12914 120 101 4.38

bibtex text 4880 2515 1836 159 2.40

delicious text 12920 3185 500 983 19.02

bookmarks text 60000 27856 2150 208 2.03

The problems are ordered by their overall complexity roughly calculated as #tr.e. × D × Q

from 1.07 to 19.02 labels per example on average (i.e., label cardinality (Tsoumakas and
Katakis 2007)). The datasets come pre-divided into training and testing parts as used by
other researchers. In our experiments, we use these partitions in their original format. The
training part usually comprises around 2/3 of the complete dataset, while the testing part
consists of the remaining 1/3 of the dataset.

The datasets come from three domains: biology, multimedia and text categorization.
From the biological domain, we have the yeast dataset (Elisseeff and Weston 2005). It
is a widely used dataset, where genes are instances in the dataset and each gene can be
associated with 14 biological functions (labels).

The datasets that belong to the multimedia domain are: emotions (Trohidis et al. 2008),
scene (Boutell et al. 2004), corel5k (Duygulu et al. 2002) andmediamill (Snoek et al. 2006).
The domain of text categorization is represented with 6 datasets: medical (Read et al. 2009),
enron (Klimt and Yang 2004), tmc2007 (Srivastava and Zane-Ulman 2005), bibtex (Katakis
et al. 2008), delicious (Tsoumakas et al. 2008) and bookmarks (Katakis et al. 2008).

6.2 Evaluation measures

Performance evaluation for multi-label learning systems differs from that of classical single-
label learning systems. In any multi-label experiment, it is essential to include multiple
and contrasting measures because of the additional degrees of freedom that the multi-label
setting introduces. In our experiments, we used various evaluation measures that have been
suggested by Tsoumakas and Katakis (2007).

In particular, we used six example-based evaluation measures (Hamming loss, accuracy,
precision, recall, F1 score and subset accuracy) and six label-based evaluation measures
(micro precision, micro recall, micro F1, macro precision, macro recall and macro F1).
Note that these evaluation measures require predictions stating that a given label is present
or not (binary 1/0 predictions). However, most predictive models predict a numerical value
for each label and the label is predicted as present if that numerical value exceeds some pre-
defined threshold τ . The performance of the predictive model thus directly depends on the
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selection of an appropriate value of τ . To this end, we applied a threshold calibration method
by choosing the threshold (6) that minimizes the difference in label cardinality between the
training data and the predictions for the test data (Read et al. 2009).

τ = argmin
τ∈0.00,0.05,...,1.00

|LabelCard(Etrain) − LabelCard(Hτ (E
test ))| (6)

where Etrain is the training set and a classifier Hτ has made predictions for test set Etest

under threshold τ . We do not use the output space of the test set while calculating the
threshold.

Also, we used four ranking-based evaluation measures (one-error, coverage, ranking
loss and average precision) that compare the predicted ranking of the labels with the ground
truth ranking. A detailed description of the evaluation measures is given in the Appendix A.

6.3 Experimental setup

The comparison of the multi-label learning methods was performed using the MULAN 3

library for the machine learning framework WEKA (Hall et al. 2009) and CLUS4 system
for predictive clustering. TheMULAN library was used for BR and HOMER, and the CLUS
system for the PCTs based methods. All experiments were performed on a server with an
Intel Xeon processor at 2.50GHz and 64GB of RAM with the Fedora 14 operating system.
In the remainder of this section, we first state the base classifiers that were used for the
HOMER and the BR methods and then the parameter instantiations of all methods.

HOMER uses Support Vector Machines (SVM) as base classifiers for solving the partial
binary classification problems. Binary Relevance classifier is used as a multi-label classifier
in the internal nodes of the HOMER. For training the SVMs, we used the implementation
from the LIBSVM library (Chang and Lin 2001). In particular, we used SVMs with a radial
basis kernel.

The kernel parameter gamma and the penalty C were determined for each dataset
by 10-fold cross validation using only the training sets. The values 2−15, 2−13, ..., 21, 23

were considered for gamma and 2−5, 2−3, ..., 213, 215 for the penalty C. For tuning the
parameters we have used the Hamming loss evaluation measure. After determining the best
parameters values on each dataset, the classifiers were trained using all available train-
ing examples and were evaluated by recognizing all test examples from the corresponding
dataset.

The same settings (experimental design and setup) were used for the global BR approach.
For the single PCT approaches (PCTs for multi-target classification - MTC, HSC archi-
tecture of binary classifiers and PCTs for HMC) we used the default settings of CLUS.
The ensemble methods PCTs for multi-target classification, PCTs for hierarchical single-
label learning and PCTs for hierarchical multi-label learning learn 100 models as suggested
by Bauer and Kohavi (1999). For the size of the feature subsets needed for construction of
the base classifiers for the ensembles we selected f (x) = �0.1 · |x| + 1� as recommended
by Kocev (2011). The weight parameter w0 for all PCTs based approaches for solving HMC
problems is set to 0.75.

