
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/281271265

Feature Ranking Based on Information Gain for Large Classification Problems

with MapReduce

Conference Paper · August 2015

DOI: 10.1109/Trustcom.2015.580

CITATIONS

23
READS

393

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Crime Map of Macedonia View project

AAL technologies View project

Eftim Zdravevski

Ss. Cyril and Methodius University in Skopje

152 PUBLICATIONS 1,260 CITATIONS

SEE PROFILE

Petre Lameski

Ss. Cyril and Methodius University in Skopje

99 PUBLICATIONS 848 CITATIONS

SEE PROFILE

Andrea Kulakov

Ss. Cyril and Methodius University in Skopje

82 PUBLICATIONS 724 CITATIONS

SEE PROFILE

Sonja Filiposka

Ss. Cyril and Methodius University in Skopje

135 PUBLICATIONS 709 CITATIONS

SEE PROFILE

All content following this page was uploaded by Eftim Zdravevski on 26 August 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/281271265_Feature_Ranking_Based_on_Information_Gain_for_Large_Classification_Problems_with_MapReduce?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/281271265_Feature_Ranking_Based_on_Information_Gain_for_Large_Classification_Problems_with_MapReduce?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Crime-Map-of-Macedonia?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/AAL-technologies?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eftim-Zdravevski?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eftim-Zdravevski?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eftim-Zdravevski?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Petre-Lameski?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Petre-Lameski?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Petre-Lameski?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Kulakov?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Kulakov?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Kulakov?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sonja-Filiposka?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sonja-Filiposka?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sonja-Filiposka?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eftim-Zdravevski?enrichId=rgreq-3ac05baea5b1f4241621104cbcf6cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI4MTI3MTI2NTtBUzoyNjY2ODMyMTQ0NjI5NzhAMTQ0MDU5MzY0MTcwMA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Feature ranking based on information gain for large
classification problems with MapReduce

Eftim Zdravevski
Faculty of Computer Science and Engineering

Ss.Cyril and Methodius University, Skopje, Macedonia
Email: eftim.zdravevski@finki.ukim.mk

Petre Lameski
Faculty of Computer Science and Engineering

Ss.Cyril and Methodius University, Skopje, Macedonia
Email: petre.lameski@finki.ukim.mk

Andrea Kulakov
Faculty of Computer Science and Engineering

Ss.Cyril and Methodius University, Skopje, Macedonia
Email: andrea.kulakov@finki.ukim.mk

Sonja Filiposka
Faculty of Computer Science and Engineering

Ss.Cyril and Methodius University, Skopje, Macedonia
Email: sonja.filiposka@finki.ukim.mk

Dimitar Trajanov
Faculty of Computer Science and Engineering

Ss.Cyril and Methodius University, Skopje, Macedonia
Email: dimitar.trajanov@finki.ukim.mk

Boro Jakimovski
Faculty of Computer Science and Engineering

Ss.Cyril and Methodius University, Skopje, Macedonia
Email: boro.jakimovski@finki.ukim.mk

Abstract—In this paper we propose a parallel implementation
of the algorithm for computation of information gain with the
services of the Hadoop ecosystem: MapReduce, HDFS, HBase
and Yarn (MapReduce). The proposed implementation can be
used for ranking features of large datasets and furthermore for
feature selection. We use the Cloudera distribution of Hadoop
and Pig Latin with Python user-defined functions. We have
tested the implementation for ranking features of the FedCSIS
AAIA’14 dataset. The presented results show the speed-up of the
parallelization compared to a one-node cluster. To demonstrate
the portability of the implementation we present results using an
on-premises and Amazon AWS clusters.

Keywords—Hadoop, MapReduce, information gain, paralleliza-
tion, feature ranking

I. INTRODUCTION

IN the recent years companies, organizations and govern-
ments collect, process and analyze enormous volumes of

data. For most of them the data is not only generated from
their normal work, rather it a prerequisite for their success. As
a result many companies have followed different ideas on how
cope with the Big Data challenge. One idea was to scale-up
hardware so it has more processing power that can handles
the larger volumes of data, and it has proven to work up to
a certain point. However, after this point is reached, this idea
can not work. That lead to the other idea of distributing the
computation and data storage to clusters. Even though this is
not so new idea in general, it was not until about ten years that
it started to gain popularity. Inspired by Google’s approach
described in the 2004 MapReduce [1] and 2006 Big Table
[2], many other companies and open-source projects followed
similar pathways developing different distributed systems. One
of the most popular such systems is Apache Hadoop. It is

This work was partially financed by the Faculty of Computer Science and
Engineering at the Ss.Cyril and Methodius University, Skopje, Macedonia

open-source software that contains a set of algorithms for
distributed processing, scheduling and storage of large datasets
on computer clusters. It is well established framework and
Hadoop Wiki [3] lists some of its prominent users like Yahoo,
Facebook, Ebay, Adobe etc.