HOMER, HSC and the HMCmethods require one additional parameter to be configured:
the number of clusters k for the balanced k-means clustering algorithm. For this parameter,

3http://mulan.sourceforge.net/
4http://clus.sourceforge.net

http://mulan.sourceforge.net/
http://clus.sourceforge.net


J Intell Inf Syst

five different values (2–6) were considered for HOMER in the cross-validation (Tsoumakas
et al. 2008). After determining the best value of k on every dataset (via cross-validation
on the training dataset), HOMER was trained using all available training examples and
was evaluated by recognizing all test examples from the corresponding dataset. The same
hierarchies (the same values for k obtained for HOMER) were used for the HSC and HMC
methods. The values of the parameter k are 3 for most of the datasets, 2 for the emotions
dataset, 5 for the yeast dataset, and 4 for the enron and delicious datasets.

To investigate the utility of the data-derived hierarchy we perform pairwise comparison
between the methods that use the hierarchy and their counterparts that do not use the hier-
archy. In each of the comparisons the performance is compared in terms of the 16 different
performance measures. To assess whether the difference in performance are statistically
significant, we have employed the non-parametric Wilcoxon test for statistical significance
(Demšar 2006).

7 Results and discussion

In this section, we present the results from the experimental evaluation. Table 3 shows the
values for the statistical significance level (p) of the difference (as measured by the non-
parametric Wilcoxon test for statistical significance) between the methods that use the data-
defined label hierarchy and the methods that don’t. In particular, the following pairs of
methods are compared:

– BR and HOMER
– PCTs for multi-target classification (labeled as MTC) and hierarchical architecture of

binary PCTs (labeled as HSC)
– PCTs for multi-target classification (labeled as MTC) and PCTs for hierarchical multi-

label classification (labeled as HMC)
– Random forests of PCTs for multi-target classification (labeled as RFMTC) and HSC

architectures of random forests of PCTs for hierarchical classification (labeled as
RFHSC)

– Random forests of PCTs for multi-target classification (labeled as RFMTC) and random
forests of PCTs for hierarchical multi-label classification (labeled as RFHMC)

In this experimental evaluation, we did not include the BR approach that use single PCTs
and ensembles of PTCs (in particular, Random Forest of PCTs) as base classifiers. This
decision was made as a result of a recent experimental evaluation (Levatić et al. 2014)
in which the authors show that the predictive performance of this combination (denoted
as single-label classification) is clearly the worst for single predictive models, and only
comparable to the other methods for ensembles.

The first column of the table lists the evaluation measures, while the other two columns
show the values of the significance level p. The sign ‘>’ in the 3rd, 6th, 9th, 12th and 15th
columns indicates that the first method (out of the two compared methods in the correspond-
ing pairwise comparison) is better than the second method, while the sign ‘<’ indicates that
the second method is better than the first method. The difference between the methods’ per-
formance is statistically significant if the value of the significance level (p) is lower than
0.05. These values are shown in boldface.

The results clearly show that the methods that use the data-derived hierarchies outper-
form the methods that do not use those hierarchies. The methods that use the data-derived
hierarchies have 31 significant wins against only 3 significant wins of the methods that
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do not use the hierarchies. Both, local and global approaches show similar improvements
which are more pronounced on single models than ensembles.

Inspecting Table 3 (BR vs HOMER), we note that HOMER performs better than BR
on example-based and label-based measures overall (8 wins vs 4 losses, 5 significant wins
vs. 1 significant loss). It performs better on all recall-based measures, F1-based measures,
accuracy and subset accuracy and worse on Hamming loss and precision-based measures.
HOMER is significantly better on recall, micro recall, F1 score, micro F1 and accuracy,
and worse on macro precision.

Moving on to the results for comparing single PCTs that use and don’t use the data-
derived hierarchies (MTC vs HSC and MTC vs HMC), we can immediately see that both
(local and global) single PCTs models that use the hierarchies perform consistently better
than single PCTs for MTC (that don’t use the hierarchies). The HSC architectures perform
better on 14 evaluation measures (significantly on 10) and worse (but not significantly) on
2. PCTs for HMC beat PCTs for MTC even more convincingly, performing better on all but
one evaluation measure: In terms of significant wins, the score is 13:0.

Finally, the comparisons RFMTC vs RFHSC and RFMTC vs RFHMC concern the use
of the label hierarchy in the context of learning PCT ensembles (Random Forest of PCTs),
both HSC architectures of binary PCT ensembles and ensembles of PCTs for HMC. As a
baseline, we use ensembles (RFs) of PCTs for MTC. The HSC architecture actually per-
forms slightly worse than RFs of PCTs for MTC (the significant wins score is 0:2). RFs
of PCTs for HMC, however, perform better than RFs of PCTs for MTC (better on 12 and
worse on 4 evaluation measures, significant wins score 3:0). It is obvious that the differ-
ence in the predictive performance is not emphasized as for the single models. Much larger
improvements of performance are hard to achieve, given that RFs of PCTs for MTC were
the best performing approach from a recent comparative study (Madjarov et al. 2012) (that
did not use a label hierarchy).