The available data can be automatically analyzed using
machine learning in order to derive various conclusions, make
predictions for unseen data, find patterns within the data etc.
Many learning algorithms such as decision trees [4], neural
networks [5], Naive Bayes [6, 7] and many others notably
experience degrading performance when the datasets contain
redundant or irrelevant features. Be that as it may, other
algorithms like Support Vector Machines can successfully
overcome the redundant features, but this comes at a cost.
Namely, if the number of redundant or relevant features is
large, it can lead to enormous increase of the computational
time to the extent that the algorithm can no longer run in rea-
sonable time. This phenomenon is confirmed with theoretical
and empirical evidence in plenty of research papers, some of
which are [8], [9] and [10]. The problem of feature selection
[11, 9, 12] can be defined as the task of selection of subset
features that describe the hypothesis at least as well as the
original set. In [13] are given guidelines for feature selection
and are introduced the most widely used methods.

The rest of this paper is organized as follows. In the
following subsection I-A we describe the services in the
Hadoop ecosystem and in subsection I-B we review how
information gain can be used for feature selection. Then
in section II we propose a MapReduce implementation for
computing information gain, and in section III we present
the obtained results. Finally, in section IV we present the
conclusion from our work and our plans for further research.

A. Hadoop

The MapReduce programming paradigm [1, 14] is essen-
tial to the distributed computation and storage that Hadoop
achieves. It consists of two phases: map and reduce. The first
phase, map, threats the data processing problems as embarrass-
ingly parallel by splitting the data into distinct subsets that can
be processed in parallel. The reduce phase is second and final
aggregates the output from the map phase and produces the
final result. In other words, the map procedure can perform
variety of operations like: reading, projecting, filtering and
sorting data. The output from this phase is an intermediate
result usually comprised of a list of keys and values. These
are mandatory for the reduce phase. Hadoop makes sure that
the output gets to the reduce procedures in proper order so
it can perform some summary or aggregate operation. Even
though the MapReduce model is fairly restricted, its simplicity
is making it very suitable and efficient for extremely large-
scale implementations across thousands of nodes.

Hadoop with its different services schedules, distributes, or-
chestrates and monitors communications, data transfers, while
providing redundancy and fault tolerance. There are many
services (i.e. subsystems) in Hadoop that aid accomplishing
the previous goals, but three of them are most notable: YARN
(MapReduce2), HDFS and HBase [15] [16].

The fundamental idea of YARN (i.e. Yet Another Resource
Negotiator) [17] is to take care of resource management and
job scheduling/monitoring, by splitting these responsibilities
into separate daemons: a global ResourceManager and per-
application ApplicationMaster. The ResourceManager is the
ultimate authority that arbitrates resources among all the appli-
cations in the system. The per-application ApplicationMaster
is responsible for negotiating resources from the Resource-
Manager and working with the NodeManagers to execute
and monitor the component tasks. In other words, YARN is
responsible for allocating resources to the MapReduce jobs,
distributing them to the most appropriate nodes, etc.

Hadoop Distributed File System (HDFS) [18] is a file
system that provides scalable, fault-tolerant, distributed stor-
age system that works closely with MapReduce which was
designed to span large clusters of commodity servers. The
combined resources of the servers within the cluster can
easily grow with the demand. An HDFS cluster is comprised
of a NameNode which manages the cluster metadata and
DataNodes that store the data. The file content is split into
large blocks (typically 128 megabytes), and each block of the
file is independently replicated at multiple DataNodes. The
blocks are stored on the local file system on the DataNodes.

HBase is an open source, non-relational, distributed
database modeled after Google’s BigTable. It runs on top of
HDFS (Hadoop Distributed Filesystem), providing BigTable-
like capabilities for Hadoop [19, 20, 21]. In other words,
it provides a fault-tolerant way of storing large quantities of
sparse data. HBase is a NoSQL (Not Only SQL) database
and is not a direct replacement for a classic Relational SQL
databases. Unlike traditional databases where normalization
of data and splitting it into related tables is the substance
of the design, designing HBase tables takes a different ap-
proach which analyzes the usage patterns. Motivations for
this approach include simplicity of design, horizontal scaling,

and finer control over availability. The data structures used
by NoSQL databases, including HBase, differ from those
used in relational databases, making some operations faster in
NoSQL and others faster in relational databases. The particular
suitability of a given NoSQL database depends on the problem
it must solve. Tables in HBase can serve as the input and
output for MapReduce jobs run in Hadoop. In the parlance of
Eric Brewers CAP theorem, HBase is a CP type system (i.e.
Consistent and Partition tolerant) [22].

Because of its simplicity the MapReduce programming
model has become popular. By some users this model is
preferred over the traditional SQL which is a high-level
declarative approach. Be that as it may, the extreme sim-
plicity of MapReduce leads to much low-level hacking to
deal with the many-step, branching dataflows that arise in
practice. Furthermore, users must repeatedly code standard
operations such as join by hand. These practices increase
development time, introduce bugs, harm readability, and may
obstruct optimizations [23]. A group at Yahoo motivated by
these repeatable tasks on daily basis, has developed a scripting
language called Pig Latin. Pig is a high-level dataflow system
that is a compromise between SQL and MapReduce. Pig
offers constructs for data manipulation similar to SQL, which
can be integrated in an explicit dataflow. Pig programs are
compiled into sequences of MapReduce jobs, and executed in
the Hadoop MapReduce environment [24].

B. Information gain for feature selection

Feature selection is a phase that is performed prior training
a machine learning algorithm. There are two approaches for
feature selection: filter and wrapper approach. The filtering
approaches rank the features based on some metric. These
methods are generally characterized by simplicity, scalability
and solid empirical background. Because they rely on rela-
tively simple metrics, they are memory and computationally
efficient and can be applied on datasets with tens or even hun-
dreds of thousands of features. Filter methods are independent
of the machine learning algorithm that is going to be applied
later on. They can further be categorized into two groups. The
first group consists of methods that rank the features based on
some measure of their individual predictive power: information
value [25], information gain [26, 27, 28, 29], information
gain ratio [28, 29], RELIEF [30, 31], entropy [32] etc. The
second type of filter approaches consists of methods which
analyze the subset of features based on some metric that
describes the performance of the whole subset and not only
the individual features [33]. Namely, the correlation-based
approaches described in [34] and [35] fall into this type of
methods. Important to realize is that they search for subsets
of features that have low inter-correlation between them and
high correlation to the target classification [36].

The wrapper approaches search for subsets of features that
are useful for the classification or regression task at hand. They
are based on evaluating the performance of different subsets of
features using a machine learning algorithm [37, 10, 38]. The
contribution of the subset of features is taken into consideration
and the whole process is black-box like. In order to apply a
particular wrapper method, one has to define: how will be the
space of all possible feature subsets traversed; how will be
the performance of the learning algorithm evaluated in order

to guide the search; and which learning algorithm to be used.
The greatest advantage of these methods is their universality
and independence of the domain of the data and task, while
their main drawback is their computational complexity.

Information gain is a synonym for KullbackLeibler diver-
gence and it can be used as a metric for ranking individual
features [26, 27]. In order to calculate information gain, first
the entropy H(X) of the dataset should be calculated. Let
X denote a set of training examples, and each of them xi is
in the form (x1

i , x
2
i , ..., x

k
i , yi). Let each column (i.e. feature)

be a discrete random variable that takes on values from set
V j , j = 1..k. Let the set of possible labels (i.e. classes) is L,
such as yi ∈ L. Then the entropy of the dataset X can be
calculated with equation (1), where p(l) is the probability of
instance xi to be labeled as l (i.e yi = l) and is defined with
equation (2).

H(X) = −
∑
l∈L

p(l) log p(l) (1)

p(l) =
|{xi ∈ X|yi = y}|

|X|
(2)

The information gain of the j-th feature of the dataset X
can be calculated with equation (3), where first part in the sum
is the probability of the instance xi to have value v of the j-th
feature. The second part in the sum in equation (3) denotes
the entropy of the subset of instances of X that have the value
v of the j-th feature.

IG(X, j) = H(X)−
∑
v∈V j

∣∣∣{xi ∈ X|xj
i = v

}∣∣∣
|X|

H(
{
xi ∈ X|xj

i = v
}
)

(3)

As shown by equations (1),(2) and (3), calculation of
information gain of all features boils down to counting the
number of instances per feature, value and class. After we
compute these counts, we can calculate the probabilities and
consequently calculate the information gain. It only remains to
sort the features based on their information gain in descending
order and decide how many features we want to retain in the
filtered dataset. In the following section II we propose parallel
implementation for calculating the information gain of each
feature j in the dataset X .

II. PARALLEL COMPUTATION OF INFORMATION GAIN

In this section we demonstrate how we can leverage the
power and flexibility of Pig Latin for implicit implementation
of MapReduce jobs. In particular we are going to use it for
calculation of the information gain of all features of a dataset.
Writing parallel computer programs generally is more difficult
than writing sequential ones, because parallelization introduces
several new types of potential software bugs of which most
common are race conditions, communication and synchro-
nization between the different subtasks. Choosing Hadoop as
environment for parallelization of algorithms overcomes many
of those challenges without needing the programmer to put
much effort for solving those kinds of challenges.

The implementation we propose in this paper consists of
several phases, shortly described in the following subsections.
All except the first and last step are Pig Latin scripts that
compile into a set of MapReduce jobs. Note that all of them
can be merged in one large Pig script, however we have
chosen to run them in separate scripts so we can monitor the
performance of each step better and to have the ability to repeat
only specific step multiple times.

A. Copy data to HDFS

This phase is a trivial Linux command that copies the
dataset files from the Linux file system to HDFS. There are
more advanced Hadoop services like Flume and Sqoop for
integration with other systems, but they are not of interest for
the task at hand.