The results in our research reveal that, if we have a very strong classifier and it can
exploit in deep the label relationships, it will always produce good predictive performance.
But, by using the label relationships (in particular, represented by data-derived hierarchies)
as an additional input to the classifiers, we can improve (and not decrease) the predic-
tive performance. In our work, this is emphasized especially for the single decision trees
(which are not powerful classifiers, but very important because of their knowledge extrac-
tion and representation capabilities) and less emphasized for the ensembles and SVM-based
methods.

In the Appendix A, we have also shown the average ranking diagrams depicting the
relative performance of the 8 methods considered in the experiments: BR, HOMER, PCTs
for MTC, HSC of PCTs, PCTs for HMC, RFs of PCTs for MTC, HSC of RFs of PCTs, RFs
of PCTs for HMC. These indicate that HOMER performs best on recall-related measures
(incl. recall, micro recall and macro recall), micro F1, macro F1, and accuracy. RFs for
HMC, on the other hand, perform best on precision and ranking-related measures (incl.
micro precision and macro precision, Hamming loss, subset accuracy, ranking loss, one-
error, coverage and average precision).

A more detailed analysis of the results, looking at the performance figures of each meth-
ods for individual datasets (given in Appendix B) provides additional insight. The methods
that use the data-derived hierarchy (both local and global approaches for HMC), generally
show better performance on datasets with a large number of labels. Also, the analysis show
that for the datasets with a large number of labels, many labels have only few examples (the
labels space is sparse) and the data-derived hierarchy reduces the sparsity of the label space.
We believe that this is the main reason that the balanced k-means approach works better
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Fig. 5 Visualization of the hierarchies of the tmc2007 and enron datasets and the number of examples in
the nodes of the hierarchies represented by the size of the circles. Circles of the original labels are annotated,
while the circles that represent the meta-labels are not annotated

than the hierarchical agglomerative clustering methods (work presented by Madjarov et al.
2015). In particular, balanced k-means tries to create more balanced clusters in terms of the
number of labels and their co-occurrence in the partial classification problems defined in
each node of the tree. That means that the number of examples in a particular node among
the different labels is similar and the new (hierarchical) classification problem is more bal-
anced in comparison to the classification problem defined by the original (flat) organization
of the labels. Figures 5a, b visualize the hierarchies of the tmc2007 and enron datasets and
the number of examples in each node of the hierarchy. The size of the circles corresponds
to the number of the examples in the training set labeled with a particular label. Circles
of the original labels are annotated, while the circles that represent the meta-labels are not
annotated.
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8 Conclusions and further work

In this paper, we have investigated the use of label hierarchies, constructed in a data-driven
manner, in multi-label classification. We consider flat label-sets and construct label hier-
archies from the label sets that appear in the annotations of the training data by using a
hierarchical clustering approaches based on balanced k-means clustering. The hierarchies
are then used in conjunction with hierarchical multi-label classification approaches (in a
global and a local setting) in the hope of achieving better multi-label classification.

While the use of hierarchies constructed in this manner has been proposed a few years
ago, it has only been considered in conjunction with a local model approach to HMC
(Tsoumakas et al. 2008). In particular, a binary relevance hierarchical MLC architecture
based on SVMs has been considered and evaluated on two datasets in the light of a few per-
formance measures. We conduct a much more thorough study, investigating the utility of
the hierarchy in the context of two local and two global model approaches to HMC, on a
large collection of datasets, through the prism of a large number of performance measures.

In particular, we investigate the utility of the hierarchy in the context of two hierarchical
architectures that use binary relevance classifier based on SVMs and decision trees (pre-
dictive clustering trees for binary classification), and the global model approaches of PCTs
for HMC and ensembles thereof. The experimental results clearly show that the use of the
hierarchy results in improved performance.

The performance is improved both in the context of local approaches and the context
of global approaches for HMC. For the local approaches, the performance is improved
when using a binary relevance architecture with SVMs (significantly better performance
along 5 measures). It results in even more obvious improvements for a binary rel-
evance architecture with decision trees (PCTs, significantly better performance along
10 measures).

In the context of global approaches, the label hierarchy used in PCTs for HMC greatly
improves the performance of PCTs for multi-target classification (as used for MLC): The
results show improvement in performance on 15 of the 16 measures considered, signifi-
cantly for 13 measures (and insignificantly worse on one measure). For ensembles (RFs) of
PCTs, the use of the hierarchy improves performance along 12 of the 16 measures, but the
difference is significant for only 3 measures. However, note that RFs of PCTs perform very
well already even without the hierarchy, being the best performing method among many
MLC methods considered in a recent extensive experimental comparison.

We also believe that the use of the label hierarchies can lead to better understanding of
the learned predictive models, but we have to investigate this in our further work. Addi-
tionally, we plan to extend this study by comparison of hierarchies constructed by humans
and hierarchies generated in a data-driven fashion. For HMC problems, we can consider
the MLC task defined by the leaves of the provided label hierarchy. We can then con-
struct label hierarchies automatically, as described above, and compare these hierarchies
(and their utility) to the originally provided label hierarchy. Also, some other types of
structures (such as DAG, DMOZ hierarchy and etc.) could be considered for capturing
the dependencies and relations between the labels of the original multi-label classification
problems.
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ICT-2013-612944).
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Appendix A: Evaluation measures

In this section, we present the measures that are used to evaluate the predictive performance
of the compared methods in our experiments. In the definitions below, Yi denotes the set of
true labels of example xi and h(xi) denotes the set of predicted labels for the same examples.
All definitions refer to the multi-label setting.

A.1 Example based measures

Hamming loss evaluates how many times an example-label pair is misclassified, i.e., label
not belonging to the example is predicted or a label belonging to the example is not
predicted. The smaller the value of hamming loss(h), the better the performance. The
performance is perfect when hamming loss(h) = 0. This metric is defined as:

hamming loss(h) = 1

N

N∑

i=1

1

Q
|h(xi)�Yi | (7)

where� stands for the symmetric difference between two sets,N is the number of examples
and Q is the total number of possible class labels.

Accuracy for a single example xi is defined by the Jaccard similarity coefficients
between the label sets h(xi) and Yi . Accuracy is micro-averaged across all examples.

accuracy(h) = 1

N

N∑

i=1

∣∣h(xi)
⋂Yi

∣∣
∣∣h(xi)

⋃Yi

∣∣ (8)

Precision is defined as:

precision(h) = 1

N

N∑

i=1

∣∣h(xi)
⋂Yi

∣∣
|h(xi)| (9)

Recall is defined as:

recall(h) = 1

N

N∑

i=1

∣∣h(xi)
⋂Yi

∣∣
|Yi | (10)

F1 score is the harmonic mean between precision and recall and is defined as:

F1 = 1

N

N∑

i=1

2 × |h(xi) ∩ Yi |
|h(xi)| + |Yi | (11)

F1 is an example based metric and its value is an average over all examples in the dataset.
F1 reaches its best value at 1 and worst score at 0.

Subset accuracy or classification accuracy is defined as follows:

subset accuracy(h) = 1

N

N∑

i=1

I (h(xi) = Yi ) (12)

where I (true) = 1 and I (f alse) = 0. This is a very strict evaluation measure as it requires
the predicted set of labels to be an exact match of the true set of labels.



J Intell Inf Syst

A.2 Label based measures

Macro precision (precision averaged across all labels) is defined as:

macro precision = 1

Q

Q∑

j=1

tpj

tpj + fpj

(13)

where tpj , fpj are the number of true positives and false positives for the label λj

considered as a binary class.
Macro recall (recall averaged across all labels) is defined as:

macro recall = 1

Q

Q∑

j=1

tpj

tpj + f nj

(14)

where tpj , fpj are defined as for the macro precision and f nj is the number of false
negatives for the label λj considered as a binary class.

Macro F1 is the harmonic mean between precision and recall, where the average is
calculated per label and then averaged across all labels. If pj and rj are the precision and
recall for all λj ∈ h(xi) from λj ∈ Yi , the macro F1 is

macro F1 = 1

Q

Q∑

j=1

2 × pj × rj

pj + rj
(15)

Micro precision (precision averaged over all the example/label pairs) is defined as:

micro precision =
∑Q

j=1 tpj

∑Q
j=1 tpj + ∑Q

j=1 fpj

(16)

where tpj , fpj are defined as for macro precision.
Micro recall (recall averaged over all the example/label pairs) is defined as:

micro recall =
∑Q

j=1 tpj

∑Q
j=1 tpj + ∑Q

j=1 f nj

(17)

where tpj and f nj are defined as for macro recall.
Micro F1 is the harmonic mean between micro precision and micro recall. Micro F1 is

defined as:

micro F1 = 2 × micro precision × micro recall

micro precision + micro recall
(18)

A.3 Ranking based measures

One error evaluates how many times the top-ranked label is not in the set of relevant labels
of the example. The metric one error(f ) takes values between 0 and 1. The smaller the
value of one error(f ), the better the performance. This evaluation metric is defined as:

one error(f ) = 1

N

N∑

i=1

[[ [
argmax

λ∈Y f (xi, λ)

]
/∈ Yi

]]
(19)

where λ ∈ L = {
λ1, λ2, ..., λQ

}
and [[π ]] equals 1 if π holds and 0 otherwise for any

predicate π . Note that, for single-label classification problems, the One Error is identical to
ordinary classification error.
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Coverage evaluates how far, on average, we need to go down the list of ranked labels in
order to cover all the relevant labels of the example. The smaller the value of coverage(f ),
the better the performance.

coverage(f ) = 1

N

N∑

i=1

max
λ∈Yi

rankf (xi, λ) − 1 (20)

where rankf (xi, λ) denotes the position of the label λ in the ranking. It maps the out-
puts of f (xi, λ) for any λ ∈ L to

{
λ1, λ2, ..., λQ

}
so that f (xi, λm) > f (xi, λn) implies

rankf (xi, λm) < rankf (xi, λn). The smallest possible value for coverage(f ) is lc, i.e., the
label cardinality of the given dataset.