B. Preprocess, format and load data in HBase

. This step reads the files from HDFS, and during it we
can perform normalization discretization, data cleansing etc.
and finally store the dataset in a HBase table. This phase is
a MapReduce job without a Reduce phase because during the
Map phase the data is read from HDFS, processed and stored
in HBase without needing to arrange similar records together.

Before loading the dataset in HBase, we need to define the
table structure and create it. Because HBase tables, unlike SQL
tables, cannot have secondary indexes, the primary key (row
key) needs to be designed according to the usage patterns of the
table. For scientific use and for parallelizing machine learning
algorithms, we need a simple design that allows uniform data
distribution across nodes. In most scientific datasets the data
instances (i.e. rows) do not have ids for their instances, or
if they do they are not used for the actual machine learning.
Assuming the dataset has N rows, and the Hadoop cluster has
M regions, then we would like to distribute the data uniformly
so each region gets N/M rows. This in turn means that we
need to specify M − 1 split points when creating the table. If
we calculate the modulo number of the id of the row and the
number of regions, then each region would get almost the same
number of rows. This design of the row key allows fast random
reads and writes, and additionally it facilitates addition of new
data to the table at a later time without needing to redesign the
table for equally dispersed load across regions. Usually each
node is a multi-threaded machine so it can serve more regions.

C. Calculate entropy for the whole dataset

In order to calculate the entropy of the whole dataset
we need to first count the number of instances per class
(first MapReduce job), and then to sum the class probabilities
(second MapReduce job). This step actually compiles as two
separate MapReduce jobs. Notably this is a very simple step
and does not require parallelization because its complexity is
O(N), where N is the number of instances in the dataset.
Moreover, if we are interested in only sorting the features
without having the real information gain for each of them,
then the entropy can be omitted from equation (3) and use an
arbitrary non-negative constant instead of it.

D. Calculate instance counts per feature index, feature value
and class

This step is the most computationally expensive step in
the algorithm. The source code of this step is shown in listing
1. Each parameter starting with $ can be passed to Pig script
when invoking it. Such parameters are the table names, number
of features, index of the class value, number of padding digits
etc. First we need to load the dataset from a HBase table
(lines 3 through 6). Then we need to expand each row of
the dataset (denoted as dictionary r) to pairs: (feature index,
feature value, class, 1). This is performed in lines 7 through 8
with the user-defined function FeatureV alueClassCounts.
If the dataset has M rows and N columns than MxN tuples
will be generated. These tuples are afterwards grouped by the
key (featureindex, featurevalue, class) in lines 9 through
12, and finally the count is stored in another table (lines 13
through 15). All of the code in listing 1 is compiled in one
MapReduce job.

1 register ’$udf_path’ using jython as
paddingUDF;

2 set default_parallel $parallel;
3 pfdata_tmp = LOAD ’$table_dataset’ USING

org.apache.pig.backend.hadoop.hbase.
4 HBaseStorage(’r:*’, ’-loadKey=true’) AS
5 (rowkey:tuple(prefix_padded:chararray,

id_padded:chararray, id:int),
6 r:map[]);
7 pfdata_short = FOREACH pfdata_tmp GENERATE
8 FLATTEN(paddingUDF.FeatureValueClassCounts(r,

((int)$num_features),
((int)$num_features_digits), ’$label’));

9 feature_value_class_counts_group = GROUP
pfdata_short BY (featureIndexPadded,
featureValue, class);

10 feature_value_class_counts = FOREACH
feature_value_class_counts_group GENERATE

11 group as rowkey,
12 SUM(pfdata_short.instanceCount) as

instanceCount:double;
13 STORE feature_value_class_counts INTO

’$table_feature_index_tmp’ USING
14 org.apache.pig.backend.hadoop.hbase.
15 HBaseStorage(’r:instanceCount’);

Listing 1. Counting number of instances per feature index, feature value and
class with Pig Latin

E. Calculate information gain

Having the counts calculated in the previous step II-D, this
step only calculates the probabilities and entropies in (3) and
stores this result in HBase or HDFS. Nevertheless, it is usually
the second longest running step from this list.

F. Order features by information gain and export the results

If one decides to store the results from the previous step
in HDFS directly and not to keep it for further use in HBase,
then this step is obsolete. In addition, sorting of the features
is a simple operation that does not require parallelization,
even if the number of features is several hundred thousand.
Nevertheless, the export of the list of features and/or the
reduced dataset that contains only the selected features is a
simple operation. We can specify the number of features to be
retained by a parameter that can be provided to the Pig script.

G. Copy the results from HDFS

The final step is a trivial step that consists only of copying
the list of selected features or the reduced dataset from HDFS
to the Linux file system.