Ranking loss evaluates the average fraction of label pairs that are reversely ordered for
the particular example given by:

ranking loss(f ) = 1

N

N∑

i=1

|Di |
|Yi |

∣∣∣Ȳi

∣∣∣
(21)

where Di = {(λm, λn)|f (xi, λm) ≤ f (xi, λn), (λm, λn) ∈ Yi × Ȳi}, while Ȳ denotes the
complementary set of Y in L. The smaller the value of ranking loss(f ), the better the
performance, so the performance is perfect when ranking loss(f ) = 0.

Average Precision is the average fraction of labels ranked above an actual label λ ∈ Yi

that actually are in Yi . The performance is perfect when avg precision(f ) = 1; the larger
the value of avg precision(f ), the better the performance. This metric is defined as:

avg precision(f ) = 1

N

N∑

i=1

1

|Yi |
∑

λ∈Yi

|Li |
rankf (xi, λ)

(22)

where Li = {λ′|rankf (xi, λ′) ≤ rankf (xi, λ), λ′ ∈ Yi} and rankf (xi, λ) is defined as in
coverage above.

Appendix B: Complete results from the experimental evaluation

In this section, we present the complete results from the experimental evaluation. We present
the results based on the evaluation measures. Tables 4, 5, 6, 7 and 8 give the performance of
the compared methods on each of the datasets measured in terms of the example based, label
based and ranking based evaluation measures. The first column of the tables lists the dataset,
while the remaining columns show the performance of each method for every dataset. The
best results per dataset are shown in boldface. For the bookmarks dataset, HOMER did not
manage to construct a predictive model within one week under the available resources. The
corresponding entries in the tables with the results are marked with DNF (Did Not Finish).

To assess whether the overall differences in performance across the different approaches
are statistically significant, we also employed the corrected Friedman test (Friedman 1940)
and the post-hoc Nemenyi test (Nemenyi 1963) as recommended by Demšar (2006). We
present the results from the Nemenyi post-hoc test with average rank diagrams (Demšar
2006). These are given in Figs. 6, 7 and 8. A critical diagram contains an enumerated axis
on which the average ranks of the algorithms are drawn. The algorithms are depicted along
the axis in such a manner that the best ranking ones are at the right-most side of the diagram.
The lines for the average ranks of the algorithms that do not differ significantly (at the
significance level of p=0.05) are connected with a line. For the bookmarks dataset, we
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penalize HOMER that does not finish by assigning it the lowest value (i.e., the lowest rank
value) for each evaluation measure.

B.1 Results on the example-based evaluation measures

Table 4 The performance of the multi-label classification approaches in terms of the examples-based
evaluation measures

BR HOMER MTP HSC HMC RFMTP RFHSC RFHMC

Hamming loss

emotions 0.257 0.361 0.267 0.257 0.274 0.189 0.192 0.189

scene 0.079 0.082 0.129 0.161 0.142 0.094 0.097 0.08

yeast 0.19 0.207 0.219 0.276 0.216 0.197 0.198 0.195

medical 0.077 0.012 0.023 0.013 0.014 0.014 0.015 0.012

enron 0.045 0.051 0.058 0.055 0.052 0.046 0.046 0.046

corel5k 0.017 0.012 0.009 0.01 0.009 0.009 0.009 0.009

tmc2007 0.013 0.015 0.075 0.059 0.067 0.011 0.027 0.015

mediamill 0.032 0.038 0.034 0.043 0.033 0.029 0.03 0.029

bibtex 0.012 0.014 0.014 0.015 0.013 0.013 0.013 0.012

delicious 0.018 0.022 0.019 0.018 0.018 0.018 0.018 0.018

bookmarks DNF DNF 0.009 0.01 0.009 0.009 0.009 0.008

accuracy

emotions 0.361 0.471 0.448 0.441 0.419 0.519 0.535 0.52

scene 0.689 0.717 0.538 0.449 0.523 0.541 0.508 0.555

yeast 0.52 0.559 0.44 0.401 0.469 0.478 0.491 0.475

medical 0.206 0.713 0.228 0.639 0.665 0.591 0.538 0.715

enron 0.446 0.478 0.196 0.415 0.37 0.416 0.431 0.426

corel5k 0.03 0.179 0 0.058 0.021 0.009 0.021 0.023

tmc2007 0.891 0.888 0.436 0.562 0.515 0.914 0.785 0.916

mediamill 0.403 0.413 0.354 0.349 0.386 0.441 0.431 0.437

bibtex 0.348 0.33 0.046 0.243 0.254 0.166 0.197 0.256

delicious 0.136 0.207 0.001 0.129 0.118 0.146 0.125 0.138

bookmarks DNF DNF 0.133 0.223 0.205 0.204 0.195 0.209

precision

emotions 0.55 0.509 0.577 0.533 0.587 0.644 0.672 0.637

scene 0.718 0.746 0.565 0.463 0.547 0.565 0.533 0.555

yeast 0.722 0.663 0.705 0.553 0.68 0.744 0.73 0.747

medical 0.211 0.762 0.285 0.685 0.721 0.635 0.572 0.731

enron 0.703 0.616 0.415 0.616 0.61 0.709 0.71 0.713

corel5k 0.042 0.317 0 0.162 0.061 0.03 0.074 0.071

tmc2007 0.941 0.926 0.659 0.731 0.688 0.977 0.923 0.966

mediamill 0.731 0.597 0.694 0.524 0.716 0.772 0.767 0.774

bibtex 0.515 0.472 0.14 0.368 0.404 0.292 0.347 0.423

delicious 0.443 0.369 0.001 0.44 0.429 0.512 0.528 0.512

bookmarks DNF DNF 0.133 0.261 0.224 0.218 0.209 0.225
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Table 5 The performance of the multi-label classification approaches in terms of the examples-based
evaluation measures

BR HOMER MTP HSC HMC RFMTP RFHSC RFHMC

recall

emotions 0.409 0.775 0.534 0.594 0.501 0.582 0.618 0.588

scene 0.711 0.744 0.539 0.536 0.538 0.541 0.511 0.623

yeast 0.591 0.714 0.49 0.557 0.549 0.523 0.548 0.645

medical 0.735 0.76 0.228 0.671 0.692 0.599 0.549 0.69

enron 0.497 0.61 0.229 0.511 0.412 0.452 0.477 0.54

corel5k 0.055 0.25 0 0.066 0.022 0.009 0.021 0.024

tmc2007 0.928 0.943 0.478 0.661 0.604 0.92 0.811 0.885

mediamill 0.45 0.563 0.379 0.489 0.427 0.476 0.465 0.488

bibtex 0.373 0.389 0.046 0.29 0.271 0.167 0.199 0.26

delicious 0.155 0.303 0.001 0.15 0.132 0.16 0.134 0.171

bookmarks DNF DNF 0.137 0.24 0.211 0.208 0.199 0.214

F1 score

emotions 0.469 0.614 0.554 0.562 0.54 0.611 0.644 0.612

scene 0.714 0.745 0.552 0.497 0.542 0.553 0.522 0.587

yeast 0.65 0.687 0.578 0.555 0.607 0.614 0.626 0.692

medical 0.328 0.761 0.253 0.678 0.706 0.616 0.56 0.71

enron 0.582 0.613 0.295 0.558 0.492 0.552 0.57 0.615

corel5k 0.047 0.28 0 0.093 0.032 0.014 0.032 0.036

tmc2007 0.934 0.934 0.554 0.694 0.643 0.948 0.863 0.924

mediamill 0.557 0.579 0.49 0.506 0.535 0.589 0.579 0.599

bibtex 0.433 0.426 0.069 0.324 0.324 0.212 0.253 0.322

delicious 0.23 0.343 0.001 0.224 0.201 0.244 0.214 0.256

bookmarks DNF DNF 0.135 0.25 0.217 0.213 0.204 0.219

subset accuracy

emotions 0.129 0.163 0.223 0.173 0.144 0.307 0.287 0.308

scene 0.639 0.661 0.509 0.356 0.483 0.518 0.482 0.508

yeast 0.19 0.213 0.153 0.074 0.138 0.152 0.161 0.182

medical 0 0.61 0.177 0.562 0.58 0.538 0.492 0.622

enron 0.149 0.145 0.002 0.112 0.097 0.131 0.121 0.136

corel5k 0 0.002 0 0 0.002 0 0 0

tmc2007 0.772 0.765 0.215 0.28 0.253 0.816 0.588 0.748

mediamill 0.08 0.053 0.065 0.056 0.082 0.122 0.113 0.128

bibtex 0.194 0.165 0.004 0.113 0.144 0.098 0.115 0.165

delicious 0.004 0.001 0.001 0.003 0.007 0.007 0.005 0.007

bookmarks DNF DNF 0.129 0.187 0.188 0.189 0.181 0.193
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Fig. 6 The critical diagrams for the example-based evaluation measures: The results from the Nemenyi
post-hoc test at 0.05 significance level on all the datasets

B.2 Results on the label-based evaluation measures

The big difference between the micro-based and macro-based evaluation measures appears
due to the averaging strategy of the obtained predictions. It is more emphasized on the
large datasets that have highly unbalanced number of examples per label. Namely, the
averaging in the micro-based measures is made across the predictions per example for
all labels, while the averaging in the macro-based measures is made across the predic-
tions per label for all examples, which means that for macro-based measures the labels
with small number of examples are equally important as the labels with large number
of examples.
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Table 6 The performance of the multi-label classification approaches in terms of the label-based evaluation
measures