III. RESULTS

In order to test the parallel implementation we wanted a
dataset that is relatively large, so we can monitor the impact
of the number of nodes in the cluster. On the other hand, we
wanted to avoid the need of preprocessing like discretization or
transformation of values because that can modify the original
features and then a comparison with other research would be
more difficult. The FedCSIS AAIA’14 data mining competition
dataset [39] met those criteria. It is a sparse matrix that has
50000 instances and 11852 numeric features, most of which
are have the value 0 or 1. It is a multi-label problem that has 3
binary labels, that can be merged with the powerset technique
as used in [40] into one one-label multi-class problem that
has 8 (s3) possible classes.

We have tested the same dataset on three completely
different Hadoop clusters. Each of them was running the same
version of Apache Hadoop 2.3.0 (integrated in Cloudera CDH
5.3.0).

The first cluster (denoted by Amazon32 in the remaining
of the paper) was deployed on Amazon AWS. It contained
a total of 32 nodes, each of them a m1.xlarge instance with
15GB RAM and 8 compute units (4 cores with 2 compute
units each). From the 32 nodes, 8 were hosting HBase Region
Servers and HDFS Data Nodes, 3 were specifically dedicated
to HDFS Data Nodes and 19 were running only YARN. We
acknowledge that this configuration may not be optimal for
the current task, but we were given access to this cluster
without the ability to modify its configuration. Therefore we
have decided to run tests using up to 8 nodes at a time, because
when using more it would be difficult to estimate the speedup.

The second cluster (denoted by FCSE24 in the remaining
of the paper) was on-premises at the Faculty of Computer
Science and Engineering (FCSE) at the Ss.Cyril and Methodius
University, Skopje, Macedonia. It had a total of 24 nodes,
each of them an Intel Xeon Processor E5640 with 12M Cache,
2.66 GHz, 24 GB RAM, 4 cores and 8 threads. From them
21 were configured to run the following services: HBase
Region Servers, HDFS DataNodes and YARN MapReduce
NodeManagers. The remaining nodes were used for other
Hadoop and Cloudera management services.

The third cluster (denoted by FCSE65 in the remaining of
the paper) was also on-premises and it was an extended version
of the second, containing a total of 65 nodes, of which 59 were
running the following services: HBase Region Servers, HDFS
DataNodes and YARN MapReduce NodeManagers.

During our tests none of these clusters was executing other
tasks. On all of them we ran tests with different table structures
in order to simulate clusters with smaller sizes. By pre-splitting
the HBase tables to a specific number of regions we were able
to force Pig Latin to compile that number of map tasks for each
job. For all these configurations we are computing the speedup
of the parallelization against a cluster with one node. We are
simulating the one-node cluster by configuring the tables to

Fig. 1. Speedup depending on the number of active nodes, map and reduce tasks on the Amazon32 cluster

Fig. 2. Speedup depending on the number of active nodes, map and reduce tasks on the FCSE24 cluster

have only one region, thus all MapReduce jobs that read from
those tables have only one map task. We have tested using
different number of reduce task by setting a configuration
property in the Pig scripts. The remaining of this section is
divided in two, III-A containing summary information for all
steps that are fast and did not benefit significantly from the
parallelization, and III-B containing detailed information about
the step described in II-D, which was the most computationally
expensive. Table I shows the information gain of the top 50
features.

A. Fast steps

The dataset was stored in two files: one containing the data
in EAV (entity attribute value) format, and one containing the
labels. The total size of the files is 72 MB, so the first step
described in subsection II-A was couple of seconds on all
configurations. The step described in II-B was actually two
MapReduce jobs. The first one was for loading the labels
which took 58 to 70 seconds, and one for loading the data
took 130 to 145 seconds on the on-premises and 175 to 195
seconds on the Amazon cluster. Calculating the entropy of the
dataset, described in section II-C, took 118 to 152 seconds
on both clusters. The step described in subsection II-D is
analyzed in more detail in the following subsection III-B.

Fig. 3. Speedup depending on the number of active nodes and map tasks on the FCSE65 cluster

After it completed and stored the results in a pre-splitted table,
calculating the information gain of each feature, described in
subsection II-E, took 69 to 97 seconds on both clusters. The
final step, the export of the list of information gain of all
features, took 46 to 70 seconds. All of the MapReduce tasks
had an overhead of up to 60 seconds for compilation of the
Pig script, generating JAR files, distributing them on the cluster
and negotiating resources.

B. Computationally expensive step - Calculating counts

The step described in subsection II-D was the most com-
plicated and the speedup for it varied significantly depending
on the cluster size and configuration. The remaining of this
subsection describes details of the impact of the parallelization
of this step and all listed speedups and durations are only for
it.

We started testing on the Amazon32 cluster, trying to
determine the impact of the number of nodes, maps and
reduces. We have tried three options when trying to utilize the
nodes of the cluster: use as much as possible nodes to run map
tasks and have only one reduce task; use as much as possible
nodes to run both map and reduce tasks; and use only one node
for one map task and use all available nodes for reduce tasks.
The speedup compared to the one-node cluster depending on
the available nodes using these three options are shown on Fig.
1. It indicates that for this dataset is best to go have only one
reduce phase, but use as many nodes as possible for the map
tasks. This, in fact, makes sense because the work is performed
during the map phase and during the reduce phase these results
are grouped together. Having more than the default of one
reduce task actually increases the duration because the partial
results in each reduce task need to be merged together. The

total duration of this step on the one-node cluster was 4732
seconds, while the quickest solution with speedup of 6.83 took
693 seconds.