BR HOMER MTP HSC HMC RFMTP RFHSC RFHMC

micro precision

emotions 0.684 0.471 0.607 0.61 0.602 0.783 0.749 0.785

scene 0.843 0.804 0.692 0.56 0.63 0.93 0.935 0.932

yeast 0.733 0.647 0.699 0.546 0.68 0.755 0.737 0.749

medical 0.225 0.807 0.826 0.828 0.812 0.885 0.89 0.895

enron 0.721 0.597 0.602 0.582 0.646 0.738 0.726 0.74

corel5k 0.061 0.308 0 0.298 0.52 0.696 0.578 0.699

tmc2007 0.947 0.922 0.689 0.751 0.704 0.992 0.949 0.987

mediamill 0.742 0.569 0.743 0.502 0.733 0.798 0.8 0.8

bibtex 0.753 0.547 1 0.55 0.733 0.957 0.932 0.912

delicious 0.658 0.396 0 0.579 0.621 0.695 0.714 0.709

bookmarks DNF DNF 0.947 0.502 0.776 0.895 0.912 0.885

micro recall

emotions 0.406 0.782 0.539 0.604 0.496 0.589 0.627 0.569

scene 0.694 0.727 0.521 0.523 0.527 0.523 0.497 0.514

yeast 0.587 0.702 0.492 0.544 0.545 0.521 0.542 0.525

medical 0.725 0.742 0.227 0.658 0.66 0.569 0.524 0.651

enron 0.464 0.585 0.247 0.473 0.386 0.422 0.445 0.431

corel5k 0.057 0.248 0 0.067 0.022 0.009 0.021 0.024

tmc2007 0.917 0.932 0.454 0.62 0.563 0.902 0.771 0.896

mediamill 0.415 0.537 0.351 0.459 0.393 0.435 0.422 0.427

bibtex 0.328 0.353 0.057 0.259 0.227 0.131 0.155 0.203

delicious 0.143 0.297 0 0.141 0.12 0.151 0.127 0.14

bookmarks DNF DNF 0.076 0.171 0.139 0.136 0.127 0.139

micro F1

emotions 0.509 0.588 0.571 0.607 0.544 0.672 0.682 0.66

scene 0.761 0.764 0.594 0.541 0.574 0.669 0.649 0.663

yeast 0.652 0.673 0.577 0.545 0.605 0.617 0.625 0.617

medical 0.343 0.773 0.356 0.733 0.728 0.693 0.66 0.754

enron 0.564 0.591 0.35 0.522 0.483 0.537 0.552 0.545

corel5k 0.059 0.275 0 0.11 0.042 0.018 0.041 0.046

tmc2007 0.932 0.927 0.547 0.679 0.625 0.945 0.851 0.939

mediamill 0.533 0.553 0.477 0.48 0.512 0.563 0.552 0.557

bibtex 0.457 0.429 0.108 0.352 0.347 0.23 0.265 0.332

delicious 0.234 0.339 0 0.226 0.201 0.248 0.215 0.234

bookmarks DNF DNF 0.141 0.256 0.236 0.236 0.222 0.24
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Table 7 The performance of the multi-label classification approaches in terms of the label-based evaluation
measures