Then we continued testing on the FCSE24 cluster, using
the same approach. Additionally we tried using 1,3,5,7 or 9
reduce tasks, depending on the number of available nodes.
Our intent was to confirm that using only one reduce task
(the default value in Pig Latin) will be more appropriate for a
dataset of this size. The charts shown on Fig. 2 indeed confirm
this assumption. The greatest speedup was always achieved
when using only one reduce task, regardless of the number
of available nodes. The total duration of this step on the one-
node cluster was 3637 seconds, while the quickest solution
with speedup of 13.72 took 265 seconds.

Finally, we conducted experiments on the largest FSCSE65
cluster. Given that using only one reduce task gave best
results on all configurations on the other two clusters, we have
decided to use only one reduce task for all experiments on
the FCSE65 cluster. Additionally, on this cluster we wanted
to examine if using more map tasks than actual nodes will
be beneficial. The motivation behind this is that all nodes are
multi-core machines, so we wanted to see what happens when
one HBase Region Server serves multiple table regions. The
chart on Fig. 3 indeed shows this. When we have two or three
times more map tasks (118, 177) than actual nodes (59), the
performance is increased. However, when we further increase
the number of map tasks to 236 (59 x 4), 295 (59 x 5), 354
(59 x 6), 413 (59 x 7) and 472 (59 x 8), the performance
gradually degrades. One reasonable explanation for this is that
as the number of map tasks gets larger, the operating system
on the nodes needs to spend more time on task switching,
swapping, while also needing to run many Hadoop and other

services in the background. In fact, using a reasonable amount
of regions per region server is mentioned in [41] in Section 9.7
and also in [19] in Chapter 11. The total duration of this step
on the one-node cluster was 3656 seconds, while the quickest
solution with speedup of 28.34 took 129 seconds.

TABLE I. TOP 50 FEATURES ORDERED BY INFORMATION GAIN

Rank Feature InfoGain Rank Feature InfoGain
1 11701 0.07422 26 7407 0.0256033
2 143 0.07000 27 11825 0.0249701
3 11832 0.06009 28 4505 0.0249698
4 1509 0.05154 29 11100 0.0249225
5 5909 0.04936 30 10331 0.0247915
6 8635 0.04539 31 7529 0.0247519
7 2182 0.04012 32 2274 0.0247061
8 865 0.03817 33 10261 0.0246147
9 6523 0.03817 34 7592 0.0245778

10 5827 0.03795 35 4319 0.0245677
11 5188 0.03467 36 1349 0.0245448
12 5513 0.03296 37 7405 0.0245288
13 6162 0.03294 38 11463 0.0245111
14 5967 0.03271 39 11000 0.0244753
15 2835 0.03223 40 6779 0.0240003
16 139 0.0318404 41 10428 0.0236240
17 9306 0.0318030 42 460 0.0235250
18 1772 0.0296594 43 7291 0.0233440
19 3257 0.0283169 44 8853 0.0232071
20 9848 0.0283169 45 2883 0.0232064
21 675 0.0282140 46 5925 0.0231852
22 73 0.0273487 47 8114 0.0225087
23 7275 0.0266788 48 5330 0.0223354
24 7419 0.0266100 49 1156 0.0219374
25 1244 0.0262854 50 2701 0.0218273

IV. CONCLUSION AND FUTURE WORK

In this paper we have proposed a parallel implementation
of the metric information gain that can be used for feature
selection. We have demonstrated how can we manually set
the degree of parallelism by pre-splitting the HBase tables so
they have optimal number of regions and even data distribution
across regions. In order to verify the proposed approach based
on Pig Latin and some Python-based user-defined functions we
have performed some tests and have analyzed the speedup. In
order to verify the correctness of the implementation we have
compared the ranked features with the results obtained from
WEKA.

In order to affirm the proposed parallelization, we need
to measure its impact on different cluster configurations and
with other publicly available datasets. In that manner, we also
need to propose valid data transformation and normalization
techniques so we can generalize the approach and make it
available for datasets that contain non-discretized continuous
or nominal features. Additionally we plan to parallelize other
more advanced feature selection algorithms using a similar
framework.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified
data processing on large clusters,” in Proceedings
of the 6th Conference on Symposium on Opearting
Systems Design & Implementation - Volume 6, ser.
OSDI’04. Berkeley, CA, USA: USENIX Association,
2004, pp. 10–10. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1251254.1251264

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh,
D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,

and R. E. Gruber, “Bigtable: A distributed storage
system for structured data,” in Proceedings of the
7th USENIX Symposium on Operating Systems Design
and Implementation - Volume 7, ser. OSDI ’06.
Berkeley, CA, USA: USENIX Association, 2006, pp.
15–15. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1267308.1267323

[3] “Hadoop wiki: List of institutions that are using hadoop
for educational or production uses, howpublished = https:
//wiki.apache.org/hadoop/poweredby, note = Accessed:
2015-01-29.”