BR HOMER MTP HSC HMC RFMTP RFHSC RFHMC

macro precision

emotions 0.721 0.464 0.628 0.613 0.644 0.802 0.767 0.801

scene 0.844 0.807 0.682 0.569 0.629 0.919 0.928 0.911

yeast 0.628 0.471 0.479 0.388 0.445 0.674 0.587 0.58

medical 0.399 0.287 0.018 0.359 0.306 0.269 0.281 0.272

enron 0.258 0.241 0.023 0.19 0.101 0.233 0.214 0.246

corel5k 0.052 0.044 0 0.027 0.016 0.015 0.002 0.028

tmc2007 0.972 0.954 0.386 0.742 0.735 0.997 0.945 0.995

mediamill 0.112 0.107 0.04 0.161 0.217 0.441 0.306 0.455

bibtex 0.528 0.391 0.006 0.296 0.286 0.127 0.201 0.324

delicious 0.299 0.154 0 0.148 0.162 0.293 0.177 0.252

bookmarks DNF DNF 0.018 0.234 0.299 0.522 0.395 0.496

macro recall

emotions 0.378 0.775 0.533 0.603 0.499 0.569 0.616 0.55

scene 0.703 0.734 0.529 0.524 0.538 0.533 0.504 0.525

yeast 0.355 0.466 0.269 0.389 0.308 0.286 0.301 0.285

medical 0.423 0.282 0.022 0.267 0.254 0.176 0.167 0.218

enron 0.12 0.163 0.03 0.135 0.077 0.1 0.091 0.104

corel5k 0.023 0.041 0 0.01 0.004 0.002 0.001 0.004

tmc2007 0.915 0.897 0.235 0.441 0.341 0.769 0.516 0.678

mediamill 0.049 0.074 0.029 0.125 0.054 0.08 0.051 0.081

bibtex 0.25 0.247 0.006 0.174 0.144 0.043 0.056 0.104

delicious 0.072 0.103 0 0.055 0.049 0.06 0.039 0.049

bookmarks DNF DNF 0.016 0.095 0.071 0.072 0.056 0.071

macro F1

emotions 0.44 0.57 0.568 0.608 0.522 0.65 0.666 0.628

scene 0.765 0.768 0.592 0.545 0.578 0.658 0.64 0.648

yeast 0.392 0.447 0.293 0.388 0.327 0.322 0.326 0.321

medical 0.361 0.282 0.02 0.29 0.27 0.207 0.198 0.237

enron 0.143 0.167 0.026 0.147 0.082 0.122 0.106 0.127

corel5k 0.021 0.036 0 0.013 0.006 0.004 0.001 0.007

tmc2007 0.942 0.924 0.263 0.521 0.409 0.857 0.619 0.78

mediamill 0.056 0.073 0.031 0.133 0.07 0.112 0.067 0.115

bibtex 0.307 0.266 0.006 0.202 0.172 0.055 0.072 0.134

delicious 0.096 0.103 0 0.069 0.062 0.083 0.054 0.068

bookmarks DNF DNF 0.017 0.123 0.097 0.101 0.077 0.099
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Fig. 7 The critical diagrams for the label-based evaluation measures: The results from the Nemenyi post-hoc
test at 0.05 significance level on all the datasets

B.3 Results on the ranking-based evaluation measures

Fig. 8 The critical diagrams for the ranking-based evaluation measures: The results from the Nemenyi post-
hoc test at 0.05 significance level on all the datasets
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Table 8 The performance of the multi-label classification approaches in terms of the ranking-based
evaluation measures

BR MTP HSC HMC RFMTP RFHSC RFHMC

one error

emotions 0.386 0.386 0.366 0.391 0.262 0.277 0.272

scene 0.18 0.389 0.386 0.413 0.21 0.211 0.225

yeast 0.236 0.264 0.309 0.256 0.248 0.244 0.239

medical 0.135 0.613 0.192 0.213 0.174 0.144 0.15

enron 0.237 0.392 0.302 0.28 0.221 0.223 0.219

corel5k 0.66 0.777 0.752 0.71 0.608 0.684 0.686

tmc2007 0.029 0.307 0.175 0.246 0.006 0.039 0.011

mediamill 0.188 0.22 0.233 0.197 0.159 0.162 0.162

bibtex 0.346 0.783 0.449 0.454 0.433 0.375 0.375

delicious 0.354 0.592 0.39 0.386 0.332 0.317 0.328

bookmarks DNF 0.817 0.628 0.651 0.541 0.526 0.534

coverage

emotions 2 2.356 2.134 2.223 1.827 1.851 1.866

scene 0.399 0.964 0.849 1.117 0.461 0.457 0.495

yeast 6.33 6.706 7.228 6.749 6.179 6.189 6.177

medical 1.61 5.381 2.177 3.408 1.619 1.919 1.402

enron 12.53 14.922 14.323 13.193 12.074 11.261 11.668

corel5k 104.8 115.676 142.99 114.792 107.412 98.118 101.93

tmc2007 1.311 4.572 2.248 3.349 1.219 1.397 1.235

mediamill 20.481 20.456 22.872 19.41 16.926 16.265 16.824

bibtex 20.926 58.6 30.359 38.224 25.854 17.759 20.87

delicious 530.126 691.622 577.478 548.007 504.999 463.272 488.441

bookmarks DNF 73.78 47.692 50.456 34.185 26.928 34.122

ranking loss

emotions 0.246 0.27 0.219 0.247 0.151 0.156 0.163

scene 0.06 0.174 0.149 0.202 0.072 0.071 0.079

yeast 0.164 0.2 0.228 0.196 0.167 0.166 0.165

medical 0.021 0.104 0.036 0.054 0.024 0.029 0.019

enron 0.084 0.114 0.099 0.094 0.079 0.072 0.077

corel5k 0.117 0.139 0.169 0.132 0.117 0.109 0.114

tmc2007 0.003 0.1 0.032 0.066 0.006 0.006 0.001

mediamill 0.061 0.063 0.075 0.058 0.047 0.045 0.047

bibtex 0.068 0.256 0.105 0.147 0.093 0.058 0.072

delicious 0.114 0.172 0.13 0.121 0.106 0.095 0.102

bookmarks DNF 0.258 0.153 0.169 0.104 0.081 0.103

avg. precision

emotions 0.721 0.713 0.753 0.731 0.812 0.805 0.805

scene 0.893 0.75 0.762 0.728 0.874 0.874 0.864

yeast 0.768 0.725 0.689 0.73 0.757 0.758 0.76
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Table 8 (continued)

BR MTP HSC HMC RFMTP RFHSC RFHMC

medical 0.896 0.522 0.847 0.801 0.868 0.876 0.887

enron 0.693 0.547 0.635 0.642 0.698 0.709 0.7

corel5k 0.303 0.208 0.21 0.253 0.334 0.306 0.313

tmc2007 0.978 0.7 0.848 0.774 0.996 0.965 0.992

mediamill 0.686 0.654 0.632 0.684 0.737 0.734 0.735
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