[4] J. R. Quinlan, C4.5: Programs for Machine Learning.
San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1993. ISBN 1-55860-238-0

[5] T. M. Mitchell, Machine Learning, 1st ed.
McGraw-Hill Science/Engineering/Math, 3 1997.
ISBN 9780070428072. [Online]. Available: http:
//amazon.com/o/ASIN/0070428077/

[6] D. Mladenic and M. Grobelnik, “Feature selection
for unbalanced class distribution and naive bayes,” in
Proceedings of the Sixteenth International Conference
on Machine Learning, ser. ICML ’99. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1999.
ISBN 1-55860-612-2 pp. 258–267. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645528.657649

[7] R. O. Duda, Pattern classification, 2nd ed. New York:
Wiley, 2001. ISBN 0471056693

[8] H. Almuallim and T. G. Dietterich, “Learning with
many irrelevant features,” in Proceedings of the
Ninth National Conference on Artificial Intelligence
- Volume 2, ser. AAAI’91. AAAI Press, 1991.
ISBN 0-262-51059-6 pp. 547–552. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1865756.1865761

[9] A. L. Blum and P. Langley, “Selection of relevant
features and examples in machine learning,” Artificial
Intelligence, vol. 97, no. 1–2, pp. 245 – 271, 1997.
doi: http://dx.doi.org/10.1016/S0004-3702(97)00063-5
Relevance. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0004370297000635

[10] P. Langley, Elements of machine learning. San Fran-
cisco, Calif: Morgan Kaufmann, 1996. ISBN 1558603018

[11] G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant features
and the subset selection problem,” in Machine Learning:
Proceedings of the Eleventh International Conference.
Morgan Kaufmann, 1994, pp. 121–129.

[12] B. Raman and T. R. Ioerger, “Instance based filter for fea-
ture selection,” Journal of Machine Learning Research,
vol. 1, no. 3, pp. 1–23, 2002.

[13] I. Guyon and A. Elisseeff, “An introduction to
variable and feature selection,” J. Mach. Learn. Res.,
vol. 3, pp. 1157–1182, Mar. 2003. [Online]. Available:
http://dl.acm.org/citation.cfm?id=944919.944968

[14] D. Miner, MapReduce design patterns. Sebastopol, CA:
O’Reilly, 2013. ISBN 9781449327170

[15] A. Holmes, Hadoop in practice. Shelter Island, NY:
Manning, 2012. ISBN 9781617290237 1617290238

[16] T. White, Hadoop: the definitive guide, 3rd ed. Beijing:
O’Reilly, 2012. ISBN 9781449311520

[17] “Apache hadoop nextgen mapreduce (yarn),”
http://hadoop.apache.org/docs/current/hadoop-yarn/
hadoop-yarn-site/YARN.html, accessed: 2015-01-29.

[18] “Hdfs architecture guide,” http://hadoop.apache.org/docs/

r1.2.1/hdfs design.html, accessed: 2015-01-29.
[19] L. George, HBase the definitive guide. Se-

bastopol, CA: O’Reilly, 2011. ISBN 9781449315771
1449315771. [Online]. Available: http://public.eblib.com/
choice/publicfullrecord.aspx?p=769368

[20] Y. Jiang, HBase administration cookbook master
HBase configuration and administration for op-
timum database performance. Birmingham: Packt
Publishing, 2012. ISBN 9781849517157 1849517150
1849517142 9781849517140. [Online]. Available:
http://site.ebrary.com/id/10598980

[21] N. Dimiduk and A. Khurana, HBase in action. Shel-
ter Island, NY: Manning, 2013. ISBN 1617290521
9781617290527

[22] E. A. Brewer, “Towards robust distributed systems
(abstract),” in Proceedings of the Nineteenth Annual
ACM Symposium on Principles of Distributed Computing,
ser. PODC ’00. New York, NY, USA: ACM, 2000. doi:
10.1145/343477.343502. ISBN 1-58113-183-6 pp. 7–.
[Online]. Available: http://doi.acm.org/10.1145/343477.
343502

[23] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M.
Narayanamurthy, C. Olston, B. Reed, S. Srinivasan, and
U. Srivastava, “Building a high-level dataflow system on
top of map-reduce: The pig experience,” Proc. VLDB
Endow., vol. 2, no. 2, pp. 1414–1425, Aug. 2009.
doi: 10.14778/1687553.1687568. [Online]. Available:
http://dx.doi.org/10.14778/1687553.1687568

[24] A. Gates, Programming Pig. Sebastopol: O’Reilly
Media, 2011. ISBN 9781449317690 1449317693
9781449317683 1449317685. [Online]. Available: http://
public.eblib.com/choice/publicfullrecord.aspx?p=801461

[25] R. Anderson, The credit scoring toolkit: theory and
practice for retail credit risk management and decision
automation. Oxford: Oxford University Press, 2007.
ISBN 9780199226405

[26] T. M. Cover and J. A. Thomas, Elements of information
theory, 2nd ed. Hoboken, NJ: Wiley, 2006. ISBN
9780471241959 0471241954 9780471241959

[27] C. Shang, M. Li, S. Feng, Q. Jiang, and J. Fan,
“Feature selection via maximizing global information
gain for text classification,” Knowledge-Based Systems,
vol. 54, no. 0, pp. 298 – 309, 2013. doi:
http://dx.doi.org/10.1016/j.knosys.2013.09.019. [Online].
Available: http://www.sciencedirect.com/science/article/
pii/S0950705113003067

[28] C. Lee and G. G. Lee, “Information gain and divergence-
based feature selection for machine learning-based text
categorization,” Inf. Process. Manage., vol. 42, no. 1,
pp. 155–165, Jan. 2006. doi: 10.1016/j.ipm.2004.08.006.
[Online]. Available: http://dx.doi.org/10.1016/j.ipm.2004.
08.006

[29] S. Kullback and R. A. Leibler, “On information and
sufficiency,” The Annals of Mathematical Statistics, pp.
79–86, 1951.

[30] K. Kira and L. A. Rendell, “A practical approach
to feature selection,” in Proceedings of the Ninth
International Workshop on Machine Learning, ser.
ML92. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1992. ISBN 1-5586-247-X pp. 249–
256. [Online]. Available: http://dl.acm.org/citation.cfm?
id=141975.142034

[31] I. Kononenko, “Estimating attributes: Analysis and
extensions of relief,” in Machine Learning: ECML-
94, ser. Lecture Notes in Computer Science,
F. Bergadano and L. De Raedt, Eds. Springer
Berlin Heidelberg, 1994, vol. 784, pp. 171–
182. ISBN 978-3-540-57868-0. [Online]. Available:
http://dx.doi.org/10.1007/3-540-57868-4 57

[32] T. Jebara and T. Jaakkola, “Feature selection and
dualities in maximum entropy discrimination,” in
Proceedings of the Sixteenth Conference on Uncertainty
in Artificial Intelligence, ser. UAI’00. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2000.
ISBN 1-55860-709-9 pp. 291–300. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2073946.2073981

[33] H. Liu and H. Motoda, Feature Extraction,
Construction and Selection a Data Mining
Perspective. Boston, MA: Springer US, 1998.
ISBN 9781461557258 1461557259. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4615-5725-8

[34] M. A. Hall, “Correlation-based feature selection for ma-
chine learning,” Ph.D. dissertation, The University of
Waikato, 1999.

[35] L. Yu and H. Liu, “Feature selection for high-dimensional
data: A fast correlation-based filter solution,” in ICML,
vol. 3, 2003, pp. 856–863.

[36] M. Dash, H. Liu, and H. Motoda, “Consistency based
feature selection,” in Knowledge Discovery and Data
Mining. Current Issues and New Applications, ser.
Lecture Notes in Computer Science, T. Terano, H. Liu,
and A. Chen, Eds. Springer Berlin Heidelberg, 2000, vol.
1805, pp. 98–109. ISBN 978-3-540-67382-8. [Online].
Available: http://dx.doi.org/10.1007/3-540-45571-X 12

[37] R. Kohavi and G. H. John, “Wrappers for
feature subset selection,” Artif. Intell., vol. 97,
no. 1-2, pp. 273–324, Dec. 1997. doi:
10.1016/S0004-3702(97)00043-X. [Online]. Available:
http://dx.doi.org/10.1016/S0004-3702(97)00043-X

[38] P. Yang, W. Liu, B. Zhou, S. Chawla, and A. Zomaya,
“Ensemble-based wrapper methods for feature selection
and class imbalance learning,” in Advances in Knowledge
Discovery and Data Mining, ser. Lecture Notes in
Computer Science, J. Pei, V. Tseng, L. Cao, H. Motoda,
and G. Xu, Eds. Springer Berlin Heidelberg, 2013, vol.
7818, pp. 544–555. ISBN 978-3-642-37452-4. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-37453-1
45

[39] “AAIA’14 data mining competition,” https://fedcsis.org/
2014/dm competition, accessed: 2014-05-30.

[40] E. Zdravevski, P. Lameski, A. Kulakov, and D. Gjorgje-
vikj, “Feature selection and allocation to diverse subsets
for multi-label learning problems with large datasets,”
in Computer Science and Information Systems (FedC-
SIS), 2014 Federated Conference on, Sept 2014. doi:
10.15439/2014F500 pp. 387–394.

[41] A. H. Team, “Apache HBase reference guide,” http:
//hbase.apache.org/book.html, accessed: 2015-03-29.

View publication statsView publication stats

https://www.researchgate.net/publication/281271265

